

 Clive “ Max ” Maxfield is six feet tall, outrageously handsome, English and
proud of it. In addition to being a hero, trendsetter, and leader of fashion, he
is widely regarded as an expert in all aspects of electronics and computing (at
least by his mother).

 After receiving his B.Sc. in Control Engineering in 1980 from Sheffield
Polytechnic (now Sheffield Hallam University), England, Max began his career
as a designer of central processing units for mainframe computers. During his
career, he has designed everything from ASICs to PCBs and has meandered
his way through most aspects of Electronics Design Automation (EDA). To cut
a long story short, Max now finds himself President of TechBites Interactive
(www.techbites.com). A marketing consultancy, TechBites specializes in com-
municating the value of its clients ’ technical products and services to non-
t echnical audiences through a variety of media, including websites, advertising,
technical documents, brochures, collaterals, books, and multimedia.

 In addition to numerous technical articles and papers appearing in maga-
zines and at conferences around the world, Max is also the author and
co-author of a number of books, including Bebop to the Boolean Boogie (An
Unconventional Guide to Electronics) , Designus Maximus Unleashed (Banned
in Alabama) , Bebop BYTES Back (An Unconventional Guide to Computers) ,
 EDA: Where Electronics Begins , The Design Warrior’s Guide to FPGAs , and
 How Computers Do Math (www.diycalculator.com).

 In his spare time (Ha!), Max is co-editor and co-publisher of the web-
d elivered electronics and computing hobbyist magazine EPE Online (www.
epemag.com). Max also acts as editor for the Programmable Logic DesignLine
website (www.pldesignline.com) and for the iDESIGN section of the Chip
Design Magazine website (www.chipdesignmag.com).

 On the off-chance that you’re still not impressed, Max was once referred to
as an “ industry notable ” and a “ semiconductor design expert ” by someone
famous who wasn’t prompted, coerced, or remunerated in any way!

About the Author

www.newnespress.com

bio-h8974.indd xibio-h8974.indd xi 6/20/2008 3:35:05 PM6/20/2008 3:35:05 PM

www.newnespress.com

 The Fundamentals

 Chapter 1

 FPGA Defi nitions

 ● Field programmable gate arrays (FPGAs) are digital integrated circuits (ICs) that
contain confi gurable (programmable) blocks of logic along with confi gurable
interconnects between these blocks. Design engineers can confi gure, or pro-
gram, such devices to perform a tremendous variety of tasks.

 ● Depending on how they are implemented, some FPGAs may only be pro-
grammed a single time, while others may be reprogrammed over and over
again. Not surprisingly, a device that can be programmed only one time is
referred to as one-time programmable (OTP).

 ● The “ fi eld programmable ” portion of the FPGA’s name refers to the fact that its
programming takes place “ in the fi eld ” (as opposed to devices whose internal
functionality is hardwired by the manufacturer). This may mean that FPGAs are
confi gured in the laboratory, or it may refer to modifying the function of a device
resident in an electronic system that has already been deployed in the outside
world. If a device is capable of being programmed while remaining resident in a
higher-level system, it is referred to as being in-system programmable (ISP).

 ● In this book, we’ll be referring to programmable logic devices (PLDs),
a pplication-specifi c integrated circuits (ASICs), application-specifi c standard
parts (ASSPs), and—of course—FPGAs.

 WHY USE FPGAS?

 Various aspects of PLDs, ASICs, and FPGAs will be discussed later in more
detail. For now, we need only be aware that PLDs are devices whose i nternal

In an Instant

Why Use FPGAS?
Applications
Some Technology Background

Fusible-link Technology

FPGA Programming
Technologies

Instant Summary

CH001-H8974.indd 1CH001-H8974.indd 1 6/21/2008 4:56:12 PM6/21/2008 4:56:12 PM

FPGAs: Instant Access2

www.newnespress.com

architecture is predetermined by the manufacturer, but are created in such a
way that they can be configured by engineers in the field to perform a variety
of different functions. In comparison to an FPGA, however, these devices con-
tain a relatively limited number of logic gates, and the functions they can be
used to implement are much smaller and simpler.

 At the other end of the spectrum are ASICs and ASSPs that can contain
hundreds of millions of logic gates and can be used to create incredibly large and
complex functions. ASICs and ASSPs are based on the same design processes
and manufacturing technologies. Both are custom-designed to address a specific
application, the only difference being that an ASIC is designed and built to order
for use by a specific company, while an ASSP is marketed to multiple customers.

 ALERT !

 When we use the term ASIC from now on, it may be assumed that we are also
referring to ASSPs unless otherwise noted or where such interpretation is incon-
sistent with the context.

 Although ASICs offer the ultimate in size (number of transistors), com-
plexity, and performance, designing and building one is an extremely time-
consuming and expensive process, with the added disadvantage that the final
design is “ frozen in silicon ” and cannot be modified without creating a new
version of the device.

 Thus, FPGAs occupy a middle ground between PLDs and ASICs because
their functionality can be customized in the field like PLDs, but they can con-
tain millions of logic gates and be used to implement extremely large and
c omplex functions that previously could be realized using only ASICs.

 —Technology Trade-offs—
 ● The cost of an FPGA design is much lower than that of an ASIC (although

the ensuing ASIC components are much cheaper in large production runs).
 ● Implementing design changes is much easier in FPGAs.
 ● Time to market for FPGAs is much faster.

 FPGAs make many small, innovative design companies viable because—
in addition to their use by large system design houses—FPGAs facilitate
 “ Fred-in-the-shed ” -type operations. This means they allow individual engi-
neers or small groups of engineers to realize their hardware and software con-
cepts on an FPGA-based test platform without having to incur the enormous
nonrecurring engineering (NRE) costs or purchase the expensive toolsets asso-
ciated with ASIC designs. Hence, there were estimated to be only 1,500 to
4,000 ASIC design starts and 5,000 ASSP design starts in 2003 (these numbers
are falling dramatically year by year), as opposed to an educated “ guesstimate ”
of around 450,000 FPGA design starts in the same year.

CH001-H8974.indd 2CH001-H8974.indd 2 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

3Chapter | 1 The Fundamentals

www.newnespress.com

 APPLICATIONS

 When they first arrived on the scene in the mid-1980s, FPGAs were largely
used to implement glue logic, medium-complexity state machines, and rela-
tively limited data processing tasks. During the early 1990s, as the size and
sophistication of FPGAs started to increase, their big markets at that time were
in the telecommunications and networking arenas, both of which involved pro-
cessing large blocks of data and pushing that data around. Later, toward the
end of the 1990s, the use of FPGAs in consumer, automotive, and industrial
applications underwent a humongous growth spurt.

 FPGAs are often used to prototype ASIC designs or to provide a hardware
platform on which to verify the physical implementation of new algorithms.
However, their low development cost and short time-to-market mean that they
are increasingly finding their way into final products (some of the major FPGA
vendors actually have devices they specifically market as competing directly
against ASICs).

 High-performance FPGAs containing millions of gates are currently avail-
able. Some of these devices feature embedded microprocessor cores, high-
speed input/output (I/O) devices, and the like. The result is that today’s FPGAs
can be used to implement just about anything, including communications
devices and software-defined radio; radar, image, and other digital signal pro-
cessing (DSP) applications; and all the way up to system-on-chip (SoC) com-
ponents that contain both hardware and software elements.

 Insider Info

 These design-start numbers are a little hard to pin down because it’s difficult to
get everyone to agree what a “ design start ” actually is. In the case of an ASIC, for
example, should we include designs that are canceled in the middle, or should we
only consider designs that make it all the way to tape-out? Things become even
fluffier when it comes to FPGAs due to their reconfigurability. Perhaps even more
telling is the fact that, after pointing me toward an FPGA-centric industry analyst’s
Web site, a representative from one FPGA vendor added, “ But the values given
there aren’t very accurate. ” When I asked why, he replied with a sly grin, “ Mainly
because we don’t provide him with very good data! ”

 FAQs

 What are the major market segments for FPGAs?

 ● ASIC and custom silicon : FPGAs are increasingly being used to implement
designs that previously were realized by using only ASICs and custom silicon.

 ● Digital signal processing : Today’s FPGAs can contain embedded multipliers,
dedicated arithmetic routing, and large amounts of on-chip RAM, all of which
facilitate DSP operations. When coupled with the massive parallelism provided

CH001-H8974.indd 3CH001-H8974.indd 3 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

FPGAs: Instant Access4

www.newnespress.com

 SOME TECHNOLOGY BACKGROUND

 The first FPGA devices contained only a few thousand simple logic gates (or
the equivalent), and the flows used to design these components—p redominantly
based on the use of schematic capture—were easy to understand and use. By
comparison, today’s FPGAs are incredibly complex, and there are more design
tools, flows, and techniques than you can swing a stick at. In this section we’ll
look at some technology basics.

 Key Concept

 What distinguishes an FPGA from an ASIC is embodied in the name:

ProgrammableField Gate Array

 Fusible-link Technology

 Let’s first consider a very simple programmable function with two inputs
called a and b and a single output y (Figure 1-1).

 The inverting NOT gates associated with the inputs mean that each input
is available in both its true (unmodified) and complemented (inverted) form.
Observe the locations of the potential links. In the absence of any of these

by FPGAs, this results in outperforming the fastest DSP chips by a factor of 500
or more.

 ● Embedded microcontrollers : Low-cost microcontrollers, which contain on-chip
program and instruction memories, timers and I/O peripherals wrapped around
a processor core, are used in small control functions. With falling FPGA prices,
however, and increased capability to implement a soft processor core com-
bined with a selection of custom I/O functions, FPGAs are becoming increas-
ingly attractive for embedded control applications.

 ● Physical layer communications : FPGAs have long been used for the glue logic
that interfaces between physical layer communication chips and high-level
networking protocol layers. Now high-end FPGAs can contain multiple high-
speed transceivers, which means that communications and networking func-
tions can be consolidated into a single device.

 ● Reconfi gurable computing (RC) : FPGAs have created this new market seg-
ment. This refers to exploiting the inherent parallelism and reconfi gurabil-
ity provided by FPGAs to “ hardware accelerate ” software algorithms. Various
companies are currently building huge FPGA-based reconfi gurable computing
engines for tasks ranging from hardware simulation to cryptography analysis to
discovering new drugs.

CH001-H8974.indd 4CH001-H8974.indd 4 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

5Chapter | 1 The Fundamentals

www.newnespress.com

links, all of the inputs to the AND gate are connected via pull-up resistors to
a logic 1 value. In turn, this means that the output y will always be driving a
logic 1, which makes this circuit a very boring one in its current state. To make
this function more interesting, we need a mechanism that allows us to establish
one or more of the potential links. This mechanism is fusible-link technology.
In this case, the device is manufactured with all of the links in place, with each
link referred to as a fuse (Figure 1-2).

 These fuses are similar to the fuses you find in household products like a
television. If anything untoward occurs such that the television starts to con-
sume too much power, its fuse will burn out, resulting in an open circuit, which
protects the rest of the unit from harm. Of course, the fuses in silicon chips are
formed using the same processes that are employed to create the transistors
and wires on the chip, so they’re microscopically small.

a

Logic 1

y � 1 (N/A) &

b

Pull-up resistors

Potential links

NOT

NOT

AND

 FIGURE 1-1 A simple programmable function.

a

Fat

Logic 1

y � 0 (N/A) &

Faf

b

Fbt

Fbf

Pull-up resistors

NOT

NOT

AND

Fuses

 FIGURE 1-2 Augmenting the device with unprogrammed fusible links.

CH001-H8974.indd 5CH001-H8974.indd 5 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

FPGAs: Instant Access6

www.newnespress.com

 Although fusible-link technology is not used in today’s FPGAs, it sets the
stage for understanding technologies that are, so we’ll explore it briefly. When
you purchase a programmable device based on fusible links, all the fuses are
initially intact. This means that, in its unprogrammed state, the output from
our example function is always logic 0. (Any 0 presented to the input of an
AND gate will cause its output to be 0, so if input a is 0, the output from the
AND will be 0. Alternatively, if input a is 1, then the output from its NOT
gate—which we shall call !a —will be 0, and once again the output from the
AND will be 0. A similar situation occurs in the case of input b .)

 The point is that design engineers can selectively remove undesired fuses
by applying pulses of relatively high voltage and current to the device’s inputs.
For example, consider what happens if we remove fuses F af and F bt (Figure 1-3).

 Removing these fuses disconnects the complementary version of input a
and the true version of input b from the AND gate (the pull-up resistors asso-
ciated with these signals cause their associated inputs to the AND to be pre-
sented with logic 1 values). This leaves the device to perform its new function,
which is y � a & !b . (The “ & ” character in this equation is used to represent
the AND, while the “ ! ” character is used to represent the NOT.) This process
of removing fuses is typically called programming the device, but it may also
be called blowing the fuses or burning the device.

a

Fat

Logic 1

y � a & !b &

b

Fbf

Pull-up resistors

NOT

NOT

AND

 FIGURE 1-3 Programmed fusible links.

 Key Concept

 Devices based on fusible-link technologies are one-time programmable , or
OTP, because once a fuse has been blown, it can’t be replaced and there’s no
going back.

CH001-H8974.indd 6CH001-H8974.indd 6 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

7Chapter | 1 The Fundamentals

www.newnespress.com

 FPGA Programming Technologies

 Three different major technologies are in use today for programming FPGAs:
antifuse, SRAM, and FLASH EPROM.

 Antifuse Technology
 As a diametric alternative to fusible-link technologies, we have their antifuse
counterparts, in which each configurable path has an associated link called an
antifuse. In its unprogrammed state, an antifuse has such a high resistance that
it may be considered an open circuit (a break in the wire).

 How It Works
 Figure 1-4 shows how the device appears when first purchased. However, antifuses
can be selectively “ grown ” (programmed) by applying pulses of relatively high voltage
and current to the device’s inputs. For example, if we add the antifuses associated with
the complementary version of input a and the true version of input b, our device will
now perform the function y � !a & b (Figure 1-5).

 An antifuse commences life as a microscopic column of amorphous (noncrystal-
line) silicon linking two metal tracks. In its unprogrammed state, the amorphous
silicon acts as an insulator with a very high resistance in excess of 1 billion ohms
(Figure 1-6a).

 The act of programming this particular element effectively “ grows ” a link, known
as a via, by converting the insulating amorphous silicon in conducting polysilicon
(Figure 1-6b).

a

Logic 1

y � 1 (N/A) &

b

Pull-up resistors

Unprogrammed
antifuses

NOT

NOT

AND

 FIGURE 1-4 Unprogrammed antifuse links.

CH001-H8974.indd 7CH001-H8974.indd 7 6/21/2008 4:56:13 PM6/21/2008 4:56:13 PM

FPGAs: Instant Access8

www.newnespress.com

 —Technology Trade-offs—
 ● Not surprisingly, devices based on antifuse technologies are OTP, because

once an antifuse has been grown, it cannot be removed, and there’s no
changing your mind.

 ● Antifuse devices tend to be faster and require lower power.

 SRAM-based Technology
 There are two main versions of semiconductor RAM devices: dynamic RAM
(DRAM) and static RAM (SRAM). DRAM technology is of very little interest
with regard to programmable logic, so we will focus on SRAM.

a

Logic 1

y � !a & b &

b

Pull-up resistors

Programmed
antifuses

NOT

NOT

AND

 FIGURE 1-5 Programmed antifuse links.

Amorphous silicon column Polysilicon via

Metal

Oxide

Metal

Substrate

(a) Before programming (b) After programming

 FIGURE 1-6 Growing an antifuse.

 Key Concept

 SRAM is currently the dominant FPGA technology.

CH001-H8974.indd 8CH001-H8974.indd 8 6/21/2008 4:56:14 PM6/21/2008 4:56:14 PM

9Chapter | 1 The Fundamentals

www.newnespress.com

 The “ static ” qualifier associated with SRAM means that—once a value has
been loaded into an SRAM cell—it will remain unchanged unless it is specifi-
cally altered or until power is removed from the system.

 How It Works
 Consider the symbol for an SRAM-based programmable cell (Figure 1-7).

 The entire cell comprises a multitransistor SRAM storage element whose output
drives an additional control transistor. Depending on the contents of the storage ele-
ment (logic 0 or logic 1), the control transistor will be either OFF (disabled) or ON
(enabled).

 SRAM is currently the dominant FPGA technology.

SRAM

 FIGURE 1-7 An SRAM-based programmable cell.

 —Technology Trade-offs—
 ● A disadvantage of SRAM-based programmable devices is that each cell

consumes a significant amount of silicon real estate because the cells are
formed from four or six transistors configured as a latch.

 ● Another disadvantage is that the device’s configuration data (programmed
state) will be lost when power is removed from the system, so these devices
always have to be reprogrammed when the system is powered on.

 ● Advantages are that such devices can be reprogrammed quickly and eas-
ily, and SRAM uses a standard fabrication technology that is always being
improved upon.

 FLASH-based Technologies
 A relatively new technology known as FLASH is being used in some FPGAs
today. This technology grew out of an earlier technology known as erasable
programmable read-only memory (EPROM) that allows devices to be pro-
grammed, erased, and reprogrammed with new data. We will first look at how
EPROMs work before discussing FLASH.

 An EPROM transistor has the same basic structure as a standard MOS tran-
sistor, but with the addition of a second polysilicon floating gate isolated by
layers of oxide (Figure 1-8).

CH001-H8974.indd 9CH001-H8974.indd 9 6/21/2008 4:56:14 PM6/21/2008 4:56:14 PM

FPGAs: Instant Access10

www.newnespress.com

 How It Works
 In its unprogrammed state, the floating gate is uncharged and doesn’t affect the nor-
mal operation of the control gate. In order to program the transistor, a relatively high
voltage (on the order of 12V) is applied between the control gate and drain terminals.
This causes the transistor to be turned hard on, and energetic electrons force their way
through the oxide into the floating gate in a process known as hot (high energy) elec-
tron injection. When the programming signal is removed, a negative charge remains
on the floating gate. This charge is very stable and will not dissipate for more than
a decade under normal operating conditions. The stored charge on the floating gate
inhibits the normal operation of the control gate and, thus, distinguishes those cells
that have been programmed from those that have not. This means we can use such a
transistor to form a memory cell (Figure 1-9).

 In its unprogrammed state, as provided by the manufacturer, all of the floating gates
in the EPROM transistors are uncharged. In this case, placing a row line in its active
state will turn on all of the transistors connected to that row, thereby causing all of the
column lines to be pulled down to logic 0 via their respective transistors. In order to
program the device, engineers can use the inputs to the device to charge the floating

Control gate

Source Drain

Control gate

Floating gate

Source Drain

(a) Standard MOS transistor (b) EPROM transistor

Silicon
substrate

Silicon
dioxide

Source
terminal

Control gate
terminal

Drain
terminal

Source
terminal

Control gate
terminal

Drain
terminal

 FIGURE 1-8 Standard MOS versus EPROM transistors.

Logic 1

Pull-up resistor

Row
(word) line

Column
(data) line

EPROM
transistor

Logic 0

 FIGURE 1-9 An EPROM transistor-based memory cell.

CH001-H8974.indd 10CH001-H8974.indd 10 6/21/2008 4:56:14 PM6/21/2008 4:56:14 PM

11Chapter | 1 The Fundamentals

www.newnespress.com

gates associated with selected transistors, thereby disabling those transistors. In these
cases, the cells will appear to contain logic 1 values.

 These devices were initially intended for use as programmable memories, but the
same technology was applied to more general-purpose PLDs, which became known
as erasable PLDs (EPLDs). The main problems with EPROMs are their expensive pack-
ages (with quartz windows through which ultraviolet (UV) radiation is used to erase
the device) and the time it takes to erase them, on the order of 20 minutes.

 The next rung up the technology ladder was electrically erasable programmable
read-only memories (EEPROMs or E 2 PROMs). An E 2 PROM cell is approximately 2.5
times larger than an equivalent EPROM cell because it comprises two transistors and
the space between them (Figure 1-10).

 The E2PROM transistor is similar to an EPROM transistor in that it contains a float-
ing gate, but the insulating oxide layers surrounding this gate are very much thinner.
The second transistor can be used to erase the cell electrically. E2PROMs first saw the
light of day as computer memories, but the same technology was eventually applied to
PLDs, which became known as electrically erasable PLDs (EEPLDs or E2PLDs).

 FLASH can trace its ancestry to both EPROM and EEPROM technologies. The name
 “ FLASH ” was originally coined to reflect this technology’s rapid erasure times compared
to EPROM. Components based on FLASH can employ a variety of architectures. Some
have a single floating gate transistor cell with the same area as an EPROM cell, but with
the thinner oxide layers characteristic of an E2PROM component. These devices can
be electrically erased, but only by clearing the whole device or large portions thereof.
Other architectures feature a two-transistor cell similar to that of an E2PROM cell,
thereby allowing them to be erased and reprogrammed on a word-by-word basis.

 —Technology Trade-offs—
 ● FLASH FPGAs are nonvolatile like antifuse FPGAs, but they are also

reprogrammable like SRAM FPGAs.
 ● FLASH FPGAs use a standard fabrication process like SRAM FPGAs and

use lower power like antifuse FPGAs.
 ● FLASH FPGAs are relatively fast.

E2PROM cell

Normal
MOS transistor

E2PROM
transistor

 FIGURE 1-10 An E2PROM—cell.

CH001-H8974.indd 11CH001-H8974.indd 11 6/21/2008 4:56:14 PM6/21/2008 4:56:14 PM

FPGAs: Instant Access12

www.newnespress.com

 INSTANT SUMMARY

 TABLE 1-1 Summary of Programming Technologies

 Technology Symbol Predominantly associated with ...

 Fusible-link SPLDs

 Antifuse FPGAs

 EPROM SPLDs and CPLDs

 E 2 PROM/FLASH SPLDs and CPLDs (some FPGAs)

 SRAM
SRAM

 FPGAs (some CPLDs)

CH001-H8974.indd 12CH001-H8974.indd 12 6/21/2008 4:56:15 PM6/21/2008 4:56:15 PM

www.newnespress.com

 FPGA Architectures

 Chapter 2

 Defi nitions

 In this chapter we’ll discuss a plethora of architectural features of FPGAs. But first,
some definitions.

 ● The term fabric is used throughout this book. In the context of a silicon chip,
this refers to the underlying structure of the device, sort of like the phrase “ the
underlying fabric of civilization. ”

 ● When we talk about the geometry of an IC, we are referring to the size of the
individual structures constructed on the chip, such as the portion of a fi eld-effect
transistor (FET) known as its channel . These structures are incredibly small. In
the early to mid-1980s, devices were based on 3 μ m geometries, which means

In an Instant

More on Programming Technologies
SRAM-based Devices
Antifuse-based Devices
E2PROM/FLASH-based devices
Hybrid FLASH-SRAM Devices

Fine-, Medium-, and Coarse-
grained Architectures

Logic Blocks
MUX-based
LUT-based
LUT versus Distributed RAM

versus SR
CLBs versus LABs versus Slices

Logic Cells/Logic Elements
Slicing and Dicing
CLBs and LABs
Distributed RAMs and Shift

Registers
Embedded RAMs

Embedded Multipliers, Adders, etc.
Embedded Processor Cores

Hard Microprocessor Cores
Soft Microprocessor Cores

Clock Managers
Clock Trees
Clock Managers

General-purpose I/O
Confi gurable I/O Standards
Confi gurable I/O Impedances
Core versus I/O Supply Voltages

Gigabit Transceivers
Multiple Standards

Intellectual Property (IP)
Handcrafted IP
IP Core Generators

System Gates versus Real Gates
Instant Summary

CH002-H8974.indd 13CH002-H8974.indd 13 6/21/2008 7:08:45 PM6/21/2008 7:08:45 PM

FPGAs: Instant Access14

www.newnespress.com

 MORE ON PROGRAMMING TECHNOLOGIES

 SRAM-based Devices

 As seen in Chapter 1, the majority of FPGAs are based on the use of SRAM
configuration cells, which means that they can be configured over and over
again. The main advantages of this programming technology are that new
design ideas can be quickly implemented and tested, while evolving standards
and protocols can be accommodated relatively easily. Furthermore, when the
system is first powered up, the FPGA can initially be programmed to perform
one function such as a self-test or board/system test, and it can then be repro-
grammed to perform its main task.

 Another big advantage of the SRAM-based approach is that these devices
are at the forefront of technology. FPGA vendors can leverage the fact that many
other companies specializing in memory devices expend tremendous resources
on research and development (R & D) in this area. Furthermore, the SRAM cells
are created using exactly the same CMOS technologies as the rest of the device,
so no special processing steps are required in order to create these components.

 Unfortunately, there’s no such thing as a free lunch. One downside of SRAM-
based devices is that they have to be reconfigured every time the system is pow-
ered up. This either requires the use of a special external memory device (which
has an associated cost and consumes real estate on the board) or of an on-board
microprocessor (or some variation of these techniques—see also Chapter 3).

that their smallest structures were 3 millionths of a meter in size. Now, devices
at 0.09 μ m have appeared.

 ● Any geometry smaller than around 0.5 μ m is referred to as deep submicron
(DSM) . At some point that is not well defi ned (or that has multiple defi nitions
depending on whom one is talking to), we move into the ultradeep submicron
(UDSM) realm.

 ● We’ll also discuss the important topic of intellectual property (IP) in this chap-
ter. This term refers to functional design blocks that have already been devel-
oped and can be purchased to put into an IC design. IP blocks can range all the
way up to sophisticated communications functions and microprocessors. The
more complex functions, like microprocessors, may be referred to as “ cores. ”

 Insider Info

 When geometries dropped below 1 μ m, things became a little awkward, not the
least because it’s a pain to keep saying things like “ zero point one three microns. ”
For this reason, when conversing it’s becoming common to talk in terms of nano,
where one nano (short for nanometer) equates to a thousandth of a micron.
Instead of mumbling “ point zero nine microns ” (0.09 μ m), one can simply
 proclaim “ ninety nano ” (90 nano) and have done with it.

CH002-H8974.indd 14CH002-H8974.indd 14 6/21/2008 7:08:45 PM6/21/2008 7:08:45 PM

15Chapter | 2 FPGA Architectures

www.newnespress.com

 On the bright side, some of today’s SRAM-based FPGAs support the
concept of bitstream encryption . In this case, the final configuration data is
encrypted before being stored in the external memory device. The encryption
key itself is loaded into a special SRAM-based register in the FPGA via its
JTAG port (see also Chapter 3). In conjunction with some associated logic, this
key allows the incoming encrypted configuration bitstream to be decrypted as
it’s being loaded into the device.

 The command/process of loading an encrypted bitstream automatically dis-
ables the FPGA’s read-back capability. This means that you will typically use
unencrypted configuration data during development (where you need to use
read-back) and then start to use encrypted data when you move into produc-
tion. (You can load an unencrypted bitstream at any time, so you can easily
load a test configuration and then reload the encrypted version.)

 —Technology Trade-offs—
 ● The main downside to the encrypted bitstream scheme is that you require a

battery backup on the circuit board to maintain the contents of the encryp-
tion key register in the FPGA when power is removed from the system.
This battery will have a lifetime of years or decades because it need only
maintain a single register in the device, but it does add to the size, weight,
complexity, and cost of the board.

 ALERT!

 Remember that there are reverse-engineering companies all over the world special-
izing in the recovery of “ design IP. ” And there are also a number of countries whose
governments turn a blind eye to IP theft so long as the money keeps rolling in (you
know who you are). So if a design is a high-profit item, you can bet that there are
folks out there who are ready and eager to replicate it while you’re not looking.

 In reality, the real issue here is not related to those stealing your IP by
reverse-engineering the contents of the configuration file, but rather their abil-
ity to clone your design, irrespective of whether they understand how it works.
Using readily available technology, it is relatively easy for someone to take a cir-
cuit board, put it on a “ bed of nails ” tester, and quickly extract a complete netlist
for the board. This netlist can subsequently be used to reproduce the board. Now
the only task remaining for the nefarious scoundrels is to copy your FPGA con-
figuration file from its boot PROM (or EPROM, E2PROM, or whatever), and they
have a duplicate of the entire design.

 Security Issues
 Another consideration with regard to SRAM-based devices is that it can be
difficult to protect your intellectual property , or IP, in the form of your design.
This is because the configuration file used to program the device is stored in
some form of external memory.

CH002-H8974.indd 15CH002-H8974.indd 15 6/21/2008 7:08:45 PM6/21/2008 7:08:45 PM

FPGAs: Instant Access16

www.newnespress.com

 Antifuse-based Devices

 Unlike SRAM-based devices, which are programmed while resident in the
system, antifuse-based devices are programmed off-line using a special device
programmer. The proponents of antifuse-based FPGAs are proud to point to an
assortment of (not-insignificant) advantages:

 1. First, these devices are nonvolatile (their configuration data remains when
the system is powered down), which means that they are immediately
available as soon as power is applied to the system, and they don’t require
an external memory chip to store their configuration data, which saves the
cost of an additional component and saves real estate on the board.

 2. Another noteworthy advantage of antifuse-based FPGAs is the fact that
their interconnect structure is naturally rad hard , which means they are
relatively immune to the effects of radiation. This is of particular interest in
the case of military and aerospace applications because the state of a con-
figuration cell in an SRAM-based component can be “ flipped ” if that cell
is hit by radiation (of which there is a lot in space). By comparison, once
an antifuse has been programmed, it cannot be altered in this way.

 ALERT!

 It should be noted that any flip-flops in these devices remain sensitive to radia-
tion, so chips intended for radiation-intensive environments must have their flip-
flops protected by triple redundancy design. This refers to having three copies of
each register and taking a majority vote (ideally all three registers will contain
identical values, but if one has been “ flipped ” such that two registers say 0 and
the third says 1, then the 0s have it, or vice versa if two registers say 1 and the
third says 0).

 3. Perhaps the most significant advantage of antifuse-based FPGAs is that
their configuration data is buried deep inside them, making it almost
impossible to reverse-engineer the design . By default, it is possible for
the device programmer to read this data out because this is actually how
the programmer works. As each antifuse is being processed, the device pro-
grammer keeps on testing it to determine when that element has been fully
programmed; then it moves on to the next antifuse. Furthermore, the device
programmer can be used to automatically verify that the configuration was
performed successfully (this is well worth doing when you’re talking about
devices containing 50 million plus programmable elements). Once the
device has been programmed, however, it is possible to set (grow) a special
security antifuse that subsequently prevents any programming data (in the
form of the presence or absence of antifuses) from being read out of the
device. Even if the device is decapped (its top is removed), programmed
and unprogrammed antifuses appear to be identical, and the fact that all of

CH002-H8974.indd 16CH002-H8974.indd 16 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

17Chapter | 2 FPGA Architectures

www.newnespress.com

the antifuses are buried in the internal metallization layers makes reverse-
engineering close to impossible.

 Of course, the main disadvantage associated with antifuse-based devices is that
they are OTP, so once you’ve programmed one, its function is set in stone. This
makes these components a poor choice for use in a development or prototyp-
ing environment.

 —Technology Trade-offs—
 ● Vendors of antifuse-based FPGAs may tout the fact that an antifuse-based

device consumes only 20 percent (approximately) of the standby power of an
equivalent SRAM-based component, that their operational power consumption
is also significantly lower, and that their interconnect-related delays are smaller.
Also, they might casually mention that an antifuse is much smaller and thus
occupies much less real estate on the chip than an equivalent SRAM cell.

 ● They may neglect to mention, however, that antifuse devices also require
extra programming circuitry, including a large, hairy programming transis-
tor for each antifuse.

 ● Also, antifuse technology requires the use of around three additional pro-
cess steps after the main manufacturing process has been qualified. For this
(and related) reason, antifuse devices are always at least one—and usually
several—generations (technology nodes) behind SRAM-based components,
which effectively wipes out any speed or power consumption advantages
that might otherwise be of interest.

 E 2 PROM/FLASH-based Devices

 E 2 PROM- or FLASH-based FPGAs are similar to their SRAM counterparts
in that their configuration cells are connected together in a long shift-register-
style chain. These devices can be configured off-line using a device program-
mer. Alternatively, some versions are in-system programmable, or ISP, but
their programming time is about three times that of an SRAM-based compo-
nent. However, they do have some advantages:

 1. Once programmed, the data they contain is nonvolatile , so these devices
would be “ instant on ” when power is first applied to the system.

 2. With regard to protection, some of these devices use the concept of a mul-
tibit key , which can range from around 50 bits to several hundred bits in
size. Once you’ve programmed the device, you can load your user-defined
key (bit-pattern) to secure its configuration data. After the key has been
loaded, the only way to read data out of the device, or to write new data
into it, is to load a copy of your key via the JTAG port (this port is dis-
cussed later in this chapter and in Chapter 3). The fact that the JTAG port
in today’s devices runs at around 20 MHz means that it would take billions
of years to crack the key by exhaustively trying every possible value.

CH002-H8974.indd 17CH002-H8974.indd 17 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

FPGAs: Instant Access18

www.newnespress.com

 3. Two-transistor E 2 PROM and FLASH cells are approximately 2.5 times the
size of their one-transistor EPROM cousins, but they are still way smaller
than their SRAM counterparts . This means that the rest of the logic can
be much closer together, thereby reducing interconnect delays .

 On the downside, these devices require around five additional process steps
on top of standard CMOS technology, which results in their lagging behind
SRAM-based devices by one or more generations (technology nodes). Last but
not least, these devices tend to have relatively high static power consumption
due to their containing vast numbers of internal pull-up resistors.

 Hybrid FLASH-SRAM Devices

 Last but not least, there’s always someone who wants to add yet one more
ingredient to the cooking pot. In the case of FPGAs, some vendors offer esoteric
combinations of programming technologies. For example, consider a device
where each configuration element is formed from the combination of a FLASH
(or E 2 PROM) cell and an associated SRAM cell.

 In this case, the FLASH elements can be preprogrammed. Then, when the
system is powered up, the contents of the FLASH cells are copied in a mas-
sively parallel fashion into their corresponding SRAM cells. This technique
gives you the nonvolatility associated with antifuse devices, which means the
device is immediately available when power is first applied to the system. But
unlike an antifuse-based component, you can subsequently use the SRAM cells
to reconfigure the device while it remains resident in the system. Alternatively,
you can reconfigure the device using its FLASH cells either while it remains
in the system or off-line by means of a device programmer.

 FINE-, MEDIUM-, AND COARSE-GRAINED ARCHITECTURES

 It is common to categorize FPGA offerings as being either fine grained or
coarse grained. In order to understand what this means, we first need to remind
ourselves that the main feature that distinguishes FPGAs from other devices is
that their underlying fabric predominantly consists of large numbers of rela-
tively simple programmable logic block “ islands ” embedded in a “ sea ” of pro-
grammable interconnect (Figure 2-1).

 In the case of a fine-grained architecture , each logic block can be used to
implement only a very simple function. For example, it might be possible to con-
figure the block to act as any 3-input function, such as a primitive logic gate (AND,
OR, NAND, etc.) or a storage element (D-type flip-flop, D-type latch, etc.).

 In the case of a coarse-grained architecture , each logic block contains a
relatively large amount of logic compared to their fine-grained counterparts.
For example, a logic block might contain four 4-input LUTs, four multiplex-
ers, four D-type flip-flops, and some fast carry logic (see the following topics
in this chapter for more details).

CH002-H8974.indd 18CH002-H8974.indd 18 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

19Chapter | 2 FPGA Architectures

www.newnespress.com

 An important consideration with regard to architectural granularity is that
fine-grained implementations require a relatively large number of co nnections
into and out of each block compared to the amount of functionality that can be
supported by those blocks. As the granularity of the blocks increases to medium-
grained and higher, the amount of connections into the blocks decreases com-
pared to the amount of functionality they can support. This is important because
the programmable interblock interconnect accounts for the vast majority of the
delays associated with signals as they propagate through an FPGA.

Programmable
interconnect

Programmable
logic blocks

 FIGURE 2-1 Underlying FPGA fabric.

 Insider Info

 In addition to implementing glue logic and irregular structures like state machines,
fine-grained architectures are said to be particularly efficient when executing sys-
tolic algorithms (functions that benefit from massively parallel implementations).
These architectures are also said to offer some advantages with regard to traditional
logic synthesis technology, which is geared toward fine-grained ASIC architectures.

 LOGIC BLOCKS

 There are two fundamental incarnations of the programmable logic blocks
used to form the medium-grained architectures referenced in the previous sec-
tion: MUX (multiplexer) based and LUT (lookup table) based.

 MUX-based

 As an example of a MUX-based approach, consider one way in which the
3-input function y � (a & b) | c could be implemented using a block contain-
ing only multiplexers (Figure 2-2).

CH002-H8974.indd 19CH002-H8974.indd 19 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

FPGAs: Instant Access20

www.newnespress.com

 The device can be programmed such that each input to the block is p resented
with a logic 0, a logic 1, or the true or inverse version of a signal (a , b ,
or c in this case) coming from another block or from a primary input to the
device. This allows each block to be configured in myriad ways to implement
a plethora of possible functions. (The x shown on the input to the central multi-
plexer in Figure 2-2 indicates that we don’t care whether this input is con-
nected to a 0 or a 1.)

 LUT-based

 The underlying concept behind a LUT is relatively simple. A group of input sig-
nals is used as an index (pointer) to a lookup table. The contents of this table are
arranged such that the cell pointed to by each input combination contains the
desired value. For example, let’s assume that we wish to implement the function:

 y a b c� (&) �

 This can be achieved by loading a 3-input LUT with the appropriate values.
For the purposes of the following examples, we shall assume that the LUT is
formed from SRAM cells (but it could be formed using antifuses, E2PROM,
or FLASH cells, as discussed earlier in this chapter). A commonly used tech-
nique is to use the inputs to select the desired SRAM cell using a cascade of
transmission gates as shown in Figure 2-3 . (Note that the SRAM cells will also

&

|

a

b

c
y

AND

OR

y � (a & b) | c

0

1

0

1

0

1

MUX

MUX

MUX

0

b

a

1

x

0

y

0

1

MUX 0

1

c

 FIGURE 2-2 MUX-based logic block.

CH002-H8974.indd 20CH002-H8974.indd 20 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

21Chapter | 2 FPGA Architectures

www.newnespress.com

be connected together in a chain for configuration purposes—that is, to load
them with the required values—but these connections have been omitted from
this illustration to keep things simple.)

 If a transmission gate is enabled (active), it passes the signal seen on its
input through to its output. If the gate is disabled, its output is electrically dis-
connected from the wire it is driving.

 The transmission gate symbols shown with a small circle (called a “ bobble ” or
a “ bubble ”) indicate that these gates will be activated by a logic 0 on their control
input. By comparison, symbols without bobbles indicate that these gates will be
activated by a logic 1. Based on this understanding, it’s easy to see how different
input combinations can be used to select the contents of the various SRAM cells.

 —Technology Trade-offs—
 ● If you take a group of logic gates several layers deep, then a LUT approach

can be very efficient in terms of resource utilization and input-to-output
delays. (In this context, “ deep ” refers to the number of logic gates between
the inputs and the outputs. Thus, the function illustrated in Figure 2-4 would
be said to be two layers deep.) However, one downside to a LUT-based
architecture is that if you only want to implement a small function—such
as a 2-input AND gate—somewhere in your design, you’ll end up using an
entire LUT to do so. In addition to being wasteful in terms of resources, the
resulting delays are high for such a simple function.

 ● By comparison, in the case of MUX-based architectures containing a
 mixture of MUXes and logic gates, it’s often possible to gain access to

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

a b c

y
SRAM
cells

Transmission gate
(active low)

Transmission gate
(active high)

 FIGURE 2-3 A transmission gate-based LUT (programming chain omitted for purposes of
clarity).

CH002-H8974.indd 21CH002-H8974.indd 21 6/21/2008 7:08:46 PM6/21/2008 7:08:46 PM

FPGAs: Instant Access22

www.newnespress.com

intermediate values from the signals linking the logic gates and the MUXes.
In this case, each logic block can be broken down into smaller fragments,
each of which can be used to implement a simple function. Thus, these
architectures may offer advantages in terms of performance and silicon uti-
lization for designs containing large numbers of independent simple logic
functions.

 ● It is said that MUX-based architectures have an advantage when it comes
to implementing control logic along the lines of “ if this input is true and
this input is false , then make that output true … ” However, some of these
architectures don’t provide high speed carry logic chains, in which case
their LUT-based counterparts are left as the leaders in anything to do with
arithmetic processing.

Required function Truth table

a b c y

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
0
1
0
1
1
1

y � (a & b) | c

&

|

a

b

c
y

AND

OR

 FIGURE 2-4 Required function and associated truth table.

 Insider Info

 In the past, some devices were created using a mixture of different LUT sizes, such
as 3-input and 4-input LUTs, because this offered the promise of optimal device
utilization. However, one of the main tools in the design engineer’s treasure chest
is logic synthesis, and uniformity and regularity are what a synthesis tool likes best.
Thus, all the really successful architectures are currently based only on the use of
4-input LUTs. (This is not to say that mixed-size LUT architectures won’t reemerge
in the future as design software continues to increase in sophistication.)

 LUT versus Distributed RAM versus SR

 The fact that the core of a LUT in an SRAM-based device comprises a num-
ber of SRAM cells offers some interesting possibilities. In addition to its pri-
mary role as a lookup table, some vendors allow the cells forming the LUT
to be used as a small block of RAM (the 16 cells forming a 4-input LUT, for
example, could be cast in the role of a 16 � 1 RAM). This is referred to as

CH002-H8974.indd 22CH002-H8974.indd 22 6/21/2008 7:08:47 PM6/21/2008 7:08:47 PM

23Chapter | 2 FPGA Architectures

www.newnespress.com

di stributed RAM because (a) the LUTs are strewn (distributed) across the sur-
face of the chip, and (b) this differentiates it from the larger chunks of block
RAM (introduced later in this chapter).

 Yet another possibility devolves from the fact that all of the FPGA’s con-
figuration cells—including those forming the LUT—are effectively strung
together in a long chain (Figure 2-5).

 This aspect of the architecture is discussed in more detail in Chapter 3. The
point here is that, once the device has been programmed, some vendors allow
the SRAM cells forming a LUT to be treated independently of the main body
of the chain and to be used in the form of a shift register. Thus, each LUT may
be considered multifaceted (Figure 2-6).

 CLBS VERSUS LABS VERSUS SLICES

 In addition to one or more LUTs, a programmable logic block will contain
other elements, such as multiplexers and registers. But before we delve into
this topic, we first need to wrap our brains around some terminology.

From the previous
cell in the chain

To the next cell
in the chain

SRAM
cells

0

1

0

0

 FIGURE 2-5 Configuration cells linked in a chain.

16-bit SR

16 � 1 RAM

4-input LUT

 FIGURE 2-6 A multifaceted LUT.

CH002-H8974.indd 23CH002-H8974.indd 23 6/21/2008 7:08:47 PM6/21/2008 7:08:47 PM

FPGAs: Instant Access24

www.newnespress.com

 Logic Cells/Logic Elements

 Each FPGA vendor has its own names for things. For example, the core build-
ing block in a modern FPGA from Xilinx is called a logic cell (LC). Among
other things, an LC comprises a 4-input LUT (which can also act as a 16 � 1
RAM or a 16-bit shift register), a multiplexer, and a register (Figure 2-7).

 How It Works
 The illustration presented in Figure 2-7 is a gross simplification, but it serves our pur-
poses here. The register can be configured to act as a flip-flop, as shown in Figure 2-7 ,
or as a latch. The polarity of the clock (rising-edge triggered or falling-edge triggered)
can be configured, as can the polarity of the clock enable and set/reset signals (active-
high or active-low). In addition to the LUT, MUX, and register, the LC also contains a
smattering of other elements, including some special fast carry logic for use in arithme-
tic operations (this is discussed in more detail a little later).

 Just for reference, the equivalent core building block in an FPGA from Altera is
called a logic element (LE). There are a number of differences between a Xilinx LC and
an Altera LE, but the overall concepts are very similar.

 Slicing and Dicing

 The next step up the hierarchy is what Xilinx calls a slice (Altera and the other
vendors have their own equivalent names). At the time of this writing, a slice
contains two logic cells (Figure 2-8).

16-bit SR

Flip-flop

Clock

MUX

y

q
e

a

b

c

d

16�1 RAM

4-input
LUT

Clock enable

Set/reset

 FIGURE 2-7 A simplified view of a Xilinx LC.

CH002-H8974.indd 24CH002-H8974.indd 24 6/21/2008 7:08:47 PM6/21/2008 7:08:47 PM

25Chapter | 2 FPGA Architectures

www.newnespress.com

 The internal wires have been omitted from this illustration to keep things
simple; it should be noted, however, that although each logic cell’s LUT,
MUX, and register have their own data inputs and outputs, the slice has one set
of clock, clock enable, and set/reset signals common to both logic cells.

 CLBs and LABs

 And moving one more level up the hierarchy, we come to what Xilinx calls
a configurable logic block (CLB) and what Altera refers to as a logic array
block (LAB).

 Using CLBs as an example, some Xilinx FPGAs have two slices in each
CLB, while others have four. At the time of this writing, a CLB equates to a
single logic block in our original visualization of “ islands ” of programmable
logic in a “ sea ” of programmable interconnect (Figure 2-9).

 There is also some fast programmable interconnect within the CLB. This
interconnect (not shown in Figure 2-9 for reasons of clarity) is used to connect
neighboring slices.

16-bit SR

16 � 1 RAM

4-input

LUT

LUT MUX REG

Logic cell (LC)

16-bit SR

16 � 1 RAM

4-input

LUT

LUT MUX REG

Logic cell (LC)

Slice

 FIGURE 2-8 A slice containing two logic cells.

CH002-H8974.indd 25CH002-H8974.indd 25 6/21/2008 7:08:47 PM6/21/2008 7:08:47 PM

FPGAs: Instant Access26

www.newnespress.com

 Distributed RAMs and Shift Registers

 We previously noted that each 4-bit LUT can be used as a 16 � 1 RAM. And
things just keep on getting better because, assuming the four-slices-per-CLB
configuration illustrated in Figure 2-9 , all of the LUTs within a CLB can be
configured together to implement the following:

 ● Single-port 16 � 8 bit RAM
 ● Single-port 32 � 4 bit RAM
 ● Single-port 64 � 2 bit RAM
 ● Single-port 128 � 1 bit RAM
 ● Dual-port 16 � 4 bit RAM
 ● Dual-port 32 � 2 bit RAM
 ● Dual-port 64 � 1 bit RAM

 Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case,
there are special dedicated connections between the logic cells within a slice
and between the slices themselves that allow the last bit of one shift register to

CLB CLB

CLB CLB

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Logic cell

Slice

Logic cell

Configurable logic block (CLB)

 FIGURE 2-9 A CLB containing four slices (the number of slices depends on the FPGA family).

 Insider Info

 The reason for having this type of logic-block hierarchy—LC → Slice (with two
LCs) → CLB (with four slices)—is that it is complemented by an equivalent hier-
archy in the interconnect. Thus, there is fast interconnect between the LCs in a
slice, then slightly slower interconnect between slices in a CLB, followed by the
interconnect between CLBs. The idea is to achieve the optimum trade-off between
making it easy to connect things together without incurring excessive intercon-
nect-related delays.

CH002-H8974.indd 26CH002-H8974.indd 26 6/21/2008 7:08:47 PM6/21/2008 7:08:47 PM

27Chapter | 2 FPGA Architectures

www.newnespress.com

be connected to the first bit of another without using the ordinary LUT output
(which can be used to view the contents of a selected bit within that 16-bit reg-
ister). This allows the LUTs within a single CLB to be configured together to
implement a shift register containing up to 128 bits as required.

 FAQs

 What is a fast carry chain?

 A key feature of modern FPGAs is that they include the special logic and inter-
connect required to implement fast carry chains. In the context of the CLBs
introduced in the previous section, each LC contains special carry logic. This is
complemented by dedicated interconnect between the two LCs in each slice,
between the slices in each CLB, and between the CLBs themselves. This special
carry logic and dedicated routing boosts the performance of logical functions
such as c ounters and arithmetic functions such as adders. The availability of these
fast carry chains—in conjunction with features like the shift register incarnations
of LUTs (discussed previously) and embedded multipliers and the like (intro-
duced in following sections)—provided the wherewithal for FPGAs to be used for
a pplications like DSP.

 EMBEDDED RAMS

 Many applications require the use of memory, so FPGAs now include relatively
large chunks of embedded RAM called e-RAM or block RAM . Depending on
the architecture of the component, these blocks might be positioned around the
periphery of the device, scattered across the face of the chip in relative isola-
tion, or organized in columns, as shown in Figure 2-10 .

 Depending on the device, such a RAM might be able to hold anywhere
from a few thousand to tens of thousands of bits. Furthermore, a device might
contain anywhere from tens to hundreds of these RAM blocks, thereby provid-
ing a total storage capacity of a few hundred thousand bits all the way up to
several million bits.

 Each block of RAM can be used independently, or multiple blocks can be
combined together to implement larger blocks. These blocks can be used for a
variety of purposes, such as implementing standard single- or dual-port RAMs,
first-in first-out (FIFO) functions, state machines, and so forth.

 EMBEDDED MULTIPLIERS, ADDERS, ETC.

 Some functions, like multipliers, are inherently slow if they are imple-
mented by connecting a large number of programmable logic blocks together.
Since many applications require these functions, many FPGAs incorpo-
rate special hardwired multiplier blocks. These are typically located in

CH002-H8974.indd 27CH002-H8974.indd 27 6/21/2008 7:08:48 PM6/21/2008 7:08:48 PM

FPGAs: Instant Access28

www.newnespress.com

close proximity to the embedded RAM blocks introduced in the previous
point because these functions are often used in conjunction with each other
(Figure 2-11).

 Similarly, some FPGAs offer dedicated adder blocks. One operation
very common in DSP-type applications is called a multiply-and-a ccumulate

RAM blocks

Multipliers

Logic blocks

 FIGURE 2-11 Bird’s-eye view of chip with columns of embedded multipliers and RAM blocks.

Columns of embedded
RAM blocks

Arrays of
programmable
logic blocks

 FIGURE 2-10 Bird’s-eye view of chip with columns of embedded RAM blocks.

CH002-H8974.indd 28CH002-H8974.indd 28 6/21/2008 7:08:48 PM6/21/2008 7:08:48 PM

29Chapter | 2 FPGA Architectures

www.newnespress.com

(MAC) (Figure 2-12). As its name would suggest, this function multiplies two
numbers together and adds the result to a running total stored in an accumulator.

x

+

x

+

A[n:0]

B[n:0] Y[(2n � 1):0]

Multiplier

Adder

Accumulator

MAC
 FIGURE 2-12 The functions forming a MAC.

 EMBEDDED PROCESSOR CORES

 Almost any portion of an electronic design can be realized in hardware (using
logic gates and registers, etc.) or software (as instructions to be executed on a
microprocessor). One of the main partitioning criteria is how fast you wish the
various functions to perform their tasks:

 ● Picosecond and nanosecond logic: This has to run insanely fast, which
mandates that it be implemented in hardware (in the FPGA fabric).

 ● Microsecond logic: This is reasonably fast and can be implemented either
in hardware or software (this type of logic is where you spend the bulk of
your time deciding which way to go).

 ● Millisecond logic: This is the logic used to implement interfaces such as
reading switch positions and flashing light-emitting diodes (LEDs). It’s a

 Key Concept

 If the FPGA you are working with supplies only embedded multipliers, you will
have to implement this function by combining the multiplier with an adder
formed from a number of programmable logic blocks, while the result is stored
in some associated flip-flops, in a block RAM, or in a number of distributed
RAMs. Life becomes a little easier if the FPGA also provides embedded adders,
and some FPGAs provide entire MACs as embedded functions.

CH002-H8974.indd 29CH002-H8974.indd 29 6/21/2008 7:08:48 PM6/21/2008 7:08:48 PM

FPGAs: Instant Access30

www.newnespress.com

pain slowing the hardware down to implement this sort of function (using
huge counters to generate delays, for example). Thus, it’s often better to
implement these tasks as microprocessor code (because processors give you
lousy speed—compared to dedicated hardware—but fantastic complexity).

 The fact is that the majority of designs make use of microprocessors in one
form or another. Until recently, these appeared as discrete devices on the cir-
cuit board. Of late, high-end FPGAs have become available that contain one
or more embedded microprocessors, which are typically referred to as micro-
processor cores. In this case, it often makes sense to move all of the tasks that
used to be performed by the external microprocessor into the internal core.
This provides a number of advantages, not the least being that it saves the cost
of having two devices; it eliminates large numbers of tracks, pads, and pins on
the circuit board; and it makes the board smaller and lighter.

 Hard Microprocessor Cores

 A hard microprocessor core is implemented as a dedicated, predefined block.
There are two main approaches for integrating such a core into the FPGA:

 1. Locate it in a strip (actually called “ The Stripe ”) to the side of the main
FPGA fabric (Figure 2-13). In this scenario, all of the components are typi-
cally formed on the same silicon chip, although they could also be formed
on two chips and packaged as a multichip module (MCM). The main FPGA
fabric would also include the embedded RAM blocks, multipliers, and so
on, but these have been omitted from this illustration to keep things simpler.

uP

RAM

I/O

etc.

Main FPGA fabric

Microprocessor
core, special RAM,

peripherals and
I/O, etc.

The “Stripe”

 FIGURE 2-13 Bird’s-eye view of chip with embedded core outside of the main fabric.

CH002-H8974.indd 30CH002-H8974.indd 30 6/21/2008 7:08:48 PM6/21/2008 7:08:48 PM

31Chapter | 2 FPGA Architectures

www.newnespress.com

 One advantage of this implementation is that the main FPGA fabric is
identical for devices with and without the embedded microprocessor core,
which can help make things easier for the design tools used by the engi-
neers. The other advantage is that the FPGA vendor can bundle a whole
load of additional functions in the strip to complement the microprocessor
core, such as memory, special peripherals, and so forth.

 2. An alternative is to embed one or more microprocessor cores directly into
the main FPGA fabric. One-, two-, and even four-core implementations
are currently available (Figure 2-14). In this case, the design tools have to
be able to take account of the presence of these blocks in the fabric; any
memory used by the core is formed from embedded RAM blocks, and
any peripheral functions are formed from groups of general-purpose pro-
grammable logic blocks. Proponents of this scheme will argue that there
are inherent speed advantages to be gained from having the microprocessor
core in intimate proximity to the main FPGA fabric.

 Soft Microprocessor Cores

 As opposed to embedding a microprocessor physically into the fabric of the
chip, it is possible to configure a group of programmable logic blocks to act
as a microprocessor. These are typically called soft cores, but they may be
more precisely categorized as either “ soft ” or “ firm ” depending on the way
in which the microprocessor’s functionality is mapped onto the logic blocks.
Soft cores are simpler (more primitive) and slower than their hard-core
counterparts.

uP

(a) One embedded core (b) Four embedded cores

uP uP

uP uP

 FIGURE 2-14 Bird’s-eye view of chips with embedded cores inside the main fabric.

CH002-H8974.indd 31CH002-H8974.indd 31 6/21/2008 7:08:48 PM6/21/2008 7:08:48 PM

FPGAs: Instant Access32

www.newnespress.com

 —Technology Trade-offs—
 ● A soft core typically runs at 30 to 50 percent of the speed of a hard core.
 ● However, they have the advantage that you only need to implement a core if

you need it and that you can instantiate as many cores as you require until
you run out of resources in the form of programmable logic blocks.

 CLOCK MANAGERS

 All of the synchronous elements inside an FPGA—for example, the registers
configured to act as flip-flops inside the programmable logic blocks—need to
be driven by a clock signal. Such a clock signal typically originates in the out-
side world, comes into the FPGA via a special clock input pin, and is then
routed through the device and connected to the appropriate registers.

 Clock Trees

 Consider a simplified representation that omits the programmable logic
blocks and shows only the clock tree and the registers to which it is connected
(Figure 2-15).

 This is called a clock tree because the main clock signal branches again
and again (the flip-flops can be considered the “ leaves ” on the end of the
branches). This structure is used to ensure that all of the flip-flops see their
versions of the clock signal as close together as possible. If the clock were
distributed as a single long track driving all of the flip-flops one after another,
then the flip-flop closest to the clock pin would see the clock signal much
sooner than the one at the end of the chain. This is referred to as skew, and it

Clock signal from
outside world

Clock
tree

Flip-flops

Special clock
pin and pad

 FIGURE 2-15 A simple clock tree.

CH002-H8974.indd 32CH002-H8974.indd 32 6/21/2008 7:08:49 PM6/21/2008 7:08:49 PM

33Chapter | 2 FPGA Architectures

www.newnespress.com

can cause all sorts of problems (even when using a clock tree, there will be
a certain amount of skew between the registers on a branch and between
branches). The clock tree is implemented using special tracks and is separate
from the general-purpose programmable interconnect. The scenario shown
above is actually very simplistic.

 Clock Managers

 Instead of configuring a clock pin to connect directly into an internal clock
tree, that pin can be used to drive a special hard-wired function (block) called
a clock manager that generates a number of daughter clocks (Figure 2-16).

 These daughter clocks may be used to drive internal clock trees or external
output pins that can be used to provide clocking services to other devices on
the host circuit board. Each family of FPGAs has its own type of clock man-
ager (there may be multiple clock manager blocks in a device), where different
clock managers may support only a subset of the following features:

 Jitter removal : For the purposes of a simple example, assume that the clock
signal has a frequency of 1 MHz (in reality, of course, this could be much, much
higher). In an ideal environment each clock edge from the outside world would
arrive exactly 1 millionth of a second after its predecessor. In the real world,
however, clock edges may arrive a little early or a little late. As one way to visu-
alize this effect—known as jitter —imagine if we were to superimpose multiple
edges on top of each other; the result would be a “ fuzzy ” clock (Figure 2-17).
The FPGA’s clock manager can be used to detect and correct for this jitter and to
provide “ clean ” daughter clock signals for use inside the device (Figure 2-18).

 Frequency synthesis : It may be that the frequency of the clock signal being
presented to the FPGA from the outside world is not exactly what the design
engineers wish for. In this case, the clock manager can be used to generate
daughter clocks with frequencies that are derived by multiplying or dividing
the original signal. As a really simple example, consider three daughter clock
signals: the first with a frequency equal to that of the original clock, the second
multiplied to be twice that of the original clock, and the third divided to be

Clock signal from
outside world

Special clock
pin and pad

Daughter clocks
used to drive

internal clock trees
or output pins

Clock
manager

etc.

 FIGURE 2-16 A clock manager generates daughter clocks.

CH002-H8974.indd 33CH002-H8974.indd 33 6/21/2008 7:08:49 PM6/21/2008 7:08:49 PM

FPGAs: Instant Access34

www.newnespress.com

half that of the original clock (Figure 2-19). Once again, Figure 2-19 reflects
very simple examples. In the real world, one can synthesize all sorts of internal
clocks, such as an output that is four-fifths the frequency of the original clock.

 Phase shifting : Certain designs require the use of clocks that are phase
shifted (delayed) with respect to each other. Some clock managers allow you
to select from fixed phase shifts of common values such as 120° and 240° (for
a three-phase clocking scheme) or 90°, 180°, and 270° (if a four-phase clock-
ing scheme is required). Others allow you to configure the exact amount of
phase shift you require for each daughter clock. For example, let’s assume that
we are deriving four internal clocks from a master clock, where the first is in

Ideal clock signal

1 2 3 4

Real clock signal with jitter

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Superimposed cycles

 FIGURE 2-17 Jitter results in a fuzzy clock.

Special clock
pin and pad

“Clean” daughter
clocks used to drive
internal clock trees

or output pins

Clock
manager

etc.

Clock signal from
outside world

with jitter

 FIGURE 2-18 The clock manager can remove jitter.

1.0 � original clock frequency

2.0 � original clock frequency

0.5 � original clock frequency

 FIGURE 2-19 Using the clock manager to perform frequency synthesis.

CH002-H8974.indd 34CH002-H8974.indd 34 6/21/2008 7:08:49 PM6/21/2008 7:08:49 PM

35Chapter | 2 FPGA Architectures

www.newnespress.com

phase with the original clock, the second is phase shifted by 90°, the third by
180°, and so forth (Figure 2-20).

 Auto-skew correction : For the sake of simplicity, let’s assume that we’re
talking about a daughter clock that has been configured to have the same fre-
quency and phase as the main clock signal coming into the FPGA. By default,
however, the clock manager will add some element of delay to the signal as
it performs its machinations. Also, more significant delays will be added by
the driving gates and interconnect employed in the clock’s distribution. The
result is that—if nothing is done to correct it—the daughter clock will lag
behind the input clock by some amount. Once again, the difference between
the two signals is known as skew . Depending on how the main clock and the
daughter clock are used in the FPGA (and on the rest of the circuit board), this
can cause a variety of problems. Thus, the clock manager may allow a special
input to feed the daughter clock. In this case, the clock manager will compare
the two signals and specifically add additional delay to the daughter clock suf-
ficient to realign it with the main clock (Figure 2-21).

0° Phase shifted

90° Phase shifted

180° Phase shifted

270° Phase shifted

 FIGURE 2-20 Using the clock manager to phase-shift the daughter clocks.

Main (mother) clock

Untreated daughter clock

De-skewed daughter clock

1 2 3 4

1 2 3 4

1 2 3

Clock signal from
outside world

Special clock
pin and pad

De-skewed daughter
clocks used to drive
internal clock trees

or output pins

Daughter clock (monitored
downstream of the clock manager)

fed back to special input

 FIGURE 2-21 Deskewing with reference to the mother clock.

CH002-H8974.indd 35CH002-H8974.indd 35 6/21/2008 7:08:49 PM6/21/2008 7:08:49 PM

FPGAs: Instant Access36

www.newnespress.com

 To be a tad more specific, only the prime (zero phase-shifted) daughter
clock will be treated in this way, and all of the other daughter clocks will be
phase aligned to this prime daughter clock.

 —Technology Trade-offs—
 ● Some FPGA clock managers are based on phase-locked loops (PLLs),

while others are based on digital delay-locked loops (DLLs). PLLs have
been used since the 1940s in analog implementations, but recent emphasis
on digital methods has made it desirable to match signal phases digitally.
PLLs can be implemented using either analog or digital techniques, while
DLLs are by definition digital in nature.

 ● The proponents of DLLs say that they offer advantages in terms of precision,
stability, power management, noise insensitivity, and jitter performance.

 GENERAL-PURPOSE I/O

 Today’s FPGA packages can have a thousand or more pins, which are arranged
as an array across the base of the package. Similarly, when it comes to the silicon
chip inside the package, flip-chip packaging strategies allow the power, ground,
clock, and I/O pins to be presented across the surface of the chip. Purely for the
purposes of these discussions (and illustrations), however, it makes things sim-
pler if we assume that all of the connections to the chip are presented in a ring
around the circumference of the device, as indeed they were for many years.

 Confi gurable I/O Standards

 Let’s consider for a moment an electronic product from the perspective of the
architects and engineers designing the circuit board. Depending on what they
are trying to do, the devices they are using, the environment the board will
operate in, and so on, these designers will select a particular standard to be
used to transfer data signals. (In this context, “ standard ” refers to electrical
aspects of the signals, such as their logic 0 and logic 1 voltage levels.) The
problem is that there is a wide variety of such standards, and it would be pain-
ful to have to create special FPGAs to accommodate each variation. For this
reason, an FPGA’s general-purpose I/O can be configured to accept and gen-
erate signals conforming to whichever standard is required. These general-
p urpose I/O signals will be split into a number of banks—we’ll assume eight
such banks numbered from 0 to 7 (Figure 2-22).

 The interesting point is that each bank can be configured individually to sup-
port a particular I/O standard. Thus, in addition to allowing the FPGA to work
with devices using multiple I/O standards, this allows the FPGA to actually be
used to interface between different I/O standards (and to translate between
different protocols that may be based on particular electrical standards).

CH002-H8974.indd 36CH002-H8974.indd 36 6/21/2008 7:08:50 PM6/21/2008 7:08:50 PM

37Chapter | 2 FPGA Architectures

www.newnespress.com

 Confi gurable I/O Impedances

 The signals used to connect devices on today’s circuit board often have fast
edge rates (this refers to the time it takes the signal to switch between one
logic value and another). In order to prevent signals reflecting back (bounc-
ing around), it is necessary to apply appropriate terminating resistors to the
FPGA’s input or output pins. In the past, these resistors were applied as dis-
crete components that were attached to the circuit board outside the FPGA.
However, this technique became increasingly problematic as the number of
pins started to increase and their pitch (the distance between them) shrank.
For this reason, today’s FPGAs allow the use of internal terminating resistors
whose values can be configured by the user to accommodate different circuit
board environments and I/O standards.

 Core versus I/O Supply Voltages

 TABLE 2-1 Supply Voltages versus Technology Nodes

 Year Supply (Core Voltage (V)) Technology Node (nm)

 1998 3.3 350

 1999 2.5 250

 2000 1.8 180

 2001 1.5 150

 2003 1.2 130

0 1

5 4

6

7

3

2

General-purpose I/O
banks 0 through 7

 FIGURE 2-22 Bird’s-eye view of chip showing general-purpose I/O banks.

CH002-H8974.indd 37CH002-H8974.indd 37 6/21/2008 7:08:50 PM6/21/2008 7:08:50 PM

FPGAs: Instant Access38

www.newnespress.com

 The supply voltage (which is actually provided using large numbers of
power and ground pins) is used to power the FPGA’s internal logic. For this
reason, this is known as the core voltage . However, different I/O standards may
use signals with voltage levels significantly different from the core voltage, so
each bank of general-purpose I/Os can have its own additional supply pins.

 Insider Info

 It’s interesting to note that—from the 350 nm node onward—the core voltage has
scaled fairly linearly with the process technology. However, there are physical rea-
sons not to go much below 1 V (these reasons are based on technology aspects
such as transistor input switching thresholds and voltage drops), so this “ voltage
staircase ” might start to tail off in the not-so-distant future.

 GIGABIT TRANSCEIVERS

 The traditional way to move large amounts of data between devices is to use a
bus, a collection of signals that carry similar data and perform a common func-
tion (Figure 2-23). Early microprocessor-based systems circa 1975 used 8-bit
buses to pass data around. As the need to push more data around and to move
it faster grew, buses grew to 16 bits in width, then 32 bits, then 64 bits, and so
forth. The problem is that this requires a lot of pins on the device and a lot of
tracks connecting the devices together. Routing these tracks so that they all
have the same length and impedance becomes increasingly painful as boards
grow in complexity. Furthermore, it becomes increasingly difficult to manage
signal integrity issues (such as susceptibility to noise) when you are dealing
with large numbers of bus-based tracks.

 For this reason, today’s high-end FPGAs include special hard-wired giga-
bit transceiver blocks. These blocks use one pair of differential signals (which
means a pair of signals that always carry opposite logical values) to transmit
(TX) data and another pair to receive (RX) data (Figure 2-24).

 These transceivers operate at incredibly high speeds, allowing them to
transmit and receive billions of bits of data per second. Furthermore, each
block actually supports a number (say four) of such transceivers, and an FPGA

FPGA

Other
device

n-bit bus

 FIGURE 2-23 Using a bus to communicate between devices.

CH002-H8974.indd 38CH002-H8974.indd 38 6/21/2008 7:08:50 PM6/21/2008 7:08:50 PM

39Chapter | 2 FPGA Architectures

www.newnespress.com

may contain a number of these transceiver blocks. At the time of this writing
only a few percent of designs make use of these transceivers, but this number
is expected to rise dramatically over the next few years. Using these gigabit
transceivers is something of an art form, but each FPGA vendor will provide
detailed user guides and application notes for its particular technology.

 Multiple Standards

 Of course, electronics wouldn’t be electronics if there weren’t a variety of
standards for this sort of thing. Each standard defines things from the high-
level protocols on down to the physical layer (PHY). A few of the more com-
mon standards are:

 ● Fibre Channel
 ● InfiniBand®
 ● PCI Express
 ● RapidIO TM
 ● SkyRail TM (from MindSpeed Technologies)
 ● 10-gigabit Ethernet

 This situation is further complicated by the fact that, in the case of some of
these standards, like PCI Express and SkyRail, device vendors might use the
same underlying concepts, but rebrand things using their own names and ter-
minology. Also, implementing some standards requires the use of multiple
transceiver blocks.

 —Technology Trade-offs—
 ● Let’s assume that we’re building a circuit board and wish to use some form

of high-speed serial interface. In this case, the system architects will deter-
mine which standard is to be used. Each of the gigabit transceiver blocks
in an FPGA can generally be configured to support a number of different
standards, but usually not all of them. This means that the system architects
will either select a standard that is supported by the FPGAs they intend to
use, or they will select FPGAs that will support the interface standard they
wish to employ.

FPGA

Differential pairs

Transceiver block

 FIGURE 2-24 Using high-speed transceivers to communicate between devices.

CH002-H8974.indd 39CH002-H8974.indd 39 6/21/2008 7:08:50 PM6/21/2008 7:08:50 PM

FPGAs: Instant Access40

www.newnespress.com

 ● If the system under consideration includes creating one or more ASICs,
we can of course implement the standard of our choice from the ground
up (or more likely we would purchase an appropriate block of IP from a
third-party vendor). Off-the-shelf (ASSP-type) devices, however, will typi-
cally support only one, or a subset, of the above standards. In this case, an
FPGA may be used to act as an interface between two (or more) standards
(Figure 2-25).

 INTELLECTUAL PROPERTY (IP)

 Today’s FPGA designs are so big and complex that it would be impractical to
create every portion of the design from scratch. One solution is to reuse exist-
ing functional blocks for the boring stuff and spend the bulk of your time and
resources creating the new portions of the design that will differentiate your
design from any competing offerings.

 Any existing functional blocks are typically referred to as intellectual
 property (IP). The three main sources of such IP are:

 1. internally created blocks reused from previous designs,
 2. FPGA vendors, and
 3. third-party IP providers.

 For the purposes of these discussions, we shall concentrate on the latter two
categories.

 Each FPGA vendor offers its own selection of hard, firm, and soft IP.
 Hard IP comes in the form of preimplemented blocks such as microproces-
sor cores, gigabit interfaces, multipliers, adders, MAC functions, and the like.
These blocks are designed to be as efficient as possible in terms of power con-
sumption, silicon real estate, and performance. Each FPGA family will feature
different combinations of such blocks, together with various quantities of pro-
grammable logic blocks.

 At the other end of the spectrum, soft IP refers to a source-level library of
high-level functions that can be included to the users ’ designs. These functions
are typically represented using a hardware description language, or HDL, such

Chip B Chip A FPGA

“Stuff”

Transceiver
blocks

Gigibit interface
standard A

Gigibit interface
standard B

 FIGURE 2-25 Using an FPGA to interface between multiple standards.

CH002-H8974.indd 40CH002-H8974.indd 40 6/21/2008 7:08:51 PM6/21/2008 7:08:51 PM

41Chapter | 2 FPGA Architectures

www.newnespress.com

as Verilog or VHDL at the register transfer level (RTL) of abstraction. Any
soft IP functions the design engineers decide to use are incorporated into the
main body of the design—which is also specified in RTL—and subsequently
synthesized down into a group of programmable logic blocks (possibly com-
bined with some hard IP blocks like multipliers, etc.).

 Holding somewhat of a middle ground is firm IP , which also comes in the
form of a library of high-level functions. Unlike their soft IP equivalents, how-
ever, these functions have already been optimally mapped, placed, and routed
into a group of programmable logic blocks (possibly combined with some hard
IP blocks like multipliers, etc.). One or more copies of each predefined firm IP
block can be instantiated (called up) into the design as required.

 Some IP that used to be “ soft ” is now becoming “ hard. ” For example, the
most current generation of FPGAs contains hard processor, clock manager,
Ethernet, and gigabit I/O blocks, among others. These help bring high-end
ASIC functionality into standard FPGAs. Over time, it is likely that additional
functions of this ilk will be incorporated into the FPGA device.

 Insider Info

 Generally speaking, once FPGA vendors add a function like this into their device,
they’ve essentially placed the component into a niche. Sometimes this must be
done to achieve the desired performance, but this is a classic problem because
the next generation of the device is often fast enough to perform this function in
its main (programmable) fabric.

 Handcrafted IP

 One scenario is that the IP provider has handcrafted an IP block starting
with an RTL description (the provider might also have used an IP block/core

 FAQs

 How do you decide whether to use hard, fi rm, or soft IP?

 It can be hard to draw the line between those functions that are best implemented
as hard IP and those that should be implemented as soft or firm IP. In the case of
functions like the multipliers, adders, and MACs discussed earlier in this chapter,
these are generally useful for a wide range of applications. On the other hand,
some FPGAs contain dedicated blocks to handle specific interface protocols like
the PCI standard. It can, of course, make your life much easier if this happens to
be the interface you wish to use to connect your device to the rest of the board.
On the other hand, if you decide you need to use some other interface, a dedi-
cated PCI block will serve only to waste space, block traffic, and burn power in
your chip.

CH002-H8974.indd 41CH002-H8974.indd 41 6/21/2008 7:08:51 PM6/21/2008 7:08:51 PM

FPGAs: Instant Access42

www.newnespress.com

g enerator application, as discussed later in this chapter). In this case, there
are several ways in which the end user might purchase and use such a block
(Figure 2-26):

 1. Blocks of unencrypted source code . These blocks can then be integrated
into the RTL code for the body of the design (Figure 2-26a). (Note that the
IP provider would already have simulated, synthesized, and verified the IP
blocks before handing over the RTL source code.)

Create RTL
for IP block

IP Provider FPGA Designer

Incorporate
IP block(s)

Unplaced-and-
unrouted netlist

Create RTL for
body of design

Unplaced-and-
unrouted netlist

Incorporate
IP block(s)

Placed-and-routed
netlist

Placed-and-routed
netlist

(a)

(b)

(c)

Synthesis Synthesis

Place-and-route Place-and-route

 FIGURE 2-26 Alternative potential IP acquisition points.

 Insider Info

 Generally speaking, this is an expensive option because IP providers typically
don’t want anyone to see their RTL source code. Certainly, FPGA vendors are usu-
ally reluctant to provide unencrypted RTL because they don’t want anyone to
retarget it toward a competitor’s device offering. So if you really wish to go this
route, whoever is providing the IP will charge you an arm and a leg, and you’ll
end up signing all sorts of licensing and nondisclosure agreements (NDAs).

CH002-H8974.indd 42CH002-H8974.indd 42 6/21/2008 7:08:51 PM6/21/2008 7:08:51 PM

43Chapter | 2 FPGA Architectures

www.newnespress.com

 2. Encrypted RTL level . Unfortunately, at the time of this writing, there is no
industry-standard encryption technique for RTL that has popular tool support.
This has led companies like Altera and Xilinx to develop their own encryp-
tion schemes and tools. RTL encrypted by a particular FPGA vendor’s tools
can only be processed by that vendor’s own synthesis tools (or sometimes by
a third-party synthesis tool that has been OEM’d by the FPGA vendor).

 3. Unplaced-and-unrouted netlist level . Perhaps the most common scenario
is for FPGA designers to purchase IP at the unplaced-and-unrouted LUT/
CLB netlist level (Figure 2-26b). Such netlists are typically provided in
encrypted form, either as encrypted EDIF or using some FPGA vendor-spe-
cific format. In this case, the IP vendor may also provide a compiled cycle-
accurate C/C � � model to be used for functional verification because such
a model will simulate much faster than the LUT/CLB netlist-level model.

 —Technology Trade-offs—
 ● The main advantage of this scenario is that the IP provider has often gone

to a lot of effort tuning the synthesis engine and handcrafting certain por-
tions of the function to achieve an optimal implementation in terms of
resource utilization and performance.

 ● One disadvantage is that the FPGA designer doesn’t have any ability to
remove unwanted functionality.

 ● Another disadvantage is that the IP block is tied to a particular FPGA ven-
dor and device family.

 4. Placed-and-routed netlist level. In certain cases, the FPGA designer may
purchase IP at the placed-and-routed LUT/CLB netlist level (Figure 2-26c).
Once again, such netlists are typically provided in encrypted form, either
as encrypted EDIF or using some FPGA vendor-specific format. The rea-
son for having placed-and-routed representations is to obtain the highest
levels of performance. In some cases the placements will be relative, which
means that the locations of all of the LUT, CLB, and other elements form-
ing the block are fixed with respect to each other, but the block as a whole
may be positioned anywhere (suitable) within the FPGA. Alternatively, in
the case of IP blocks such as communications or bus protocol functions
with specific I/O pin requirements, the placements of the elements form-
ing the block may be absolute, which means that they cannot be changed
in any way. Once again, the IP vendor may also provide a compiled cycle-
a ccurate C/C � � model to be used for functional verification because such
a model will simulate much faster than the LUT/CLB netlist-level model.

 IP Core Generators

 Another very common practice is for FPGA vendors (sometimes EDA vendors,
IP providers, and even small, independent design houses) to provide special

CH002-H8974.indd 43CH002-H8974.indd 43 6/21/2008 7:08:51 PM6/21/2008 7:08:51 PM

FPGAs: Instant Access44

www.newnespress.com

tools that act as IP block/core generators. These generator applications are
almost invariably parameterized, thereby allowing you to specify the widths
and depths, or both of buses and functional elements.

 First, you get to select from a list of different blocks/cores, and then you
get to specify the parameters to be associated with each. Furthermore, in the
case of some blocks/cores, the generator application may allow you to select
from a list of functional elements that you wish to be included or excluded
from the final representation. In the case of a communications block, for exam-
ple, it might be possible to include or exclude certain error-checking logic. Or
in the case of a CPU core, it might be possible to omit certain instructions
or addressing modes. This allows the generator application to create the most
efficient IP block/core in terms of its resource requirements and performance.

 Depending on the origin of the generator application (or sometimes
the licensing option you’ve signed up for), its output may be in the form of
encrypted or unencrypted RTL source code, an unplaced-and-unrouted netlist,
or a placed-and-routed netlist. In some cases, the generator may also output a
cycle-accurate C/C � � model for use in simulation (Figure 2-27).

 SYSTEM GATES VERSUS REAL GATES

 One common metric used to measure the size of a device in the ASIC world
is that of equivalent gates. The idea is that different vendors provide different
functions in their cell libraries, where each implementation of each function
requires a different number of transistors. This makes it difficult to compare
the relative capacity and complexity of two devices.

 The answer is to assign each function an equivalent gate value along the
lines of “ Function A equates to five equivalent gates; function B equates to

RTL
for IP block

FPGA Designer Input

Unplaced-and-
unrouted netlist

Placed-and-
routed netlist

Cycle-accurate
C/C�� model

IP block/core
generator

 FIGURE 2-27 IP block/core generator.

CH002-H8974.indd 44CH002-H8974.indd 44 6/21/2008 7:08:52 PM6/21/2008 7:08:52 PM

45Chapter | 2 FPGA Architectures

www.newnespress.com

three equivalent gates … ” The next step is to count all of the instances of each
function, convert them into their equivalent gate values, sum all of these values
together, and proudly proclaim, “ My ASIC contains 10 million equivalent
gates, which makes it much bigger than your ASIC! ”

 Unfortunately, nothing is simple because the definition of what actu-
ally constitutes an equivalent gate can vary depending on whom one is talk-
ing to. One common convention is for a 2-input NAND function to represent
one equivalent gate. Alternatively, some vendors define an equivalent gate as
equaling an arbitrary number of transistors. And a more esoteric convention
defines an ECL equivalent gate as being “ one-eleventh the minimum logic
required to implement a single-bit full adder ” (who on earth came up with
this one?).

 As usual, the best policy here is to make sure that everyone is talking about
the same thing before releasing your grip on your hard-earned money.

 And so we come to FPGAs. One of the problems FPGA vendors run into
occurs when they are trying to establish a basis for comparison between their
devices and ASICs. For example, if someone has an existing ASIC design that
contains 500,000 equivalent gates and he wishes to migrate this design into
an FPGA implementation, how can he tell if his design will fit into a particu-
lar FPGA? The fact that each 4-input LUT can be used to represent anywhere
between one and more than twenty 2-input primitive logic gates makes such a
comparison rather tricky.

 In order to address this issue, FPGA vendors started talking about system
gates in the early 1990s. Some folks say that this was a noble attempt to use
terminology that ASIC designers could relate to, while others say that it was
purely a marketing ploy that didn’t do anyone any favors. Sad to relate, there
appears to be no clear definition as to exactly what a system gate is. The situa-
tion was difficult enough when FPGAs essentially contained only generic pro-
grammable logic in the form of LUTs and registers. Even then, it was hard
to state whether a particular ASIC design containing x equivalent gates could
fit into an FPGA containing y system gates. This is because some ASIC
designs may be predominantly combinatorial, while others may make exces-
sively heavy use of registers. Both cases may result in a suboptimal mapping
onto the FPGA.

 The problem became worse when FPGAs started containing embedded
blocks of RAM, because some functions can be implemented much more effi-
ciently in RAM than in general-purpose logic. And the fact that LUTs can act
as distributed RAM only serves to muddy the waters; for example, one ven-
dor’s system gate count values now include the qualifier, “ Assumes 20 per-
cent to 30 percent of LUTs are used as RAM. ” And, of course, the problems
are exacerbated when we come to consider FPGAs containing embedded pro-
cessor cores and similar functions, to the extent that some vendors now say,
 “ System gate values are not meaningful for these devices. ”

FP

CH002-H8974.indd 45CH002-H8974.indd 45 6/21/2008 7:08:52 PM6/21/2008 7:08:52 PM

FPGAs: Instant Access46

www.newnespress.com

 Insider Info

 Is there a rule of thumb that allows you to convert system gates to equivalent gates
and vice versa? Sure, there are lots of them! Some folks say that if you are feeling
optimistic, then you should divide the system gate value by three (in which case
3 million FPGA system gates would equate to 1 million ASIC equivalent gates,
for example). Or if you’re feeling a tad more on the pessimistic side, you could
divide the system gates by five (in which case 3 million system gates would equate
to 600,000 equivalent gates). However, other folks would say that the above is
only true if you assume that the system gate’s value encompasses all of the func-
tions that you can implement using both the general-purpose programmable logic
and the block RAMs. These folks would go on to say that if you remove the block
RAMs from the equation, then you should divide the system gates value by ten
(in which case, 3 million system gates would equate to only 300,000 equivalent
gates), but in this case you still have the block RAMs to play with … arrggghhhh!

 Ultimately, this topic spirals down into such a quagmire that even the FPGA
vendors are trying desperately not to talk about system gates any more. When
FPGAs were new on the scene, people were comfortable with the thought of
equivalent gates and not so at ease considering designs in terms of LUTs, slices,
and the like; however, the vast number of FPGA designs that have been under-
taken over the years means that engineers are now much happier thinking in
FPGA terms. For this reason, speaking as someone living in the trenches, I would
prefer to see FPGAs specified and compared using only simple counts of:

 Number of logic cells or logic elements or whatever (which equates to the number
of 4-input LUTs and associated flip-flops/latches)

 Number (and size) of embedded RAM blocks
 Number (and size) of embedded multipliers
 Number (and size) of embedded adders
 Number (and size) of embedded MACs
 etc.

CH002-H8974.indd 46CH002-H8974.indd 46 6/21/2008 7:08:52 PM6/21/2008 7:08:52 PM

47Chapter | 2 FPGA Architectures

www.newnespress.com

 INSTANT SUMMARY

 Table 2-2 summarizes the key points associated with the various programming
technologies discussed in this chapter.

 TABLE 2-2 Summary of Programming Technologies

 Feature SRAM Antifuse E2PROM/FLASH

 Technology node State-of-the-art One or more
generations behind

 One or more
generations behind

 Reprogrammable Yes (in system) No Yes (in-system or
offl ine)

 Reprogramming
speed (inc. erasing)

 Fast — 3x slower than
SRAM

 Volatile (must be
programmed on
power-up)

 Yes No No
(but can be if
required)

 Requires external
confi guration fi le

 Yes No No

 Good for
prototyping

 Yes
(very good)

 No Yes
(reasonable)

 Instant-on No Yes Yes

 IP Security Acceptable
(especially when
using bitstream
encryption

 Very good Very good

 Size of
confi guration cell

 Large
(six transistors)

 Very small Medium-small
(two transistors)

 Power
consumption

 Medium Low Medium

 Rad Hard No Yes Not really

CH002-H8974.indd 47CH002-H8974.indd 47 6/21/2008 7:08:52 PM6/21/2008 7:08:52 PM

FPGAs: Instant Access48

www.newnespress.com

 Table 2-3 summarizes the key FPGA architectural features and choices avail-
able to designers.

 TABLE 2-3 FPGA Architectural Features

 Granularity Fine, Medium, Coarse Grained

 Logic Blocks MUX-based, LUT-based

 Embedded RAM
 Embedded Multipliers, Adders
 Embedded Processor Cores
 Clock Managers
 General-purpose I/O
 Gigabit Transceivers
 Intellectual Property

CH002-H8974.indd 48CH002-H8974.indd 48 6/21/2008 7:08:52 PM6/21/2008 7:08:52 PM

www.newnespress.com

 Programming (Configuring)
an FPGA

 Chapter 3

 Defi nitions

 ● Confi guration fi les (also called bit fi les) contain the information that will be
uploaded into the FPGA in order to program it to perform a specifi c function.

 ● In the case of SRAM-based FPGAs, the confi guration fi le contains a mixture
of confi guration data (bits that are used to defi ne the state of programmable
logic elements directly) and confi guration commands (instructions that tell the
device what to do with the confi guration data). When the confi guration fi le is
in the process of being loaded into the device, the information being trans-
ferred is referred to as the confi guration bitstream .

 —Technology Trade-offs—
 ● E 2 -based and FLASH-based devices are programmed in a similar manner

to their SRAM-based cousins. By comparison, in the case of antifuse-based
FPGAs, the configuration file predominantly contains only a representation
of the configuration data that will be used to grow the antifuses.

In an Instant

Confi guration Cells
Antifuse-based FPGAS

SRAM-based FPGAS

Programming Embedded
(Block) RAMs, Distributed
RAMs, etc.

Multiple Programming Chains
Quickly Reinitializing the

Device

Using the Confi guration Port
Serial Load with FPGA as Master
Parallel Load with FPGA as

Master
Parallel Load with FPGA as Slave
Serial Load with FPGA as Slave

Using the JTAG Port
Using an Embedded Processor
Instant Summary

CH003-H8974.indd 49CH003-H8974.indd 49 6/21/2008 5:04:23 PM6/21/2008 5:04:23 PM

FPGAs: Instant Access50

www.newnespress.com

 CONFIGURATION CELLS

 The underlying concept associated with programming an FPGA is relatively sim-
ple (i.e., load the configuration file into the device). It can, however, be a little
tricky to wrap one’s brain around all of the different facets associated with this
process, so we’ll start with the basics and work our way up. Initially, let’s assume
we have a rudimentary device consisting only of an array of very simple pro-
grammable logic blocks surrounded by programmable interconnect (Figure 3-1).

 Any facets of the device that may be programmed are done so by means
of special configuration cells. The majority of FPGAs are based on the use of
SRAM cells, but some employ FLASH (or E 2) cells, while others use antifuses.

 Irrespective of the underlying technology, the device’s interconnect has a
large number of associated cells that can be used to configure it so as to con-
nect the device’s primary inputs and outputs to the programmable logic blocks
and these logic blocks to each other. (In the case of the device’s primary I/Os,
which are not shown in Figure 3-1 , each has a number of associated cells that
can be used to configure them to accommodate specific I/O interface standards
and so forth.)

 For the purpose of this portion of our discussions, we shall assume that each
programmable logic block comprises only a 4-input LUT, a multiplexer, and a
register (Figure 3-2). The multiplexer requires an associated c onfiguration cell
to specify which input is to be selected. The register requires associated cells
to specify whether it is to act as an edge-triggered flip-flop (as shown in Figure
3-2) or a level-sensitive latch, whether it is to be triggered by a positive- or
negative-going clock edge (in the case of the flip-flop option) or an active-low
or active-high enable (if the register is instructed to act as a latch), and whether
it is to be initialized with a logic 0 or a logic 1. Meanwhile, the 4-input LUT is
itself based on 16 configuration cells.

Programmable
interconnect

Programmable
logic blocks

 FIGURE 3-1 Top-down view of simple FPGA architecture.

CH003-H8974.indd 50CH003-H8974.indd 50 6/21/2008 5:04:24 PM6/21/2008 5:04:24 PM

51Chapter | 3 Programming (Configuring) an FPGA

www.newnespress.com

 ANTIFUSE-BASED FPGAS

 In the case of antifuse-based FPGAs, the antifuse cells can be visualized as
scattered across the face of the device at strategic locations. The device is
placed in a special device programmer, the configuration (bit) file is uploaded
into the device programmer from the host computer, and the device program-
mer uses this file to guide it in applying pulses of relatively high voltage and
current to selected pins to grow each antifuse in turn.

 A very simplified way of thinking about this is that each antifuse has a
 “ virtual ” x-y location on the surface of the chip, where these x-y values are
specified as integers. Based on this scenario, we can visualize using one group
of I/O pins to represent the x value associated with a particular antifuse and
another group of pins to represent the y value.

 Once all of the fuses have been grown, the FPGA is removed from the
device programmer and attached to a circuit board. Antifuse-based devices are,
of course, one-time programmable (OTP) because once you’ve started the pro-
gramming process, you’re committed and it’s too late to change your mind.

 —Technology Trade-offs—
 ● Unlike SRAM-based FPGAs, FLASH-based devices are nonvolatile. They

retain their configuration when power is removed from the system, and
they don’t need to be reprogrammed when power is reapplied to the system
(although they can be if required).

 ● Also, FLASH-based devices can be programmed in-system (on the circuit
board) or outside the system by means of a device programmer.

 SRAM-BASED FPGAS

 For the remainder of this chapter we shall consider only SRAM-based FPGAs.
Remember that these devices are volatile, which means they have to be pro-
grammed in-system (on the circuit board), and they always need to be repro-
grammed when power is first applied to the system.

4-input
LUT

Flip-flop

Clock

MUX
y

q
e

a

b

c

d

 FIGURE 3-2 A very simple programmable logic block.

CH003-H8974.indd 51CH003-H8974.indd 51 6/21/2008 5:04:24 PM6/21/2008 5:04:24 PM

FPGAs: Instant Access52

www.newnespress.com

 Insider Info

 Programming an FPGA can take a significant amount of time. Consider a rea-
sonably high-end device containing 25 million SRAM-based configuration cells.
Programming such a device using a serial mode and a 25 MHz clock would take
one second. This isn’t too bad when you are first powering up a system, but it
means that you really don’t want to keep on reconfiguring the FPGA when the
system is in operation.

 From the outside world, we can visualize all of the SRAM configuration
cells as comprising a single (long) shift register. Consider a simple bird’s-eye
view of the surface of the chip showing only the I/O pins/pads and the SRAM
configuration cells (Figure 3-3).

 As a starting point, we shall assume that the beginning and end of this
register chain are directly accessible from the outside world. However, it’s
important to note that this is only the case when using the configuration port
programming mechanism in conjunction with the serial load with FPGA as
master or serial load with FPGA as slave programming modes, as discussed
below.

 Also note that the configuration data out pin/signal shown in Figure 3-3
is only used if multiple FPGAs are to be configured by cascading (daisy-
 chaining) them together or if it is required to be able to read the configuration
data back out of the device for any reason.

Configuration data in

Configuration data out

� I/O pin/pad

� SRAM cell

 FIGURE 3-3 Visualizing the SRAM cells as a long shift register.

 Programming Embedded (Block) RAMs, Distributed RAMs, etc.

 In the case of FPGAs containing large blocks of embedded (block) RAM, the
cores of these blocks are implemented out of SRAM latches, and each of these
latches is a configuration cell that forms a part of our “ imaginary ” register chain.

CH003-H8974.indd 52CH003-H8974.indd 52 6/21/2008 5:04:24 PM6/21/2008 5:04:24 PM

53Chapter | 3 Programming (Configuring) an FPGA

www.newnespress.com

 One interesting point is that each 4-input LUT (see Figure 3-2) can be con-
figured to act as a LUT, as a small (16 � 1) chunk of distributed RAM, or as a
16-bit shift register. All of these manifestations employ the same group of 16
SRAM latches, where each of these latches is a configuration cell that forms a
part of our imaginary register chain.

 FAQ

 How is the 16-bit shift register implemented?

 A trick circuit is employed using the concept of a capacitive latch that prevents
classic race conditions (this is pretty much the same way designers built flip-flops
out of discrete transistors, resistors, and capacitors in the early 1960s).

 Multiple Programming Chains

 Figure 3-3 shows the configuration cells presented as a single programming
chain. As there can be tens of millions of configuration cells, this chain can be
very long indeed. Some FPGAs are architected so that the configuration port
actually drives a number of smaller chains. This allows individual portions of
the device to be configured and facilitates a variety of concepts such as modu-
lar and incremental design.

 Quickly Reinitializing the Device

 As was previously noted, the register in the programmable logic block has an
associated configuration cell that specifies whether it is to be initialized with
a logic 0 or a logic 1. Each FPGA family typically provides some mechanism
such as an initialization pin that, when placed in its active state, causes all of
these registers to be returned to their initialization values (this mechanism does
not reinitialize any embedded [block] or distributed RAMs).

 USING THE CONFIGURATION PORT

 The early FPGAs made use of something called the configuration port .
Even today, when more sophisticated techniques are available (like the JTAG
interface discussed later in this chapter), this method is still widely used
because it’s relatively simple and is well understood by stalwarts in the FPGA
fraternity.

 We start with a small group of dedicated configuration mode pins that are
used to inform the device which configuration mode is going to be used. In the
early days, only two pins were employed to provide four modes.

 Note that the names of the modes shown in this table—and also the rela-
tionship between the codes on the mode pins and the modes themselves—are

CH003-H8974.indd 53CH003-H8974.indd 53 6/21/2008 5:04:25 PM6/21/2008 5:04:25 PM

FPGAs: Instant Access54

www.newnespress.com

intended for use only as an example. The actual codes and mode names vary
from vendor to vendor.

 The mode pins are typically hardwired to the desired logic 0 and logic 1
values at the circuit board level. (These pins can be driven from some other
logic that allows the programming mode to be modified, but this is rarely done
in practice.)

 In addition to the hard-wired mode pins, an additional pin is used to instruct
the FPGA to actually commence the configuration, while yet another pin is
used by the device to report back when it’s finished (there are also ways to
determine if an error occurred during the process). This means that in addition
to configuring the FPGA when the system is first powered up, the device may
also be reinitialized using the original configuration data, if such an occurrence
is deemed necessary.

 The configuration port also makes use of additional pins to control the loading
of the data and to input the data itself. The number of these pins depends on the
configuration mode selected, as discussed below. The important point here is that
once the configuration has been completed, most of these pins can subsequently
be used as general-purpose I/O pins (we will return to this point a little later).

 Serial Load with FPGA as Master

 This is perhaps the simplest programming mode. In the early days, it involved
the use of an external PROM. This was subsequently superceded by an EPROM,
then an E 2 PROM, and now—most commonly—a FLASH-based device. This
special-purpose memory component has a single data output pin that is con-
nected to a configuration data in pin on the FPGA (Figure 3-4).

 The FPGA also uses several bits to control the external memory device,
such as a reset signal to inform it when the FPGA is ready to start reading data
and a clock signal to clock the data out.

Configuration data in

M
em

o
ry

d
ev

ic
e

Control

Configuration
data out

FPGA

Cdata In

Cdata Out

 FIGURE 3-4 Serial load with FPGA as master.

CH003-H8974.indd 54CH003-H8974.indd 54 6/21/2008 5:04:25 PM6/21/2008 5:04:25 PM

55Chapter | 3 Programming (Configuring) an FPGA

www.newnespress.com

 The idea with this mode is that the FPGA doesn’t need to supply the exter-
nal memory device with a series of addresses. Instead, it simply pulses the
reset signal to indicate that it wishes to start reading data from the beginning,
and then it sends a series of clock pulses to clock the configuration data out of
the memory device.

 The configuration data out signal coming from the FPGA need only be
connected if it is required to read the configuration data from the device for
any reason. One such scenario occurs when there are multiple FPGAs on the
circuit board. In this case, each could have its own dedicated external memory
device and be configured in isolation, as shown in Figure 3-4 . Alternatively,
the FPGAs could be cascaded (daisy-chained) together and share a single
external memory (Figure 3-5).

 In this scenario, the first FPGA in the chain (the one connected directly
to the external memory) would be configured to use the serial master mode,
while the others would be serial slaves, as discussed later in this chapter.

 Parallel Load with FPGA as Master

 In many respects, this is very similar to the previous mode, except that the data
is read in 8-bit chunks from a memory device with eight output pins. Groups of
eight bits are very common and are referred to as bytes. In addition to provid-
ing control signals, the original FPGAs supplied the external memory device
with an address that was used to point to whichever byte of configuration data
was to be loaded next (Figure 3-6).

 The way this worked was that the FPGA had an internal counter that was
used to generate the address for the external memory. (The original FPGAs
had 24-bit counters, which allowed them to address 16 million bytes of data.)
At the beginning of the configuration sequence, this counter would be initial-
ized with zero. After the byte of data pointed to by the counter had been read,
the counter would be incremented to point to the next byte of data. This pro-
cess would continue until all of the configuration data had been loaded.

M
em

o
ry

d
ev

ic
e

Control

FPGA FPGA

Cdata In

Cdata Out

Cdata In

Cdata Out

etc.

 FIGURE 3-5 Daisy-chaining FPGAs.

CH003-H8974.indd 55CH003-H8974.indd 55 6/21/2008 5:04:25 PM6/21/2008 5:04:25 PM

FPGAs: Instant Access56

www.newnespress.com

 Special-purpose memory devices created for use with FPGAs are now rel-
atively inexpensive (and being FLASH-based, they are also reusable). Thus,
modern FPGAs now use a new variation on this parallel-loading technique. In
this case, the external memory is a special-purpose device that doesn’t require
an external address, which means that the FPGA no longer requires an internal
counter for this purpose (Figure 3-7).

 As for the serial mode discussed earlier, the FPGA simply pulses the exter-
nal memory device’s reset signal to indicate that it wishes to start reading data
from the beginning, and then it sends a series of clock pulses to clock the con-
figuration data out of the memory device.

 Parallel Load with FPGA as Slave

 The modes discussed above, in which the FPGA is the master, are attractive
because of their inherent simplicity and because they only require the FPGA
itself, along with a single external memory device.

Configuration data [7:0]

Control FPGA

Cdata In[7:0]

Address

M
em

o
ry

D
ev

ic
e

 FIGURE 3-6 Parallel load with FPGA as master (original technique).

 Insider Info

 It’s easy to assume that this parallel-loading technique offers speed advantages, but
it didn’t for quite some time. This is because—in early devices—as soon as a byte
of data had been read into the device, it was clocked into the internal configuration
shift register in a serial manner. Happily, this situation has been rectified in more
modern FPGA families. On the other hand, although the eight pins can be used as
general-purpose I/O pins once the configuration data has been loaded, in reality this
is less than ideal. This is because these pins still have the tracks connecting them to
the external memory device, which can cause a variety of signal integrity problems.

 The real reason why this technique was so popular in the days of yore is that
the special-purpose memory devices used in the serial load with FPGA as master
mode were quite expensive. By comparison, this parallel technique allowed design
engineers to use off-the-shelf memory devices, which were much cheaper.

CH003-H8974.indd 56CH003-H8974.indd 56 6/21/2008 5:04:25 PM6/21/2008 5:04:25 PM

57Chapter | 3 Programming (Configuring) an FPGA

www.newnespress.com

 However, a large number of circuit boards also include a microprocessor,
which is typically already used to perform a wide variety of housekeeping
tasks. In this case, the design engineers might decide to use the microprocessor
to load the FPGA (Figure 3-8).

 The idea here is that the microprocessor is in control. The microprocessor
informs the FPGA when it wishes to commence the configuration process. It
then reads a byte of data from the appropriate memory device (or peripheral,
or whatever), writes that data into the FPGA, reads the next byte of data from
the memory device, writes that byte into the FPGA, and so on until the con-
figuration is complete.

 This scenario conveys a number of advantages, not the least being that the
microprocessor might be used to query the environment in which its surround-
ing system resides and to then select the configuration data to be loaded into
the FPGA accordingly.

 Serial Load with FPGA as Slave

 This mode is almost identical to its parallel counterpart, except that only a sin-
gle bit is used to load data into the FPGA (the microprocessor still reads data

Configuration data [7:0]

Control FPGA

Cdata In[7:0]

M
em

o
ry

D
ev

ic
e

 FIGURE 3-7 Parallel load with FPGA as the master (modern technique).

M
em

o
ry

D

ev
ic

e

Control

M
ic

ro
p

ro
ce

ss
o

r

Address

Data

P
er

ip
h

er
al

,
P

o
rt

, e
tc

.

FPGA

Cdata In[7:0]

 FIGURE 3-8 Parallel load with FPGA as slave.

CH003-H8974.indd 57CH003-H8974.indd 57 6/21/2008 5:04:25 PM6/21/2008 5:04:25 PM

FPGAs: Instant Access58

www.newnespress.com

out of the memory device one byte at a time, but it then converts this data into
a series of bits to be written to the FPGA).

 —Technology Trade-offs—
 ● The main advantage of this approach is that it uses fewer I/O pins on the

FPGA. This means that—following the configuration process—only a sin-
gle I/O pin has the additional track required to connect it to the micropro-
cessor’s data bus.

 USING THE JTAG PORT

 Like many other modern devices, today’s FPGAs are equipped with a JTAG
port. Standing for the Joint Test Action Group and officially known to engineers
by its IEEE 1149.1 specification designator, JTAG was originally designed to
implement the boundary scan technique for testing circuit boards and ICs.

 A detailed description of JTAG and boundary scan is beyond the scope of
this book. For our purposes here, it is sufficient to understand that the FPGA
has a number of pins that are used as a JTAG port. One of these pins is used to
input JTAG data, and another is used to output that data. Each of the FPGA’s
remaining I/O pins has an associated JTAG register (a flip-flop), where these
registers are daisy-chained together (Figure 3-9).

 The idea behind boundary scan is that, by means of the JTAG port, it’s pos-
sible to serially clock data into the JTAG registers associated with the input
pins, let the device (the FPGA in this case) operate on that data, store the results
from this processing in the JTAG registers associated with the output pins, and,
ultimately, to serially clock this result data back out of the JTAG port.

JTAG data in

Input pin from
outside world

Output pin to
outside world

To internal
logic

From internal
logic

From previous
JTAG flip-flop

To next
JTAG flip-flop

Input pad

Output pad

JTAG flip-flops

JTAG data out

 FIGURE 3-9 JTAG boundary scan registers.

CH003-H8974.indd 58CH003-H8974.indd 58 6/21/2008 5:04:26 PM6/21/2008 5:04:26 PM

59Chapter | 3 Programming (Configuring) an FPGA

www.newnespress.com

 However, JTAG devices also contain a variety of additional JTAG-related
control logic, and, with regard to FPGAs, JTAG can be used for much more
than boundary scans. For example, it’s possible to issue special commands that
are loaded into a special JTAG command register (not shown in Figure 3-9) by
means of the JTAG port’s data-in pin. One such command instructs the FPGA to
connect its internal SRAM configuration shift register to the JTAG scan chain.
In this case, the JTAG port can be used to program the FPGA. Thus, today’s
FPGAs now support five different programming modes and, therefore, require
the use of three mode pins (additional modes may be added in the future).

JTAG data in JTAG data out

FPGA

Core

Primary scan chain

Internal (core) scan chain

 FIGURE 3-10 Embedded processor boundary scan chain.

 Key Concept

 Note that the JTAG port is always available, so the device can initially be con-
figured via the traditional configuration port using one of the standard configu-
ration modes, and it can subsequently be reconfigured using the JTAG port as
required. Alternately, the device can be configured using only the JTAG port.

 USING AN EMBEDDED PROCESSOR

 But wait, there’s more! We have discussed the fact that some FPGAs sport
embedded processor cores, and each of these cores will have its own dedicated
JTAG boundary scan chain. Consider an FPGA containing just one embedded
processor (Figure 3-10).

 The FPGA itself would only have a single external JTAG port. If required, a
JTAG command can be loaded via this port that instructs the device to link the
processor’s local JTAG chain into the device’s main JTAG chain. (Depending
on the vendor, the two chains could be linked by default, in which case a com-
plementary command could be used to disengage the internal chain.)

CH003-H8974.indd 59CH003-H8974.indd 59 6/21/2008 5:04:26 PM6/21/2008 5:04:26 PM

FPGAs: Instant Access60

www.newnespress.com

 TABLE 3-2 Today’s Five Confi guration Modes

 Mode pins Mode

 0 0 0 Serial load with FPGA as master

 0 0 1 Serial load with FPGA as slave

 0 1 0 Parallel load with FPGA as master

 0 1 1 Parallel load with FPGA as slave

 1 x x Use only the JTAG port

 TABLE 3-1 The Four Original Confi guration Modes

 Mode pins Mode

 0 0 Serial load with FPGA as master

 0 1 Serial load with FPGA as slave

 1 0 Parallel load with FPGA as master

 1 1 Parallel load with FPGA as slave

 The idea here is that the JTAG port can be used to initialize the internal
microprocessor core (and associated peripherals) to the extent that the main
body of the configuration process can then be handed over to the core. In some
cases, the core might be used to query the environment in which the FPGA
resides and to then select the configuration data to be loaded into the FPGA
accordingly.

 INSTANT SUMMARY

 Table 3-1 shows the four original configuration modes, still widely used.
 Table 3-2 summarizes today’s five configuration modes.

CH003-H8974.indd 60CH003-H8974.indd 60 6/21/2008 5:04:26 PM6/21/2008 5:04:26 PM

www.newnespress.com

 FPGA vs. ASIC Designs

 Chapter 4

 Defi nitions

 Here are some terms we’ll be using in this chapter.

 ● Pipelining is analogous to an automobile assembly line, where the output of
one logic block is the input of the next one. It will be explained in more detail
in the following sections.

 ● Latency is the time in clock cycles that it takes for a specifi c block of data to
work it way through a function, device, or system.

 ● Levels of logic refers to the number of gates between the inputs and outputs of
a logic block.

 ● Combinational loops occur when the generation of a signal depends on itself
feeding back through one or more logic gates.

 ● Delay chains are formed from a series of buffer or inverter gates and used for a
variety of purposes, which we’ll discuss later in this chapter.

In an Instant

When You Switch from ASIC to
FPGA Design, or Vice Versa

Coding Styles
Pipelining and Levels of Logic

Levels of Logic
Asynchronous Design Practices

Asynchronous Structures
Combinational Loops
Delay Chains

Clock Considerations
Clock Domains
Clock Balancing
Clock Gating versus Clock

Enabling
PLLs and Clock Conditioning

Circuitry
Reliable Data Transfer across

Multiclock Domains

Register and Latch Considerations
Latches
Flip-fl ops with both “Set” and

“Reset” Inputs
Global Resets and Initial

Conditions
Resource Sharing (Time-Division

Multiplexing)
Use It or Lose It!
But Wait, There’s More

State Machine Encoding
Test Methodologies
Migrating ASIC Designs to FPGAs

and Vice Versa
Alternative Design Scenarios

Instant Summary

CH004-H8974.indd 61CH004-H8974.indd 61 6/21/2008 5:06:24 PM6/21/2008 5:06:24 PM

FPGAs: Instant Access62

www.newnespress.com

 When You Switch from ASIC to FPGA Design, or Vice Versa

 Some design engineers have spent the best years of their young lives develop-
ing a seemingly endless series of ASICs, while others have languished in their
cubicles learning the arcane secrets that are the province of the FPGA maestro.
The problem arises when an engineer steeped in one of these implementation
technologies is suddenly thrust into the antipodal domain. For example, a com-
mon scenario these days is for engineers who bask in the knowledge that they
know everything there is to know about ASICs to be suddenly tasked with cre-
ating a design targeted toward an FPGA implementation.

 This is a tricky topic because there are so many facets to it; the best we can
hope for here is to provide an overview as to some of the more significant dif-
ferences between ASIC and FPGA design styles.

 CODING STYLES

 When it comes to language-driven design flows, ASIC designers tend to write
very portable code (in VHDL or Verilog) and to make the minimum use of
instantiated (specifically named) cells.

 By comparison, FPGA designers are more likely to instantiate specific low-
level cells. For example, FPGA users may not be happy with the way the syn-
thesis tool generates something like a multiplexer, so they may handcraft their
own version and then instantiate it from within their code. Furthermore, pure
FPGA users tend to use far more technology-specific attributes with regard to
their synthesis engine than do their ASIC counterparts.

 PIPELINING AND LEVELS OF LOGIC

 FAQ

 What is pipelining?

 One tends to hear the word pipelining quite a lot, but this term is rarely explained
in a clear way. Pipelining can be compared to an assembly line used in manufac-
turing automobiles. Assume that different specialists are needed for each step of
the process: someone to attach the wheels to the chassis, the engine to the chassis,
the body to the chassis, and paint the whole thing. It would be highly inefficient
and time-consuming for all these specialists to sit around waiting for their turn to
do their job. Instead, several cars are put on the assembly line at once, and each
specialist does his or her job as the car moves down the line. Once the assembly
line is in full flow, everyone will be working all the time and cars are created
much more quickly.

 We can often replicate this scenario in electronics. Assume we have a
design (or a function forming part of a design) that can be implemented as a
series of blocks of combinatorial logic (Figure 4-1). Let’s say that each block takes

CH004-H8974.indd 62CH004-H8974.indd 62 6/21/2008 5:06:25 PM6/21/2008 5:06:25 PM

63Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 Generally speaking, in the arrangement shown in Figure 4-1 , we wouldn’t
want to present a new word of data to the inputs until we have stored the out-
put results associated with the first word of data. This means that we end up
with the same result as our inefficient car assembly scenario in that it takes a
long time to process each word of data, and the majority of the workers (logic
blocks) are sitting around twiddling their metaphorical thumbs for most of the
time. In the pipelined design technique shown in Figure 4-2 , all of the register
banks are driven by a common clock signal. On each active clock edge, the
registers feeding a block of logic are loaded with the results from the previ-
ous stage. These values then propagate through that block of logic until they
arrive at its outputs, at which point they are ready to be loaded into the next
set of registers on the next clock. In this case, as soon as “ the pump has been
primed ” and the pipeline is fully loaded, a new word of data can be processed
every Y nanoseconds.

Clock

Data in

Registers Registers Registers Combinatorial
logic

Combinatorial
logic

etc.

 FIGURE 4-2 Pipelining the design.

Data in

Combinatorial
logic

Combinatorial
logic

Combinatorial
logic

etc.

 FIGURE 4-1 A function implemented using only combinatorial logic.

Y nanoseconds to perform its task and that we have five such blocks (of which
only three are shown in Figure 4-1 , of course). In this case, it will take 5 � Y
n anoseconds for a word of data to propagate through the function, starting with
its arrival at the inputs to the first block and ending with its departure from the
outputs of the last block. However, we can instead use a pipelined design tech-
nique in which “ islands ” of combinatorial logic are sandwiched between blocks
of registers.

CH004-H8974.indd 63CH004-H8974.indd 63 6/21/2008 5:06:25 PM6/21/2008 5:06:25 PM

FPGAs: Instant Access64

www.newnespress.com

 Key Concept

 One way to think of latency is to return to the concept of an automobile assem-
bly line. In this case, the throughput of the system might be one car rolling off
the end of the line every minute. However, the latency of the system might be a
full eight-hour shift since it takes hundreds of steps to finish a car (where each of
these steps corresponds to a logic/register stage in a pipelined design).

 Levels of Logic

 All of this boils down to the design engineer’s having to perform a balanc-
ing act. Partitioning the combinational logic into smaller blocks and increasing
the number of register stages will increase the performance of the design, but
it will also consume more resources (and silicon real estate) on the chip and
increase the latency of the design.

 This is also the point where we start to run into the concept of levels of
logic. For example, Figure 4-3 would be said to comprise three levels of logic
because the worst-case path involves a signal having to pass through three gates
before reaching the output.

 In the case of an ASIC, a group of gates as shown in Figure 4-3 can be
placed close to each other such that their track delays are very small. This means
that, depending on the design, ASIC engineers can sometimes be a little sloppy
about this sort of thing (it’s not unheard of to have paths with, say, 15 or more
levels of logic).

 By comparison, if this sort of design were implemented on an FPGA with
each of the gates implemented in a separate LUT, it would “ fly like a brick ”
(go incredibly slowly) because the track delays on FPGAs are much more signif-
icant, relatively speaking. In reality, of course, a LUT can actually represent sev-
eral levels of logic (the function shown in Figure 4-3 could be implemented in a
single 4-input LUT), so the position isn’t quite as dire as it may seem at first.

 Having said this, the bottom line is that in order to bring up (or maintain) per-
formance, FPGA designs tend to be more highly pipelined than their ASIC coun-
terparts. This is facilitated by the fact that every FPGA logic cell tends to comprise
both a LUT and a register, which makes registering the output very easy.

&

|

AND

OR

|

NOR
From previous

bank of registers
To next bank
of registers

Three levels of logic

 FIGURE 4-3 Levels of logic.

CH004-H8974.indd 64CH004-H8974.indd 64 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

65Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 ASYNCHRONOUS DESIGN PRACTICES

 Asynchronous Structures

 Depending on the task at hand, ASIC engineers may include asynchronous struc-
tures in their designs, where these constructs rely on the relative p ropagation
delays of signals in order to function correctly. These techniques do not work in
the FPGA world as the routing (and associated delays) can change dramatically
with each new run of the place-and-route engines.

 Combinational Loops

 As a somewhat related topic, combinational loops are a major source of critical
race conditions where logic values depend on routing delays. Although the prac-
tice is frowned upon in some circles, ASIC engineers can be little rapscallions
when it comes to using these structures because they can fix track routing (and
therefore the associated propagation delays) very precisely. This is not the case in
the FPGA domain, so all such feedback loops should include a register element.

 Delay Chains

 Last but not least, ASIC engineers may use a series of buffer or inverter gates
to create a delay chain. These delay chains may be used for a variety of pur-
poses, such as addressing race conditions in asynchronous portions of the
design. In addition to the delay from such a chain being hard to predict in the
FPGA world, this type of structure increases the design’s sensitivity to operat-
ing conditions, decreases its reliability, and can be a source of problems when
migrating to another architecture or implementation technology.

 CLOCK CONSIDERATIONS

 Clock Domains

 ASIC designs can feature a huge number of clocks (one hears of designs with
more than 300 different clock domains). In the case of an FPGA, however,
there are a limited number of dedicated global clock resources in any particular
device. It is highly recommended that designers budget their clock systems to
stay within the dedicated clock resources (as opposed to using general-p urpose
inputs as user-defined clocks).

 Some FPGAs allow their clock trees to be fragmented into clock segments.
If the target technology does support this feature, it should be identified and
accounted for while mapping external or internal clocks.

 Clock Balancing

 In the case of ASIC designs, special techniques must be used to balance clock
delays throughout the device. By comparison, FPGAs feature device-wide,

CH004-H8974.indd 65CH004-H8974.indd 65 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

FPGAs: Instant Access66

www.newnespress.com

low-skew clock routing resources. This makes clock balancing unnecessary by
the design engineer because the FPGA vendor has already taken care of it.

 Clock Gating versus Clock Enabling

 ASIC designs often use the technique of gated clocks to help reduce power
dissipation, as shown in Figure 4-4a . However, these tend to give the design
asynchronous characteristics and make it sensitive to glitches caused by inputs
switching too closely together on the gating logic.

 By comparison, FPGA designers tend to use the technique of enabling
clocks. Originally this was performed by means of an external multiplexer as
illustrated in Figure 4-4b ; today, however, almost all FPGA architectures have
a dedicated clock enable pin on the register itself, as shown in Figure 4-4c .

 PLLs and Clock Conditioning Circuitry

 FPGAs typically include PLL or DLL functions—one for each dedicated global
clock (see also the discussions in Chapter 2). If these resources are used for
on-chip clock generation, then the design should also include some mechanism
for disabling or bypassing them to facilitate chip testing and debugging.

 Reliable Data Transfer across Multiclock Domains

 In reality, this topic is true for both ASIC and FPGA designs, the point being
that the exchange of data between two independent clock domains must be
performed very carefully to avoid losing or corrupting data. Bad synchroni-
zation may lead to metastability issues and tricky timing analysis problems.
In order to achieve reliable transfers across domains, it is recommended to
employ handshaking, double flopping, or asynchronous FIFO techniques.

Register

Register

Data

Data
Enable

Clock

Data
Enable

Clock

Reg-out

Reg-out Reg-out

(a) Clock gating

(b) Clock enabling (“then”) (c) Clock enabling (“now”)

Gate

MUX Register

Clock
AND

&

 FIGURE 4-4 Clock gating versus clock enabling.

CH004-H8974.indd 66CH004-H8974.indd 66 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

67Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 REGISTER AND LATCH CONSIDERATIONS

 Latches

 ASIC engineers often make use of latches in their designs. As a general rule-of-
thumb, if you are designing an FPGA, and you are tempted to use a latch, don’t !

 Flip-fl ops with both “ Set ” and “ Reset ” Inputs

 Many ASIC libraries offer a wide range of flip-flops, including a selection that
offer both set and reset inputs (both synchronous and asynchronous versions
are usually available).

 By comparison, FPGA flip-flops can usually be configured with either a
set input or a reset input. In this case, implementing both set and reset inputs
requires the use of a LUT, so FPGA design engineers often try to work around
this and come up with an alternative implementation.

 Global Resets and Initial Conditions

 Every register in an FPGA is programmed with a default initial condition (that
is, to contain a logic 0 or a logic 1).

 Furthermore, the FPGA typically has a global reset signal that will return all
of the registers (but not the embedded RAMs) to their initial conditions. ASIC
designers typically don’t implement anything equivalent to this capability.

 RESOURCE SHARING (TIME-DIVISION MULTIPLEXING)

 Resource sharing is an optimization technique that uses a single functional
block (such as an adder or comparator) to implement several operations. For
example, a multiplier may first be used to process two values called A and B,
and then the same multiplier may be used to process two other values called C
and D. (A good example of resource sharing is provided in Chapter 6.)

 Another name for resource sharing is time-division multiplexing (TDM).
Resources on an FPGA are more limited than on an ASIC. For this reason,
FPGA designers tend to spend more effort on resource sharing than do their
ASIC counterparts.

 Use It or Lose It!

 Actually, things are a little subtler than the brief note above might suggest
because there is a fundamental use-it-or-lose-it consideration with regard to
FPGA hardware. This means that FPGAs only come in certain sizes, so if you
can’t drop down to the next lower size, you might as well use everything that’s
available on the part you have.

 For example, let’s assume you have a design that requires two embedded
hard processor cores. In addition to these processors, you might decide that
by means of resource sharing, you could squeeze by with say 10 m ultipliers

CH004-H8974.indd 67CH004-H8974.indd 67 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

FPGAs: Instant Access68

www.newnespress.com

and 2 megabytes of RAM. But if the only FPGA containing two processors
also comes equipped with 50 multipliers and 10 megabytes of RAM, you can’t
get a refund, so you might as well make full use of the extra capabilities.

 But Wait, There’s More

 In the case of FPGAs, getting data from LUTs/CLBs to and from special compo-
nents like multipliers and MACs is usually more expensive (in terms of connec-
tivity) than connecting with other LUTs/CLBs. Since resource sharing increases
the amount of connectivity, you need to keep a watchful eye on this situation.

 —Technology Trade-offs—
 ● In addition to the big components like multipliers and MACs, you can also

share things like adders. Interestingly enough, in the carry-chain technolo-
gies (such as those fielded by Altera and Xilinx), as a first-order approxi-
mation, the cost of building an adder is pretty much equivalent to the cost
of building a data bus’s worth of sharing logic. For example, implement-
ing two adders “ as is ” with completely independent inputs and outputs will
cost you two adders and no resource-sharing multiplexers. But if you share,
you will have one adder and two multiplexers (one for each set of inputs).
In FPGA terms, this will be more expensive rather than less (in ASICs, the
cost of a multiplexer is far less than the cost of an adder, so you would have
a different trade-off point).

 In the real world, the interactions between “ using it or losing it ” and connec-
tivity costs are different for each technology and each situation; that is, Altera
parts are different from Xilinx parts and so on.

 STATE MACHINE ENCODING

 The encoding scheme used for state machines is a good example of an area
where what’s good for an ASIC design might not be well suited for an FPGA
implementation.

 As we know, every LUT in an FPGA has a companion flip-flop. This
 usually means that there are a reasonable number of flip-flops sitting around
waiting for something to do. In turn, this means that in many cases, a “ one-hot ”
encoding scheme will be the best option for an FPGA-based state machine,
especially if the activities in the various states are inherently independent.

 Key Concept

 The “ one-hot ” encoding scheme refers to the fact that each state in a state
machine has its own state variable in the form of a flip-flop, and only one state
variable may be active (“ hot ”) at any particular time.

CH004-H8974.indd 68CH004-H8974.indd 68 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

69Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 TEST METHODOLOGIES

 ASIC designers typically spend a lot of time working with tools that perform
SCAN chain insertion and automatic test pattern generation (ATPG). They
may also include logic in their designs to perform built-in self-test (BIST).
A large proportion of these efforts are intended to test the device for manufac-
turing defects. By comparison, FPGA designers typically don’t worry about
this form of device testing because FPGAs are preverified by the vendor.

 Similarly, ASIC engineers typically expend a lot of effort inserting bound-
ary scan (JTAG) into their designs and verifying them. By comparison, FPGAs
already contain boundary scan capabilities in their fabric.

 MIGRATING ASIC DESIGNS TO FPGAS AND VICE VERSA

 Alternative Design Scenarios

 When it comes to creating an FPGA design, there are a number of possible
scenarios depending on what you are trying to do (Figure 4-5).

 FPGA Only
 This refers to a design that is intended for an FPGA implementation only. In
this case, one might use any of the design flows and tools discussed elsewhere
in this book.

 FPGA-to-FPGA
 This refers to taking an existing FPGA-based design and migrating it to a new
FPGA technology (the new technology is often presented in the form of a new
device family from the same FPGA vendor you used to implement the original
design, but you may be moving to a new vendor also). With this scenario, it is
rare that you will be performing a simple one-to-one migration, which means
taking the contents of an existing component and migrating them directly

Existing design New design Final implementation

N/A FPGA FPGA FPGA Only

FPGA-to-FPGA FPGA FPGA FPGA

FPGA-to-ASIC FPGA ASIC

ASIC-to-FPGA ASIC FPGA FPGA

N/A

 FIGURE 4-5 Alternative design scenarios.

CH004-H8974.indd 69CH004-H8974.indd 69 6/21/2008 5:06:26 PM6/21/2008 5:06:26 PM

FPGAs: Instant Access70

www.newnespress.com

to a new device. It is much more common to migrate the functionality from
multiple existing FPGAs to a single new FPGA. Alternatively, you might be
gathering the functionality of one or more existing FPGAs, plus a load of sur-
rounding discrete logic, and bundling it all into a new device.

 In these cases, the typical route is to gather all of the RTL code describing
the original devices and discrete logic into a single design. The code may be
tweaked to take advantage of any new features available in the targeted device
and then resynthesized.

 FPGA-to-ASIC
 This refers to using one or more FPGAs to prototype an ASIC design. One
big issue here is that, unless you’re working with a small to medium ASIC, it
is often necessary to partition the design across multiple FPGAs. Some EDA
and FPGA vendors have (or used to have) applications that will perform this
partitioning automatically, but tools like this come and go with the seasons.
Also, their features and capabilities, along with the quality of their results, can
change on an almost weekly basis (which is my roundabout way of telling you
that you’ll have to evaluate the latest offerings for yourself).

 Another consideration is that functions like RAMs configured to act as
FIFO memories or dual-port memories have specific realizations when they
are implemented using embedded RAM blocks in FPGAs. These realizations
are typically different from the way in which these functions will be imple-
mented in an ASIC, which may cause problems. One solution is to create your
own RTL library of ASIC functions for such things as multipliers, compara-
tors, memory blocks, and the like that will give you a one-for-one mapping
with their FPGA counterparts. Unfortunately, this means instantiating these
elements in the RTL code for your design, as opposed to using generic RTL
and letting the synthesis engine handle everything (so it’s a balancing act like
everything else in engineering).

 As we discussed earlier, a design intended for an FPGA implementation
typically contains fewer levels of logic between register stages than would a
pure ASIC design. In some cases, it’s best to create the RTL code associated
with the design with the final ASIC implementation in mind and just take the
hit with regard to reduced performance in the FPGA prototype.

 Alternatively, one might generate two flavors of the RTL—one for use with
the FPGA prototype and the other to provide the final ASIC. But this is gener-
ally regarded to be a horrible way to do things because it’s easy for the two
representations to lose synchronization and end up going in two totally differ-
ent directions.

 One way around this might be to use the pure C/C � � based tools intro-
duced in Chapter 6. As you may recall, the idea here is that, as opposed to
adding intelligence to the RTL source code by hand (thereby locking it into a
target implementation), all of the intelligence is provided by your controlling
and guiding the C/C � � synthesis engine itself (Figure 4-6).

CH004-H8974.indd 70CH004-H8974.indd 70 6/21/2008 5:06:27 PM6/21/2008 5:06:27 PM

71Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 Once the synthesis engine has parsed the C/C � � source code, you can use
it to perform microarchitecture trade-offs and evaluate their effects in terms of
size and speed. The user-defined configuration associated with each “ what-if ”
scenario can be named, saved, and reused as required. Thus, you could first
create a configuration for use as an FPGA prototype and, once this had been
verified, you could create a second configuration to be used for the final ASIC
implementation. The key point is that the same C/C � � source code is used to
drive both flows.

 Another point to ponder is that a modern ASIC design can contain an
unbelievable number of clock domains and subdomains (we’re talking about
hundreds of domains/subdomains here). By comparison, an FPGA has a lim-
ited number of primary clock domains (on the order of 10). This means that
if you’re using one or more FPGAs to prototype your ASIC, you’re going to
have to put a lot of thought into how you handle your clocks.

– Non-implementation-specific
– Easy to create
– Fast to simulate
– Easy to modify

Pure C/C��
Pure C/C��
Synthesis

User interaction
and guidance

Gate-level
netlist

Verilog/
VHDL RTL

LUT/CLB-
level netlist

ASIC
target

Verilog/
VHDL RTL

RTL
Synthesis

RTL
Synthesis

FPGA
target

Auto-generated,
implementation-specific

 FIGURE 4-6 A pure C/C � � -based design flow.

 Insider Info

 There’s an interesting European Patent numbered EP0437491 (B1), which, when
you read it—and, good grief, it’s soooo boring—seems to lock down the idea of
using multiple programmable devices like FPGAs to temporarily realize a design
intended for final implementation as an ASIC. In reality, I think this patent was
probably targeted toward using FPGAs to create a logic emulator, but the way
it’s worded would prevent anyone from using two or more FPGAs to prototype
an ASIC.

 ASIC-to-FPGA
 This refers to taking an existing ASIC design and migrating it to an FPGA. The
reasons for doing this are wide and varied, but they often involve the desire
to tweak an existing ASIC’s functionality without spending vast amounts of

CH004-H8974.indd 71CH004-H8974.indd 71 6/21/2008 5:06:27 PM6/21/2008 5:06:27 PM

FPGAs: Instant Access72

www.newnespress.com

money. Alternatively, the original ASIC technology may have become obso-
lete, but parts might still be required to support ongoing contracts (this is often
the case with regard to military programs). One point of interest is that the
latest generation of FPGAs has usually jumped so far so fast that it’s possible
to place an entire ASIC design from just a few years ago into a single mod-
ern FPGA (if you do have to partition the design across multiple FPGAs, then
there are tools to aid you in this task, as discussed in the “ FPGA-to-ASIC ”
section above). Here are the steps needed:

 ● First, you are going to have to go through your RTL code with a fine-tooth
comb to remove (or at least evaluate) any asynchronous logic, combina-
torial loops, delay chains, and things of this ilk . In the case of flip-flops
with both set and reset inputs, you might wish to recode these to use only
one or the other. You might also wish to look for any latches and redesign
the circuit to use flip-flops instead.

 ● Also, you should keep a watchful eye open for statements like if-then-else
without the else clause because, in these cases, synthesis tools will infer
latches.

 ● In the case of clocks, you will have to ensure that your target FPGA pro-
vides enough clock domains to handle the requirements of the original
ASIC design —otherwise, you’ll have to redesign your clock circuitry.

 ● Furthermore, if your original ASIC design made use of clock-gating tech-
niques, you will have to strip these out and possibly replace them with
clock-enable equivalents . Once again, some FPGA and EDA vendors pro-
vide synthesis tools that can automatically convert an ASIC design using
gated clocks to an equivalent FPGA design using clocks with enables.

 ● In the case of complex functional elements such as memory blocks (e.g.,
FIFOs and dual-port RAMs), it will probably be necessary to tweak
the RTL code to fit the design into the FPGA . In some cases, this will
involve replacing generic RTL statements (that will be processed by the
synthesis engine) with calls to instantiate specific subcircuits or FPGA
elements.

 ● Last, but not least, the original pipelined ASIC design probably had
more levels of logic between register elements than you would like in
the FPGA implementation if you wish to maintain performance . Most
modern logic synthesis and physically aware tools provide retiming capa-
bility, which allows them to move logic back and forth across pipeline reg-
ister boundaries to achieve better timing (the physically aware synthesis
engines typically do a much better job at this; see also Chapter 7).

 ● It’s also true that your modern FPGA is probably based on a later technology
node (say, 130 nano) than your original ASIC design (say, 250 nano). This
gives the FPGA an inherent speed advantage, which serves to offset its inher-
ent track-delay disadvantages. At the end of the day, however, you may still
end up having to hand-tweak the code to add in more pipeline stages.

CH004-H8974.indd 72CH004-H8974.indd 72 6/21/2008 5:06:27 PM6/21/2008 5:06:27 PM

73Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

 INSTANT SUMMARY

 Table 4-1 summarizes the design features of ASICs and FPGAs.

 TABLE 4-1 Summary of Design Features of ASICs and FPGAs

 ASIC FPGA

 Coding styles Portable code, minimal use
of instantiated cells

 Instantiate specifi c low level cells

 Levels of logic More levels of logic typically
used

 More highly pipelined

 Asynchronous
practices

 May include asynchronous
structures; can use delay
chains

 Do not include; no delay chains

 Clock
considerations

 Large no. of clocks can be
used; Special techniques
needed to balance clock
delays; use gated clock
techniques

 Limited no. of dedicated global
clock resources; Onboard clock
routing resources that make
clock balancing unnecessary; Use
enabling clocks

 Register and latch
considerations

 Use latches No latches

 Global resets and
initial conditions

 No Yes

 Test methodologies SCAN insertion; ATPG; BIST FPGAs preverifi ed by vendor;
already contain boundary scan
capabilities in fabric

CH004-H8974.indd 73CH004-H8974.indd 73 6/21/2008 5:06:27 PM6/21/2008 5:06:27 PM

www.newnespress.com

 “ Traditional ” Design Flows

 Chapter 5

 Defi nitions

 Let’s begin as usual by defining some terms we’ll encounter in this chapter.

 ● Schematic is the common name for a circuit diagram.
 ● Logic minimization or optimization means replacing one group of gates with

another that will perform the same task faster or use less real estate on the
silicon.

 ● Gate-level design refers to a design represented as a collection of primitive
logic gates and functions and the connections between them.

 ● Electronic design automation (EDA) is the name now applied to all of the CAE
and CAD tools used to design electronic components and systems.

 ● Hardware description languages (HDLs) are computer languages used to
describe hardware, namely the electronic portions of ICs and printed circuit
boards.

 ● Register transfer level (RTL) is a higher level of abstraction than HDL. In
RTL, the circuit is described as a collection of storage elements (registers),
Boolean equations, control logic such as if-then-else statements, and complex
sequences of events. The most popular languages used for capturing designs
in RTL are VHDL and Verilog (with SystemVerilog starting to gain a larger
following).

In an Instant

Schematic-based Design Flows
Back-end Tools like Layout
CAE � CAD � EDA
A Simple (early) Schematic-

driven ASIC Flow
A Simple (early) Schematic-

driven FPGA Flow
Flat versus Hierarchical

Schematics

Schematic-driven FPGA Design
Flows Today

HDL-based Design Flows
Advent of HDL-based Flows
A Plethora of HDLs
Points to Ponder

Instant Summary

CH005-H8974.indd 75CH005-H8974.indd 75 6/21/2008 5:13:35 PM6/21/2008 5:13:35 PM

FPGAs: Instant Access76

www.newnespress.com

 SCHEMATIC-BASED DESIGN FLOWS

 First, let’s briefly consider the way digital ICs were designed in the days of
old—circa the early 1960s. The purpose of revisiting this ancient history is to
establish an underlying framework that will facilitate understanding the more
advanced design flows introduced in subsequent chapters.

 In those days, electronic circuits were crafted by hand. Circuit diagrams—
also known as schematic diagrams or just schematics —were hand-drawn and
showed the symbols for the logic gates and functions that were to be used to
implement the design, along with the connections between them. Each design
team usually had at least one member who was really good at performing
logic minimization and optimization. Checking that the design would work as
planned insofar as its logical implementation— functional verification —was
typically performed by a group of engineers sitting around a table working
their way through the schematics saying, “ Well, that looks OK. ” Similarly,
timing verification—checking that the design met its required input-to-output
and internal path delays and that no violation times (such as setup and hold
parameters) associated with any of the internal registers were violated—was
performed using a pencil and paper.

 Insider Info

 The wires connecting the logic gates on an integrated circuit may be referred to as
wires, tracks, or interconnect, and all of these terms may be used interchangeably.
In certain cases, the term metallization may also be used to refer to these tracks
because they are predominantly formed by means of the IC’s metal (metallization)
layers .

 Finally, a set of drawings representing the structures used to form the logic
gates and the interconnections between them were drawn by hand. These
drawings, which were formed from groups of simple polygons such as squares
and rectangles, were subsequently used to create the photo-masks, which were
themselves used to create the actual silicon chip.

 Not surprisingly, this way of designing was time-consuming and prone to
error. Something had to be done, and a number of companies and universities
leapt into the fray in a variety of different directions. In the case of functional
verification, for example, the late 1960s and early 1970s saw the advent of spe-
cial programs in the form of rudimentary logic simulators .

 In order to understand how these work, let’s assume that we have a really
simple gate-level design whose schematic diagram has been hand-drawn on
paper (Figure 5-1). In order to use the logic simulator, the engineers first need to
create a textual representation of the circuit called a gate-level netlist. In those
days, the engineers would typically have been using a mainframe c omputer, and
the netlist would have been captured as a set of punched cards called a deck.

CH005-H8974.indd 76CH005-H8974.indd 76 6/21/2008 5:13:35 PM6/21/2008 5:13:35 PM

77Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

G1 � NAND

G2 � NOT

G3 � OR

SET_A

SET_B

DATA

CLOCK

CLEAR_A

CLEAR_B

CLEAR

SET

N_DATA
Q

N-Q

G4 � DFF

 FIGURE 5-1 A simple schematic diagram (on paper).

As computers (along with storage devices like hard disks) became more acces-
sible, netlists began to be stored as text files (Figure 5-2).

 It was also possible to associate delays with each logic gate. These
delays—which are omitted here to keep things simple—were typically refer-
enced as integer multiples of some core simulation time unit.

 Note that the format shown in Figure 5-2 was made up purely for the pur-
poses of this example. This was in keeping with the times because—just to
keep everyone on their toes—anyone who created a tool like a logic simulator
also tended to invent his or her own proprietary netlist language.

 All of the early logic simulators had internal representations of primitive gates
like AND, NAND, OR, NOR, etc. These were referred to as simulation primitives.
Some simulators also had internal representations of more s ophisticated functions
like D-type flip-flops. In this case, the G4 � DFF function in Figure 5-2 would

BEGIN CIRCUIT=TEST

INPUT SET_A, SET-B, DATA, CLOCK, CLEAR_A, CLEAR_B;

OUTPUT Q, N_Q;

WIRE SET, N_DATA, CLEAR;

GATE G1=NAND (IN1=SET_A, IN2=SET_B, OUT1=SET);

GATE G2=NOT (IN1=DATA, OUT1=N_DATA);

GATE G3=OR (IN1=CLEAR_A, IN2=CLEAR_B, OUT1=CLEAR);

GATE G4=DFF (IN1=SET, IN2=N_DATA, IN3=CLOCK,

 IN4=CLEAR, OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

 FIGURE 5-2 A simple gate-level netlist (text file).

CH005-H8974.indd 77CH005-H8974.indd 77 6/21/2008 5:13:35 PM6/21/2008 5:13:35 PM

FPGAs: Instant Access78

www.newnespress.com

map directly onto this internal representation. Alternatively, one could create a
subcircuit called DFF, whose functionality was captured as a netlist of primitive
AND, NAND, etc. gates. In this case, the G4 � DFF function in Figure 5-2 would
actually be seen by the simulator as a call to instantiate a copy of this subcircuit.

 Next, the user would create a set of test vectors —also known as s timulus —
which were patterns of logic 0 and logic 1 values to be applied to the circuit’s
inputs. Once again, these test vectors were textual in nature, and they were typi-
cally presented in a tabular form looking something like that shown in Figure 5-3 .
The times at which the stimulus values were to be applied were shown in the left-
hand column. The names of the input signals are presented vertically to save space.

 As we know from Figures 5-1 and 5-2 , there is an inverting (NOT) gate
between the DATA input and the D-type flip-flop. Thus, when the DATA input is
presented with 1 at time zero, this value will be inverted to a 0, which is the value
that will be loaded into the register when the clock undergoes a rising (0-to-1) edge
at time 500. Similarly, when the DATA input is presented with 0 at time 1,500, this
value will be inverted to a 1, which is the value that will be loaded into the register
when the clock undergoes its next rising (0-to-1) transition at time 2,000.

 In today’s terminology, the file of test vectors shown in Figure 5-3 would
be considered a rudimentary testbench. Once again, time values were typically
specified as integer multiples of some core simulation time unit.

 The engineer would then invoke the logic simulator, which would read
in the gate-level netlist and construct a virtual representation of the circuit in
the computer’s memory. The simulator would then read in the first test vector
(the first line from the stimulus file), apply those values to the appropri-
ate virtual inputs, and propagate their effects through the circuit. This would
be repeated for each of the subsequent test vectors forming the testbench

 C C
 L L
 S S C E E
 E E D L A A
 T T A O R R

 _ _ T C _ _
 TIME A B A K A B
----- -----------
 0 1 1 1 0 0 0 ; Set up initial values
 500 1 1 1 1 0 0 ; Rising edge on clock (load 0)
 1000 1 1 1 0 0 0 ; Falling edge on clock
 1500 1 1 0 0 0 0 ; Set data to 0 (N_data = 1)
 2000 1 1 0 1 0 0 ; Rising edge on clock (load 1)
 2500 1 1 0 1 0 1 ; Clear_B goes active (load 0)
 :
 etc.

 FIGURE 5-3 A simple set of test vectors (text file).

CH005-H8974.indd 78CH005-H8974.indd 78 6/21/2008 5:13:35 PM6/21/2008 5:13:35 PM

79Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

(Figure 5-4). The simulator would also use one or more control files (or online
co mmands) to tell it which internal nodes (wires) and output pins to moni-
tor, how long to simulate for, and so forth. The results, along with the original
stimulus, would be stored in tabular form in a textual output file.

 Let’s assume that we’ve just traveled back in time and run one of the old
simulators using the circuit represented in Figures 5-1 and 5-2 along with the
stimulus shown in Figure 5-3 . We will also assume that the NOT gate has a
delay of five simulator time units associated with it, which means that a
change on that gate’s input will take five time units to propagate through the
gate and appear on its output. Similarly, we’ll assume that both the NAND and
OR gates have associated delays of 10 time units, while the D-type flip-flop
has associated delays of 20 time units.

 In this case, if the simulator were instructed to monitor all of the internal
nodes and output pins, the output file containing the simulation results would
look something like that shown in Figure 5-5 . For the purposes of our discus-
sions, any changes to a signal’s value are shown in bold font in this illustration,
but this was not the case in the real world.

 In this example, the initial values are applied to the input pins at time 0. At
this time, all of the internal nodes and output pins show X values, which indi-
cates unknown states. After five time units, the initial logic 1 that was applied
to the DATA input propagates through the inverting NOT gate and appears as

BEGIN CIRCUIT=TEST
 INPUT SET_A, SET-B,

 DATA, CLOCK,
 CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;
 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,
 IN2=SET_B,

 OUT1=SET);
 GATE G2=NOT (IN1=DATA,

 OUT1=N_DATA);
 GATE G3=OR (IN1=CLEAR_A,
 IN2=CLEAR_B,

 OUT1=CLEAR);
 GATE G4=DFF (IN1=SET, IN2=N_DATA,

 IN3=CLOCK, IN4=CLEAR,
 OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Textual gate-level netlist

Textual (tabular) stimulus

 C C
 L L
 S S C E E

 E E D L A A
 T T A O R R

 _ _ T C _ _
 TIME A B A K A B

----- -----------
 0 1 1 1 0 0 0 ; Set up
 500 1 1 1 1 0 0 ; Rising edge

 1000 1 1 1 0 0 0 ; Falling edge
 1500 1 1 0 0 0 0 ; Set data

 2000 1 1 0 1 0 0 ; Rising edge
 2500 1 1 0 1 0 1 ; Clear active
 :

 etc.

Logic
Simulator

 C C
 L L N

 S S C E E _ C
 E E D L A A D L
 T T A O R R S A E N

 _ _ T C _ _ E T A _
 TIME A B A K A B T A R Q Q

----- ----------- ----- ---
 0 1 1 1 0 0 0 X X X X X

5 1 1 1 0 0 0 X 0 X X X
10 1 1 1 0 0 0 0 0 0 X X

 500 1 1 1 1 0 0 0 0 0 X X

520 1 1 1 1 0 0 0 0 0 0 1
 1000 1 1 1 0 0 0 0 0 0 0 1
 1500 1 1 0 0 0 0 0 0 0 0 1
 1505 1 1 0 0 0 0 0 1 0 0 1
 2000 1 1 0 1 0 0 0 1 0 0 1

2020 1 1 0 1 0 0 0 1 0 1 0
 2500 1 1 0 1 0 1 0 1 0 1 0

2510 1 1 0 1 0 1 0 1 1 1 0
2530 1 1 0 1 0 1 0 1 1 0 1

 :
 etc.

Textual (tabular) results file
(stimulus and response)

 FIGURE 5-4 Running the logic simulator.

CH005-H8974.indd 79CH005-H8974.indd 79 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

FPGAs: Instant Access80

www.newnespress.com

a logic 0 on the internal N_DATA node. Similarly, at time 10, the initial v alues
that were applied to the SET_A and SET_B inputs propagate through the
NAND gate to the internal SET node, while the values on the CLEAR_A and
CLEAR_B inputs propagate through the OR gate to the internal CLEAR node.

 At time 500, a rising (0-to-1) edge on the CLOCK input causes the D-type
flip-flop to load the value from the N_DATA node. The result appears on the Q
and N_Q output pins 20 time units later. And so it goes.

 Blank lines in the output file, such as the one shown between time 10 and
time 500, were used to separate related groups of actions. For example, setting
the initial values at time 0 caused signal changes at times 5 and 10. Then the
transition on the CLOCK input at time 500 caused signal changes at time 520.
As these two groups of actions were totally independent of each other, they
were separated by a blank line.

 It wasn’t long before engineers were working with circuits that could con-
tain thousands of gates and internal nodes along with simulation runs that
could encompass thousands of time steps.

 C C
 L L N
 S S C E E _ C
 E E D L A A D L
 T T A O R R S A E N

 _ _ T C _ _ E T A _
 TIME A B A K A B T A R Q Q
----- ----------- ----- ---
 0 1 1 1 0 0 0 X X X X X ; Set up initial values

5 1 1 1 0 0 0 X 0 X X X
10 1 1 1 0 0 0 0 0 0 X X

 500 1 1 1 1 0 0 0 0 0 X X ; Rising edge on clock
520 1 1 1 1 0 0 0 0 0 0 1

 1000 1 1 1 0 0 0 0 0 0 0 1 ; Falling edge on clock

 1500 1 1 0 0 0 0 0 0 0 0 1 ; Set data to 0
 1505 1 1 0 0 0 0 0 1 0 0 1

 2000 1 1 0 1 0 0 0 1 0 0 1 ; Rising edge on clock

2020 1 1 0 1 0 0 0 1 0 1 0

 2500 1 1 0 1 0 1 0 1 0 1 0 ; Clear_B goes active
2510 1 1 0 1 0 1 0 1 1 1 0
2530 1 1 0 1 0 1 0 1 1 0 1
 :
 etc.

 FIGURE 5-5 Output results (text file).

CH005-H8974.indd 80CH005-H8974.indd 80 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

81Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 Back-end Tools like Layout

 As opposed to tools like logic simulators that were intended to aid the engi-
neers who were defining the function of ICs (and circuit boards), some compa-
nies focused on creating tools that would help in the process of laying the ICs
out. In this context, layout refers to determining where to place the logic gates
(actually, the transistors forming the logic gates) on the surface of the chip and
how to route the wires between them.

 These tools started out as early computer-aided drafting tools and evolved
into interactive programs called polygon editors that allowed users to draw the
polygons used to define the transistors and interconnect directly onto the com-
puter screen. Descendants of these tools eventually gained the capability to
accept the same netlist used to drive the logic simulator and to perform the
layout (place-and-route) tasks automatically.

 CAE � CAD � EDA

 Tools like logic simulators that were used in the front-end (logical design cap-
ture and functional verification) portion of the design flow were originally
gathered together under the umbrella name of computer-aided engineering
(CAE). By comparison, tools like layout (place-and-route) that were used in
the back-end (physical) portion of the design flow were originally gathered
together under the name of computer-aided design (CAD).

 Sometime during the 1980s, all of the CAE and CAD tools used to design
electronic components and systems were gathered under the name electronic
design automation , or EDA.

 Insider Info

 For historical reasons that are largely based on the origins of the terms CAE and
CAD, the term design engineer—or simply engineer—typically refers to someone
who works in the front-end of the design flow; that is, someone who performs tasks
like conceiving and describing (capturing) the functionality of an IC (what it does
and how it does it). By comparison, the term layout designer—or simply designer—
commonly refers to someone who is ensconced in the back-end of the design flow;
that is, someone who performs tasks such as laying out an IC (determining the
locations of the gates and the routes of the tracks connecting them together) .

 A simple (early) Schematic-driven ASIC Flow

 Toward the end of the 1970s and the beginning of the 1980s, some companies
started providing graphical schematic capture programs that allowed engineers
to create circuit (schematic) diagrams interactively. Using the mouse, an engi-
neer could select symbols representing such entities as I/O pins and logic gates

CH005-H8974.indd 81CH005-H8974.indd 81 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

FPGAs: Instant Access82

www.newnespress.com

and functions from a special symbol library and place them on the screen.
The engineer could then use the mouse to draw lines (wires) on the screen con-
necting the symbols together.

 Once the circuit had been entered, the schematic capture package could
be instructed to generate a corresponding gate-level netlist. This netlist could
first be used to drive a logic simulator to verify the functionality of the design.
The same netlist could then be used to drive the place-and-route software
(Figure 5-6).

 Any timing information that was initially used by the logic simulator
would be estimated—particularly in the case of the tracks—and accurate tim-
ing analysis was only possible once all of the logic gates had been placed and
the tracks connecting them had been routed. Thus, following place-and-route,
an extraction program would be used to calculate the parasitic resistance and
capacitance values associated with the structures (track segments, vias, tran-
sistors, etc.) forming the circuit. A timing analysis program would then use
these values to generate a timing report for the device. In some flows, this tim-
ing information was also fed back to the logic simulator in order to perform a
more accurate simulation.

 —Technology Trade-offs—
 ● It’s important to note here that, when creating the original schematic, the user

would access the symbols for the logic gates and functions from a special

Gate-level
netlist

BEGIN CIRCUIT=TEST

 INPUT SET_A, SET-B,
 DATA, CLOCK,

 CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;
 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,

 IN2=SET_B,

 OUT1=SET);
 GATE G2=NOT (IN1=DATA,

 OUT1=N_DATA);
 GATE G3=OR (IN1=CLEAR_A,

 IN2=CLEAR_B,

 OUT1=CLEAR);
 GATE G4=DFF (IN1=SET, IN2=N_DATA,

 IN3=CLOCK, IN4=CLEAR,
 OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Functional
verification

Extraction and
timing analysis

Detect and fix problems

Detect and fix problems

Schematic
capture

Logic
Simulator

Place-and-
Route

 FIGURE 5-6 Simple (early) schematic-driven ASIC flow.

CH005-H8974.indd 82CH005-H8974.indd 82 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

83Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

library that was associated with the targeted ASIC technology. Similarly, the
simulator would be instructed to use a corresponding library of s imulation
models with the appropriate logical functionality and timing for the targeted
ASIC technology. The result was that the gate-level netlist presented to the
place-and-route software directly mapped onto the logic gates and f unctions
being physically implemented on the silicon chip. This is a tad different from
the FPGA flow, as discussed in the following subsection.

 A Simple (early) Schematic-driven FPGA Flow

 When the first FPGAs arrived on the scene in 1984, it was natural that their
design flows would be based on existing schematic-driven ASIC flows.
Indeed, the early portions of the flows were very similar in that, once again, a
schematic capture package was used to represent the circuit as a collection of
primitive logic gates and functions and to generate a corresponding gate-level
netlist. As before, this netlist was subsequently used to drive the logic simula-
tor to perform the functional verification.

 The differences began with the implementation portion of the flow because
the FPGA fabric consisted of an array of configurable logic blocks (CLBs), each
of which was formed from a number of LUTs and registers. This required the
introduction of some additional steps called mapping and packing into the flow
(Figure 5-7).

Gate-level
netlist

BEGIN CIRCUIT=TEST

 INPUT SET_A, SET-B,
 DATA, CLOCK,

 CLEAR_A, CLEAR_B;

 OUTPUT Q, N_Q;
 WIRE SET, N_DATA, CLEAR;

 GATE G1=NAND (IN1=SET_A,

 IN2=SET_B,

 OUT1=SET);
 GATE G2=NOT (IN1=DATA,

 OUT1=N_DATA);
 GATE G3=OR (IN1=CLEAR_A,

 IN2=CLEAR_B,

 OUT1=CLEAR);
 GATE G4=DFF (IN1=SET, IN2=N_DATA,

 IN3=CLOCK, IN4=CLEAR,
 OUT1=Q, OUT2=N_Q);

END CIRCUIT=TEST;

Fully-routed physical
(CLB-level) netlist

Schematic
capture

Mapping

Packing

Place-and-
Route Timing analysis

and timing report

Gate-level netlist
for simulation

SDF (timing info)
for simulation

 FIGURE 5-7 Simple (early) schematic-driven FPGA flow.

CH005-H8974.indd 83CH005-H8974.indd 83 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

FPGAs: Instant Access84

www.newnespress.com

 Mapping
 In this context, mapping refers to the process of associating entities such as
the gate-level functions in the gate-level netlist with the LUT-level functions
 available on the FPGA. Of course, this isn’t a one-for-one mapping because
each LUT can be used to represent a number of logic gates (Figure 5-8).
Mapping (which is still performed today, but elsewhere in the flow, as will
be discussed later) is a nontrivial problem because there are a large number
of ways in which the logic gates forming a netlist can be partitioned into the
smaller groups to be mapped into LUTs. As a simple example, the functional-
ity of the NOT gate shown in Figure 5-8 might have been omitted from this
LUT and instead incorporated into the upstream LUT driving wire c.

 Packing
 Only 12 of the 24 possible permutations are shown here. Furthermore, in real-
ity there are actually only 12 permutations of significance because each has
a “ mirror image ” that is functionally its equivalent, such as the AC-BD and
BD-AC pairs shown in Figure 5-9 . The reason for this is that when we come to
place-and-route, the relative locations of the two CLBs can be exchanged.

Portion of gate-level netlist Contents of 3-input LUT

a b c y

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

0
1
1
0
1
0
0
1

a
XOR

|

NOT

b

c

XNOR

|

d

e

y

 FIGURE 5-8 Mapping logic gates into LUTs.

CLB 1
A

B

CLB 2
C

D

A

B

D

C

A

C

B

D

A

C

D

B

A

D

B

C

A

D

C

B

B

A

C

D

B

A

D

C

B

C

A

D

B

C

D

A

B

D

A

C

B

D

C

A

etc.

Different permutations

Functionally equivalent

 FIGURE 5-9 Packing LUTs into CLBs.

CH005-H8974.indd 84CH005-H8974.indd 84 6/21/2008 5:13:36 PM6/21/2008 5:13:36 PM

85Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 Place-and-route
 Following packing, we move to place-and-route . With regard to the pr evious
point, let’s assume that our two CLBs need to be connected together, but
that—purely for the purposes of this portion of our discussions—they can only
be placed horizontally or vertically adjacent to each other, in which case there
are four possibilities (Figure 5-10).

 In the case of placement (i) for example, if CLB 1 contained LUTs A-C
and CLB 2 contained LUTs B-D, this would be identical to swapping the posi-
tions of the two CLBs and exchanging their contents.

 If we only had the two CLBs shown in Figure 5-10 , it would be easy to
determine their optimal placement with respect to each other (which would
have to be one of the four options shown above) and the absolute placement of
this two-CLB group with respect to the entire chip.

 —Technology Trade-offs—
 ● The placement problem is much more complex in the real world because

a real design can contain extremely large numbers of CLBs. In addition to
CLBs 1 and 2 being connected together, they will almost certainly need
to be connected to other CLBs. For example, CLB 1 may also need to be
connected to CLBs 3, 5, and 8, while CLB 2 may need to be connected
to CLBs 4, 6, 7, and 8. And each of these new CLBs may need to be con-
nected to each other or to yet more CLBs. Thus, although placing CLBs 1
and 2 next to each other would be best for them, it might be detrimental to
their relationships with the other CLBs, and the most optimal solution over-
all might be to separate CLBs 1 and 2 by some amount.

 Although placement is difficult, deciding on the optimal way to route the sig-
nals between the various CLBs poses an even more Byzantine problem. The
complexity of these tasks is mind-boggling, so we’ll leave it to those guys and
gals who write the place-and-route algorithms.

1 1 1 1

2

2

2

2

(i) (ii) (iii) (iv)

Alternative placements

 FIGURE 5-10 Placing the CLBs.

CH005-H8974.indd 85CH005-H8974.indd 85 6/21/2008 5:13:37 PM6/21/2008 5:13:37 PM

FPGAs: Instant Access86

www.newnespress.com

 Timing Analysis and Post-place-and-route Simulation
 Following place-and-route, we have a fully routed physical (CLB-level) netlist,
as was illustrated in Figure 5-7 . At this point, a static timing analysis (STA)
utility will be run to calculate all of the input-to-output and internal path delays
and to check for any timing violations (setup, hold, etc.) associated with any of
the internal registers.

 One interesting point occurs if the design engineers wish to resimulate
their design with accurate (post-place-and-route) timing information. In this
case, they have to use the FPGA tool suite to generate a new gate-level netlist
along with associated timing information in the form of an industry-standard
file format called—perhaps not surprisingly— standard delay format (SDF).
The main reason for generating this new gate-level netlist is that—once the
original netlist has been coerced into its CLB-level equivalent—it simply isn’t
possible to relate the timings associated with this new representation back into
the original gate-level incarnation.

 Flat versus Hierarchical Schematics

 Clunky Flat Schematics
 The very first schematic packages essentially allowed a design to be captured
as a humongous, flat circuit diagram split into a number of “ pages. ” You cre-
ated a single flat schematic as a series of pages linked together by interpage
connector symbols, where the names you gave these symbols told the system
which ones were to be connected together. For example, consider a simple cir-
cuit sketched on a piece of paper (Figure 5-11).

 Assume that the gates on the left represent some control logic, while the
four registers on the right are implementing a 4-bit shift register. Obviously,
this is a trivial example, and a real circuit would have many more logic gates.
We’re just trying to tie down some underlying concepts here, such as the fact
that when you entered this circuit into your schematic capture system, you
might split it into two pages (Figure 5-12).

 FIGURE 5-11 Simple schematic drawn on a piece of paper.

CH005-H8974.indd 86CH005-H8974.indd 86 6/21/2008 5:13:37 PM6/21/2008 5:13:37 PM

87Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 Sleek Hierarchical (block-based) Schematics
 There were a number of problems associated with the flat schematics, espe-
cially when dealing with real-world circuits requiring 50 or more pages:

 ● It was difficult to visualize a high-level, top-down view of the design.
 ● It was difficult to save and reuse portions of the design in future projects.
 ● In the case of designs in which some portion of the circuit was repeated

multiple times (which is very common), that portion would have to be
redrawn or copied onto multiple pages. This became very painful if you
subsequently realized that you had to make a change because you would
have to make the same change to all the copies.

 The answer was to enhance schematic capture packages to support the concept
of hierarchy. In the case of our shift register circuit, for example, you might start
with a top-level page in which you would create two blocks called control and
shift, each with the requisite number of input and output pins. You would then
connect these blocks to each other and to some primary inputs and outputs.

 Next, you would instruct the system to “ push down ” into the control block,
which would open a new schematic page. If you were lucky, the system would
automatically pre-populate this page with input and output connector symbols (and
with associated names) corresponding to the pins on its parent block. You would
then create the schematic corresponding to that block as usual (Figure 5-13).

Schematic
capture
system

Page 1
(Control logic)

Page 2
(Shift register)

 FIGURE 5-12 Simple two-page flat schematic.

Top-level page

Contents of
“control” block

Contents of
“Shift” blockC

on
tr

ol

S
hi

ft

 FIGURE 5-13 Simple hierarchical schematic.

CH005-H8974.indd 87CH005-H8974.indd 87 6/21/2008 5:13:37 PM6/21/2008 5:13:37 PM

FPGAs: Instant Access88

www.newnespress.com

 Insider Info

 For many engineers today, driving a design using schematic capture at the gate-
level of abstraction is but a distant memory. In some cases, FPGA vendors offer lit-
tle support for this type of flow for their latest devices to the extent that they only
provide schematic libraries for older component generations. However, schematic
capture does still find a role with some older engineers and with folks who need
to make minor functional changes to legacy designs. Furthermore, graphical entry
mechanisms that are descended from early schematic capture packages still find a
place in modern design flows .

 In fact, each block could contain a further block-level schematic, or a gate-
level schematic, or (very commonly) a mixture of both. These hierarchical
block-based schematics answered the problems associated with flat schematics:

 ● They made it easier to visualize a high-level, top-down view of the design
and to work one’s way through the design.

 ● They made it easier to save and reuse portions of the design in future projects.
 ● In the case of designs in which some portion of the circuit was repeated

multiple times, it was only necessary to create that portion—as a discrete
block—once and then to instantiate (call) that block multiple times. This
made things easy if you subsequently realized that you had to make a change
because you would only have to modify the contents of the initial block.

 Schematic-driven FPGA Design Flows Today

 All of the original schematic, mapping, packing, and place-and-route applica-
tions were typically created and owned by the FPGA companies. However, the
general feeling is that a company can either be good at creating EDA tools or
it can be good at creating silicon chips, but not both.

 Another facet of the problem is that design tools were originally extremely
expensive in the ASIC world (even tools like schematic capture, which today
are commonly regarded as commodity products). By comparison, the FPGA
vendors were focused on selling chips, so right from the get-go they offered
their tools at a very low cost (in fact, if you were a big enough customer,
they’d give you the entire design tool suite for free). While this had its obvious
attractions to the end user, the downside was that the FPGA vendors weren’t
too keen on spending vast amounts of money enhancing tools for which they
received little recompense.

 Over time, therefore, external EDA vendors started to supply portions of
the puzzle, starting with schematic capture and then moving into mapping and
packing. Having said this, the FPGA vendors still typically provide internally
developed, less sophisticated (compared to the state-of-the-art) versions of
tools like schematic capture as part of their basic tool suite, and they also main-
tain a Vulcan Death Grip on their crown jewels (the place-and-route software).

CH005-H8974.indd 88CH005-H8974.indd 88 6/21/2008 5:13:38 PM6/21/2008 5:13:38 PM

89Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 HDL-BASED DESIGN FLOWS

 Advent of HDL-based Flows

 Toward the end of the 1980s, as designs grew in size and complexity,
s chematic-based ASIC flows began to run out of steam. Visualizing, captur-
ing, debugging, understanding, and maintaining a design at the gate level of
abstraction became increasingly difficult and inefficient when juggling 5,000 or
more gates and reams of schematic pages. In addition to the fact that capturing
a large design at the gate level of abstraction is prone to error, it is extremely
time-consuming. Thus, some EDA vendors started to develop design tools and
flows based on the use of hardware description languages , or HDLs.

 The idea behind a hardware description language is, perhaps not surpris-
ingly, that you can use it to describe hardware, in particular the electronic por-
tions (components and wires) of ICs and printed circuit boards. (The HDL may
also be used to provide limited representations of the cables and connectors
linking circuit boards together.)

 In the early days of electronics, almost anyone who created an EDA tool
created his or her own HDL to go with it. Some of these were analog HDLs in
that they were intended to represent circuits in the analog domain, while oth-
ers were focused on representing digital functionality. For the purposes of this
book, we are interested in HDLs only in the context of designing digital ICs in
the form of ASICs and FPGAs.

 Some of the more popular digital HDLs are introduced later in this chapter.
For the nonce, however, let’s focus more on how a generic digital HDL is used
as part of a design flow. The first thing to note is that the functionality of a digital
circuit can be represented at different levels of abstraction and that different HDLs
support these levels of abstraction to a greater or lesser extent (Figure 5-14).

RTL

Boolean

Loops

Processes

Structural

Functional

Behavioral
(Algorithmic)

Gate

Switch

 FIGURE 5-14 Different levels of abstraction.

CH005-H8974.indd 89CH005-H8974.indd 89 6/21/2008 5:13:38 PM6/21/2008 5:13:38 PM

FPGAs: Instant Access90

www.newnespress.com

 The lowest level of abstraction for a digital HDL would be the switch
level , which refers to the ability to describe the circuit as a netlist of transistor
switches.

 A slightly higher level of abstraction would be the gate level , which refers
to the ability to describe the circuit as a netlist of primitive logic gates and func-
tions. Thus, the early gate-level netlist formats generated by schematic capture
packages as discussed in the previous section were in fact rudimentary HDLs.

 ALERT!

 Both switch-level and gate-level netlists may be classed as structural representa-
tions. It should be noted, however, that “ structural ” can have different connota-
tions because it may also be used to refer to a hierarchical block-level netlist
in which each block may have its contents specified using any of the levels of
abstraction shown in Figure 5-14 .

 The next level of HDL sophistication is the ability to support functional
representations , which covers a range of constructs. At the lower end is the
capability to describe a function using Boolean equations. For example, assum-
ing we had already declared a set of signals called Y, SELECT, DATA-A, and
DATA-B, we could capture the functionality of a simple 2:1 multiplexer using
the following Boolean equation:

 Y (SELECT & DATA-A) (!SELECT & DATA-B);� �
 Note that this is a generic syntax that does not favor any particular HDL and is
used only for the purposes of this example.

 The functional level of abstraction also encompasses register transfer level
(RTL) representations. The term RTL covers a multitude of manifestations, but
the easiest way to wrap one’s brain around the underlying concept is to con-
sider a design formed from a collection of registers linked by combinational
logic. These registers are often controlled by a common clock signal, so assum-
ing that we have already declared two signals called CLOCK and CONTROL,
along with a set of registers called REGA, REGB, REGC, and REGD, then an
RTL-type statement might look something like the following:

when CLOCK rises if CONTROL �� “1”

then REGA REGB & REGC; else REGA REGB REGD;
end if;
end wh

� � �

een;

 In this case, symbols like when , rises , if , then , else , and the like are keywords
whose semantics are defined by the owners of the HDL. Once again, this is a
generic syntax that does not favor any particular HDL and is used only for the
purposes of this example.

CH005-H8974.indd 90CH005-H8974.indd 90 6/21/2008 5:13:38 PM6/21/2008 5:13:38 PM

91Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 The highest level of abstraction sported by traditional HDLs is known as
 behavioral , which refers to the ability to describe the behavior of a circuit
using abstract constructs like loops and processes. This also encompasses using
algorithmic elements like adders and multipliers in equations; for example:

 Y (DATA-A DATA-B) * DATA-C; � �

 We should note that there is also a system level of abstraction (not shown in
 Figure 5-14) that features constructs intended for system-level design applica-
tions, but we’ll worry about this level a little later.

 Many of the early digital HDLs supported only structural representations
in the form of switch or gate-level netlists. Others such as ABEL, CUPL, and
PALASM were used to capture the required functionality for PLD devices.
These languages supported different levels of functional abstraction, such as
Boolean equations, text-based truth tables, and text-based finite state machine
(FSM) descriptions.

 The next generation of HDLs, which were predominantly targeted toward
logic simulation, supported more sophisticated levels of abstraction such as
RTL and some behavioral constructs. It was these HDLs that formed the core
of the first true HDL-based design flows.

 A Simple (early) HDL-based ASIC Flow
 The key feature of HDL-based ASIC design flows is their use of logic synthesis
technology, which began to appear on the market around the mid-1980s. These
tools could accept an RTL representation of a design along with a set of tim-
ing constraints. In this case, the timing constraints were presented in a side-file
containing statements along the lines of “ the maximum delay from input X to
output Y should be no greater than N nanoseconds ” (the actual format would be
a little drier and more boring).

 The logic synthesis application automatically converted the RTL represen-
tation into a mixture of registers and Boolean equations, performed a variety
of minimizations and optimizations (including optimizing for area and timing),
and then generated a gate-level netlist that would (or at least, should) meet the
original timing constraints (Figure 5-15).

 —Technology Trade-offs—
 ● There were a number of advantages to this new type of flow. First the pro-

ductivity of the design engineers rose dramatically because it was much
easier to specify, understand, discuss, and debug the required functionality
of the design at the RTL level of abstraction as opposed to working with
reams of gate-level schematics.

 ● Also, logic simulators could run designs described in RTL much more
quickly than their gate-level counterparts.

CH005-H8974.indd 91CH005-H8974.indd 91 6/21/2008 5:13:38 PM6/21/2008 5:13:38 PM

FPGAs: Instant Access92

www.newnespress.com

 ● One slight glitch was that logic simulators could work with designs speci-
fied at high levels of abstraction that included behavioral constructs, but
early synthesis tools could only accept functional representations up to the
level of RTL. Thus, design engineers were obliged to work with a synthe-
sizable subset of their HDL of choice.

 Once the synthesis tool had generated a gate-level netlist, the flow became very
similar to the schematic-based ASIC flows discussed in the previous chapter.
The gate-level netlist could be simulated to ensure its functional validity, and
it could also be used to perform timing analysis based on estimated values for
tracks and other circuit elements. The netlist could then be used to drive the
place-and-route software, following which a more accurate timing analysis
could be performed using extracted resistance and linefeed capacitance values.

 A Simple (early) HDL-based FPGA Flow
 It took some time for HDL-based flows to flourish within the ASIC commu-
nity. Meanwhile, design engineers were still coming to grips with the concept
of FPGAs. Thus, it wasn’t until the very early 1990s that HDL-based flows
featuring logic synthesis technology became fully available in the FPGA world
(Figure 5-16).

 As before, once the synthesis tool had generated a gate-level netlist, the
flow became very similar to the schematic-based FPGA flows discussed in the
previous chapter. The gate-level netlist could be simulated to ensure its func-
tional validity, and it could also be used to perform timing analysis based on
estimated values for tracks and other circuit elements. The netlist could then

Register
transfer level

RTL

Logic
Simulator

RTL functional
verification

Logic
Synthesis

Gate-level
netlist

Logic
Simulator

Place-and-
Route

Gate-level functional
verification

 FIGURE 5-15 Simple HDL-based ASIC flow.

CH005-H8974.indd 92CH005-H8974.indd 92 6/21/2008 5:13:38 PM6/21/2008 5:13:38 PM

93Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

be used to drive the FPGA’s mapping, packing, and place-and-route software,
following which a more accurate timing report could be generated using real-
world (physical) values.

 Architecturally Aware FPGA Flows
 The main problem besetting the original HDL-based FPGA flows was that their
logic synthesis technologies were derived from the ASIC world. Thus, these
tools “ thought ” in terms of primitive logic gates and registers. In turn, this
meant that they output gate-level netlists, and it was left to the FPGA vendor to
perform the mapping, packing, and place-and-route functions.

 Sometime around 1994, synthesis tools were equipped with knowledge
about different FPGA architectures. This meant that they could perform map-
ping—and some level of packing—functions internally and output a LUT/CLB-
level netlist. This netlist would subsequently be passed to the FPGA vendor’s
place-and-route software. The main advantage of this approach was that these
synthesis tools had a better idea about timing estimations and area utilization,
which allowed them to generate a better quality of results (QoR). In real terms,
FPGA designs generated by architecturally aware synthesis tools were 15 to
20 percent faster than their counterparts created using traditional (gate-level)
synthesis offerings.

 Logic versus Physically Aware Synthesis
 We’re jumping a little bit ahead of ourselves here, but this is as good a place
as any to briefly introduce this topic. The original logic synthesis tools were

Register
transfer level

RTL

Logic
Simulator

RTL functional
verification

Logic
Synthesis

Gate-level
netlist

Logic
Simulator

Mapping

Packing

Place-and-
Route

Gate-level functional
verification

 FIGURE 5-16 Simple HDL-based FPGA flow.

CH005-H8974.indd 93CH005-H8974.indd 93 6/21/2008 5:13:39 PM6/21/2008 5:13:39 PM

FPGAs: Instant Access94

www.newnespress.com

designed for use with the multimicron ASIC technologies of the mid-1980s.
In these devices, the delays associated with the logic gates far outweighed the
delays associated with the tracks connecting those gates together. In addition
to being relatively small in terms of gate-count (by today’s standards), these
designs featured relatively low clock frequencies and correspondingly loose
design constraints. The combination of all of these factors meant that early
logic synthesis tools could employ relatively simple algorithms to estimate the
track delays, but that these estimations would be close enough to the real (post-
place-and-route) values that the device would work.

 Over the years, ASIC designs increased in size (number of gates) and com-
plexity. At the same time, the dimensions of the structures on the silicon chip
were shrinking with two important results:

 ● Delay effects became more complex in general.
 ● The delays associated with tracks began to outweigh the delays associated

with gates.

 By the mid-1990s, ASIC designs were orders of magnitude larger—and their
delay effects were significantly more sophisticated—than those for which the
original logic synthesis tools had been designed. The result was that the esti-
mated delays used by the logic synthesis tool had little relation to the final
post-place-and-route delays. In turn, this meant that achieving timing closure
(tweaking the design to make it achieve its original performance goals) became
increasingly difficult and time-consuming.

 For this reason, ASIC flows started to see the use of physically aware syn-
thesis somewhere around 1996. For the moment, we need only note that, during
the course of performing its machinations, the physically aware synthesis engine
makes initial placement decisions for the logic gates and functions. Based on
these placements, the tool can generate more accurate timing estimations.

 Ultimately, the physically aware synthesis tool outputs a placed (but not
routed) gate-level netlist. The ASIC’s physical implementation (place-and-route)
tools use this initial placement information as a starting point from which to per-
form local (fine-grained) placement optimizations followed by detailed routing.
The result is that the estimated delays used by the physically aware synthesis
application more closely correspond to the post-place-and-route delays. In turn,
this means that achieving timing closure becomes a less taxing process.

 But what of FPGAs? Well, these devices were also increasing in size
and complexity throughout the 1990s. By the end of the millennium, FPGA
 designers were running into significant problems with regard to timing clo-
sure. Thus, around 2000, EDA vendors started to provide FPGA-centric, physi-
cally aware synthesis offerings that could output a mapped, packed, and placed
LUT/CLB-level netlist. In this case, the FPGA’s physical implementation
(place-and-route) tools use this initial placement information as a starting point
from which to perform local (fine-grained) placement optimizations f ollowed
by detailed routing.

CH005-H8974.indd 94CH005-H8974.indd 94 6/21/2008 5:13:39 PM6/21/2008 5:13:39 PM

95Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 FIGURE 5-17 Mixed-level design capture environment.

Graphical state diagram

Graphical flowchart

When clock rises
 If (s �� 0)
 then y � (a & b) | c;
 else y � c & !(d ^ e);

Textual HDL

Top-level
block-level
schematic

Block-level schematic

 FAQ

 Do FPGA designers still use graphical design entry?

 When the first HDL-based flows appeared on the scene, many folks assumed that
graphical design entry and visualization tools, such as schematic capture sys-
tems, were poised to exit the stage forever. Indeed, for some time, many design
engineers prided themselves on using text editors like VI (from Visual Interface)
or EMACS as their only design entry mechanism. But a picture tells a thousand
words, as they say, and graphical entry techniques remain popular at a variety
of levels. For example, it is extremely common to use a block-level schematic
editor to capture the design as a collection of high-level blocks that are con-
nected together. The system might then be used to automatically create a skeleton
HDL framework with all of the block names and inputs and outputs declared.
Alternatively, the user might create a skeleton framework in HDL, and the system
might use this to create a block-level schematic automatically.

 From the user’s viewpoint, “ pushing ” down into one of these schematic blocks
might automatically open an HDL editor. This could be a pure text-and-com-
mand–based editor like VI, or it might be a more sophisticated HDL-specific editor
featuring the ability to show language keywords in different colors, automatically
complete statements, and so forth.

 Furthermore, when pushing down into a schematic block, modern design sys-
tems often give you a choice between entering and viewing the contents of that
block as another, lower-level block-level schematic, raw HDL code, a graphical
state diagram (used to represent an FSM), a graphical flow-chart, and so forth. In the
case of the graphical representations like state diagrams and flowcharts, these can
subsequently be used to generate their RTL equivalents automatically (Figure 5-17).

CH005-H8974.indd 95CH005-H8974.indd 95 6/21/2008 5:13:39 PM6/21/2008 5:13:39 PM

FPGAs: Instant Access96

www.newnespress.com

 Furthermore, it is common to have a tabular file containing information relat-
ing to the device’s external inputs and outputs. In this case, both the top-level
block diagram and the tabular file will (hopefully) be directly linked to the same
data and will simply provide different views of that data. Making a change in any
view will update the central data and be reflected immediately in all of the views.

 A Plethora of HDLs

 Life would be so simple if there were only a single HDL to worry about, but
no one said that living was going to be easy. As previously noted, in the early
days of digital IC electronics design (circa the 1970s), anyone who created an
HDL-based design tool typically felt moved to create his or her own language
to accompany it. Not surprisingly, the result was a morass of confusion (you
had to be there to fully appreciate the dreadfulness of the situation). What was
needed was an industry-standard HDL that could be used by multiple EDA
tools and vendors, but where was such a gem to be found?

 Verilog HDL
 Sometime around the mid-1980s, Phil Moorby (one of the original members of
the team that created the famous HILO logic simulator) designed a new HDL
called Verilog. In 1985, the company he was working for, Gateway Design
Automation, introduced this language to the market along with an accompany-
ing logic simulator called Verilog-XL.

 One very cool concept that accompanied Verilog and Verilog-XL was the
Verilog programming language interface (PLI). The more generic name for this
sort of thing is application programming interface (API). An API is a library
of software functions that allow external software programs to pass data into
an application and access data from that application. Thus, the Verilog PLI is an
API that allows users to extend the functionality of the Verilog language and
simulator.

 As one simple example, let’s assume that an engineer is designing a cir-
cuit that makes use of an existing module to perform a mathematical function
such as a fast Fourier transform (FFT). A Verilog representation of this func-
tion might take a long time to simulate, which would be a pain if all the engi-
neer really wanted to do was verify the new portion of the circuit. In this case,
the engineer might create a model of this function in the C programming lan-
guage, which would simulate, say, 1,000 times faster than its Verilog equiva-
lent. This model would incorporate PLI constructs, allowing it to be linked into
the simulation environment. The model could subsequently be accessed from
the Verilog description of the rest of the circuit by means of a PLI call provid-
ing a bidirectional link to pass data back and forth between the main circuit
(represented in Verilog) and the FFT (captured in C).

CH005-H8974.indd 96CH005-H8974.indd 96 6/21/2008 5:13:39 PM6/21/2008 5:13:39 PM

97Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 Yet one more very useful feature associated with Verilog and Verilog-XL
was the ability to have timing information specified in an external text file
known as a standard delay format (SDF) file. This allowed tools like post-
place-and-route timing analysis packages to generate SDF files that could be
used by the simulator to provide more accurate results.

 As a language, the original Verilog was reasonably strong at the structural
(switch and gate) level of abstraction (especially with regard to delay modeling
capability); it was very strong at the functional (Boolean equation and RTL)
level of abstraction; and it supported some behavioral (algorithmic) constructs
(Figure 5-18).

 In 1989, Gateway Design Automation along with Verilog (the HDL) and
Verilog-XL (the simulator) were acquired by Cadence Design Systems. The
most likely scenario at that time was for Verilog to remain as just another pro-
prietary HDL. However, with a move that took the industry by surprise, Cadence
put the Verilog HDL, Verilog PLI, and Verilog SDF specifications into the pub-
lic domain in 1990.

 This was a very daring move because it meant that anybody could develop
a Verilog simulator, thereby becoming a potential competitor to Cadence. The
reason for Cadence’s largesse was that the VHDL language (introduced later in
this section) was starting to gain a significant following. The upside of placing
Verilog in the public domain was that a wide variety of companies developing
HDL-based tools, such as logic synthesis applications, now felt comfortable
using Verilog as their language of choice.

 —Technology Trade-offs—
 ● Having a single design representation that could be used by simulation, syn-

thesis, and other tools made everyone’s life much easier. It is important to
remember, however, that Verilog was originally conceived with simulation

Structural
(Gate, Switch)

Functional
(RTL,

Boolean)

Behavioral
(Algorithmic)

System

V
er

ilo
g

 FIGURE 5-18 Levels of abstraction (Verilog).

CH005-H8974.indd 97CH005-H8974.indd 97 6/21/2008 5:13:39 PM6/21/2008 5:13:39 PM

FPGAs: Instant Access98

www.newnespress.com

in mind; applications like synthesis were something of an afterthought. This
means that when creating a Verilog representation to be used for both simu-
lation and synthesis, one is restricted to using a synthesizable subset of the
language (which is loosely defined as whatever collection of language con-
structs your particular logic synthesis package understands and supports).

 The formal definition of Verilog is encapsulated in a document known as the
language reference manual (LRM), which details the syntax and semantics
of the language. In this context, the term syntax refers to the grammar of the
language—such as the ordering of the words and symbols in relation to each
other—while the term semantics refers to the underlying meaning of the words
and symbols and the relationships between the things they denote.

 In an ideal world, an LRM would define things so rigorously that
there would be no chance of any misinterpretation. In the real world, however,
there were some ambiguities with respect to the Verilog LRM. Admittedly,
these were c orner-case conditions along the lines of “ if a control signal on this
register goes inactive at the same time as the clock signal triggers, which sig-
nal will be evaluated by the simulator first? ” But the result was that different
Verilog simulators might generate different results, which is always somewhat
disconcerting to the end user.

 Verilog quickly became very popular. The problem was that different com-
panies started to extend the language in different directions. In order to curtail
this sort of thing, a nonprofit body called Open Verilog International (OVI)
was established in 1991. With representatives from all of the major EDA ven-
dors of the time, OVI’s mandate was to manage and standardize Verilog HDL
and the Verilog PLI.

 The popularity of Verilog continued to rise exponentially, with the result
that OVI eventually asked the IEEE to form a working committee to estab-
lish Verilog as an IEEE standard. Known as IEEE 1364, this committee was
formed in 1993. May 1995 saw the first official IEEE Verilog release, which
is formally known as IEEE 1364–1995, and whose unofficial designation has
come to be Verilog 95.

 Minor modifications were made to this standard in 2001; hence, it is often
referred to as the Verilog 2001 (or Verilog 2K1) release. At the time of this writ-
ing, the IEEE 1364 committee is working feverishly on a forthcoming Verilog
2005 offering, while the design world holds its breath in dread anticipation (see
also the section on “ Superlog and System-Verilog ” later in this chapter).

 VHDL and VITAL
 In 1980, the U.S. Department of Defense (DoD) launched the very high speed
integrated circuit (VHSIC) program, whose primary objective was to advance
the state of the art in digital IC technology. This program sought to address,
among other things, the fact that it was difficult to reproduce ICs (and circuit
boards) over the long life cycles of military equipment because the function

CH005-H8974.indd 98CH005-H8974.indd 98 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

99Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

of the parts wasn’t documented in a rigorous fashion. Furthermore, different
components forming a system were often designed and verified using diverse
and incompatible simulation languages and design tools.

 To address these issues, a project to develop a new hardware description
language called VHSIC HDL (or VHDL for short) was launched in 1981. One
unique feature of this process was that industry was involved from a very early
stage. In 1983, a team comprising Intermetrics, IBM, and Texas Instruments was
awarded a contract to develop VHDL, the first official release of which occurred
in 1985.

 Also of interest is the fact that in order to encourage acceptance by the
industry, the DoD subsequently donated all rights to the VHDL language defi-
nition to the IEEE in 1986. After making some modifications to address a few
known problems, VHDL was released as official standard IEEE 1076 in 1987.
The language was further extended in a 1993 release and again in 1999.

 —Technology Trade-offs—
 ● As a language, VHDL is very strong at the functional (Boolean equation

and RTL) and behavioral (algorithmic) levels of abstraction, and supports
some system-level design constructs. However, VHDL is a little weak
when it comes to the structural (switch and gate) level of abstraction, espe-
cially with regard to its delay modeling capability.

 It quickly became apparent that VHDL had insufficient timing accuracy to be
used as a sign-off simulator. For this reason, the VITAL initiative was launched
at the Design Automation Conference (DAC) in 1992. VHDL Initiative toward
ASIC Libraries (VITAL) was an effort to enhance VHDL’s capabilities for
modeling timing in ASIC and FPGA design environments. The result encom-
passed both a library of ASIC/FPGA primitive functions and an associated
method for back-annotating delay information into these library models, where
this delay mechanism was based on the same underlying tabular format used
by Verilog (Figure 5-19).

 Mixed-language Designs
 Once upon a time, it was fairly common for an entire design to be captured
using a single HDL (Verilog or VHDL). As designs increased in size and com-
plexity, however, it became more common for different portions of the design
to be created by different teams. These teams might be based in different com-
panies or even reside in different countries, and it was not uncommon for the
different groups to be using different design languages.

 Another consideration was the increasing use of legacy design blocks or
third-party IP, where the latter refers to a design team purchasing a predefined
function from an external supplier. As a general rule of thumb related to
Murphy’s Law, if you were using one language, then the IP you wanted was
probably available only in the other language.

CH005-H8974.indd 99CH005-H8974.indd 99 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

FPGAs: Instant Access100

www.newnespress.com

 The early 1990s saw a period known as the HDL Wars, in which the
 proponents of one language (Verilog or VHDL) stridently predicted the immi-
nent demise of the other … but the years passed and both languages retained
strong followings. The result was that EDA vendors began to support mixed-
language design environments featuring logic simulators, logic synthesis appli-
cations, and other tools that could work with designs composed from a mixture
of Verilog and VHDL blocks (or modules, depending on your language roots).

 UDL/I
 As previously noted, Verilog was originally designed with simulation in mind.
Similarly, VHDL was created as a design documentation and specification
language that took simulation into account. As a result, one can use both of
these languages to describe constructs that can be simulated, but not synthe-
sized. To address these problems, the Japan Electronic Industry Development
Association (JEIDA) introduced its own HDL, the unified design language for
integrated circuits (UDL/I) in 1990.

 The key advantage of UDL/I was that it was designed from the ground up
with both simulation and synthesis in mind. The UDL/I environment includes
a simulator and a synthesis tool and is available for free (including the source
code). However, by the time UDL/I arrived on the scene, Verilog and VHDL

Structural
(Gate, Switch)

Functional
(RTL,

Boolean)

Behavioral
(Algorithmic)

System

V
er

ilo
g

V
H

D
L

VITAL

– Relatively easy to learn
– Fixed data types
– Interpreted constructs
– Good gate-level timing
– Limited design reusability
– Limited design management
– No structure replication

– Relatively difficult to learn
– Abstract data types
– Compiled constructs
– Less good gate-level timing
– Good design reusability
– Good design management
– Supports structure replication

 FIGURE 5-19 Levels of abstraction (Verilog versus VHDL).

CH005-H8974.indd 100CH005-H8974.indd 100 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

101Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

already held the high ground, and UDL/I has never really managed to attract
much interest outside of Japan.

 Superlog and SystemVerilog
 In 1997, things started to get complicated because that’s when a company
called Co-Design Automation was formed. Working away furiously, the folks
at Co-Design developed a “ Verilog on steroids ” called Superlog.

 Superlog was an amazing beast that combined the simplicity of Verilog
with the power of the C programming language. It also included things like
temporal logic, sophisticated design verification capabilities, a dynamic API,
and the concept of assertions that are key to the formal verification strategy
known as model checking. (VHDL already had a simple assert construct, but
the original Verilog had nothing to boast about in this area.)

 The two main problems with Superlog were

 ● it was essentially another proprietary language, and
 ● it was so much more sophisticated than Verilog 95 (and later Verilog 2001)

that getting other EDA vendors to enhance their tools to support it would
have been a major feat.

 Meanwhile, while everyone was scratching their heads wondering what the
future held, the OVI group linked up with their equivalent VHDL organization
called VHDL International to form a new body called Accellera. The mission
of this new organization was to focus on identifying new standards and for-
mats, to develop these standards and formats, and to foster the adoption of new
methodologies based on these standards and formats.

 In the summer of 2002, Accellera released the specification for a hybrid
language called SystemVerilog 3.0 (don’t even ask me about 1.0 and 2.0). The
great advantage to this language was that it was an incremental enhancement
to the existing Verilog, rather than the death-defying leap represented by a full-
up Superlog implementation. Actually, SystemVerilog 3.0 featured many of
Superlog’s language constructs donated by Co-Design. It included things like
the assertion and extended synthesis capabilities that everyone wanted and,
being an Accellera standard, it was well placed to quickly gain widespread
adoption.

 The current state of play (at the time of this writing) is that Co-Design was
acquired by Synopsys in the fall of 2002. Synopsys maintained the policy of
donating language constructs from Superlog to SystemVerilog, but no one
is really talking about Superlog as an independent language anymore. After
a little pushing and pulling, all of the mainstream EDA vendors officially
endorsed SystemVerilog and augmented their tools to accept various subsets of
the language, depending on their particular application areas and requirements.
System-Verilog 3.1 hit the streets in the summer of 2003, followed by a 3.1a
release (to add a few enhancements and fix some annoying problems) around

CH005-H8974.indd 101CH005-H8974.indd 101 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

FPGAs: Instant Access102

www.newnespress.com

the beginning of 2004. Meanwhile, the IEEE determined to release the next
version of Verilog in 2005. To avert a potential schism between Verilog 2005
and SystemVerilog, Accellera promised to donate their SystemVerilog copy-
right to the IEEE by the summer of 2004. SystemVerilog was formally adopted
as IEEE Standard 1800–2005. At the time of writing, the IEEE is working on
the next major version of the standard, expected as 1800–2008. They are also
extending the APIs to include assertions, coverage, and other aspects of the
language.

 Speaking of which … there is another aspect to SystemVerilog, the full
potential of which has not yet been realized. This is the Direct Programming
Interface (DPI). In fact, the concept behind this is incredibly simple. Since pro-
cesses in Verilog look very much like procedure calls in C, why not make them
able to call each other directly without having to go through a massive inter-
face as was the case with the Verilog PLI? The resulting interface is extremely
fast (although hidden dangers can lie there) and means that SystemVerilog now
plays nicely with other languages, such as SystemC. In effect, that means that
the SystemVerilog language has become more extensible.

 SystemC
 And then we have SystemC, which some design engineers love and others hate
with a passion. SystemC—discussed in more detail in Chapter 6—can be used
to describe designs at the RTL level of abstraction. These descriptions can sub-
sequently be simulated 5 to 10 times faster than their Verilog or VHDL coun-
terparts, and synthesis tools are available to convert the SystemC RTL into
gate-level netlists.

 —Technology Trade-offs—
 ● One big argument for SystemC is that it provides a more natural environ-

ment for hardware/software codesign and co-verification.
 ● One big argument against it is that the majority of design engineers are

very familiar with Verilog or VHDL, but are not familiar with the object-
oriented aspects of SystemC.

 ● Another consideration is that the majority of today’s synthesis offerings rep-
resent hundreds of engineer years of development in translating Verilog or
VHDL into gate-level netlists. By comparison, there are far fewer SystemC-
based synthesis tools, and those that are available tend to be somewhat less
sophisticated than their more traditional counterparts.

 In reality, SystemC is more applicable to a system-level versus an RTL design
environment. Having said this, SystemC seems to be gaining a lot of momen-
tum in Asia and Europe, and the debate on SystemC versus SystemVerilog ver-
sus VHDL will doubtless be with us for quite some time.

CH005-H8974.indd 102CH005-H8974.indd 102 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

103Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

 Points to Ponder

 Sad to relate, the majority of designs described in RTL are almost unintelli-
gible to another designer. In an ideal world, the RTL description of a design
should read like a book, starting with a “ table of contents ” (an explanation of
the design’s structure), having a logical flow partitioned into “ chapters ” (logi-
cal breaks in the design), and having lots of “ commentary ” (comments explain-
ing the structure and operation of the design).

 It’s also important to note that coding style can impact performance (this
typically affects FPGAs more than ASICs). One reason for this is that, although
they might be logically equivalent, different RTL statements can yield different
results. Also, tools are part of the equation because different tools can yield dif-
ferent results.

 The various FPGA vendors and EDA vendors are in a position to provide
their customers with reams of information on particular coding styles and con-
siderations with regard to their chips and tools, respectively. However, the fol-
lowing points are reasonably generic and will apply to most situations.

 Serial versus Parallel Multiplexers
 When creating RTL code, it is useful to understand what your synthesis tool
is going to do in certain circumstances. For example, every time you use an
if-then-else statement, the result will be a 2:1 multiplexer. This becomes inter-
esting in the case of nested if-then-else statements, which will be synthesized
into a priority structure. For example, assume that we have already declared
signals Y, A, B, C, D, and SEL (for select) and that we use them to create a
nested if-then-else (Figure 5-20).

if SEL == 00“ then Y = A;
elseif SEL == 01“ then Y = B;
elseif SEL == 10“ then Y = C;

else Y = D;
end if;

A

B

C

D
2:1 MUX

2:1 MUX

2:1 MUX

SEL == 00

SEL == 01

SEL == 10

Y

 FIGURE 5-20 Synthesizing nested if-then-else statements.

CH005-H8974.indd 103CH005-H8974.indd 103 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

FPGAs: Instant Access104

www.newnespress.com

 As before, the syntax used here is a generic one that doesn’t really reflect any
of the mainstream languages. In this case, the innermost if-then-else will be the
fastest path, while the outermost if-then-else will be the critical signal (in terms of
timing). Having said this, in some FPGAs all of the paths through this structure
will be faster than using a case statement. Speaking of which, a case statement
implementation of the above will result in a 4:1 multiplexer, in which all of the
timing paths associated with the inputs will be (relatively) equal (Figure 5-21).

 Beware of Latch Inference
 Generally speaking, it’s a good idea to avoid the use of latches in FPGA designs
unless you really need them. One other thing to watch out for: If you use an if-
then-else statement, but neglect to complete the “ else ” portion, then most syn-
thesis tools will infer a latch.

 Use Constants Wisely
 Adders are the most used of the more complex operators in a typical design.
In certain cases, ASIC designers sometimes employ special versions using
c ombinations of half-adders and full-adders. This may work very efficiently in
the case of a gate array device, for example, but it will typically result in a very
bad FPGA implementation.

 When using an adder with constants, a little thought goes a long way. For
example, “ A � 2 ” can be implemented more efficiently as “ A � 1 with carry-in, ”
while “ A � 2 ” would be better implemented as “ A � 1 with carry-in. ”

 Similarly, when using multipliers, “ A * 2 ” can be implemented much more
efficiently as “ A SHL 1 ” (which translates to “ A shifted left by one bit ”), while
 “ A * 3 ” would be better implemented as “ (A SHL 1) � A. ”

 In fact, a little algebra also goes a long way in FPGAs. For example, replacing
 “ A * 9 ” with “ (A SHL 3) � A ” results in at least a 40-percent reduction in area.

 Consider Resource Sharing
 Resource sharing is an optimization technique that uses a single functional block
(such as an adder or comparator) to implement several operators in the HDL

case SEL of;
 00“: Y = A;
 01“: Y = B;
 10“: Y = C;
otherwise:Y = D;
end case;

B

A

4:1 MUX

SEL

C

D

Y

00

01

10

11

 FIGURE 5-21 Synthesizing a case statement.

CH005-H8974.indd 104CH005-H8974.indd 104 6/21/2008 5:13:40 PM6/21/2008 5:13:40 PM

105Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

code. If you do not use resource sharing, then each RTL operation is built using
its own logic. This results in better performance, but it uses more logic gates,
which equates to silicon real estate. If you do decide to use resource sharing, the
result will be to reduce the gate-count, but you will typically take a hit in perfor-
mance. For example, consider the statement illustrated in Figure 5-22 . Note that
frequency values shown in this figure are of interest only for the purposes of this
comparison, because these values will vary according to the particular FPGA
architecture, and they will change as new process nodes come online.

 The following operators can be shared with other instances of the same
operator or with related operators on the same line:

 For example, a � operator can be shared with instances of other � operators or
with – operators, while a * operator can be shared only with other * operators.

 If nothing else, it’s a good idea to check whether your synthesis application
has resource sharing enabled or disabled by default. And one final point is that
resource sharing in ASICs can alleviate routing congestion, but it may actually
cause routing problems in FPGAs.

 Last But Not Least
 Internal tri-state buses are slow in most FPGAs and should be avoided unless
you are 100-percent confident that you know what you’re doing. If at all possi-
ble, use tri-state buffers only at the top-most level of the design. If you do wish

if (B > C)

 then Y � A � B;
 else Y � A � C;
end if;

A

�

�

B

C Y

�

C

B

�

�
A

Y

Resource
Sharing � ON

(one adder)

Resource
Sharing � OFF

(two adders)

Total LUTs � 32
Clock frequency � 87.7 MHz

Total LUTs � 64
Clock frequency � 133.3 MHz (�52% !)

 FIGURE 5-22 Resource sharing.

CH005-H8974.indd 105CH005-H8974.indd 105 6/21/2008 5:13:41 PM6/21/2008 5:13:41 PM

FPGAs: Instant Access106

www.newnespress.com

to use internal tri-state buffers, then in the case of FPGA families that don’t
support these gates, the majority of today’s synthesis tools provide automatic
tri-state-to-multiplexer conversion (this basically involves converting the tri-
state buffers specified in the RTL into corresponding LUT/CLB-based logic).

 Also, bidirectional buffers can cause timing loop problems, so if you use
them, make sure that any false paths are clearly marked.

 INSTANT SUMMARY

 Table 5-1 summarizes the features of the main HDLs as related to FPGA design.

 TABLE 5.1 Summary of Major HDL Features

 Verilog 2005 Syntax similar to C;
 API/PLI support;
 Timing specifi ed in external text (SDF) fi le;
 Strong at structural level of abstraction especially w/ delay

modeling;
 Strong at functional level of abstraction;
 Supports some behavioral constructs

 SystemVerilog Superset of Verilog 2005 w/ many new features to aid design;
 Verifi cation and design modeling;
 Assertion and extended synthesis capability

 VHDL/VITAL Strong at functional and behavioral levels of abstraction;
 Supports some system-level design constructs
 Somewhat weak on structural level of abstraction esp. regarding

delay modeling;
 VITAL enhances abilities for modeling timing in ASIC and FPGA

design environments

 SystemC More of a system description language;
 Implemented in C � � ;
 Can describe design at RTL level of abstraction, and these

designs can be simulated 5–10 times faster than Verilog or
VHDL counterparts;

 Synthesis tools are available to convert SystemC RTL into
gate-level netlists

 More natural for hardware/software co-design

CH005-H8974.indd 106CH005-H8974.indd 106 6/21/2008 5:13:41 PM6/21/2008 5:13:41 PM

www.newnespress.com

 Other Design Flows

 Chapter 6

In an Instant

C/C��–based Design Flows
C versus C�� and Concurrent

versus Sequential
SystemC-based Flows
Augmented C/C��-based Flows
Pure C/C��-based Flows
Different Levels of Synthesis

Abstraction
Mixed-language Design and

Verifi cation Environments
DSP-based Design Flows

Alternative DSP
Implementations

FPGA-centric Design Flows for DSPs
Mixed DSP and VHDL/Verilog

etc. Environments

Embedded Processor-based
Design Flows
Hard versus Soft Cores
Partitioning a Design into Its

Hardware and Software
Components

Using an FPGA as Its Own
Development Environment

Improving Visibility in the
Design

A Few Coverifi cation
Alternatives

Instant Summary

 Defi nitions

 Again we’ll start with some basic terms and their definitions.

 ● Microarchitecture defi nition tasks include such things as detailing control
structures, bus structures, and primary data path elements.

 ● You were introduced to SystemC in the last chapter, but here we’ll go into
more detail on this C � � -based system description language .

 ● Pragmas are commented directives or special comments that can be put into
pure C code to extend its capabilities, such as for use in FPGA design fl ows.

 ● We’ll look at digital signal processing (DSP) based design fl ows in this chapter,
which refers to the branch of electronics concerned with the representation
and manipulation of signals in digital form.

CH006-H8974.indd 107CH006-H8974.indd 107 6/21/2008 6:13:13 PM6/21/2008 6:13:13 PM

FPGAs: Instant Access108

www.newnespress.com

 C/C � � -BASED DESIGN FLOWS

 With regard to the traditional HDL-based flows introduced in Chapter 5, a
design commences with an original concept, whose high-level definition is
determined by system architects and system designers. It is at this stage that
macro-architecture decisions are made, such as partitioning the design into
hardware and software components.

 The resulting specification is then handed over to the hardware design
engineers, who commence their portion of the development process by per-
forming microarchitecture definition tasks such as detailing control structures,
bus structures, and primary data path elements. These microarchitecture defi-
nitions, which are often performed in brainstorming sessions on a whiteboard,
may include performing certain operations in parallel versus sequential, pipe-
lining portions of the design versus nonpipelining, sharing common resources
(for example, two operations sharing a single multiplier, versus using dedi-
cated resources) and so forth.

 Eventually, the design intent is captured by writing RTL VHDL/Verilog.
Following verification via simulation, this RTL is then synthesized down to
a structural netlist suitable for use by the target technology’s place-and-route
applications (Figure 6-1).

 At the time of this writing, these VHDL or Verilog-based flows account for
around 95 percent of all ASIC and FPGA designs; however, there are a num-
ber of problems associated with these flows:

 ● Capturing the RTL is time-consuming : Even though Verilog and VHDL are
intended to represent hardware, it is still time-consuming to use these lan-
guages to capture the functionality of a design.

 ● Verifying RTL is time-consuming : Using simulation to verify large designs
represented in RTL is computationally expensive and time-consuming.

 ● Domain-specifi c languages (DSLs) are languages, such as MATLAB, that pro-
vide more concise ways of representing specifi c tasks than do general-purpose
languages.

 ● A microcontroller combines a CPU core with selected peripherals and special-
ized inputs and outputs.

 ● A hard microprocessor core is a core that is implemented as a dedicated, pre-
defi ned (hardwired) block.

 ● A soft core is a group of programmable logic blocks confi gured to act as a
microprocessor.

 ● An instruction set simulator (ISS) provides a virtual representation of a CPU
being implemented.

 ● A bus interface model (BIM) is an entity that acts as a translator between the
simulator and the ISS.

CH006-H8974.indd 108CH006-H8974.indd 108 6/21/2008 6:13:13 PM6/21/2008 6:13:13 PM

109Chapter | 6 Other Design Flows

www.newnespress.com

 ● Evaluating alternative implementations is difficult : Modifying and reveri-
fying RTL to perform a series of what-if evaluations of alternative micro-
architecture implementations is difficult and time-consuming. This means
that the number of evaluations the design team can perform may be limited,
which can result in a less-than-optimal implementation.

 ● Accommodating specification changes is difficult : If any changes to the
specification are made during the course of the project, folding these
changes into the RTL and performing any necessary reverification can be
painful and time-consuming. This is a significant consideration in certain
application areas, such as wireless projects, because broadcast standards
and protocols are constantly evolving and changing.

 ● The RTL is implementation specific : Realizing a design in an FPGA typ-
ically requires a different RTL coding style from that used for an ASIC
implementation. This means that it can be extremely difficult to retarget
a complex design represented in RTL from one implementation technol-
ogy to another. This is of concern when one is migrating an existing ASIC
design into an FPGA equivalent or creating an FPGA design to be used as
a prototype for a future ASIC implementation.

 One way to view this is that all of the implementation intelligence associated
with the design is hardcoded into the RTL, which therefore becomes imple-
mentation specific. It’s important to understand that this implementation spec-
ificity goes beyond the coarse ASIC-versus-FPGA boundary, which dictates
that RTL intended for an FPGA implementation is not suitable for an opti-
mal ASIC realization, and vice versa. Even assuming a single target device
architecture, the way in which a set of algorithms is used to process data may
require a number of different microarchitecture implementations, depending
on the target application areas.

 Actually, to be scrupulously fair, we should probably note that the same
RTL may be used to drive both ASIC and FPGA implementations. The reason
for doing this is to avoid the risk of introducing a functional bug into the RTL
when retargeting the code, but there is typically a penalty to be paid. That is,

Implementation-specific RTL
(time-consuming to create, slow
to simulate, difficult to modify)

FPGA
target

Gate-level
netlist

LUT/CLB-
level netlist

ASIC
target

Original
Concept

Capture
RTL

Simulate Synthesize

Capture
RTL

Simulate Synthesize

uA
Definition

uA
Definition

Implementation-specific
micro-architecture

definition

 FIGURE 6-1 Traditional (simplified) HDL-based flows.

CH006-H8974.indd 109CH006-H8974.indd 109 6/21/2008 6:13:13 PM6/21/2008 6:13:13 PM

FPGAs: Instant Access110

www.newnespress.com

if code originally targeted toward an FPGA implementation is subsequently
used to drive an ASIC implementation, the resulting ASIC will typically
require more silicon real estate and have higher power consumption as com-
pared to using RTL created with an ASIC architecture in mind. Similarly, if
code originally targeted toward an ASIC implementation is subsequently used
to drive an FPGA implementation, the ensuing FPGA will typically take a
significant performance hit as compared to using RTL created with an FPGA
architecture in mind.

 RTL is less than ideal for hardware-software codesign: System-on-chip
(SoC) devices are generally understood to be those that include microproces-
sor cores. Irrespective of whether these designs are to be realized using ASICs
or FPGAs, today’s SoCs are exhibiting an ever-increasing amount of software
content. When coupled with increased design reuse on the hardware side, in
many cases it is necessary to verify the software and hardware concurrently
so as to completely validate such things as the system diagnostics, RTOS,
device drivers, and embedded application software. Generally speaking, it
can be painful verifying (simulating) the hardware represented in VHDL or
Verilog in conjunction with the software represented in C/C � � or assembly
language.

 One approach that addresses the issues enumerated above is to perform the
initial design capture at a higher level of abstraction than can be achieved with
RTL VHDL/Verilog. The first such level is to use some form of C/C � � , but
as usual nothing is simple because there are a variety of alternatives, including
SystemC, augmented C/C � � , and pure C/C � � .

 C versus C � � and Concurrent versus Sequential

 Before we leap into the fray, we should tie down a couple of points to ensure
that we’re all marching in step to the same beat. First, there is a wide vari-
ety of programming languages available, but—excepting specialist application
areas—the most commonly used by far are traditional C and its object-oriented
offspring C � � . For our purposes here, we will refer to these collectively as
C/C � � .

 The next point of import is that, by default, statements in languages like
C/C � � are executed sequentially. For example, assuming that we have already
declared three integer variables called a, b, and c, then the following statements:

 a = 6; /* Statement in C/C + + program */
 b = 2; /* Statement in C/C + + program */
 c = 9; /* Statement in C/C + + program */

CH006-H8974.indd 110CH006-H8974.indd 110 6/21/2008 6:13:13 PM6/21/2008 6:13:13 PM

111Chapter | 6 Other Design Flows

www.newnespress.com

 would, perhaps not surprisingly, occur one after the other. However, this has
certain implications; for example, if we now assume that the following state-
ments occur sometime later in the program:

 a = b; /* Statement in C/C + + program */
 b = a; /* Statement in C/C + + program */

 then a (which initially contained 6) will be loaded with the value currently
stored in b (which is 2). Next, b (which initially contained 2) will be loaded
with the value currently stored in a (which is now 2), so both a and b will end
up containing the same value.

 The sequential nature of programming languages is the way in which soft-
ware engineers think. However, hardware design engineers have quite a dif-
ferent view of the world. Let’s assume that a piece of hardware contains two
registers called a and b that are driven by a common clock signal. Let’s further
assume that these registers have previously been loaded with values of 6 and 2,
respectively. Finally, let’s assume that at some point in the HDL code, we see
the following statements:

 a = b; /* Statement in VHDL/Verilog Code */
 b = a; /* Statement in VHDL/Verilog Code */

 As usual, this syntax doesn’t actually represent VHDL or Verilog; it’s just a
generic syntax used only for the purposes of this example. Generally speaking,
hardware engineers would expect both of these statements to be executed con-
currently (at the same time). This means that a (which initially contained 6)
will be loaded with the value stored in b (which was 2) while—at the same
time— b (which initially contained 2) will be loaded with the value stored
in a (which was 6). The result is that the initial contents of a and b will be
exchanged.

 As usual, of course, the above is something of a simplification. However,
it’s fair to say that HDL statements will execute concurrently by default,
unless sequential behavior is forced by means of techniques like block-
ing assignments. Thus, by default, RTL-based logic simulators will execute
the statements shown above in this concurrent manner; similarly RTL-based
logic synthesis tools will generate hardware that handles these two activities
simultaneously. By comparison, unless explicitly directed to do otherwise (by
means of the techniques introduced later in this chapter), C/C � � statements
will e xecute sequentially.

CH006-H8974.indd 111CH006-H8974.indd 111 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

FPGAs: Instant Access112

www.newnespress.com

 SystemC-based Flows

 FAQs

 What exactly is SystemC (and where did it come from)?

 Before we consider SystemC-based flows, it is probably a good idea to elaborate
a bit more on just what SystemC is, because there is typically some confusion on
this point .

 SystemC 1.0 – One of the underlying concepts behind SystemC is that it is an
open-source environment to which everyone contributes. As an example, consider
Linux, which was rough around the edges at first. Based on contributions from
different folks, however, Linux eventually became a real operating system (OS)
with the potential to challenge Microsoft. In this spirit, a relatively undocumented
SystemC 1.0 was let loose to roam wild and free circa 2000. SystemC 1.0 was a
C � � class library that facilitated the representation of notions such as concur-
rency (things happening at the same time), timing, and I/O pins. By means of this
class library, engineers could capture designs at the RTL level of abstraction.

 One advantage of this early incarnation was that it facilitated hardware/soft-
ware codesign environments. Another was that SystemC representations at the
RTL level of abstraction might simulate 5 to 10 times faster than their VHDL and
Verilog counterparts. On the downside, it was harder and more time-c onsuming
to capture an RTL-level design in SystemC 1.0 than with VHDL or Verilog.
Furthermore, there was a scarcity of design tools that could synthesize SystemC
1.0 representations into netlist-level equivalents with any degree of sophistication.

 SystemC 2.0 – Later, in 2002, SystemC 2.0 arrived on the scene. This aug-
mented the 1.0 release with some high-level modeling constructs such as FIFOs
(a form of memory that can accept and subsequently make available a series of
words of data and that operates on a first-in first-out principle). The 2.0 release
also included a variety of behavioral, algorithmic, and system-level modeling
capabilities, such as the concepts of transactions and channels (which are used to
describe the communication of data between blocks at an abstract level).

 To gain a little more perspective on SystemC, let’s first consider a typical sce-
nario of how things would have worked using the original SystemC 1.0. As a
simple example, let’s assume that we have two functions called f (x) and g (x)
that have to communicate with each other (Figure 6-2).

 In this case, the interface between the blocks would have to be defined
at the pin level. The real problem with this approach occurs when you are in
the early stages of a design, because you are already defining implementation
details such as bus widths. This makes things difficult to change if you wish to
experiment with different what-if architectural scenarios. This aspect of things
became much easier with SystemC 2.0, which allowed abstract interfaces to be
declared between the blocks (Figure 6-3).

 Now, the interfacing between the blocks can be performed at the level of
abstract records on the basis that, in the early stages of the design cycle, we

CH006-H8974.indd 112CH006-H8974.indd 112 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

113Chapter | 6 Other Design Flows

www.newnespress.com

don’t really care how data gets from point a to point b, just that it does get
there somehow.

 These abstract interfaces facilitate performing architectural evaluation early
in the design cycle. Once the architecture starts to firm up, you can start refin-
ing the interface by using high-level constructs such as a FIFO to which one
would assign attributes like width and depth and characteristics like blocking
write, nonblocking read, and how to behave when empty or full. Still later, this
logical interface can be replaced by a completely specified (pin-level) interface
that binds the functional blocks together at a more physical level.

 Levels of Abstraction
 Truth to tell, this is where things start to become a little fuzzy around the
edges, not the least because one runs into different definitions depending on to

Two functions captured
in high-level C/C��

f (x) g(x)

Interface between
functions has to be

defined as pins

 FIGURE 6-2 Interfacing in SystemC 1.0.

Two functions captured
in high-level C/C��

Interface can be at the
level of abstract records

Interfaces

f (x) g(x)

 FIGURE 6-3 Interfacing in SystemC 2.0.

CH006-H8974.indd 113CH006-H8974.indd 113 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

FPGAs: Instant Access114

www.newnespress.com

whom one is talking. As a first pass, however, we might take a stab at captur-
ing the different levels of SystemC abstraction, as shown in Figure 6-4 .

 This is why things become confusing, because SystemC can mean all
things to all people. To some it’s a replacement for RTL VHDL/Verilog, while
to others it’s a single language that can be used for system-level specification,
algorithmic and architectural analysis, behavioral design, and testbenches for
use in verification.

 One area of confusion comes when you start to talk about behavioral syn-
thesis. This encompasses certain aspects of both the algorithmic and transac-
tional levels (in the latter case, however, you have to be careful as to how to
define your transactions).

 SystemC-based Design-fl ow Alternatives
 This is a tricky one because one might go various ways here.

 ● Many of today’s designs begin life as complex algorithms. In this case, it
is very common to start by creating a C or C � � representation. This rep-
resentation can be used to validate the algorithms by compiling it into a
form that can be run (simulated) 1,000 or more times faster than an RTL
equivalent. In the case of the HDL-based flows discussed in Chapter 5, this
C/C � � representation of the algorithms would then be hand-translated into
RTL VHDL/Verilog. The C/C � � representation will typically continue to
be used as a golden model, which means it can be linked into the RTL sim-
ulator and run in parallel with the RTL simulation. The results from the C/
C � � and RTL models can be compared so as to ensure that they are func-
tionally equivalent.

S
ys

te
m

C
 2

.0

S
ys

te
m

C
1.

0RTL

Behavioral/
Transaction-

level

Algorithmic

System

Timed

Untimed

 FIGURE 6-4 Levels of SystemC abstraction.

CH006-H8974.indd 114CH006-H8974.indd 114 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

115Chapter | 6 Other Design Flows

www.newnespress.com

 ● Alternatively, in one flavor of a SystemC-based flow, the original C/C � �
model could be incrementally modified by adding timing, concurrency, pin
definitions, and so forth to transform it to a level at which it would be ame-
nable to SystemC-based RTL or behavioral synthesis.

 ● In another flavor of a SystemC-based flow, the design might be initially
captured in SystemC using system, algorithmic, or transaction-level con-
structs that could be used for verification at a high level of abstraction. This
representation could then be incrementally modified to bring it down to a
level at which it would be amenable to SystemC-based RTL or behavioral
synthesis.

 Irrespective of the actual route by which one might get there, let’s assume that
we are in possession of a SystemC representation of a design that is suitable
for SystemC-based behavioral or RTL synthesis. In this case, there are two
main design-flow alternatives, which are:

 1. to translate the System C into RTL VHDL/Verilog automatically and
then to use conventional RTL synthesis technology, or

 2. to use SystemC-based synthesis to generate an implementation-level
netlist directly.

 —Technology Trade-offs—
 ● There are two schools of thought here. One says that synthesizing the

SystemC directly into the implementation-level netlist offers the cleanest,
fastest, and most efficient route.

 ● Another view is that it’s better to translate the SystemC into RTL VHDL/
Verilog first because RTL is the way design engineers really visualize their
world; that this level is a natural staging point for integrating design blocks
(including third-party IP) originating from multiple sources; and that
Verilog/VHDL synthesis technology is extremely mature and powerful (as
compared to SystemC-based synthesis technology).

 Both of these flows can be applied to ASIC or FPGA targets (Figure 6-5).
 The first SystemC synthesis applications were predominantly geared

toward ASIC flows, so they didn’t do a very good job at inferring FPGA-
s pecific entities such as embedded RAMs, embedded multipliers, and so forth.
More recent incarnations do a much better job of this, but the level of sophisti-
cation exhibited by different tools is a moving target, so the prospective user is
strongly advised to perform some indepth evaluations before slapping a bundle
of cash onto the bargaining table.

 Note that Figure 6-5 shows the use of implementation specific SystemC
to drive the ASIC versus FPGA flows. As soon as you start coding at the RTL
level and adding timing concepts, be it in VHDL, Verilog, or SystemC, then
achieving an optimal implementation requires that the code be written with a
specific target architecture in mind.

CH006-H8974.indd 115CH006-H8974.indd 115 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

FPGAs: Instant Access116

www.newnespress.com

 —Technology Trade-offs—
 ● Once again, having said this, the same SystemC can be used to drive

both ASIC and FPGA flows, but there is typically a penalty to be paid.
If SystemC code originally targeted toward an FPGA implementation is
subsequently used to drive an ASIC flow, the resulting ASIC will typically
require more silicon real estate and have higher power consumption as
compared to using code created with an ASIC architecture in mind.

 ● Similarly, if code originally targeted toward an ASIC implementation is
subsequently used to drive an FPGA flow, the ensuing FPGA will typically
take a significant performance hit as compared to using code created with
an FPGA architecture in mind. This is primarily a result of hard-coding the
microarchitecture definition in the source.

FPGA target

Implementation-
specific code

ASIC target

Gate-level
netlist

LUT/CLB-
level netlist

Auto-RTL
Translation

RTL
Synthesis

SystemC

SystemC
Synthesis

Verilog/
VHDL RTL

Auto-RTL
Translation

RTL
Synthesis

SystemC

SystemC
Synthesis

Verilog/
VHDL RTL

 FIGURE 6-5 Alternative SystemC flows.

 Insider Info

 Depending on who you are talking to, folks either love SystemC or they loath it.
Most would agree that SystemC 2.0 is very promising and that there’s no other
language that provides the same capabilities (some of these capabilities are being
added into SystemVerilog, but not all of them).

 On the downside, many design engineers are reasonably proficient at writing
C, but most of them are significantly less familiar with the object-oriented aspects
of C � � . So requiring them to use SystemC means giving them more power on the
one hand, while thrusting them into a world they don’t like or understand on the
other. It’s also true that while SystemC can be very useful for verification and high-
level system modeling, in some respects it’s still relatively immature toolwise with
regard to actual implementation flows.

CH006-H8974.indd 116CH006-H8974.indd 116 6/21/2008 6:13:14 PM6/21/2008 6:13:14 PM

117Chapter | 6 Other Design Flows

www.newnespress.com

 Augmented C/C � � -based Flows

 One school of thought says that, although SystemC is difficult to write by hand
and also difficult to synthesize, which makes it a somewhat clumsy specification
language, it does provide a powerful framework for simulation across languages
and levels of abstraction. At the time of this writing, a number of companies that
were strong supporters of SystemC in the United States have grown somewhat less
vocal over the last few years. On the other hand, SystemC is gaining some ground
in Europe and Asia. What does the future hold? Wait a few years, and I’ll be happy
to tell you!

 FAQs

 What do we mean by augmented C/C � � ?

 There are two ways in which standard C/C � � can be augmented to extend its
capabilities and the things it can be used to represent. The first is to include spe-
cial comments, known as commented directives or pragmas, into the pure C/C � �
code. These comments can subsequently be recognized and interpreted by parsers,
precompilers, compilers, and other tools and used to add constructs to the code or
modify the way in which it is processed. One significant drawback to this approach
is that simulation requires the use of proprietary C/C � � compilers as opposed to
using standard off-the-shelf compilers. This limits the options customers have and is
only viable if standards are developed for multiple EDA vendors to leverage.

 The other way in which C/C � � can be augmented is to add special keywords
and statements into the language. This is a very popular technique, and there is
a veritable plethora of such language variants roaming wild and free around the
world, each tailored toward a different application area. One downside of this
approach is that, once again, it requires proprietary C/C � � compilers; otherwise,
tools such as simulators that have not been enhanced to understand these new
keywords and statements will crash and burn. A common solution to this prob-
lem is to wrap standard #ifdef directives around the new keywords and statements
such that a precompiler can be used to discard them as required (this is somewhat
inelegant, but it works).

 In the case of capturing the functionality of hardware for ASIC and FPGA
designs, it is necessary to augment standard C/C � � with special statements
to support such concepts as clocks, pins, concurrency, synchronization, and
resource sharing.

 Assuming that you have an initial model represented in pure C/C � � , the
first step would be to augment it with clock statements, along with interface
statements used to define the input and output pins. You could then use an
appropriate synthesis tool to generate an implementation (as discussed below).

CH006-H8974.indd 117CH006-H8974.indd 117 6/21/2008 6:13:15 PM6/21/2008 6:13:15 PM

FPGAs: Instant Access118

www.newnespress.com

However, because C/C � � is by nature sequential, the resulting hardware can
be horribly slow and inefficient if the synthesis tool is not capable of locating
potential parallelisms and exploiting them.

 For example, assume that we have the following statements in a C/C � �
representation of the design:

 a = 6; /* Standard C/C + + statement */
 b = 2; /* Standard C/C + + statement */
 c = 9; /* Standard C/C + + statement */
 d = a + b; /* Standard C/C + + statement */
 :
 etc

 By default, each � sign is assumed by the synthesis application to represent one
clock cycle. Thus, if the above code were left as is, the augmented C/C � � syn-
thesis tool would generate hardware that loaded variable (register) a with 6 on
the first clock, then b with 2 on the next clock, then c with 9 on the next clock,
and so forth. Thus, by hardware standards, this would run horribly slowly.

 Of course, most synthesis tools would be capable of locating and exploiting
the potential parallelisms in the above example, but they might well miss more
complex cases that require human consideration and intervention. For the pur-
poses of these discussions, however, we shall continue to work with this simple
test case. The point is that an augmented C/C � � language will have keywords
like “ parallel ” (or “ par ”) and “ sequential ” (or “ seq ”) that will instruct the
downstream synthesis application as to which statements should be executed in
parallel, and so forth. For example:

 parallel; /* Augmented C/C + + statement */
 a = 6; /* Standard C/C + + statement */
 b = 2; /* Standard C/C + + statement */
 c = 9; /* Standard C/C + + statement */
 sequential; /* Augmented C/C + + statement */
 d = a � b; /* Standard C/C + + statement */
 :
 etc

 In this case, the parallel statement instructs the synthesis tool that the follow-
ing statements can be implemented concurrently, while the sequential state-
ment implies that the preceding operations must occur prior to any subsequent
actions taking place. Of course, these parallel and sequential statements can be
nested as required.

CH006-H8974.indd 118CH006-H8974.indd 118 6/21/2008 6:13:15 PM6/21/2008 6:13:15 PM

119Chapter | 6 Other Design Flows

www.newnespress.com

 Things become more complex in the case of loops, depending on whether the
designer wishes to unravel them partially or fully. Just to give a point of refer-
ence, we might visualize a loop as being something like “ for i � 1 to 10 in incre-
ments of 1 do xxxx, yyyy, and zzzz ” . In some cases, it may be possible to simply
associate a parallel or sequential statement with the loop, but if more subtlety is
required, the designer may be obliged to completely rewrite these constructs.

 It may also be necessary to add “ share ” statements if resource sharing is
required, and “ channel ” statements to share signals between expressions, and
the list goes on.

 ALERT!

 As was previously noted, tools such as simulators that have not been enhanced
to understand these new keywords and statements will “ crash-and-burn ” when
presented with this representation. One solution is to “ wrap ” standard “ #ifdef ”
directives around the new keywords and statements such that a precompiler can
be used to discard them as required. However, this means that the simulator and
synthesis engines will be working on different views of the design, which is typi-
cally not a good idea. The other solution is to use a proprietary simulator, but
this may not have the power, capacity, or capabilities of your existing simulation
technology.

 Augmented C/C � � Design-fl ow Alternatives
 As usual, one might go various ways here. As we previously discussed, in the
case of a design that begins life as a suite of algorithms, it is very common
to start by creating a C or C � � representation. Following verification, this
C/C � � model can be incrementally modified by adding statements for clocks,
pins, concurrency, synchronization, and resource sharing so as to make the
model suitable for the appropriate synthesis utility. Alternatively, the design
might be captured using the augmented C/C � � language from the get-go.

 Irrespective of the actual route we might take to get there, let’s assume that
we are in possession of an augmented C/C � � representation of a design that is
suitable for synthesis. Once again, there are two main design-flow alternatives,
which are (1) to translate the augmented C/C � � into Verilog or VHDL at the
RTL level of abstraction automatically and to then use conventional RTL synthe-
sis technology, or (2) to use an appropriate augmented C/C � � synthesis engine.

 And, once again, one school of thought says that synthesizing the aug-
mented C/C � � directly into the implementation level netlist offers the clean-
est, fastest, and most efficient route. Others say that the RTL Verilog/VHDL
level is the natural staging post for design integration and that today’s RTL
synthesis technology is extremely mature and powerful.

 Both of these flows can be applied to ASIC or FPGA targets (Figure 6-6).
The first augmented C/C � � synthesis applications were predominantly geared

CH006-H8974.indd 119CH006-H8974.indd 119 6/21/2008 6:13:15 PM6/21/2008 6:13:15 PM

FPGAs: Instant Access120

www.newnespress.com

toward ASIC flows. This meant that these early incarnations didn’t do a tremen-
dous job when it came to inferring FPGA-specific entities such as embedded
RAMs, embedded multipliers, and so forth. More recent versions of these tools
do a much better job at this, but, as usual, the prospective user is strongly advised
to perform some in-depth evaluations before handing over any hard-earned cash.

 Note that Figure 6-6 shows the use of implementation-specific code to drive
the ASIC versus FPGA flows because achieving an optimal implementation
requires that the code be written with a specific target architecture in mind. In
reality, the same code can be used to drive both ASIC and FPGA flows, but there
is usually a penalty to be paid (see the discussions on SystemC for more details).

 Pure C/C � � -based Flows

 Last, but not least, we come to pure C/C � � -based flows. In reality, the term pure
C/C � � actually refers to industry-standard C/C � � that is minimally augmented
with SystemC data types to allow specific bit widths to be associated with vari-
ables and constants.

 Although relatively new, pure C/C � � -based flows offer a number of advan-
tages as compared to other C-based flows and traditional Verilog-/VHDL-based
flows:

 ● Creating pure C/C � � is fast and efficient : Pure untimed C/C � � represen-
tations are more compact and easier to create and understand than equivalent
SystemC and augmented C/C � � representations (and they are much more
compact than their RTL equivalents, requiring perhaps 1/10th to 1/100th of
the code).

 ● Verifying C/C � � is fast and efficient : A pure untimed C/C � � representa-
tion will simulate significantly faster than a timed SystemC or augmented
C/C � � model and 100 to 10,000 times faster than an equivalent RTL

FPGA target

Implementation-
specific code

ASIC target

Gate-level
netlist

LUT/CLB-
level netlist

Auto-RTL
Translation

RTL
Synthesis

Augmented
C/C��

Augmented C/C��
Synthesis

Verilog/
VHDL RTL

Auto-RTL
Translation

RTL
Synthesis

Augmented
C/C��

Augmented C/C��
Synthesis

Verilog/
VHDL RTL

 FIGURE 6-6 Alternative augmented C/C � � flows.

CH006-H8974.indd 120CH006-H8974.indd 120 6/21/2008 6:13:15 PM6/21/2008 6:13:15 PM

121Chapter | 6 Other Design Flows

www.newnespress.com

r epresentation. In fact, pure C/C � � models are already widely created and
used by system designers for algorithm and system validation.

 ● Evaluating alternative implementations is fast and efficient : Modifying
and reverifying pure untimed C/C � � to perform a series of what-if evalua-
tions of alternative microarchitecture implementations is fast and efficient.
This facilitates the design team’s ability to arrive at fundamentally superior
microarchitecture solutions. In turn, this can result in significantly smaller
and faster designs as compared to flows based on traditional hand-coded
RTL methods.

 ● Accommodating specification changes is relatively easy : If any changes to
the specification are made during the course of the project, it’s relatively
easy to implement and evaluate these changes in a pure untimed C/C � �
representation, thereby allowing the changes to be folded into the resulting
implementation.

 Furthermore, as noted earlier in this chapter, one of the most significant prob-
lems associated with existing SystemC and augmented C/C � � -based design
flows is that the implementation intelligence associated with the design has to be
hard-coded into the model, which therefore becomes implementation specific.

 A key aspect associated with a pure untimed C/C � � -based design flow is
that the code presented to the synthesis engine is just what someone would
write if he or she didn’t have any preconceived hardware implementation or
target device architecture in mind. This means that the C/C � � code that sys-
tem designers write today is an ideal input to this form of synthesis. The only
modification typically required to use a pure C/C � � model with the synthesis
engine is to add a single special comment to the source code to indicate the top
of the functional portion of the design (anything conceptually above this point
is considered to form part of the testbench).

 As opposed to adding intelligence to the source code (thereby locking it
into a target implementation), all of the intelligence is provided by the user
controlling and guiding the synthesis engine itself (Figure 6-7).

– Non-implementation-specific
– Easy to create
– Fast to simulate
– Easy to modify

Pure C/C��

Gate-level
netlist

Verilog/
VHDL RTL

LUT/CLB-
level netlist

ASIC
target

Pure C/C��
Synthesis

User interaction
and guidance

Verilog/
VHDL RTL

RTL
Synthesis

RTL
Synthesis

FPGA
target

Auto-generated,
implementation-specific

 FIGURE 6-7 A pure untimed C/C � � -based design flow.

CH006-H8974.indd 121CH006-H8974.indd 121 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

FPGAs: Instant Access122

www.newnespress.com

 FAQs

 Why not synthesize directly into a gate-level netlist?

 As usual, it would be possible to synthesize the pure untimed C/C � � directly into
a gate-level netlist (this alternative is not shown in Figure 6-7). However, generating
the intermediate RTL provides a comfort zone for the engineers by allowing them
to check that they are satisfied with the implementation decisions that have been

 Once the synthesis engine has parsed the source code, the user can use it to
perform microarchitecture trade-offs and evaluate their effects in terms of size
and speed. The synthesis engine analyzes the code, identifies its various con-
structs and operators, along with their associated data and memory dependen-
cies, and automatically provides for parallelism wherever possible. The engine
also provides a graphical interface that allows the user to specify how different
elements should be handled. For example, the interface

 ● allows the user to associate ports with registers or RAM blocks;
 ● identifies constructs like loops and allows the user to specify on an individual

basis whether they should be fully unraveled, partially unraveled, or left alone;
 ● allows the user to specify whether loops and other constructs should be

pipelined;
 ● allows the user to perform resource sharing on specific entities;
 ● and so forth.

 These evaluations are performed on the fly, and the synthesis engine reports
total size/area and latency in terms of clock cycles and I/O delays (or through-
put time/cycles in the case of pipelined designs). The user-defined configura-
tion associated with each what-if scenario can be named, saved, and reused as
required (it would be almost impossible to perform these trade-offs in a timely
manner using a conventional hand-coded RTL-based flow).

 Key Concept

 The fact that the pure untimed C/C � � source code used by the synthesis engine
is not required to contain any implementation intelligence and that all such
intelligence is supplied by controlling the engine itself means that the same
source code can be easily retargeted to alternative microarchitectures and dif-
ferent implementation technologies.

 Once the user’s evaluations are completed, clicking the “ Go ” button causes the
synthesis engine to generate corresponding RTL VHDL. This code can subse-
quently be used by conventional logic synthesis or physically aware synthesis
applications to generate the netlist used to drive the downstream implementa-
tion (place-and-route, etc.) tools.

CH006-H8974.indd 122CH006-H8974.indd 122 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

123Chapter | 6 Other Design Flows

www.newnespress.com

 Different Levels of Synthesis Abstraction

 The fundamental difference between the various C/C � � -based flows pre-
sented in this chapter is the level of synthesis abstraction each can support.
For example, although SystemC offers significant system-level, algorithmic,
and transaction-level modeling capabilities, its synthesizable subset is at a rel-
atively low level of abstraction. Similarly, although augmented C/C � � rep-
resentations are closer to pure C/C � � than are their SystemC counterparts,
which means that they simulate much more quickly, their synthesizable subset
remains significantly lower than would be ideal.

 This lack of synthesis abstraction causes the timed SystemC and aug-
mented C/C � � representations to be implementation specific. In turn, this
makes them difficult to create and modify and significantly reduces their flex-
ibility with regard to performing what-if evaluations and retargeting them
toward alternative implementation technologies (Figure 6-8).

More abstract, less
implementation-

specific

Less abstract, more
implementation-

specific

RTL Domain
(Implementation-specific)

Timed C Domain
(Implementation-specific)

Untimed C Domain
(Non-implementation-specific)

V
er

ilo
g

an
d

 V
H

D
L

S
ys

te
m

C

A
u

g
m

en
te

d
C

/C
�

�

P
u

re
 C

/C
�

�

 FIGURE 6-8 Different levels of C/C � � synthesis abstraction.

made during the course of the C/C � � to RTL translation. Furthermore, generating
intermediate RTL is useful because this is the level of abstraction where hardware
design engineers generally stitch together the various functional blocks forming
their designs. Large portions of today’s designs are typically presented in the form
of IP blocks represented in RTL. This means that the intermediate RTL step shown
in Figure 6-7 is a useful point in the design flow for integrating and verifying the
entire hardware system. The design engineers can then take full advantage of their
existing RTL synthesis technology, which is mature, robust, and well understood.

CH006-H8974.indd 123CH006-H8974.indd 123 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

FPGAs: Instant Access124

www.newnespress.com

 By comparison, the latest generation of pure untimed C/C � � synthesis
technology supports a high level of synthesis abstraction. Non-i mplementation-
specific C/C � � models are very compact and can be quickly and easily
created and modified. By means of the synthesis engine itself, the user can
quickly and easily perform what-if evaluations and retarget the design toward
alternative implementation technologies. The result is that a pure C/C � � -
based design flow can dramatically speed implementation and increase design
flexibility as compared to other C/C � � -based flows.

 Insider Info

 Before anyone starts to pen irate letters claiming the author is anti-SystemC, it
should be reiterated that the discussions presented here are focused on the use of
the various flavors of C/C � � in the context of FPGA implementation flows. In this
case, the tool-chain used to progress SystemC representations through to actual
implementations is relatively immature and unsophisticated.

 When it comes to system-level modeling and verification applications, however,
SystemC can be extremely efficacious (many users see SystemC and SystemVerilog
being used in conjunction with each other, with SystemC being employed for the
initial system-level design representation, and then SystemVerilog being used to
 “ flesh out ” the implementation-level details.

 Mixed-language Design and Verifi cation Environments

 Last, but not least, we should note that a number of EDA companies can pro-
vide mixed-level design and verification environments that can support the
cosimulation of models specified at multiple levels of abstraction.

 In some cases, this may simply involve linking a C/C � � model to a Verilog
simulator via its programming language interface (PLI) or to a VHDL simu-
lator via its foreign language interface (FLI). Alternatively, one might find a
SystemC environment with the capability to accept blocks represented in
Verilog or VHDL.

 And then there are very sophisticated environments that start with a graphi-
cal block-based editor showing the design’s major functional units, where the
contents of each block can be represented using the following:

 ● VHDL
 ● Verilog
 ● SystemVerilog
 ● SystemC
 ● Handel-C
 ● Pure C/C � �

 The top-level design might be in a traditional HDL that calls submodules
in the various HDLs and in one or more flavors of C/C � � . Alternatively, the

CH006-H8974.indd 124CH006-H8974.indd 124 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

125Chapter | 6 Other Design Flows

www.newnespress.com

t op-level design might be in one of the flavors of C/C � � that calls submod-
ules in the various languages.

 In this type of environment, the VHDL, Verilog, and SystemVerilog rep-
resentations are usually handled by a single-kernel simulation engine. This
engine is then cosimulated with appropriate engines for the various flavors of
C/C � � . Furthermore, this type of environment will incorporate source-code
debuggers that support the various flavors of C/C � � ; it will allow testbenches
to be created using any of the languages; and supporting tools like graphical
waveform displays will be capable of displaying signals and variables associ-
ated with any of the language blocks.

 In reality, the various mixed-language design and verification environ-
ment solution combinations and permutations change on an almost weekly
basis, so you need to take a good look at what’s out there before you leap into
the fray.

A/D DSP D/A
Analog input

signal
Digital input

samples
Modified output

samples
Analog output

signal

Analog domain Digital domain Analog domain

 FIGURE 6-9 What is DSP?

 Key Concept

 One advantage of a mixed-language design and verification environment is that
you can continue to use your original C/C � � testbench to drive the downstream
version of your design in VHDL/Verilog at the RTL and gate levels of abstraction.
You may need to tweak a few things, but that’s much better than rewriting every-
thing from the ground up.

 DSP-BASED DESIGN FLOWS

 Digital signal processing includes compression, decompression, modulation,
error correction, filtering, and otherwise manipulating audio (voice, music, etc.),
video, image, and similar data for such applications as telecommunications,
radar, and image processing (including medical imaging). In many cases, the
data to be processed starts out as a signal in the real (analog) world. This analog
signal is periodically sampled, with each sample being converted into a digital
equivalent by means of an analog-to-digital (A/D) converter (Figure 6-9).

CH006-H8974.indd 125CH006-H8974.indd 125 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

FPGAs: Instant Access126

www.newnespress.com

 These samples are then processed in the digital domain. In many cases, the
processed digital samples are subsequently converted into an analog equivalent
by means of a digital-to-analog (D/A) converter.

 DSP occurs all over the place—in cell phones and telephone systems; CD,
DVD, and MP3 players; cable desktop boxes; wireless and medical equipment;
electronic vision systems; … the list goes on. This means that the overall DSP
market is huge.

 Alternative DSP Implementations

 As usual, nothing is simple because DSP tasks can be implemented in a
n umber of different ways:

 ● A general-purpose microprocessor (µP): This may also be referred to as a
central processing unit (CPU) or a microprocessor unit (MPU). The proces-
sor can perform DSP by running an appropriate DSP algorithm.

 ● A digital signal processor (DSP): This is a special form of microprocessor
chip (or core, as discussed below) that has been designed to perform DSP
tasks much faster and more efficiently than can be achieved by means of a
general-purpose microprocessor.

 ● Dedicated ASIC hardware : For the purposes of these discussions, we will
assume that this refers to a custom hardware implementation that executes
the DSP task. However, we should also note that the DSP task could be
implemented in software by including a microprocessor or DSP core on the
ASIC.

 ● Dedicated FPGA hardware : For the purposes of these discussions, we will
assume that this refers to a custom hardware implementation that executes
the DSP task. Once again, however, we should also note that the DSP
functionality could be implemented in software by means of an embedded
microprocessor core on the FPGA.

 System-level Evaluation and Algorithmic Verifi cation
 Irrespective of the final implementation technology (µP, DSP, ASIC, FPGA), if
one is creating a product that is to be based on a new DSP algorithm, it is com-
mon practice to first perform system-level evaluation and algorithmic verifica-
tion using an appropriate environment (we consider this in more detail later in
this chapter).

 Although this book attempts to avoid focusing on companies and products
as far as possible, it is encumbant on us to mention that—at the time of this
writing—the de facto industry standard for DSP algorithmic verification is
MATLAB® from The MathWorks (www.mathworks.com).2

 For the purposes of these discussions, therefore, we shall refer to MATLAB
as necessary. However, it should be noted that there are a number of other very
powerful tools and environments available to DSP developers. For example,

CH006-H8974.indd 126CH006-H8974.indd 126 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

127Chapter | 6 Other Design Flows

www.newnespress.com

Simulink® from The MathWorks has a certain following; the Signal Processing
Worksystem (SPW) environment from CoWare3 (www.coware.com) is very
popular, especially in telecom markets; and tools from Elanix (www.elanix.
com) also find favor with many designers.

 Software Running on a DSP Core
 Let’s assume that our new DSP algorithm is to be implemented using a micro-
processor or DSP chip (or core). In this case, the flow might be as shown in
 Figure 6-10 .

 ● The process commences with someone having an idea for a new algorithm
or suite of algorithms. This new concept typically undergoes verification
using tools such as MATLAB as discussed above. In some cases, one might
leap directly from the concept into handcrafting C/C � � (or assembly
language).

 ● Once the algorithms have been verified, they have to be regenerated in
C/C � � or in assembly language. MATLAB can be used to generate C/
C � � tuned for the target DSP core automatically, but in some cases,
design teams may prefer to perform this translation step by hand because
they feel that they can achieve a more optimal representation this way. As
yet another alternative, one might first auto-generate C/C � � code from
the algorithmic verification environment, analyze and profile this code to
determine any performance bottlenecks, and then recode the most critical
portions by hand.

 ● Once you have your C/C � � (or assembly language) representation, you
compile it (or assemble it) into the machine code that will ultimately be
executed by the microprocessor or DSP core.

 This type of implementation is very flexible because any desired changes can
be addressed relatively quickly and easily by simply modifying and recompil-
ing the source code. However, this also results in the slowest performance for
the DSP algorithm because microprocessor and DSP chips are both classed

Original
Concept

Handcrafted
Assembly

Compile/
Assemble

Auto C/C��
Generation

Handcrafted
C/C��

Machine
Code

Algorithmic
Verification

 FIGURE 6-10 A simple design flow for a software DSP realization.

CH006-H8974.indd 127CH006-H8974.indd 127 6/21/2008 6:13:16 PM6/21/2008 6:13:16 PM

FPGAs: Instant Access128

www.newnespress.com

as Turing machines. This means that their primary role in life is to process
instructions, so both of these devices operate as follows:

 ● Fetch an instruction.
 ● Decode the instruction.
 ● Fetch a piece of data.
 ● Perform an operation on the data.
 ● Store the result somewhere.
 ● :
 ● Fetch another instruction and start all over again.

 Key Concept

 Of course, the DSP algorithm actually runs on hardware in the form of the
microprocessor or DSP, but we consider this to be a software implementation
because the actual (physical) manifestation of the algorithm is the program that
is executed on the chip.

 Dedicated DSP Hardware
 There are myriad ways in which one might implement a DSP algorithm in an
ASIC or FPGA—the latter option being the focus of this chapter, of course.
But before we hurl ourselves into the mire, let’s first consider how different
architectures can affect the speed and area (in terms of silicon real estate) of
the implementation.

 DSP algorithms typically require huge numbers of multiplications and
additions. As a really simple example, let’s assume that we have a new DSP
algorithm that contains an expression something like the following:

 Y = (A * B) + (C * D) + (E * F) + (G * H);

 As usual, this is a generic syntax that does not favor any particular HDL and
is used only for the purposes of these discussions. Of course, this would be a
minuscule element in a horrendously complex algorithm, but DSP algorithms
tend to contain a lot of this type of thing.

 The point is that we can exploit the parallelism inherent in hardware to
perform DSP functions much more quickly than can be achieved by means of
software running on a DSP core. For example, suppose that all of the multipli-
cations were performed in parallel (simultaneously) followed by two stages of
additions (Figure 6-11).

 Remembering that multipliers are relatively large and complex and that
adders are sort of large, this implementation will be very fast, but will con-
sume a correspondingly large amount of chip resources.

CH006-H8974.indd 128CH006-H8974.indd 128 6/21/2008 6:13:17 PM6/21/2008 6:13:17 PM

129Chapter | 6 Other Design Flows

www.newnespress.com

 As an alternative, we might employ resource sharing (sharing some of the
multipliers and adders between multiple operations) and opt for a solution that
is a mixture of parallel and serial (Figure 6-12).

 This solution requires the addition of four 2:1 multiplexers and a register
(remember that each of these will be the same multibit width as their r espective

B

A

Y
D

C

F

E

H

G

Speed �

Area �x

x

x

x

�

�

�

 FIGURE 6-11 A parallel implementation of the function.

Speed �

Area �

A

E

B

F

C

G

D

H

sel

clock

D Q Y

Register

2:1
muxes

�

�

x

x

 FIGURE 6-12 An in-between implementation of the function.

CH006-H8974.indd 129CH006-H8974.indd 129 6/21/2008 6:13:17 PM6/21/2008 6:13:17 PM

FPGAs: Instant Access130

www.newnespress.com

signal paths). However, multiplexers and registers consume much less area than
the two multipliers and adder that are no longer required as compared to our
initial solution.

 On the downside, this approach is slower, because we must first perform the
(A * B) and (C * D) multiplications, add the results together, add this total to
the existing contents of the register (which will have been initialized to contain
zero), and store the result in the register. Next, we must perform the (E * F) and
(G * H) multiplications, add these results together, add this total to the existing
contents of the register (which currently contains the results from the first set of
multiplications and additions), and store this result in the register.

 As yet another alternative, we might decide to use a fully serial solution
(Figure 6-13).

 This latter implementation is very efficient in terms of area because it
requires only a single multiplier and a single adder. This is the slowest imple-
mentation, however, because we must first perform the (A * B) multiplication,
add the result to the existing contents of the register (which will have been ini-
tialized to contain zero), and store the total in the register. Next, we must per-
form the (C * D) multiplication, add this result to the existing contents of the
register, and store this new total in the register. And so forth for the remaining
multiplication operations. (Note that when we say “ this is the slowest imple-
mentation, ” we are referring to these hardware solutions, but even the slowest
hardware implementation remains much, much faster than a software equiva-
lent running on a microprocessor or DSP.)

 DSP-related Embedded FPGA Resources

 As previously discussed, some functions like multipliers are inherently slow
if they are implemented by connecting a large number of programmable logic

sel

clock

D Q Y

Register

4:1
muxes

A

G

C
E

B

H

D
F

Area �

Speed �

�

x

 FIGURE 6-13 A serial implementation of the function.

CH006-H8974.indd 130CH006-H8974.indd 130 6/21/2008 6:13:17 PM6/21/2008 6:13:17 PM

131Chapter | 6 Other Design Flows

www.newnespress.com

blocks together inside an FPGA. Since many applications require these func-
tions, many FPGAs incorporate special hard-wired multiplier blocks. (These
are typically located in close proximity to embedded RAM blocks because
these functions are often used in conjunction with each other.)

 Similarly, some FPGAs offer dedicated adder blocks. One operation that
is very common in DSP-type applications is ulate. As its name would suggest,
this function multiplies two numbers together and adds the result into a run-
ning total stored in an accumulator (register). Hence, it is commonly referred
to as a MAC, which stands for multiply, add, and accumulate (Figure 6-14).

 Note that the multiplier, adder, and register portions of the serial imple-
mentation of our function shown in Figure 6-13 offer a classic example of a
MAC. If the FPGA you are working with supplies only embedded multipliers,
you would be obliged to implement this function by combining the multiplier
with an adder formed from a number of programmable logic blocks, while the
result would be stored in a block RAM or in a number of distributed RAMs.
Life becomes a little easier if the FPGA also provides embedded adders, and
some FPGAs provide entire MACs as embedded functions.

 FPGA-centric Design Flows for DSPs

 At the time of this writing, using FPGAs to perform DSP is still relatively new.
Thus, there really are no definitive design flows or methodologies here—everyone
seems to have his or her unique way of doing things, and whichever option you
choose, you’ll almost certainly end up breaking new ground one way or another.

 Domain-specifi c Languages
 The way of the world is that electronic designs increase in size and complex-
ity over time. To manage this problem while maintaining—or, more usually,

x

+

x

�

A[n:0]

B[n:0] Y[(2n � 1):0]

Multiplier

Adder

Accumulator

MAC

 FIGURE 6-14 The functions forming a MAC.

CH006-H8974.indd 131CH006-H8974.indd 131 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

FPGAs: Instant Access132

www.newnespress.com

increasing—productivity, it is necessary to keep raising the level of abstraction
used to capture the design’s functionality and verify its intent.

 For this reason the gate-level schematics were superceded by the RTL rep-
resentations in VHDL and Verilog, as discussed in Chapter 5. Similarly, the
drive toward C-based flows as discussed earlier is powered by the desire to
capture complex concepts quickly and easily while facilitating architectural
analysis and exploration.

 In the case of specialist areas such as DSPs, system architects and design
engineers can achieve a dramatic improvement in productivity by means of
domain-specific languages (DSLs), which provide more concise ways of rep-
resenting specific tasks than do general-purpose languages such as C/C � � and
SystemC.

 One such language is MATLAB, which allows DSP designers to represent
a signal transformation, such as an FFT, that can potentially take up an entire
FPGA, using a single line of code4 along the lines of

 y = fft(x);

 Actually, the term MATLAB refers both to a language and an algorithmic-
level simulation environment. To avoid confusion, it is common to talk about
M-code (meaning “ MATLAB code ”) and M-files (files containing MATLAB
code).

 In addition to sophisticated transformation operators like the FFT shown
above, there are also much simpler transformations like adders, subtractors,
multipliers, logical operators, matrix arithmetic, and so forth. The more com-
plex transformations like an FFT can be formed from these fundamental enti-
ties if required. The output from each transformation can be used as the input
to one or more downstream transformations, and so forth, until the entire sys-
tem has been represented at this high level of abstraction.

 One important point is that such a system-level representation does not ini-
tially imply a hardware or software implementation. In the case of DSP core,
for example, it could be that the entire function is implemented in software as
discussed earlier in this chapter. Alternatively, the system architects could par-
tition the design such that some functions are implemented in software, while
other performance-critical tasks are implemented in hardware using dedicated
ASIC or FPGA fabric. In this case, one typically needs to have access to a
hardware or software codesign environment. For the purposes of these discus-
sions, however, we shall assume pure hardware implementations.

 Insider Info

 Some engineers in the trenches occasionally refer to the “ M language, ” but this is
not argot favored by the folks at The MathWorks.

CH006-H8974.indd 132CH006-H8974.indd 132 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

133Chapter | 6 Other Design Flows

www.newnespress.com

 Key Concept

 M-files can contain scripts (actions to be performed) or transformations or a
mixture of both. Also, M-files can call other M-files in a hierarchical manner. The
primary (top-level) M-file typically contains a script that defines the simulation
run. This script might prompt the user for information like the values of filter
coefficients that are to be used, the name of an input stimulus file, and so forth,
and then call other M-files and pass them these user-defined values as required.

 System-level Design and Simulation Environments
 System-level design and simulation environments are conceptually at a higher
level than DSLs. One well-known example of this genre is Simulink from The
MathWorks. Depending on who you’re talking to, there may be a perception
that Simulink is simply a graphical user interface to MATLAB. In reality,
however, it is an independent dynamic modeling application that works with
MATLAB.

 If you are using Simulink, you typically commence the design process by
creating a graphical block diagram of your system showing a schematic of
functional blocks and the connections between them. Each of these blocks may
be user-num defined, or they may originate in one of the libraries supplied with
Simulink (these include DSP, communications, and control function block sets).
In the case of a user-defined block, you can “ push ” into that block and represent
its contents as a new graphical block diagram. You can also create blocks con-
taining MATLAB functions, M-code, C/C � � , FORTRAN … the list goes on.

 Once you’ve captured the design’s intent, you use Simulink to simulate and
verify its functionality. As with MATLAB, the input stimulus to a Simulink
simulation might come from one or more mathematical functions, such as sine-
wave generators, or it might be provided in the form of real-world data such as
audio or video files. In many cases, it comes as a mixture of both; for example,
real-world data might be augmented with pseudorandom noise supplied by a
Simulink block.

 —Technology Trade-offs—
 ● The point here is that there’s no hard-and-fast rule. Some DSP designers

prefer to use MATLAB as their starting point, while others opt for Simulink
(this latter case is much rarer in the scheme of things). Some folks say that
this preference depends on the user’s background (software DSP develop-
ment versus ASIC/FPGA designs), but others say that this is a load of tosh.

 Floating-point versus Fixed-point Representations
 Irrespective as to whether one opts for Simulink or MATLAB (or a similar
environment from another vendor) as a starting point, the first-pass model

CH006-H8974.indd 133CH006-H8974.indd 133 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

FPGAs: Instant Access134

www.newnespress.com

of the system is almost invariably described using floating-point representa-
tions. In the context of the decimal number system, this refers to numbers like
1.235 � 103 (that is, a fractional number raised to some power of 10). In the
context of applications like MATLAB, equivalent binary values are represented
inside the computer using the IEEE standard for double-precision floating-
point numbers.

 Floating-point numbers of this type have the advantage of providing
extremely accurate values across a tremendous dynamic range. However, imple-
menting floating-point calculations of this type in dedicated FPGA or ASIC
hardware requires a humongous amount of silicon resources, and the result
is painfully slow (in hardware terms). Thus, at some stage, the design will be
migrated over to use fixed-point representations, which refers to numbers hav-
ing a fixed number of bits to represent their integer and fractional portions. This
process is commonly referred to as quantization .

 This is totally system/algorithm dependent, and it may take a considerable
amount of experimentation to determine the optimum balance between using
the fewest number of bits to represent a set of values (thereby decreasing the
amount of silicon resources required and speeding the calculations), while
maintaining sufficient accuracy to perform the task in hand. (One can think
of this trade-off in terms of how much noise the designer is willing to accept
for a given number of bits.) In some cases, designers may spend days deciding
 “ should we use 14, 15, or 16 bits to represent these particular values? ” And,
just to increase the fun, it may be best to vary the number of bits used to repre-
sent values at different locations in the system/algorithm.

 Things start to get really fun in that the conversion from floating-point to
fixed-point representations may take place upstream in the system/a lgorithmic
design and verification environment, or downstream in the C/C � � code. This
is shown in more detail in the “ System/algorithmic level to C/C � � ” section
below. Suffice it to say that if one is working in a MATLAB environment,
these conversions can be performed by passing the floating-point signals
through special transformation functions called quantizers . Alternatively, if
one is working in a Simulink environment, the conversions can be performed
by running the floating-point signals through special fixed-point blocks.

 System/algorithmic Level to RTL (Manual Translation)
 At the time of this writing, many DSP design teams commence by perform-
ing their system-level evaluations and algorithmic validation in MATLAB (or
the equivalent) using floating-point representations. (It is also very common to
include an intermediate step in which a fixed-point C/C � � model is created for
use in rapid simulation/validation.) At this point, many design teams bounce
directly into hand-coding fixed-point RTL equivalents of the design in VHDL or
Verilog (Figure 6-14a). Alternatively, they may first transition the floating-point
representations into their fixed-point counterparts at the system/ algorithmic
level, and then hand-code the RTL in VHDL or Verilog (Figure 6-14b).

CH006-H8974.indd 134CH006-H8974.indd 134 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

135Chapter | 6 Other Design Flows

www.newnespress.com

 Of course, once an RTL representation of the design has been created, we
can assume the use of the downstream logic-synthesis-based flows that were
introduced in Chapter 5.

 —Technology Trade-offs—
 ● There are a number of problems with this flow, not the least being that

there is a significant conceptual and representational divide between the
system architects working at the system/algorithmic level and the hardware
design engineers working with RTL representations in VHDL or Verilog.

 ● Because the system/algorithmic and RTL domains are so different, manual
translation from one to the other is time-consuming and prone to error.

 ● There is also the fact that the resulting RTL is implementation specific
because realizing the optimal design in an FPGA requires a different RTL
coding style from that used for an optimal ASIC implementation.

 ● Another consideration is that manually modifying and reverifying RTL to
perform a series of what-if evaluations of alternative microarchitecture imple-
mentations is extremely time-consuming (such evaluations may include per-
forming certain operations in parallel versus sequential, pipelining portions of
the design versus nonpipelining, sharing common resources—for example, two
operations sharing a single multiplier—versus using dedicated resources, etc.)

 ● Similarly, if any changes are made to the original specification dur-
ing the course of the project, it’s relatively easy to implement and evalu-
ate these changes in the system-/algorithmic-level representations, but

Original
Concept

To standard RTL-based
simulation and synthesis

(a) (b)

Handcraft Verilog/VHDL RTL
(Fixed-point)

System/Algorithmic Verification
(Floating-point)

System/Algorithmic Verification
(Fixed-point)

 FIGURE 6-14a,b Manual RTL generation.

CH006-H8974.indd 135CH006-H8974.indd 135 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

FPGAs: Instant Access136

www.newnespress.com

su bsequently folding these changes into the RTL by hand can be painful
and time-consuming.

 System/Algorithmic Level to RTL (Automatic-generation)
 As was noted in the previous section, performing system-/algorithmic-level-
to-RTL translation manually is time-consuming and prone to error. There are
alternatives, however, because some system-/algorithmic-level design environ-
ments offer direct VHDL or Verilog RTL code generation (Figure 6-15).

 As usual, the system-/algorithmic-level design would commence by
using floating-point representations. In one version of the flow, the system/
algorithmic environment is used to migrate these representations into their
fixed-point counter-parts and then to generate the equivalent RTL in VHDL or
Verilog automatically (Figure 6-15a).

 Alternatively, a third-party environment might be used to take the floating-
point system-/algorithmic-level representation, autointeractively quantize it
into its fixed-point counterpart, and then automatically generate the equivalent
RTL in VHDL or Verilog (Figure 6-15b).

System/Algorithmic Environment

Original
Concept

To standard RTL-based
simulation and synthesis

System/Algorithmic Environment

Third-party Environment

(a) (b)

(a) (b)

System/Algorithmic Verification
(Fixed-point)

Auto-generate Verilog/VHDL RTL
(Fixed-point)

System/Algorithmic Verification
(Floating-point)

Auto-generate Verilog/VHDL RTL
(Fixed-point)

Auto-interactive quantization
(Fixed-point)

System/Algorithmic Verification
(Floating-point)

 FIGURE 6-15 Direct RTL generation.

CH006-H8974.indd 136CH006-H8974.indd 136 6/21/2008 6:13:18 PM6/21/2008 6:13:18 PM

137Chapter | 6 Other Design Flows

www.newnespress.com

 As before, once an RTL representation of the design has been created, we
can assume the use of the downstream logic-synthesis-based flows that were
introduced in Chapter 5.

 System/Algorithmic Level to C/C � �
 Due to the problems associated with exploring the design at the RTL level,
there is an increasing trend to use a stepping-stone approach. This involves
transitioning from the system-/algorithmic-level domain into to some sort of
C/C � � representation, which itself is subsequently migrated into an RTL
equivalent. One reason this is attractive is that the majority of DSP design
teams already generate a C/C � � model for use as a golden (reference) model,
in which case this sort of comes for free as far as the downstream RTL design
engineer is concerned.

 Of course, the first thing to decide is when and where in the flow one should
transition from floating-point to fixed-point representations (Figure 6-16).

 Frighteningly enough, Figure 6-16 shows only a subset of the various
potential flows. For example, in the case of the handcrafted options, as opposed
to first hand-coding the C/C � � and then gradually transmogrifying this repre-
sentation into Handel-C or SystemC, one could hand-code directly into these
languages.

Original
Concept

System/Algorithmic Verification
(Fixed-point)

Simulink/MATLAB
(or equivalent)

Handcraft C/C��
(Fixed-point)

Auto-generate C/C��
(Fixed-point)

Hand-convert C/C��
(Fixed-point)

Direct to pure C/C�� synthesis,
or hand-convert to Handel-C then Handel-C synthesis,

or hand-convert to SystemC then SystemC synthesis, or ...

Handcraft C/C��
(Floating-point)

Auto-generate C/C��
(Floating-point)

System/Algorithmic Verification
(Floating-point)

 FIGURE 6-16 Migrating from floating point to fixed point.

CH006-H8974.indd 137CH006-H8974.indd 137 6/21/2008 6:13:19 PM6/21/2008 6:13:19 PM

FPGAs: Instant Access138

www.newnespress.com

 Block-level IP Environments
 Nothing is simple in this world because there is always just one more way to
do things. As an example, one might create a library of DSP functional blocks
at the system/algorithmic level of abstraction along with a one-to-one equiva-
lent library of blocks at the RTL level of abstraction in VHDL or Verilog.

 The idea here is that you could then capture and verify your design using
a hierarchy of functional blocks specified at the system/algorithmic level of
abstraction. Once you were happy with your design, you could then generate a
structural netlist instantiating the RTL-level blocks, and use this to drive down-
stream simulation and synthesis tools. (These blocks would have to be param-
eterized at all levels of abstraction to allow you to specify such things as bus
widths and so forth.)

 As an alternative, the larger FPGA vendors typically offer IP core genera-
tors (in this context, the term core is considered to refer to a block that per-
forms a specific logical function; it does not refer to a microprocessor or DSP
core). In several cases, these core generators have been integrated into system-/
algorithmic-level environments. This means that you can create a design based
on a collection of these blocks in the system-/algorithmic-level environment,
specify any parameters associated with these blocks, and perform your system-/
algorithmic-level verification.

 Later, when you’re ready to rock and roll, the core generator will auto-
matically generate the hardware models corresponding to each of these blocks.
(The system-/algorithmic-level models and the hardware models ensuing from
the core generator are bit identical and cycle identical.) In some cases the
hardware blocks will be generated as synthesizable RTL in VHDL or Verilog.
Alternatively, they may be presented as firm cores at the LUT/CLB level of
abstraction, thereby making the maximum use of the targeted FPGA’s internal
resources.

 —Technology Trade-offs—
 ● One big drawback associated with this approach is that, by their very

nature, IP blocks are based on hard-coded microarchitectures. This means
that the ability to create highly tuned implementations to address specific
design goals is somewhat diminished. The result is that IP-based flows may
achieve an implementation faster with less risk, but such an i mplementation

 Key Concept

 The main thing to remember is that once we have a fixed-point representation in
one of the flavors of C/C � � , we can assume the use of the downstream C/C � �
flows introduced earlier (one flow of particular interest in this area is the pure
untimed C/C � � approach used by Precision C from Mentor) .

CH006-H8974.indd 138CH006-H8974.indd 138 6/21/2008 6:13:19 PM6/21/2008 6:13:19 PM

139Chapter | 6 Other Design Flows

www.newnespress.com

may be less optimal in terms of area, performance, and power as compared
to a custom hardware implementation.

 Don’t Forget the Testbench!
 One point the folks selling you DSP design tools often neglect to mention is
the test bench. For example, let’s assume that your flow involves taking your
system-/algorithmic-level design and hand-translating it into RTL. In that case,
you are going to have to do the same with your testbench. In many cases, this
is a nontrivial task that can take days or weeks!

 Or let’s say that your flow is based on taking your floating- point system-/
algorithmic-level design and hand-translating it into floating-point C/C � � , at
which point you will wish to verify this new representation. Then you might
take your floating-point C/C � � and hand-translate it into fixed-point C/C � � ,
at which point you will wish to verify this representation. And then you might
take your fixed-point C/C � � and (hopefully) automatically synthesize an
equivalent RTL representation, at which point … but you get my drift.

 The problem is that at each stage you are going to have to do the same
thing with your testbench (unless you do something cunning as discussed in
the next (and last—hurray!) section.

 Mixed DSP and VHDL/Verilog etc. Environments

 In the previous chapter, we noted that a number of EDA companies can pro-
vide mixed-level design and verification environments that can support the
cosimulation of models specified at multiple levels of abstraction. For example,
one might start with a graphical block-based editor showing the design’s major
functional units, where the contents of each block can be represented using

 ● VHDL
 ● Verilog
 ● SystemVerilog
 ● SystemC
 ● Handel-C
 ● Pure C/C � �

 In this case, the top-level design might be in a traditional HDL that calls
submodules represented in the various HDLs and in one or more flavors of
C/C � � . Alternatively, the top-level design might be in one of the flavors of
C/C � � that calls submodules in the other languages.

 More recently, integrations between system-/algorithmic-level and
i mplementation-level environments have become available. The way in which
this works depends on who is doing what and what that person is trying to. For
example, a system architect working at the system/algorithmic level (e.g., in
MATLAB) might decide to replace one or more blocks with equivalent repre-
sentations in VHDL or Verilog at the RTL level of abstraction. Alternatively,

CH006-H8974.indd 139CH006-H8974.indd 139 6/21/2008 6:13:19 PM6/21/2008 6:13:19 PM

FPGAs: Instant Access140

www.newnespress.com

a design engineer working in VHDL or Verilog at the RTL level of abstrac-
tion might decide to call one or more blocks at the system/algorithmic level of
abstraction.

 Both of these cases require cosimulation between the system-/algorith-
mic-level environment and the VHDL/Verilog environment, the main differ-
ence being who calls whom. Of course, this sounds easy if you say it quickly,
but there is a whole host of considerations to be addressed, such as synchro-
nizing the concept of time between the two domains and specifying how dif-
ferent signal types are translated as they pass from one domain to the other
(and back again).

 Insider Info

 Treat any canned demonstration with a healthy amount of suspicion. If you are
planning on doing this sort of thing, you need to sit down with the vendor’s engi-
neer and work your own example through from beginning to end. Call me an old
cynic if you will, but my advice is to let their engineer guide you, while keep-
ing your hands firmly on the keyboard and mouse. (You’d be amazed how much
activity can go on in just a few seconds should you turn your head in response to
the age-old question, “ Good grief! Did you see what just flew by the window? ”)

 EMBEDDED PROCESSOR-BASED DESIGN FLOWS

 We are concerned only with electronic systems that include one or more
FPGAs on the printed circuit board (PCB). The vast majority of such systems
also make use of a general-purpose microprocessor, or μ P, to perform a vari-
ety of control and data-processing applications. This is often referred to as the
central processing unit (CPU) or microprocessor unit (MPU).

 Until recently, the CPU and its peripherals typically appeared in the form
of discrete chips on the circuit board. There are an almost infinite number of
possible scenarios here, but the two main ones involve the way in which the
CPU is connected to its memory (Figure 6-17).

 In both of these scenarios, the CPU is connected to an FPGA and some
other stuff via a general-purpose processor bus. (By “ stuff ” we predominantly
mean peripheral devices such as counter timers, interrupt controllers, commu-
nications devices, etc.)

 In some cases, the main memory (MEM) will also be connected to the CPU
by means of the main processor bus, as shown in Figure 6-17a (actually, this
connection will be via a special peripheral called a memory controller, which
is not shown here because we’re trying to keep things simple). Alternatively,
the memory may be connected directly to the CPU by means of a dedicated
memory bus, as shown in Figure 6-17b .

CH006-H8974.indd 140CH006-H8974.indd 140 6/21/2008 6:13:19 PM6/21/2008 6:13:19 PM

141Chapter | 6 Other Design Flows

www.newnespress.com

 The point is that presenting the CPU and its various peripheral devices in
the form of dedicated chips on the circuit board costs money and occupies real
estate. It also impacts the reliability of the board because every solder joint
(connection point) is a potential failure mechanism.

 One alternative is to embed the CPU along with some of its peripherals in
the FPGA itself (Figure 6-18).

 It is common for a relatively small amount of memory used by the CPU to
be included locally in the FPGA. At the time of this writing, however, it is rare
for all of the CPU’s memory to be included in the FPGA.

 Creating an FPGA design of this type brings a whole slew of new problems
to the table:

 ● First, the system architects have to decide which functions will be imple-
mented in software (as instructions to be executed by the CPU) and which
functions will be implemented in hardware (using the main FPGA fabric).

CPU FPGA

Circuit Board

FPGA

Circuit Board

CPU

MEM
(TCM)

Dedicated
memory bus

(a) Memory connected to CPU via
general-purpose processor bus

(b) Tightly coupled memory (TCM)
connected to CPU via dedicated bus

More
“Stuff”

Some
“Stuff”

More
“Stuff”

Some
“Stuff”

Processor
bus

Processor
bus

MEM

 FIGURE 6-17 Two scenarios at the circuit board level

Circuit Board Circuit Board
MEM
(TCM)

Dedicated
memory bus

(a) Memory connected to CPU via
general-purpose processor bus

(b) Tightly coupled memory (TCM)
connected to CPU via dedicated bus

More
“Stuff”

MEM

FPGA
Processor

bus

FPGA

Embedded
CPU

Embedded
“stuff”

FPGA

Processor bus

FPGA

Embedded
CPU Embedded “stuff”

More
“Stuff”

 FIGURE 6-18 Two scenarios at the FPGA level.

CH006-H8974.indd 141CH006-H8974.indd 141 6/21/2008 6:13:19 PM6/21/2008 6:13:19 PM

FPGAs: Instant Access142

www.newnespress.com

 ● Next, the design environment must support the concept of coverification, in
which the hardware and embedded software portions of the system can be
verified together to ensure that everything works as it should.

 Both of these topics are considered in more detail later in this chapter.

 Hard versus Soft Cores

 Hard Cores
 As defined previously, a hard microprocessor core is one that is implemented
as a dedicated, predefined (hardwired) block (these cores are only available in
certain device families). Each of the main FPGA vendors has opted for a par-
ticular processor type to implement its hard cores. For example, Altera offers
embedded ARM processors, QuickLogic has opted for MIPS-based solutions,
and Xilinx sports PowerPC cores.

 Of course, each vendor will be delighted to explain at great length why its
implementation is far superior to any of the others (the problem of deciding
which one actually is better is only compounded by the fact that different pro-
cessors may be better suited to different tasks).

 As noted in Chapter 2, there are two main approaches for integrating such
cores into the FPGA. The first is to locate it in a strip to the side of the main
FPGA fabric (Figure 6-19).

 In this scenario, all of the components are typically formed on the same
silicon chip, although they could also be formed on two chips and packaged as
a multichip module (MCM).

uP

RAM

I/O

etc.

Main FPGA fabric

Microprocessor
core, special RAM,

peripherals and
I/O, etc.

The “Stripe”

 FIGURE 6-19 Bird’s-eye view of chip with embedded core outside of the main fabric.

CH006-H8974.indd 142CH006-H8974.indd 142 6/21/2008 6:13:20 PM6/21/2008 6:13:20 PM

143Chapter | 6 Other Design Flows

www.newnespress.com

 One advantage of this implementation is that the main FPGA fabric is iden-
tical for devices with and without the embedded microprocessor core, which
can make things easier for the design tools used by the engineers. The other
advantage is that the FPGA vendor can bundle a whole load of additional func-
tions in the strip to complement the microprocessor core, such as memory and
special peripherals.

 The second alternative is to embed one or more microprocessor cores
directly into the main FPGA fabric . One, two, and even four core implemen-
tations are currently available at the time of this writing (Figure 6-20).

 In this case, the design tools have to be able to take account of the pres-
ence of these blocks in the fabric; any memory used by the core is formed
from embedded RAM blocks, and any peripheral functions are formed from
groups of general-purpose programmable logic blocks. Proponents of this
scheme can argue that there are inherent speed advantages to be gained from
having the microprocessor core in intimate proximity to the main FPGA
fabric.

 Soft Microprocessor Cores
 As opposed to embedding a microprocessor physically into the fabric of the
chip, it is possible to configure a group of programmable logic blocks to act as
a microprocessor. These are typically called “ soft cores, ” but they may be more
precisely categorized as either soft or firm, depending on the way in which the
microprocessor’s functionality is mapped onto the logic blocks. For example,
if the core is provided in the form of an RTL netlist that will be synthesized
with the other logic, then this truly is a soft implementation. Alternatively, if
the core is presented in the form of a placed and routed block of LUTs/CLBs,
then this would typically be considered a firm implementation.

uP

(a) One embedded core (b) Four embedded cores

uP uP

uP uP

 FIGURE 6-20 Bird’s-eye view of chips with embedded cores inside the main fabric.

CH006-H8974.indd 143CH006-H8974.indd 143 6/21/2008 6:13:20 PM6/21/2008 6:13:20 PM

FPGAs: Instant Access144

www.newnespress.com

 In both of these cases, all of the peripheral devices like counter timers,
interrupt controllers, memory controllers, communications functions, and so
forth are also implemented as soft or firm cores (the FPGA vendors are typi-
cally able to supply a large library of such cores).

 —Technology Trade-offs—
 ● Soft cores are slower and simpler than their hard-core counterparts (of

course they are still incredibly fast in human terms). However, in addition
to being practically free, they also have the advantages that you only have
to implement a core if you need it and that you can instantiate as many
cores as you require until you run out of resources in the form of program-
mable logic blocks.

 Once again, each of the main FPGA vendors has opted for a particular proces-
sor type to implement its soft cores. For example, Altera offers the Nios, while
Xilinx sports the MicroBlaze. The Nios has both 16-bit and 32-bit architec-
tural variants, which operate on 16-bit or 32-bit chunks of data, respectively
(both variants share the same 16-bit-wide instruction set). By comparison,
the MicroBlaze is a true 32-bit machine (that is, it has 32-bit-wide instruction
words and performs its magic on 32-bit chunks of data). Once again, each ven-
dor will be more than happy to tell you why its soft core rules and how its
competitors ’ offerings fail to make the grade (sorry, you’re on your own here).

 One cool thing about the integrated development environment (IDE)
fielded by Xilinx is that it treats the PowerPC hard core and the MicroBlaze
soft core identically. This includes both processors being based on the same
CoreConnect processor bus and sharing common soft peripheral IP cores. All
of this makes it relatively easy to migrate from one processor to the other.

 Also of interest is the fact that Xilinx offers a small 8-bit soft core called
the PicoBlaze, which can be implemented using only 150 logic cells (give or
take a handful). By comparison, the MicroBlaze requires around 1,000 logic
cells (which is still extremely reasonable for a 32-bit processor implementa-
tion, especially when one is playing with FPGAs that can contain 70,000 or
more such cells).

 Insider Info

 Some cynics say that those aspects of a design that are well understood are imple-
mented in hardware, while any portions of the design that are somewhat unde-
fined at the beginning of the design process are often relegated to a software
realization (on the basis that the software can be tweaked right up until the last
minute) .

CH006-H8974.indd 144CH006-H8974.indd 144 6/21/2008 6:13:20 PM6/21/2008 6:13:20 PM

145Chapter | 6 Other Design Flows

www.newnespress.com

 Partitioning a Design into Its Hardware and
Software Components

 As noted in Chapter 2, almost any portion of an electronic design can be
realized in hardware (using logic gates and registers, etc.) or software (as
 instructions to be executed on a microprocessor). One of the main partitioning
criteria is how fast you wish the various functions to perform their tasks:

 ● Picosecond and nanosecond logic : This has to run insanely fast, which
mandates that it be implemented in hardware (in the FPGA fabric).

 ● Microsecond logic : This is reasonably fast and can be implemented either
in hardware or software (this type of logic is where you spend the bulk of
your time deciding which way to go).

 ● Millisecond logic : This is the logic used to implement interfaces such as
reading switch positions and flashing light-emitting diodes, or LEDs.
It’s a pain slowing the hardware down to implement this sort of function
(using huge counters to generate delays, for example). Thus, it’s often bet-
ter to implement these tasks as microprocessor code (because processors
give you lousy speed—compared to dedicated hardware—but fantastic
complexity).

 The trick is to solve every problem in the most cost-effective way. Certain
functions belong in hardware, others cry out for a software realization, and
some functions can go either way depending on how you feel you can best
use the resources (both chip-level resources and hardware/software engineers)
available to you.

 It is possible to envisage an “ ideal ” electronic system level (ESL) environ-
ment in which the system architects initially capture the design via a graphi-
cal interface as a collection of functional blocks that are connected together.
Each of these blocks could then be provided with a system-/algorithmic level
SystemC representation, for example, and the entire design could be verified
prior to any decisions being made as to which portions of the design were to
be implemented in hardware and software.

 When it comes to the partitioning process itself, we might dream of having
the ability to tag each graphical block with the mouse and select a hardware or
software option for its implementation. All we would then have to do would be
to click the “ Go ” button, and the environment would take care of synthesizing
the hardware, compiling the software, and pulling everything together.

 And then we return to the real world with a resounding thud. Actually,
a number of next-generation design environments show promise, and new
tools and techniques are arriving on an almost daily basis. At the time of
this writing, however, it is still very common for system architects to parti-
tion a design into its hardware and software portions by hand, and to then
pass these top-level functions over to the appropriate engineers and hope for
the best.

CH006-H8974.indd 145CH006-H8974.indd 145 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

FPGAs: Instant Access146

www.newnespress.com

 With regard to the software portion of the design, this might be some-
thing as simple as a state machine used to control a human-level interface
(reading the state of switches and controlling display devices). Although the
state machine itself may be quite tricky, this level of software is certainly not
rocket science. At the other end of the spectrum, one might have incredibly
complex software requirements, including:

 ● System initialization routines and a hardware abstraction layer
 ● A hardware diagnostic test suite
 ● A real-time operating system (RTOS)
 ● RTOS device drivers
 ● Any embedded application code

 This code will typically be captured in C/C � � and then compiled down to the
machine instructions that will be run on the processor core (in extreme cases
where one is attempting to squeeze the last drop of performance out of the
design, certain routines may be handcrafted in assembly code).

 At the same time, the hardware design engineers will typically be captur-
ing their portions of the design at the RTL level of abstraction using VHDL or
Verilog (or SystemVerilog).

 Today’s designs are so complex that their hardware and software portions
have to be verified together.

 Insider Info

 One of the biggest problems to overcome when it comes to the coverification of
the hardware and software portions of a design is the two totally different world-
views of their creators. The hardware folks typically visualize their portion of the
design as blocks of RTL representing such things as registers, logical functions,
and the wires connecting them together. When hardware engineers are debug-
ging their portion of the design, they think in terms of an editor showing their RTL
source code, a logic simulator, and a graphical waveform display showing signals
changing values at specific times. In a typical hardware design environment, click-
ing on a particular event in the waveform display will automatically locate the cor-
responding line of RTL code that caused this event to occur.

 By comparison, the software guys and gals think in terms of C/C � � source
code, of registers in the CPU (and in the peripherals), and of the contents of vari-
ous memory locations. When software engineers are debugging a program, they
often wish to single-step through the code one line at a time and watch the values
in the various registers changing. Or they might wish to set one or more break-
points (this refers to placing markers at specific points in the code), run the pro-
gram until they hit one of those breakpoints, and then pause to see what’s going
on. Alternatively, they might wish to specify certain conditions such as a register
containing a particular value, then run the program until this condition is met, and
once again pause to see what’s happening.

CH006-H8974.indd 146CH006-H8974.indd 146 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

147Chapter | 6 Other Design Flows

www.newnespress.com

 Using an FPGA as Its Own Development Environment

 Perhaps the simplest place to start is the scenario where the FPGA is used as
its own development environment. The idea here is that you have an SRAM-
based FPGA with an embedded processor (hard or soft) mounted on a devel-
opment board that’s connected to your computer. In addition to the FPGA, this
development board will also have a memory device that will be used to store
the software programs that are to be run by the embedded CPU (Figure 6-21).

 Once the system architects have determined which portions of the design
are to be implemented in hardware and software, the hardware engineers
start to capture their RTL blocks and functions and synthesize them down to
a LUT/CLB-level netlist. Meanwhile, the software engineers start to capture
their C/C � � programs and routines and compile them down to machine code.
Eventually, the LUT/CLB-level netlist will be loaded into the FPGA via a con-
figuration file, the linked machine code image will be loaded into the memory
device, and then you let the system run wild and free (Figure 6-22).

 Also, any of the machine code that is to be embedded in the FPGA’s on-
chip RAM blocks would actually be loaded via the configuration file.

 Improving Visibility in the Design

 The main problem with the scenario discussed in the previous section is lack
of “ visibility ” as to what is happening in the hardware portion of the design.

Development board

FPGA with
embedded CPU

Memory device to store
machine code program

 FIGURE 6-21 Using an FPGA as its own development environment.

 When a software developer is writing application code such as a game, he or
she has the luxury of being reasonably confident that the hardware (say, a home
computer) is reasonably robust and bug-free. However, it’s a different ball game
when one is talking about a software engineer creating embedded applications
intended to run on hardware that’s being designed at the same time. When a prob-
lem occurs, it can be mega tricky determining if it was a fault in the software or if
the hardware was to blame.

CH006-H8974.indd 147CH006-H8974.indd 147 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

FPGAs: Instant Access148

www.newnespress.com

One way to mitigate this is to use a virtual logic analyzer to observe what’s
happening in the hardware.

 Things can be a little trickier when it comes to determining what’s h appening
with the software. One point to remember is that—as discussed in Chapter 3—
an embedded CPU core will have its own dedicated JTAG boundary scan chain
(Figure 6-23).

 This is true of both hard cores and the more sophisticated soft cores. In
this case, the coverification environment can use the scan chain to monitor the
activity on the buses and control signals connecting the CPU to the rest of the
system. The CPU’s internal registers can also be accessed via the JTAG port,
thereby allowing an external debugger to take control of the device and single-
step through instructions, set breakpoints, and so forth.

 A Few Coverifi cation Alternatives

 If you really want to get visibility into what’s happening in the hardware
portions of design, one approach is to use a logic simulator. In this case, the

Hardware design
entry (RTL)

System architects partition design
into hardware and software
functional blocks (may be part
of system/algorithmic-level
environment or done by hand)

Synthesize

Place-and-Route

Configuration file Executable image

Link etc.

Compile and/or
Assemble

Software design
entry (C/C�� or A)

Download to
development board

Original
Concept

 FIGURE 6-22 A (very) simple design flow.

CH006-H8974.indd 148CH006-H8974.indd 148 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

149Chapter | 6 Other Design Flows

www.newnespress.com

majority of the system will be modeled and simulated in VHDL or Verilog/
SystemVerilog at the RTL level of abstraction. When it comes to the CPU core,
however, there are various ways in which to represent this (Figure 6-24).

 Irrespective of the type of model used to represent the CPU, the embed-
ded software (machine code) portion of the design will be loaded into some
form of memory—either embedded memory in the FPGA or external mem-
ory devices—and the CPU model will then execute those machine code
instructions.

 Note that Figure 6-24 shows a high-level representation of the contents
of the FPGA only. If the machine code is to be stored in external memory
devices, then these devices would also have to be part of the simulation.

FPGA

RTL RTL

RTL RTL

RTL

RTL

RTL RTL CPU

RTL

C/C��

Phy

ISS

VHDL/Verilog
model

C/C��, SystemC,
etc. model

Physical chip in
hardware modeller

Instruction set
simulator

 FIGURE 6-24 Alternative representations of the CPU.

JTAG data in JTAG data out

FPGA

CPU

Primary scan chain

Internal (core) scan chain

 FIGURE 6-23 Embedded processor JTAG boundary scan chain.

CH006-H8974.indd 149CH006-H8974.indd 149 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

FPGAs: Instant Access150

www.newnespress.com

In fact, as a general rule of thumb, if the software talks to any stuff, then that
stuff needs to be part of the coverification environment.

 RTL (VHDL or Verilog)
 Perhaps the simplest option here is when one has an RTL model of the CPU, in
which case all of the activity takes place in the logic simulator. One disadvan-
tage of this approach is that a CPU performs tremendous numbers of internal
operations in order to perform the simplest task, which equates to incredibly
slow simulation runs (you’ll be lucky to be able to simulate 10 to 20 system
clocks per second in real time).

 The other disadvantage is that you have no visibility into what the software
is doing at the source code level. All you’ll be able to do is to observe logic
values changing on wires and inside registers.

 And there’s always the fact that whoever supplies the real CPU doesn’t
want you to know how it works internally because that supplier may be using
cunning proprietary tricks and wish to preserve their IP. In this case, you may
well find it very difficult to lay your hands on an RTL model of the CPU at all.

 C/C � � , SystemC, etc.
 As opposed to using an RTL model, it is very common to have access to some
sort of C/C � � model of the CPU. (The proponents of SystemC have a vision
of a world in which the CPU and the main peripheral devices all have SystemC
models provided as standard for use in this type of design environment.)

 The compiled version of this CPU model would be linked into the simu-
lation via the programming language interface (PLI) in the case of a Verilog
simulator or the foreign language interface (FLI)—or equivalent—in the case
of a VHDL simulator.

 The advantages of such a model are that it will run much faster than its
RTL counterpart; that it can be delivered in compiled form, thereby preserving
any secret IP; and that, at least in FPGA circles, such a model is usually pro-
vided for free (the FPGA vendors are trying to sell chips, not models).

 One disadvantage of this approach is that the C/C � � model may not pro-
vide a 100-percent cycle-accurate representation of the CPU, which has the
potential to cause problems if you aren’t careful. But, once again, the main dis-
advantage of such a model is that its only purpose is to provide an engine to
execute the machine code program, which means that you have no visibility
into what the software is doing at the source code level. All you’ll be able to do
is observe logic values changing on wires and inside registers.

 Physical Chip in Hardware Modeler
 Yet another possibility is to use a physical device to represent a hard CPU
core. For example, if you are using a PowerPC core in a Xilinx FPGA, you

CH006-H8974.indd 150CH006-H8974.indd 150 6/21/2008 6:13:21 PM6/21/2008 6:13:21 PM

151Chapter | 6 Other Design Flows

www.newnespress.com

can e asily lay your hands on a real PowerPC chip. This chip can be installed in
a box called a hardware modeler, which can then be linked into the logic simu-
lation system.

 The advantage of this approach is that you know the physical model (chip)
is going to functionally match your hard core as closely as possible. Some
 disadvantages are that hardware modelers aren’t cheap and they can be a pain
to use.

 The majority of hardware-modeler-based solutions don’t support source-
level debugging, which, once again, means that you have no visibility into
what the software is doing at the source code level. All you’ll be able to do is
to observe logic values changing on wires and inside registers.

 Instruction Set Simulator
 As previously noted, in certain cases, the role of the software portion of a
design may be somewhat limited. For example, the software may be acting as a
state machine used to control some interface. Alternatively, the software’s role
may be to initialize certain aspects of the hardware and then sit back and watch
the hardware do all of the work. If this is the case, then a C/C � � model or a
physical model is probably sufficient—at least as far as the hardware design
engineer is concerned.

 At the other extreme, the hardware portions of the design may exist mainly
to act as an interface with the outside world. For example, the hardware may
read in a packet of data and store it in the FPGA’s memory, and then the CPU
may perform huge amounts of complex processing on this data. In cases like
these, it is necessary for the software engineer to have sophisticated source-
level debugging capabilities. This requires the use of an instruction set simula-
tor (ISS), which provides a virtual representation of the CPU.

 Although an ISS will almost certainly be created in C/C � � , it will be
architected very differently from the C/C � � models of the CPU discussed
earlier in this section. This is because the ISS is created at a very high level of
abstraction; it thinks in terms of transactions like “ get me a word of data from
location x in the memory, ” and it doesn’t concern itself with details like how
signals will behave in the real world.

 How It Works
 The easiest way to explain how this works is by means of an illustration (Figure 6-25).

 First, the software engineers capture their program as C/C � � source code. This is
then compiled using the -d (debug) option, which generates a symbol table and other
debug-specific information along with the executable machine code image .

 When we come to perform the coverification, there are a number of pieces to
the puzzle. At one end we have the source-level debugger, whose interface is used
by the software engineer to talk to the environment. At the other end we have the

Ot

CH006-H8974.indd 151CH006-H8974.indd 151 6/21/2008 6:13:22 PM6/21/2008 6:13:22 PM

FPGAs: Instant Access152

www.newnespress.com

logic s imulator, which is simulating representations of the memory, stuff like peripheral
devices, general-purpose logic, and so forth (for the sake of simplicity, this illustration
assumes that all of the program memory resides in the FPGA itself).

 In the case of the CPU, however, the logic simulator essentially sees a hole where
this function should be. To be more precise, the simulator actually sees a set of inputs
and outputs corresponding to the CPU. These inputs and outputs are connected to an
entity called a bus interface model (BIM), which acts as a translator between the simu-
lator and the ISS.

 Both the source code and the executable image (along with the symbol table
and other debug-centric information) are loaded into the source-level debugger. At
the same time, the executable image is loaded into the MEM block. When the user
requests the source-level debugger to perform an action like stepping through a line
of source code, it issues commands to the ISS. In turn, the ISS will execute high-level
transactions such as an instruction fetch, or a memory read/write, or an I/O com-
mand. These transactions are passed to the BIM, which causes the appropriate pins to
 “ wiggle ” in the simulation world.

 Similarly, when something connected to the processor bus in the FPGA attempts
to talk to the CPU, it will cause the pins driving the BIM to “ wriggle. ” The BIM will
translate these low-level actions into high-level transactions that it passes to the ISS,
which will in turn inform the source-level debugger what’s happening. The source-level
debugger will then display the state of the program variables, the CPU registers, and
other information of this ilk.

CPU MEM FPGA

Logic “Stuff” Processor
bus

BIM ISS Source-level
debugger

User-specified
action like STEP

Transaction like
instruction fetch

BIM causes pins
to “wiggle” in the
simulation world

C source
code file

*.c

Compiler with
-d (debug) option

Machine
code file

*.exe

Executable image

Symbol table etc.

Just the
executable image

Image plus
symbol table etc.

 FIGURE 6-25 How an ISS fits into the picture.

CH006-H8974.indd 152CH006-H8974.indd 152 6/21/2008 6:13:22 PM6/21/2008 6:13:22 PM

153Chapter | 6 Other Design Flows

www.newnespress.com

 INSTANT SUMMARY

 The alternative FPGA design flows covered in this chapter were:

 ● SystemC-based flows
 ● Augmented C/C � � -based flows
 ● Pure C/C � � -based flows
 ● Mixed-language design/verification environments
 ● DSP-based flows using domain-specific languages
 ● DSP-based flows using system-level design/simulation environments

 – System/algorithmic level to RTL (both manual and automatic generation)
 – System/algorithmic level to C/C � �
 – Block level IP environments

 ● Mixed DSP and VHDL/Verilog environments
 ● Embedded processor-based flows using hard cores
 ● Embedded processor-based flows using soft cores

 Insider Info

 There are a variety of incredibly sophisticated (often frighteningly expensive) envi-
ronments of this type on the market. Each has its own cunning tricks and capabili-
ties, and some are more appropriate for ASIC designs than FPGAs or vice versa. As
usual, however, this is a moving target, so you need to check around to see who is
doing what before putting any of your precious money on the table.

CH006-H8974.indd 153CH006-H8974.indd 153 6/21/2008 6:13:22 PM6/21/2008 6:13:22 PM

www.newnespress.com

 Defi nitions

 Again we’ll start with some basic design tool terms and definitions.

 ● Event driven logic simulation tools see the world as a series of discrete events.
 ● Mixed language simulation allows the use of multiple languages, such as

Verilog and VHDL.
 ● Logic synthesis is a process in which a program is used to automatically con-

vert a high-level textual representation of a design (specifi ed using an HDL
at the register transfer level (RTL) of abstraction) into equivalent registers and

 Using Design Tools

 Chapter 7

In an Instant

Simulation Tools
Event-driven Logic Simulators
Logic Values and Different Logic

Value Systems
Mixed-language Simulation
Alternative Delay Formats
Cycle-based Simulators
Choosing a Logic Simulator

Synthesis (Logic/HDL versus
Physically Aware)
Logic/HDL Synthesis Technology
Physically Aware Synthesis

Technology
Retiming, Replication, and

Resynthesis
Timing Analysis

Static Timing Analysis
Statistical Static Timing Analysis

Verifi cation in General
Verifi cation IP
Verifi cation Environments and

Creating Testbenches
Analyzing Simulation Results

Formal Verifi cation
Different Flavors of Formal

Verifi cation
Terminology and Defi nitions
Alternative Assertion/Property

Specifi cation Techniques
Static Formal versus Dynamic

Formal
Miscellaneous

HDL to C Conversion
Code Coverage
Performance Analysis

Instant Summary

CH007-H8974.indd 155CH007-H8974.indd 155 6/21/2008 6:16:10 PM6/21/2008 6:16:10 PM

FPGAs: Instant Access156

www.newnespress.com

Boolean equations. A synthesis tool automatically performs simplifi cations and
minimizations and eventually outputs a gate-level netlist.

 ● Physically aware synthesis means taking actual placement information associ-
ated with the various logical elements in the design, using this information to
estimate accurate track delays, and using these delays to fi ne-tune the place-
ment and perform other optimizations.

 ● Retiming is a term used in the context of physical synthesis and is based on the
concept of balancing out positive and negative slacks throughout the design,
where positive slack refers to a path with some delay available that you’re not
using, and negative slack refers to a path that is using more delay than is avail-
able to it.

 ● Replication is similar to retiming, but focuses on breaking up long interconnect.
 ● Resynthesis uses the physical placement information to perform local optimi-

zations on critical paths by means of operations like logic restructuring, reclus-
tering, substitution, and possible elimination of gates and wires.

 ● Formal verifi cation means using rigorous mathematical techniques and tools
that employ such techniques to verify designs. In the not-so-distant past, this
term was considered synonymous with equivalency checking .

 SIMULATION TOOLS

 Design engineers typically need to use a tremendous variety of tools to cap-
ture , verify , synthesize , and implement their designs. In this chapter we’ll focus
on some of the more significant contenders in the context of FPGA designs.

 Event-driven Logic Simulators

 Logic simulation is currently one of the main verification tools in the design
(or verification) engineer’s arsenal. The most common form of logic simula-
tion is known as event driven because, perhaps not surprisingly, these tools see
the world as a series of discrete events. As an example, consider a very simple
circuit comprising an OR gate driving both a BUF (buffer) gate and a brace of
NOT (inverting) gates, as shown in Figure 7-1 .

 Just to keep things simple, let’s assume that NOT gates have a delay of 5
picoseconds (ps), BUF gates have a delay of 10 ps, and OR gates have a delay
of 15 ps. On this basis, let’s consider what will happen when a signal change
occurs on one of the input pins (Figure 7-2).

 Internally, the simulator maintains something called an event wheel onto
which it places events that are to be “ actioned ” at some time in the future.
When the first event occurs on input in1 at a time we might refer to as t 1 , the
simulator looks to see what this input is connected to, which happens to be

CH007-H8974.indd 156CH007-H8974.indd 156 6/21/2008 6:16:11 PM6/21/2008 6:16:11 PM

157Chapter | 7 Using Design Tools

www.newnespress.com

our OR gate. We are assuming that the OR gate has a delay of 15 ps, so the
 simulator sc hedules an event on the output of the OR gate—a rising (0 to 1)
transition on wire w1 —for 15 ps in the future at time t 2 .

 The simulator then checks if any further actions need to be performed at
the current time (t 1), then it looks at the event wheel to see what is to occur
next. In the case of our example, the next event happens to be the one we just
scheduled at time t 2 , which was for a rising transition on wire w1 . At the same
time as the simulator is performing this action, it looks to see what wire w1 is
connected to, which is BUF gate g2 and NOT gate g3 .

 As NOT gate g3 has a delay of 5 ps, the simulator schedules a falling (1 to
0) transition on its output, wire w2 , for 5 ps in the future at time t 3 . Similarly,
as BUF gate g2 has a delay of 10 ps, the simulator schedules a rising (0 to 1)
transition on its output, output out1 , for 10 ps in the future at time t 4 . And so it

|
in1

in2

out2

w1

out1

g1

g2

g3

OR

BUF

NOT

g4

NOT

w2

 FIGURE 7-1 An example circuit.

in1

in2

w1

w2

out1

out2

15 ps 5 ps 5 ps

t1 t2 t3 t4

 FIGURE 7-2 Results from an event-driven simulation.

CH007-H8974.indd 157CH007-H8974.indd 157 6/21/2008 6:16:11 PM6/21/2008 6:16:11 PM

FPGAs: Instant Access158

www.newnespress.com

goes until all of the events triggered by the initial transition on input in1 have
been satisfied.

 —Technology Trade-offs—
 ● The advantage of this event-driven approach is that simulators based on

this technique can be used to represent almost any form of design, includ-
ing synchronous and asynchronous circuits, combinatorial feedback loops,
and so forth. These simulators also offer extremely good visibility into the
design for debugging purposes, and they can evaluate the effects of delay-
related narrow pulses and glitches that are very difficult to find using other
techniques (see also the discussions on delays in the next section). The big
 disadvantage associated with these simulators is that they are extremely
compute-intensive and correspondingly slow.

 In the early days, event-driven digital logic simulators were simple tools that
output results in the form of a textual (tabular) file. They evolved to a bit more
advanced form, outputting results as graphical waveforms. Still later, the cre-
ators of digital simulators started to experiment with more sophisticated lan-
guages that could describe logical functions at higher levels of abstraction such
as RTL. As the industry-standard HDLs such as Verilog and VHDL started to
appear, they had the advantage that the same language could be used to repre-
sent both the functionality of the circuit and the testbench. (See also the discus-
sions on special verification languages like e in the “ Verification in General ”
section later in this chapter.)

 Also, standard file formats for capturing simulation output results, such
as the value change dump (VCD) format, started to appear on the scene. This
facilitated third-party EDA companies creating sophisticated waveform display
and analysis tools that could work with the outputs from multiple simulators.
Similarly, innovations like the standard delay format (SDF) specification facil-
itated third-party EDA companies ’ creating sophisticated timing analysis tools
that could evaluate circuits, generate timing reports highlighting potential prob-
lems, and output SDF files that could be used to provide more accurate timing
simulations (see also the discussion on alternative delay formats below).

 Logic Values and Different Logic Value Systems

 The minimum set of logic values required to represent the operation of binary
logic gates is 0 and 1. The next step is the ability to represent unknown val-
ues, for which we typically use the character X . These unknown values may
be used to represent a variety of conditions, such as the contents of an unini-
tialized register or the clash resulting from two gates driving the same wire
with opposing logical values. And it’s also nice to be able to represent high-
 impedance values driven by the outputs of tri-state gates, for which we typi-
cally use the character Z .

CH007-H8974.indd 158CH007-H8974.indd 158 6/21/2008 6:16:11 PM6/21/2008 6:16:11 PM

159Chapter | 7 Using Design Tools

www.newnespress.com

 But the 0, 1, X , and Z states are only the tip of the iceberg. More advanced
logic simulators have ways to associate different drive strengths with the out-
puts of different gates. This is combined with ways in which to resolve and
represent situations where multiple gates are driving the same wire with differ-
ent logic values of different strengths. Just to make life fun, of course, VHDL
and Verilog handle this sort of thing in somewhat different ways.

 Mixed-language Simulation

 The problem with having two industry-standard languages like Verilog and
VHDL is that it’s not long before you find yourself with different portions of
a design represented in different languages. Anything you design from scratch
will obviously be written in the language du jour favored by your company.
However, problems can arise if you wish to reuse legacy code that is in the
other language. Similarly, you may wish to purchase blocks of IP from a third
party, but this IP may be available only in the language you aren’t currently
using yourself. And there’s also the case where your company merges with,
commences a joint project with, another company, where the two companies
are entrenched in design flows using disparate languages.

 There have historically been several flavors of mixed-language simulation ,
as described below:

 ● One technique used in the early days was to translate the “ foreign ” lan-
guage (the one you weren’t using) into the language you were working
with. This was painful to say the least because the different languages sup-
ported different logic states and language constructs (even similar language
statements had different semantics). The result was that when you simulated
the translated design, it rarely behaved the way you expected it to, so this
approach is rarely used today.

 ● Another technique was to have both a VHDL simulator and a Verilog sim-
ulator and to cosimulate the two simulation kernels. In this case the per-
formance of the ensuing simulation was sadly lacking because each kernel
was forever stopping while it waited for the other to complete an action.
Thus, once again, this approach is rarely used today.

 ALERT!

 As opposed to using the “ X ” character to represent “ unknown ” or “ don’t know, ”
data books typically use it to represent “ don’t care. ” By comparison, hardware
description languages tend to use “ ? ” or “ – ” to represent “ don’t care ” values.
Also, “ don’t care ” values cannot be assigned to outputs as driven states. Instead,
they are used to specify how a model’s inputs should respond to different combi-
nations of signals.

CH007-H8974.indd 159CH007-H8974.indd 159 6/21/2008 6:16:11 PM6/21/2008 6:16:11 PM

FPGAs: Instant Access160

www.newnespress.com

 ● The optimum solution is to have a single-kernel simulator that supports
designs represented as a mixture of VHDL and Verilog blocks. All of the
big boys in EDA have their own version of such a tool, and some go far
beyond anything envisaged in the past because they can support multiple
languages such as Verilog, SystemVerilog, VHDL, SystemC, and PSL
(where PSL is introduced in more detail in the “ Formal verification ” sec-
tion in this chapter).

 Alternative Delay Formats

 How you decide to represent delays in the models you are creating for use with
an event-driven simulator depends on two things:

 a. the delay modeling capabilities of the simulator itself and
 b. where in the flow (and with what tools) you intend to perform your timing

analysis.

 A very common scenario is for static timing analysis (STA) to be performed
externally from the simulation. In this case, logic gates (and more complex
statements) may be modeled with zero (0 timebase unit) delays or unit (1 time-
base unit) delays, where the term timebase unit refers to the smallest time seg-
ment recognized by the simulator.

 Alternatively, we might associate more sophisticated delays with logic gates
(and more complex statements) for use in the simulation itself. The first level
of complexity is to separate rising delays from falling delays at the output from
the gate (or more complex statement). For historical reasons, a rising (0-to-1)
delay is often referred to as LH (standing for “ low-to-high ”). Correspondingly,
a falling (1-to-0) delay may be referred to as HL (meaning “ high-to-low ”). For
example, consider what happens if we were to apply a 12 ps positive-going
(0-1-0) pulse to the input of a simple buffer gate with delays of LH � 5 ps and
HL � 8 ps (Figure 7-3).

 Not surprisingly, the output of the gate rises 5 ps after the rising edge is
applied to the input, and it falls 8 ps after the falling edge is applied to the input.
The really interesting point is that, due to the unbalanced delays, the 12 ps
input pulse has been stretched to 15 ps at the output of the gate, where the addi-
tional 3 ps reflect the difference between the LH and HL values. Similarly, if
a n egative-going 12 ps (1-0-1) pulse were applied to the input of this gate, the
corresponding pulse at the output would shrink to only 9 ps (try sketching this
out on a piece of paper for yourself).

 In addition to LH and HL delays, simulators also support minimum:typical:
maximum (min:typ:max) values for each delay. For example, consider a p ositive-
going pulse of 16 ps presented to the input of a buffer gate with rising and falling
delays specified as 6:8:10 ps and 7:9:11 ps, respectively (Figure 7-4).

 This range of values is intended to accommodate variations in the operat-
ing conditions such as temperature and voltage. It also covers variations in the

CH007-H8974.indd 160CH007-H8974.indd 160 6/21/2008 6:16:11 PM6/21/2008 6:16:11 PM

161Chapter | 7 Using Design Tools

www.newnespress.com

manufacturing process because some chips may run slightly faster or slower
than others of the same type. Similarly, gates in one area of a chip (e.g., an
ASIC or an FPGA) may switch faster or slower than identical gates in another
area of the chip. (See also the discussions on timing analysis, particularly
dynamic timing analysis, later in this chapter.)

in1 out1

BUF

out1 (min)

6 ps

in1

LH � 6:8:10 ps
HL � 7:9:11 ps

16 ps

7 ps

out1 (typ)

8 ps 9 ps

out1 (max)

10 ps 11 ps

 FIGURE 7-4 Supporting min:typ:max delays.

in1 out1

BUF

out1

5 ps

in1

LH � 5 ps
HL � 8 ps

12 ns

8 ps

15 ps

 FIGURE 7-3 Separating LH and HL delays.

CH007-H8974.indd 161CH007-H8974.indd 161 6/21/2008 6:16:12 PM6/21/2008 6:16:12 PM

FPGAs: Instant Access162

www.newnespress.com

 Another point to consider is what will happen when a narrow pulse is
applied to the input of a gate (or more complex statement). By “ narrow ” we
mean a pulse that is smaller than the propagation delay of the gate. The first
logic simulators were largely targeted toward simple ICs implemented in
 t ransistor-transistor logic (TTL) being used at the circuit board level. These
chips typically rejected narrow pulses, so that’s what the simulators did. This
became known as the inertial delay model. As a simple example, consider two
positive-going pulses of 8 ps and 4 ps applied to a buffer gate whose min:typ:
max rising and falling delays are all set to 6 ps (Figure 7-5).

 By comparison, logic gates implemented in later technologies such as emitter-
coupled logic (ECL) would pass pulses that were narrower than the p ropagation
delay of the gate. To accommodate this, some simulators were equipped with a

in1 out1

BUF

out1

6 ps

in1

LH � 6:6:6 ps
HL � 6:6:6 ps

8 ps

6 ps

4 ps

Passes Rejected

 FIGURE 7-5 The inertial delay model rejects any pulse that is narrower than the gate’s propaga-
tion delay.

 Insider Info

 In the early days, all of the input-to-output delays associated with a multi-input
gate (or more complex statement) were identical. For example, consider a 3-input
AND gate with an output called y and inputs a, b, and c. In this case, any LH
and HL delays would be identical for the paths a-to-y, b-to-y, and c-to-y. Initially,
this didn’t cause any problems because it matched the way in which delays were
specified in data books. Over time, however, data books began to specify indi-
vidual input-to-output delays, so simulators had to be enhanced to support this
capability .

CH007-H8974.indd 162CH007-H8974.indd 162 6/21/2008 6:16:12 PM6/21/2008 6:16:12 PM

163Chapter | 7 Using Design Tools

www.newnespress.com

mode called the transport delay model. Once again, consider two positive-going
pulses of 8 ps and 4 ps applied to a buffer gate whose min:typ:max rising and
falling delays are all set to 6 ps (Figure 7-6).

 The problem with both the inertial and transport delay models is that they
only provide for extreme cases, so the creators of some simulators started to
experiment with more sophisticated narrow-pulse handling techniques, such as
the three-band delay model . In this case, each delay may be qualified with two
values called r (for “ reject ”) and p (for “ pass”), specified as percentages of the
total delay. For example, assume we have a buffer gate whose min:typ:max
delays have all been set to 6 ps qualified by r and p values of 33 percent and 66
percent, respectively (Figure 7-7).

 Any pulses presented to the input that are greater than or equal to the p
value will propagate; any pulses that are less than the r value will be com-
pletely rejected; and any pulses that fall between these two extremes will be
propagated as a pulse with an unknown X value to indicate that they are ambig-
uous because we don’t know whether they will propagate through the gate
in the real world. (Setting both r and p to 100 percent equates to an inertial
delay model, while setting them both to 0 percent reflects a pure transport
delay model.)

 Cycle-based Simulators

 An alternative to the event-driven approach is to use a cycle-based simulation
technique. This is particularly well suited to pipelined designs in which “ islands ”
of combinational logic are sandwiched between blocks of registers (Figure 7-8).

in1 out1

BUF

out1

6 ps

in1

LH � 6:6:6 ps
HL � 6:6:6 ps

8 ps

6 ps

4 ps

Passes Passes

6 ps 6 ps

 FIGURE 7-6 The transport delay model propagates any pulse, irrespective of its width.

CH007-H8974.indd 163CH007-H8974.indd 163 6/21/2008 6:16:12 PM6/21/2008 6:16:12 PM

FPGAs: Instant Access164

www.newnespress.com

 In this case, a cycle-based simulator will throw away any timing informa-
tion associated with the gates forming the combinational logic and convert
this logic into a series of Boolean operations that can be directly implemented
using the CPU’s logical machine code instructions.

 —Technology Trade-offs—
 ● Given an appropriate circuit with appropriate activity, cycle-based simu-

lators may offer significant run-time advantages over their event-driven
counterparts. The downside , however, is that they typically only work with
0 and 1 logic values (no X or Z values, and no drive strength representa-
tions). Also, cycle-based simulators can’t represent asynchronous logic or
combinatorial feedback loops.

Clock

Data In

Registers Registers Registers Combinatorial
Logic

Combinatorial
Logic

etc.

 FIGURE 7-8 A simple pipelined design.

in1 out1

BUF

out1

6 ps

in1

LH � 6:6:6 ps (33:66%)
HL � 6:6:6 ps (33:66%)

5 ps

6 ps

3 ps

Rejected

1 ps

6 ps

6 ps

X Pass

Ambiguous

 FIGURE 7-7 The three-band delay model.

CH007-H8974.indd 164CH007-H8974.indd 164 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

165Chapter | 7 Using Design Tools

www.newnespress.com

 These days it’s rare to see anyone using a pure cycle-based simulator. However,
several event-driven simulators have been augmented to have hybrid capabili-
ties. In this case, if you instruct the simulator to aim for extreme performance
(as opposed to timing accuracy), it will automatically handle some portions
of the circuit using an event-driven approach and other portions using cycle-
based techniques.

 Choosing a Logic Simulator

 Choosing a logic simulator is, as with anything else in engineering, a balanc-
ing act. Here are some things to consider:

 1. Think about whether you require mixed-language capability . If you are a
small startup, you may be planning to use only one language, but remem-
ber that any IP you decide to purchase down the road may not be available
in this language. Having a solution that can work with VHDL, Verilog, and
SystemVerilog would be a good start, and if it can also handle SystemC
along with one or more formal verification languages, then it will probably
stand you in good stead for some time to come.

 2. Generally speaking, performance is the number-one criterion for most
folks. The trick here is how to determine the performance of a simulator
without being bamboozled. The only way to really do this is to have your
own benchmark design and to run it on a number of simulators. Creating a
good benchmark design is a nontrivial exercise, but it’s much better than
using a design supplied by an EDA vendor (because such a design will be
tuned to favor their solution, while delivering a swift knee to the metaphor-
ical groins of competing tools).

 3. However, there’s more to life than raw performance. You also need to look
for a good interactive debugging solution such that when you detect
a problem, you can stop the simulator and poke around the design. All
si mulators are not created equal in this department. In some cases, even
if the simulator does let you do what you want, you may have to jump
through hoops to get there. So the trick here is—after running your perfor-
mance benchmark—bring up the same circuit with a known bug and see
how easy it is (and how long it takes) to detect and isolate the little rapscal-
lion. In reality, some simulators that give you the performance you require
do such a poor job in this department that you are obliged to use third-party
postsimulation analysis tools.

 4. Another thing to consider is the capacity of the simulator . The tools sup-
plied by the big boys in EDA essentially have no capacity limitations, but
simulators from smaller vendors might be based on ported 32-bit code
if you were to look under the hood. Of course, if you are only going to
work with smaller designs (say, equivalent to 500,000 gates or less), then
you will probably be okay with the simulators supplied by the FPGA

CH007-H8974.indd 165CH007-H8974.indd 165 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

FPGAs: Instant Access166

www.newnespress.com

vendors (these are typically “ lite ” versions of the tools supplied by the
big EDA vendors).

 Of course, you will have your own criteria in addition to the topics raised
above, such as the quality of the code coverage and performance analysis
provided by the various tools. These used to be the province of specialist third-
party tools, but most of the larger simulators now provide some level of inte-
grated code coverage and performance analysis in the simulation environment
itself. However, different simulators offer different feature sets (see also the
discussions on code coverage and performance analysis in the “ Miscellaneous ”
section later in this chapter).

 SYNTHESIS (LOGIC/HDL VERSUS PHYSICALLY AWARE)

 Logic/HDL Synthesis Technology

 Traditional logic synthesis tools appeared on the scene around the early to
mid-1980s. Depending on whom you are talking to, these tools are now often
referred to as HDL synthesis technology.

 The role of the original logic/HDL synthesis tools was to take an RTL rep-
resentation of an ASIC design along with a set of timing constraints and to
generate a corresponding gate-level netlist. During this process, the synthesis
application performed a variety of minimizations and optimizations (including
optimizing for area and timing).

 Around the middle of the 1990s, synthesis tools were augmented to under-
stand the concept of FPGA architectures. These architecturally aware appli-
cations could output a LUT/CLB-level netlist, which would subsequently be
passed to the FPGA vendor’s place-and-route software (Figure 7-9).

 —Technology Trade-offs—
 ● In real terms, the FPGA designs generated by architecturally aware synthe-

sis tools were 15 to 20 percent faster than their counterparts created using
traditional gate-level synthesis offerings.

Architecturally aware
logic/HDL synthesis

Place-and-route
(FPGA Vendor)

RTL

Unplaced-and-unrouted
LUT/CLB netlist

Placed-and-routed
LUT/CLB netlist

 FIGURE 7-9 Traditional logic/HDL synthesis.

CH007-H8974.indd 166CH007-H8974.indd 166 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

167Chapter | 7 Using Design Tools

www.newnespress.com

 Physically Aware Synthesis Technology

 The problem with traditional logic/HDL synthesis is that it was developed
when logic gates accounted for most of the delays in a timing path, while track
delays were relatively insignificant. This meant that the synthesis tools could
use simple wire-load models to evaluate the effects of the track delays. (These
models were along the lines of: One load gate on a wire equates to x pF of
capacitance; two load gates on a wire equates to y pF of capacitance; etc.) The
synthesis tool would then estimate the delay associated with each track as a
function of its load and the strength of the gate driving the wire.

 This technique was adequate for the designs of the time, which were imple-
mented in multimicron technologies and which contained relatively few logic
gates by today’s standards. By comparison, modern designs can contain tens of
millions of logic gates, and their deep submicron feature sizes mean that track
delays can account for up to 80 percent of a delay path. When using traditional
logic/HDL synthesis technology on this class of design, the timing estimations
made by the synthesis tool bear so little resemblance to reality that achieving
timing closure can be well-nigh impossible.

 For this reason, ASIC flows started to see the use of physically aware syn-
thesis somewhere around 1996, and FPGA flows began to adopt similar tech-
niques circa 2000 or 2001.

Architecturally aware
logic/HDL synthesis

Place
(FPGA Vendor)

RTL

Unplaced-and-unrouted
LUT/CLB netlist

Placed
LUT/CLB netlist

Physically aware
synthesis

Place-and-route
(FPGA Vendor)

Placed-and-routed
LUT/CLB netlist

Placed/optimized
LUT/CLB netlist

 FIGURE 7-10 Physically aware synthesis.

 FAQ

 What does “ physically aware ” really mean?

 Of course there is a variety of different definitions as to exactly what the term
physically aware synthesis implies. The core concept is to use physical informa-
tion earlier in the synthesis process, but what does this actually mean? For exam-
ple, some companies have added interactive floor-planning capabilities to the
front of their synthesis engines, and they class this as being physical synthesis or
physically aware synthesis. For most folks, however, physically aware synthesis
means taking actual placement information associated with the various logical
elements in the design, using this information to estimate accurate track delays,
and using these delays to fine-tune the placement and perform other optimiza-
tions. Interestingly enough, physically aware synthesis commences with a firstpass
run using a relatively traditional logic/HDL synthesis engine (Figure 7-10).

CH007-H8974.indd 167CH007-H8974.indd 167 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

FPGAs: Instant Access168

www.newnespress.com

 Retiming, Replication, and Resynthesis

 In this section, we’ll discuss several concepts related to physical synthesis that
were defined earlier: retiming , replication , and resynthesis .

 As an example, let’s assume a pipelined design whose clock frequency is
such that the maximum register-to-register delay is 15 ps. Now let’s assume
that we have a situation as shown in Figure 7-11a , whereby the longest tim-
ing path in the first block of combinational logic is 10 ps (which means it has
a positive slack of 5 ps), while the longest path in the next block of combina-
tional logic is 20 ps (which means it has a negative slack of 5 ps).

 Once the initial path timing, including routing delays, has been calculated,
combinational logic is moved across register boundaries (or vice versa, depend-
ing on your point of view) to steal from paths with positive slack and donate to
paths with negative slack (Figure 7-11b). Retiming is very common in physi-
cally aware FPGA design flows because registers are plentiful in FPGA devices.

 Replication is similar to retiming, but it focuses on breaking up long inter-
connect. For example, let’s assume that we have a register with 4 ps of positive
slack on its input. Now let’s assume that this register is driving three paths,
whose loads each see negative slack (Figure 7-12a).

 By replicating the register and placing the copies close to each load, we can
redistribute the slack to make all of the timing paths work (Figure 7-12b).

Clock

Data In

Data In

Registers

Clock

Registers Registers

etc.

(a) Before retiming

etc.

(b) After retiming

10 ps 20 ps

15 ps 15 ps 15 ps

“Push” some logic across
the register boundary

 FIGURE 7-11 Retiming.

CH007-H8974.indd 168CH007-H8974.indd 168 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

169Chapter | 7 Using Design Tools

www.newnespress.com

 Last, but not least, the concept of resynthesis is based on the fact that there
are many different ways of implementing (and placing) different functions.
Resynthesis uses the physical placement information to perform local optimi-
zations on critical paths by means of operations like logic restructuring, reclus-
tering, substitution, and possible elimination of gates and wires.

�4 ps

�2 ps

�1 ps

�1 ps
Register

�1 ps

�2 ps

�2 ps

�1 ps

�1 ps

�1 ps

(a) Before replication (b) After replication

 FIGURE 7-12 Replication.

 Insider Info

 In the real world, the capabilities of the various synthesis engines, along with
associated features like autointeractive floor planning, change on an almost daily
basis, and the various vendors are constantly leapfrogging each other. There’s also
the fact that different engines may work better (or worse) with different FPGA
vendors ’ architectures. One thing to look for is the ability (or lack thereof) of the
engine to infer things automatically, like clocking elements and embedded func-
tions, from your source code or constraints files without your having to define
them explicitly .

 TIMING ANALYSIS

 Static Timing Analysis

 The most common form of timing verification in use today is classed as STA.
Conceptually, this is quite simple, although in practice things are, as usual,
more complex than they might at first appear.

 The timing analyzer essentially sums all of the gate and track delays form-
ing each path to give you the total input-to-output delays for each path. (In
the case of pipelined designs, the analyzer calculates delays from one bank of
registers to the next.)

 Prior to place-and-route, the analyzer may make estimations as to track
delays. Following place-and-route, the analyzer will employ extracted parasitic
values (for resistance and capacitance) associated with the physical tracks to
provide more accurate results. The analyzer will report any paths that fail to

CH007-H8974.indd 169CH007-H8974.indd 169 6/21/2008 6:16:13 PM6/21/2008 6:16:13 PM

FPGAs: Instant Access170

www.newnespress.com

meet their original timing constraints, and it will also warn of potential timing
problems (e.g., setup and hold violations) associated with signals being pre-
sented to the inputs of any registers or latches.

 —Technology Trade-offs—
 ● STA is particularly well suited to classical synchronous designs and pipe-

lined architectures. The main advantages of STA are that it is relatively
fast, it doesn’t require a test bench, and it exhaustively tests every possible
path into the ground. On the downside , static timing analyzers are little
rascals when it comes to detecting false paths that will never be exercised
during the course of the design’s normal operation. Also, these tools aren’t
at their best with designs employing latches, asynchronous circuits, and
combinational feedback loops.

 Statistical Static Timing Analysis

 STA is a mainstay of modern ASIC and FPGA design flows, but it’s starting to
run into problems with the latest process technology nodes. At the time of writing,
an increasing number of folks are starting to design at the 45-nano node, with the
32-nano node expected to see mainstream adoption starting around 2011/2012.

 As previously discussed, in the case of modern silicon chips, interconnect
delays dominate logic delays, especially with respect to FPGA architectures.
In turn, interconnect delays are dependent on parasitic capacitance, resistance,
and inductance values, which are themselves functions of the topology and
cross-sectional shape of the wires.

 The problem is that, in the case of the latest technology process nodes,
photo lithographic processes are no longer capable of producing exact shapes.
Thus, as opposed to working with squares and rectangles, we are now working
with circles and ellipsoids. Feature sizes like the widths of tracks are now so
small that small variations in the etching process cause deviations that, although
slight, are significant with relation to the main feature size. (These irregulari-
ties are made more significant by the fact that in the case of high-frequency
designs, the so-called skin-effect comes into play, which refers to the fact that
high-f requency signals travel only through the outer surface, or skin, of the
conductor.) Furthermore, there are variations in the vertical plane of the track’s
cross section caused by processes like chemical mechanical polishing (CMP).

 As an overall result, it’s becoming increasingly difficult to calculate track
delays accurately. Of course, it is possible to use the traditional engineering
fallback of guard-banding (using worst-case estimations), but excessively con-
servative design practices result in device performance significantly below the
silicon’s full potential, which is an extremely unattractive option in today’s
highly competitive marketplace. In fact, the effects of geometry variations are
causing the probability distributions of delays to become so wide that worst-
case numbers may actually be slower than in an earlier process technology!

CH007-H8974.indd 170CH007-H8974.indd 170 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

171Chapter | 7 Using Design Tools

www.newnespress.com

 One potential solution is the concept of the statistical static timing analyzer
(SSTA). This is based on generating a probability function for the delay asso-
ciated with each signal for each segment of a track, then evaluating the total
delay probability functions of signals as they propagate through entire paths.
The problem is that SSTA is very complex and the distribution functions are—
in reality—not nice Gaussian curves. Just to add to the fun and frivolity, some
of the distribution functions tend to be time-based; as a piece of equipment at
the foundry undergoes “ wear ” over time, for example, this can affect some of
the probability distributions. Having said this, by 2008 most of the “ big boys ”
supplying tools to design and verify integrated circuits (e.g., Cadence, Magma,
Synopsys, etc.) had an SSTA offering of one form or another (some are better
than others). Many of the folks designing chips at the 45-nano node are using
SSTA, and many observers believe that the use of SSTA will be mandatory at
the forthcoming 32-nano node (actually, in addition to timing analysis, statisti-
cal techniques are starting to appear in other analysis engines, such as power
consumption and noise/signal integrity).

 VERIFICATION IN GENERAL

 As designs increase in complexity, verifying their functionality consumes
more and more time and resources. Such verification includes implementing
a verification environment, creating a testbench, performing logic simulations,
analyzing the results to detect and isolate problems, and so forth. In fact, veri-
fying one of today’s high-end ASIC, SoC, or FPGA designs can consume 70
percent or more of the total development effort from initial concept to final
implementation.

 Verifi cation IP

 One way to alleviate this problem is to make use of verification IP . The idea
here is that the design, which is referred to as the device under test (DUT) for the
purposes of verification, typically communicates with the outside world using
standard interfaces and protocols. Furthermore, the DUT is typically communi-
cating with devices such as microprocessors, peripherals, arbiters, and the like.

 The most commonly used technique for performing functional verification
is to use an industry-standard event-driven logic simulator. One way to test the
DUT would be to create a testbench describing the precise bit-level signals to
be applied to the input pins and the bit-level responses expected at the outputs.
However, the protocols for the various interfaces and buses are now so com-
plex that it is simply not possible to create a test suite in this manner.

 Another technique would be to use RTL models of all of the exter-
nal devices forming the rest of the system. However, many of these devices
are extremely proprietary and RTL models may not be readily available.
Furthermore, s imulating an entire system using fully functional models of all

CH007-H8974.indd 171CH007-H8974.indd 171 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

FPGAs: Instant Access172

www.newnespress.com

 Key Concept

 It should be noted that, although they are much smaller and simpler (and hence
simulate much faster) than fully functional models of the devices they represent,
BFMs are by no means trivial. For example, sophisticated BFMs, which are often
created as cycle-accurate, bit-accurate C/C � � models, may include internal
caches (along with the ability to initialize them), internal buffers, configuration
registers, write-back queues, and so forth. Also, BFMs can provide a tremendous
range of parameters that provide low-level control of such things as address tim-
ing, snoop timing, data wait states for different memory devices, and the like.

of the processor and I/O devices would be prohibitively expensive in terms of
time and computing requirements.

 The solution is to use verification IP in the form of bus functional mod-
els (BFMs) to represent the processors and the I/O agents forming the system
under test (Figure 7-13).

 A BFM doesn’t replicate the entire functionality of the device it represents;
instead, it emulates the way the device works at the bus interface level by gen-
erating and accepting transactions. In this context, the term transaction refers
to a high-level bus event such as performing a read or write cycle. The veri-
fication environment (or testbench) can instruct a BFM to perform a specific
transaction like a memory write. The BFM then generates the complex low-
level (“ bit-twiddling ”) signal interactions on the bus driving the DUT’s inter-
face transparently to the user.

 Similarly, when the DUT (the design) responds with a complex pattern of
signals, another BFM (or maybe the original BFM) can interpret these signals
and translate them back into corresponding high-level transactions. (See also
the discussions on verification environments and creating testbenches below.)

BFMs of processors,
I/O agents, arbiters, etc.

Complex signals at
the “bit twiddling” level

These could be
the same BFM

DUT
(RTL)B

F
M

B
F

M

High-level
transaction

request from
testbench or
verification

environment

High-level
transaction
result to

testbench or
verification

environment

 FIGURE 7-13 Using verification IP in the form of BFMs.

CH007-H8974.indd 172CH007-H8974.indd 172 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

173Chapter | 7 Using Design Tools

www.newnespress.com

 Verifi cation Environments and Creating Testbenches

 When I was a young man starting out in simulation, we created test vectors
(stimulus and response) to be used with our simulations as tabular ASCII
text files containing logic 0 and 1 values (or hexadecimal values if you were
lucky). At that time, the designs we were trying to test were incredibly simple
compared to today’s monsters, so an English translation of our tests would be
something along the lines of:

 At time 1,000 make the reset signal go into its active state.
 At time 2,000 make the reset signal go into its inactive state.
 At time 2,500 check to see that the 8-bit data bus is 00000000.
 At time … and so it went.

 Over time, designs became more complex, and the way in which they could
be verified became more sophisticated with the advent of high-level languages
that could be used to specify stimulus and expected response. These languages
sported a variety of features such as loop constructs and the ability to vary the
tests depending on the state of the outputs (e.g., “ If the status bus has a value
of 010, then jump to test xyz ”). At some stage, folks started referring to these
tests as testbenches .

 Insider Info

 To be a tad more pedantic, the term “ testbench ” really refers to the infrastructure
supporting test execution .

 The current state of play is that many of today’s designs are now so com-
plex that it’s well nigh impossible to create an adequate testbench by hand.
This has paved the way for sophisticated verification environments and lan-
guages. Perhaps the most sophisticated of the languages, known by some as
 hardware verification languages (HVLs), is the aspect-oriented e offering from
Verisity Design (www.verisity.com).

 In case you were wondering, e doesn’t actually stand for anything now, but
originally it was intended to reflect the idea of “ English-like ” in that it has a
natural language feel to it. You can use e to specify directed tests if you wish,
but you would typically only wish to do this for special cases. Instead, the con-
cept behind e , which you can think of as a blend of C and Verilog with a hint
of Pascal, is more about declaring valid ranges and sequences of input values
(along with their invalid counterparts) and high-level verification strategies.
This e description is then used by an appropriate verification environment to
guide the simulations.

CH007-H8974.indd 173CH007-H8974.indd 173 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

FPGAs: Instant Access174

www.newnespress.com

 Analyzing Simulation Results

 Almost every simulator comes equipped with a graphical waveform viewer
that can be used to display results interactively (as the simulator runs) or
to accept and display postsimulation results from a value change dump
(VCD) file.

 Sad to relate, however, some of these tools are not as effective as one might
hope when it comes to really analyzing this information and tracking down
problems. In this case, you might wish to use a tool from a third-party vendor.

 FORMAL VERIFICATION

 Although large computer and chip companies like IBM, Intel, and Motorola
have been developing and using formal tools internally for decades (since
around the mid-1980s), the whole field of formal verification (FV) is still
relatively new to a lot of folks. This is particularly true in the FPGA arena,
where the adoption of formal verification is lagging behind its use in ASIC
design flows. Having said this, formal verification can be such an incred-
ibly powerful tool that more and more folks are starting to use it in
earnest.

 One big problem is that formal verification is still so new to mainstream
usage that there are many players, all of whom are happily charging around
in a bewildering variety of different directions. Also, as opposed to a lack of
standards, there are now so many different offerings that the mind boggles. The
confusion is only increased by the fact that almost everyone you talk to puts his
or her unique spin on things (if, for example, you ask 20 EDA vendors to define
and differentiate the terms assertion and property, your brains will leak out of
your ears at the diametrically opposing responses).

 Trying to unravel this morass is a daunting task to say the least. However,
there is nothing to fear but fear itself, as my dear old dad used to say, so let’s
take a stab at rending the veils asunder and describing formal verification in a
way that we can all understand.

 Different Flavors of Formal Verifi cation

 As mentioned at the beginning of this chapter, the term formal verification was
considered synonymous with equivalency checking for the majority of design
engineers. In this context, an equivalency checker is a tool that uses formal
(rigorous mathematical) techniques to compare two different representations
of a design—say an RTL description with a gate-level netlist—to determine
whether they have the same input-to-output functionality.

 In fact, equivalency checking may be considered a subclass of formal veri-
fication called model checking , which refers to techniques used to explore the
state-space of a system to test whether certain properties, typically s pecified in

CH007-H8974.indd 174CH007-H8974.indd 174 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

175Chapter | 7 Using Design Tools

www.newnespress.com

the form of assertions, are true. (Definitions of terms like property and asser-
tion are presented a little later in this section.)

 For the purposes of the remainder of our discussions here, we shall under-
stand formal verification to refer to model checking. It should be noted, how-
ever, that there is another category of formal verification known as automated
reasoning , which uses logic to prove, much like a formal mathematical proof,
that an implementation meets an associated specification.

 FAQs

 What is formal verifi cation, and why is it so cool?

 To provide a starting point for our discussions, let’s assume we have a design
comprising a number of subblocks and that we are currently working with one of
these blocks, whose role in life is to perform some specific function. In addition
to the HDL representation that defines the functionality of this block, we can also
associate one or more assertions/properties with that block (these assertions/prop-
erties may be associated with signals at the interface to the block or with signals
and registers internal to the block).

 A very simple assertion/property might be along the lines of “ Signals A and
B should never be active (low) at the same time. ” But these statements can also
extend to extremely complex transaction-level constructs, such as “ When a PCI
write command is received, then a memory write command of type xxxx must be
issued within 5 to 36 clock cycles. ”

 Thus, assertions/properties allow you to describe the behavior of a time-based
system in a formal and rigorous manner that provides an unambiguous and uni-
versal representation of the design’s intent. Furthermore, assertions/properties can
be used to describe both expected and prohibited behavior.

 The fact that assertions/properties are both human and machine-readable
makes them ideal for the purposes of capturing an executable specification,
but they go far beyond this. Let’s return to considering a very simple assertion/
property such as “ Signals A and B should never be active (low) at the same time. ”
One term you will hear a lot is assertion-based verification (ABV), which comes
in several flavors: simulation, static formal verification, and dynamic formal
verification.

 In the case of static formal verification, an appropriate tool reads in the func-
tional description of the design (typically at the RTL level of abstraction) and then
exhaustively analyzes the logic to ensure that this particular condition can never
occur.

 By comparison, in the case of dynamic formal verification, an appropriately
augmented logic simulator will sum up to a certain point, then pause and auto-
matically invoke an associated formal verification tool (this is discussed in more
detail below).

 Of course, assertions/properties can be associated with the design at any level,
from individual blocks, to the interfaces linking blocks, to the entire system. This
leads to a very important point, that of verification reuse.

CH007-H8974.indd 175CH007-H8974.indd 175 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

FPGAs: Instant Access176

www.newnespress.com

 With regard to assertions/properties associated with the system’s primary
inputs and outputs, the verification environment may use these to automatically
create stimuli to drive the design. Furthermore, you can use assertions/proper-
ties throughout the design to augment code and functional coverage analysis
(see also the “ Miscellaneous ” section below) to ensure that specific sequences
of actions or conditions have been performed.

 Terminology and Defi nitions

 Now that we’ve discussed the overall concept of the model checking aspects
of formal verification, we are better equipped to wade through some further
terminology and definitions. To be fair, this is relatively uncharted water; the
following was gleaned from talking with lots of folks and then desperately try-
ing to rationalize the discrepancies between the tales they told.

 ● Assertions/properties: The term property comes from the model checking
domain and refers to a specific functional behavior of the design that you
want to (formally) verify (e.g., “ after a request, we expect a grant within 10
clock cycles ”). By comparison, the term assertion stems from the simula-
tion domain and refers to a specific functional behavior of the design that
you want to monitor during simulation (and flag a violation if that assertion
 “ fires ”).

 Today, with the use of formal tools and simulation tools in unified envi-
ronments and methodologies, the terms property and assertion tend to be
used interchangeably; that is, a property is an assertion and vice versa. In
general, we understand an assertion/property to be a statement about a spe-
cific attribute associated with the design that is expected to be true. Thus,
assertions/properties can be used as checkers/monitors or as targets of for-
mal proofs, and they are usually used to identify/trap undesirable behavior.

 Key Concept

 Prior to formal verification, there was very little in the way of verification reuse.
For example, when you purchase an IP core, it will typically come equipped with
an associated testbench that focuses on the I/O signals at the core’s boundary.
This allows you to verify the core in isolation, but once you’ve integrated the
core into the middle of your design, its testbench is essentially useless to you.
Now consider purchasing an IP core that comes equipped with a suite of pre-
defined assertions/properties, like “ Signal A should never exhibit a rising tran-
sition within three clocks of Signal B going active. ” These assertions/properties
provide an excellent mechanism for communicating interface assumptions from
the IP developer to downstream users. Furthermore, these assertions/properties
remain true and can be evaluated by the verification environment, even when
this IP core is integrated into your design.

CH007-H8974.indd 176CH007-H8974.indd 176 6/21/2008 6:16:14 PM6/21/2008 6:16:14 PM

177Chapter | 7 Using Design Tools

www.newnespress.com

 ● Constraints: The term constraint also derives from the model checking
space. Formal model checkers consider all possible allowed input combi-
nations when performing their magic and working on a proof. Thus, there
is often a need to constrain the inputs to their legal behavior; otherwise, the
tool would report false negatives, which are property violations that would
not normally occur in the actual design.

 As with properties, constraints can be simple or complex. In some
cases, constraints can be interpreted as properties to be proven. For exam-
ple, an input constraint associated with one module could also be an out-
put property of the module driving this input. So, properties and constraints
may be dual in nature. (The term constraint is also used in the “ constrained
random simulation ” domain, in which case the constraint is typically used
to specify a range of values that can be used to drive a bus.)

 ● Event: An event is similar to an assertion/property, and in general events
may be considered a subset of assertions/properties. However, while asser-
tions/properties are typically used to trap undesirable behavior, events may
be used to specify desirable behavior for the purposes of functional cover-
age analysis.

 In some cases, assertions/properties may consist of a sequence of events.
Also, events can be used to specify the window within which an assertion/
property is to be tested (e.g., “ After a , b , c , we expect d to be true, until e
occurs, ” where a , b , c , and e are all events, and d is the behavior being veri-
fied). Measuring the occurrence of events and assertions/properties yields
quantitative data as to which corner cases and other attributes of the design
have been verified. Statistics about events and assertions/properties can also
be used to generate functional coverage metrics for a design.

 ● Procedural: The term procedural refers to an assertion/property/event/con-
straint that is described within the context of an executing process or set of
sequential statements, such as a VHDL process or a Verilog “ always ” block
(thus, these are sometimes called “ incontext ” assertions/properties). In this
case, the assertion/property is built into the logic of the design and will be
evaluated based on the path taken through a set of sequential statements.

 ● Declarative: The term declarative refers to an assertion/property/event/
constraint that exists within the structural context of the design and is evalu-
ated along with all of the other structural elements in the design (for example,
a module that takes the form of a structural instantiation). Another way to
view this is that a declarative assertion/property is always “ on/active, ” unlike
its procedural counterpart that is only “ on/active ” when a specific path is
taken/executed through the HDL code.

 ● Pragma: The term pragma is an abbreviation for “ pragmatic information, ”
which refers to special pseudocomment directives that can be interpreted
and used by parsers/compilers and other tools. (Note that this is a general-
purpose term, and pragma-based techniques are used in a variety of tools in
addition to formal verification technology.)

CH007-H8974.indd 177CH007-H8974.indd 177 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

FPGAs: Instant Access178

www.newnespress.com

 Alternative Assertion/Property Specifi cation Techniques

 This is where the fun really starts, because there are various ways in which
assertions/properties and so forth can be implemented, as summarized below:

 ● Special languages : This refers to using a formal property/assertion lan-
guage that has been specially constructed for the purpose of specifying
assertions/ properties with maximum efficiency. Languages of this type, of
which Sugar, PSL, and OVA are good examples, are very powerful in cre-
ating sophisticated, regular, and temporal expressions, and they allow com-
plex behavior to be specified with very little code (Sugar, PSL, and OVA
are introduced in more detail later in this chapter).

 Such languages are often used to define assertions/properties in “ side-
files ” that are maintained outside the main HDL design representation. These
side-files may be accessed during parser/compile time and implemented in
a declarative fashion. Alternatively, a parser/compiler/simulator may be
augmented to allow statements in the special language to be embedded
directly in the HDL as in-line code or as pragmas; in both of these cases,
the statements may be implemented in a declarative and/or procedural
manner.

 ● Special statements in the HDL itself : Right from the get-go, VHDL came
equipped with a simple assert statement that checks the value of a Boolean
expression and displays a user-specified text string if the expression eval-
uates False. The original Verilog did not include such a statement, but
SystemVerilog has been augmented to include this capability.

 The advantage of this technique is that these statements are ignored by
synthesis engines, so you don’t have to do anything special to prevent them
from being physically implemented as logic gates in the final design. The
disadvantage is that they are relatively simplistic compared to special asser-
tion/property languages and are not well equipped to specify complex tem-
poral sequences (although SystemVerilog is somewhat better than VHDL
in this respect).

 ● Models written in the HDL and called from within the HDL : This con-
cept refers to having access to a library of internally or externally devel-
oped models. These models represent assertions/properties using standard
HDL statements, and they may be instantiated in the design like any other
blocks. However, these instantiations will be wrapped by synthesis OFF/
ON pragmas to ensure that they aren’t physically implemented. A good
example of this approach is the open verification library (OVL) from the
Accellera standards committee (www.accellera.org), as discussed in the
next section.

 ● Models written in the HDL and accessed via pragmas : This is similar in
concept to the previous approach in that it involves a library of models that
represent assertions/properties using standard HDL statements. However, as
opposed to instantiating these models directly from the main design code,

CH007-H8974.indd 178CH007-H8974.indd 178 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

179Chapter | 7 Using Design Tools

www.newnespress.com

they are pointed to by pragmas. A good example of this technique is the
CheckerWare® library from 0-In Design Automation (www.0-In.com). For
example, consider a design containing the following line of Verilog code:

 reg [5:0] STATE_VAR; // 0in one_hot

 The left-hand side of this statement declares a 6-bit register called STATE_
VAR, which we can assume is going to be used to hold the state variables
associated with an FSM. Meanwhile, the right-hand side (“ 0in one_hot ”) is
a pragma. Most tools will simply treat this pragma as a comment and ignore
it, but 0-In’s tools will use it to call a corresponding “ one-hot ” assertion/
property model from their CheckerWare library. Note that the 0-In implemen-
tation means that you don’t need to specify the variable, the clocking, or the
bit-width of the assertion; this type of information is all picked up a utomatically.
Also, depending on a pragma’s position in the code, it may be implemented in a
declarative or procedural manner.

 Static Formal versus Dynamic Formal

 This is a little tricky to wrap one’s brain around, so let’s take things step by
step. First, you can use assertions/properties in a simulation environment. In
this case, if you have an assertion/property along the lines of “ Signals A and B
should never be active (low) at the same time, ” then if this illegal case occurs
during the course of a simulation, a warning flag will be raised, and the fact
this happened can be logged.

 Simulators can cover a lot of ground, but they require some sort of test-
bench or a verification environment that is dynamically generating stimulus.
Another consideration is that some portions of a design are going to be diffi-
cult to verify via simulation because they are deeply buried in the design, mak-
ing them difficult to control from the primary inputs. Alternatively, some areas
of a design that have large amounts of complex interactions with other state
machines or external agents will be difficult to control.

 At the other end of the spectrum is static formal verification . These tools
are incredibly rigorous and they examine 100 percent of the state space with-
out having to simulate anything. Their disadvantage is that they can typically
be used for small portions of the design only, because the state space increases
exponentially with complex properties, and one can quickly run into a “ state
space explosion. ” By comparison, logic simulators, which can also be used to
test for assertions, can cover a lot of ground, but they do require stimuli, and
they don’t cover every possible case.

 To address these issues, some solutions combine both techniques. For
example, they may use simulation to reach a corner condition and then auto-
matically pause the simulator and invoke a static formal verification engine to

CH007-H8974.indd 179CH007-H8974.indd 179 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

FPGAs: Instant Access180

www.newnespress.com

 FAQ

 Is there a standard formal verifi cation language?

 Let’s begin with something called Vera®, which began life with work done at Sun
Microsystems in the early 1990s. It was provided to Systems Science Corporation
somewhere around the mid-1990s, which was in turn acquired by Synopsys in
1998. Vera is essentially an entire verification environment, similar to, but perhaps
not as sophisticated as, the e verification language/environment introduced earlier
in this chapter. Vera encapsulates testbench features and assertion-based capabil-
ities, and Synopsys promoted it as a stand-alone product (with integration into
the Synopsys logic simulator). Sometime later, due to popular demand, Synopsys
opened things up to for third-party use by making OpenVera™ and OpenVera
Assertions (OVA) available.

 Somewhere around this time, SystemVerilog was equipped with its first pass
at an assert statement. Meanwhile, due to the increasing interest in formal veri-
fication technology, one of the Accellera standards committees started to look
around for a formal verification language it could adopt as an industry standard.
A number of languages were evaluated, including OVA, but in 2002, the com-
mittee eventually opted for the Sugar language from IBM. Just to add to the fun,
Synopsys then donated OVA to the Accellera committee in charge of SystemVerilog
(this was a different committee from the one evaluating formal property languages).

 Yet another Accellera committee ended up in charge of something called the
open verification library, or OVL, which refers to a library of assertion/property
models available in both VHDL and Verilog 2K1.

exhaustively evaluate that corner condition. (In this context, a general definition
of a “ corner condition ” or “ corner case ” is a hard-to-exercise or hard-to-reach
functional condition associated with the design.) Once the corner condition has
been evaluated, control will automatically be returned to the simulator, which
will then proceed on its merry way. This combination of simulation and tradi-
tional static formal verification is referred to as dynamic formal verification.

 As one simple example of where this might be applicable, consider a
FIFO memory, whose “ Full ” and “ Empty ” states may be regarded as corner
cases. Reaching the “ Full ” state will require many clock cycles, which is best
achieved using simulation. But exhaustively evaluating attributes/properties
associated with this corner case, such as the fact that it should not be possi-
ble to write any more data while the FIFO is full, is best achieved using static
techniques.

 Once again, a good example of this dynamic formal verification approach
is provided by 0-In. Corner cases are explicitly defined as such in their
CheckerWare library models. When a corner case is reached during simulation,
the simulator is paused, and a static tool is used to analyze that corner case in
more detail.

CH007-H8974.indd 180CH007-H8974.indd 180 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

181Chapter | 7 Using Design Tools

www.newnespress.com

 Figure 7-14 attempts to show the state of things regarding the various veri-
fication styles and languages. It’s important to note that this figure just reflects
one view of the world, and not everyone will agree with it (some folks will
consider this to be a brilliant summation of an incredibly confusing situation,
while others will regard it as being a gross simplification at best and utter
twaddle at worst).

 So now we have the assert statements in VHDL and SystemVerilog, OVL (the
library of models), OVA (the assertion language), and the property specification lan-
guage (PSL), which is the Accellera version of IBM’s Sugar language (Figure 7-14).
The advantage of PSL is that it has a life of its own in that it can be used indepen-
dently of the languages used to represent the functionality of the design itself. The
disadvantage is that it doesn’t look like anything the hardware description lan-
guages design engineers are familiar with, such as VHDL, Verilog, C/C � � , and
the like. There is some talk of spawning various flavors of PSL, such as a VHDL
PSL, a Verilog PSL, a SystemC PSL, and so forth; the syntax would differ among
these flavors so as to match the target language, but their semantics would be
identical.

Black
Box

Gray
Box

White
Box

Verification
Style

Cone of influence of

SystemVerilog
with OVA

Much of this middle ground is
covered by IP and interface

protocols in the form of verification
IP monitors and protocol checkers

The effects start to diminish as
we approach the system level,

but they are persistent

Block Level
(Design Engineer)

Sub-system Level System Level
(Verification Engineer)

PSL
(Black box at

the system level)

IP

SystemVerilog
(White box at

the block level)

OVL

 FIGURE 7-14 Trying to put everything into context and perspective.

CH007-H8974.indd 181CH007-H8974.indd 181 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

FPGAs: Instant Access182

www.newnespress.com

 MISCELLANEOUS

 HDL to C Conversion

 As we discussed in Chapter 6, there is an increasing push toward capturing
designs at higher levels of abstraction such as C/C � � . In addition to facili-
tating architectural exploration, high-level (behavioral and/or algorithmic)
C/C � � models can simulate hundreds or thousands of times faster than can
their HDL/RTL counterparts.

 Having said this, many design engineers still prefer to work in their RTL
comfort zone. The problem is that when you are simulating an entire SoC with
an embedded processor core, memory, peripherals, and other logic all repre-
sented in RTL, you are lucky to achieve simulation speeds of more than a cou-
ple of hertz (that is, a few cycles of the main system clock for each second in
real time).

 To address this problem, some EDA companies are starting to offer ways
to translate your “ Golden RTL ” models into faster-simulating alternatives that
can achieve kilohertz simulation speeds. This is fast enough to allow you to
run software on your hardware representation for milliseconds of real run time.
In turn, this allows you to test critical foundation software, such as drivers,
diagnostics, and firmware, thereby facilitating system validation and verifica-
tion to occur much faster than with traditional methods.

 Code Coverage

 In the not-so-distant past, code coverage tools were specialist items provided
by third-party EDA vendors. However, this capability is now considered
important enough that all of the big boys have code coverage integrated into
their verification (simulation) environments, but, of course, the feature sets
vary among offerings.

 By now, it may not surprise you to learn that there are many different fla-
vors of code coverage, summarized briefly in order of increasing sophistica-
tion as follows:

 ● Basic code coverage : This is just line coverage; that is, how many times
each line in the source code is hit (executed).

 ● Branch coverage : This refers to conditional statements like if-then-else; how
many times do you go down the then path and how many down the else path.

 Insider Info

 Don’t make the mistake of referring to “ PSL/Sugar ” as a single/combined lan-
guage. There’s PSL and there’s Sugar and they’re not the same thing. PSL is the
Accellera standard, while Sugar is the language used inside IBM.

CH007-H8974.indd 182CH007-H8974.indd 182 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

183Chapter | 7 Using Design Tools

www.newnespress.com

 ● Condition coverage : This refers to statements along the lines of “ if (a OR
b � � TRUE) then. ” In this case, we are interested in the number of times
the then path was taken because variable a was TRUE compared to the
number of times variable b was TRUE.

 ● Expression coverage : This refers to expressions like “ a � (b AND c) OR
!d ” . In this case, we are interested in analyzing the expression to determine
all of the possible combinations of input values and also which combi-
nations triggered a change in the output and which variables were never
tested.

 ● State coverage : This refers to analyzing state machines to determine which
states were visited and which ones were neglected, as well as which guard
conditions and paths between states are taken, and which aren’t, and so
forth. You can derive this sort of information from line coverage, but you
have to read between the lines (pun intended).

 ● Functional coverage : This refers to analyzing which transaction-
level events (e.g., memory-read and memory-write transactions) and
which specific combinations and permutations of these events have been
exercised.

 ● Assertion/property coverage : This refers to a verification environment that
can gather, organize, and make available for analysis the results from all of
the different simulation-driven, static formal, and dynamic formal assertion-/
property-based verification engines. This form of coverage can actually be
split into two camps: specification-level coverage and implementation-level
coverage. In this context, specification-level coverage measures verifica-
tion activity with respect to items in the high-level functional or macro-
architecture definition. This includes the I/O behaviors of the design, the
types of transactions that can be processed (including the relationships
of different transaction types to each other), and the data transformations
that must occur. By comparison, implementation-level coverage measures
verification activity with respect to microarchitectural details of the actual
implementation. This refers to design decisions that are embedded in the
RTL that result in implementation-specific corner cases, for example, the
depth of a FIFO buffer and the corner cases for its “ high-water mark ”
and “ full ” conditions. Such implementation details are rarely visible at
the specification level.

 Performance Analysis

 One final feature that’s important in a modern verification environment is its
ability to do performance analysis . This refers to having some way of analyz-
ing and reporting exactly where the simulator is spending its time. This allows
you to focus on high-activity areas of your design, which may reap huge
rewards in terms of final system performance.

CH007-H8974.indd 183CH007-H8974.indd 183 6/21/2008 6:16:15 PM6/21/2008 6:16:15 PM

FPGAs: Instant Access184

www.newnespress.com

 INSTANT SUMMARY

 Table 7-1 shows the major types of design tools covered in this chapter, along
with their important features.

 TABLE 7-1

 Simulation Event-driven logic simulators
 Mixed-language simulation
 Delay modeling
 Cycle-based simulators

 Synthesis HDL synthesis technology
 Physically aware synthesis technology
 Retiming
 Replication
 Resynthesis

 Timing Analysis Static timing analysis
 Statistical static timing analysis
 Dynamic timing analysis

 Verifi cation Verifi cation IP
 Bus functional models
 Hardware verifi cation languages
 Formal verifi cation
 Static formal/Dynamic formal
 Verifi cation environments/languages

CH007-H8974.indd 184CH007-H8974.indd 184 6/21/2008 6:16:16 PM6/21/2008 6:16:16 PM

www.newnespress.com

 Choosing the Right Device

 Chapter 8

In an Instant

Choosing
Technology
Basic Resources and Packaging
General-purpose I/O Interfaces
Embedded Multipliers,

RAMs, etc.

Embedded Processor Cores
Gigabit I/O Capabilities
IP Availability
Speed Grades
Future FPGA Developments
Instant Summary

 Defi nitions

 Most of the terms used in this chapter you will have seen before, but here are a
few definitions of some terms that may be unfamiliar:

 ● Application Specifi c Modular Block (ASMBL) is a new FPGA architecture that
was developed by Xilinx. This is a highly modular, column-based architecture
that makes use of fl ip-chip technology and eliminates geometric layout con-
straints associated with traditional chip design.

 ● Field programmable analog arrays (FPAAs) refers to ICs that can be pro-
grammed to implement analog circuits by use of fl exible analog blocks and
interconnect.

 ● Structured ASICs are a relatively new item and the term can mean differ-
ent things depending on which vendor you’re talking to. The term generally
refers to there being predefi ned metal layers (reducing manufacturing time)
and precharacterization of what is on the silicon (reducing design cycle time).
Structured ASICs bridge the gap between fi eld-programmable gate arrays and
 “ standard-cell ” ASICs.

 CHOOSING

 Choosing an FPGA can be a complex process because there are so many prod-
uct families from the different vendors. Product lines and families from the

CH008-H8974.indd 185CH008-H8974.indd 185 6/21/2008 6:59:00 PM6/21/2008 6:59:00 PM

FPGAs: Instant Access186

www.newnespress.com

same vendor overlap; product lines and families from different vendors both
overlap and, at the same time, sport different features and capabilities; and
things are constantly changing, seemingly on a daily basis.

 Before we start, it’s worth noting that size isn’t everything in the FPGA
design world. You really need to base your FPGA selection on your design
needs, such as number of I/O pins, available logic resources, availability of
special functional blocks, and so forth.

 Another consideration is whether you already have dealings with a certain
FPGA vendor and product family, or whether you are plunging into an FPGA
design for the very first time. If you already have a history with a vendor and
are familiar with using its components, tools, and design flows, then you will
typically stay within that vendor’s offerings unless there’s an overriding reason
for change.

 For the purposes of the remainder of these discussions, however, we’ll
assume that we are starting from ground zero and have no particular affiliation
with any vendor. In this case, choosing the optimum device for a particular
design is a daunting task.

 Becoming familiar with the architectures, resources, and capabilities asso-
ciated with the various product families from the different FPGA vendors
demands a considerable amount of time and effort. In the real world, time-to-
market pressures are so intense that design engineers typically have sufficient
time to make only high-level evaluations before settling on a particular vendor,
family, and device. In this case, the selected FPGA is almost certainly not the
optimum component for the design, but this is the way of the world.

 Given a choice, it would be wonderful to have access to some sort of FPGA
selection wizard application (preferably Web based). This would allow you to
choose a particular vendor, a selection of vendors, or make the search open to
all vendors.

 For the purposes of a basic design, the wizard should prompt you to enter
estimates for such things as ASIC equivalent gates or FPGA system gates
(assuming there are good definitions as to what equivalent gates and system
gates are—see also Chapter 2). The wizard should also prompt for details on
I/O pin requirements, I/O interface technologies, acceptable packaging options,
and so forth.

 In the case of a more advanced design, the wizard should prompt you for
any specialist options such as gigabit transceivers or embedded functions like
multipliers, adders, MACs, RAMs (both distributed and block RAM), and
so forth. The wizard should also allow you to specify if you need access to
embedded processor cores (hard or soft) along with selections of associated
peripherals.

 Last but not least, it would be nice if the wizard would prompt you as to
any IP requirements (hey, since we’re dreaming, let’s dream on a grand scale).
Finally, clicking the “ Go ” button would generate a report detailing the leading
contenders and their capabilities (and costs).

CH008-H8974.indd 186CH008-H8974.indd 186 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

187Chapter | 8 Choosing the Right Device

www.newnespress.com

 Returning to the real world with a sickening thump, we remember that no
such utility actually exists at this time, so we have to perform all of these eval-
uations by hand, but wouldn’t it be nice …

 TECHNOLOGY

 One of your first choices is going to be deciding on the underlying FPGA tech-
nology. Your main options are as follows:

 ● SRAM-based : Although very flexible, this requires an external configura-
tion device and can take up to a few seconds to be configured when the
system is first powered up. Early versions of these devices could have sub-
stantial power supply requirements due to high transient startup currents,
but this problem has been addressed in the current generation of devices.
One key advantage of this option is that it is based on standard CMOS
technology and doesn’t require any esoteric process steps. This means that
SRAM-based FPGAs are at the forefront of the components available with
the most current technology node.

 ● Antifuse-based : Considered by many to offer the most security with regard
to design IP, this also provides advantages like low power consumption,
instant-on availability, and no requirement for any external configuration
devices (which saves circuit board cost, space, and weight). Antifuse-based
devices are also more radiation hardened than any of the other technolo-
gies, which makes them of particular interest for aerospace-type applica-
tions. On the downside, this technology is a pain to prototype with because
it’s OTP. Antifuse devices are also typically one or more generations
behind the most current technology node because they require additional
process steps compared to standard CMOS components.

 ● FLASH-based : Although considered to be more secure than SRAM-based
devices, these are slightly less secure than antifuse components with regard
to design IP. FLASH-based FPGAs don’t require any external configura-
tion devices, but they can be reconfigured while resident in the system if
required. In the same way as antifuse components, FLASH-based devices
provide advantages like instant-on capability, but are also typically one or
more generations behind the most current technology node because they
require additional process steps compared to standard CMOS components.
Also, these devices typically offer a much smaller logic (system) gate-
count than their SRAM-based counterparts.

 BASIC RESOURCES AND PACKAGING

 Once you’ve decided on the underlying technology, you need to determine
which devices will satisfy your basic resource and packaging requirements.
In the case of core resources, most designs are pin limited, and it’s typically

CH008-H8974.indd 187CH008-H8974.indd 187 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

FPGAs: Instant Access188

www.newnespress.com

only in the case of designs featuring sophisticated algorithmic processing like
color space conversion that you will find yourself logic limited. Regardless of
the type of design, you will need to decide on the number of I/O pins you are
going to require and the approximate number of fundamental logical entities
(LUTs and registers).

 As discussed in Chapter 2, the combination of a LUT, register, and associ-
ated logic is called a logic element (LE) by some and logic cell (LC) by others.
It is typically more useful to think in these terms as opposed to higher-level
structures like slices and configurable logic blocks (CLBs) or logic array
blocks (LABs) because the definition of these more sophisticated structures
can vary between device families.

 Next, you need to determine which components contain a sufficient number of
clock domains and associated PLLs, DLLs, and digital clock managers (DCMs).

 Last, but not least, if you have any particular packaging requirements in
mind, it would be a really good idea to ensure that the FPGA family that has
caught your eye is actually available in your desired package. (I know this
seems obvious, but would you care to place a bet that no one ever slipped up
on this point before?)

 GENERAL-PURPOSE I/O INTERFACES

 The next point to ponder is which components have configurable general-
p urpose I/O blocks that support the signaling standard(s) and termination tech-
nologies required to interface with the other components on the circuit board.

 Let’s assume that way back at the beginning of the design process, the sys-
tem architects selected one or more I/O standards for use on the circuit board.
Ideally, you will find an FPGA that supports this standard and also provides all
of the other capabilities you require. If not, you have several options:

 ● If your original FPGA selection doesn’t provide any must-have capabilities
or functionality, you may decide to opt for another family of FPGAs (pos-
sibly from another vendor).

 ● If your original FPGA selection does provide some must-have capabili-
ties or functionality, you may decide to use some external bridging devices
(this is expensive and consumes board real estate). Alternatively, in con-
junction with the rest of the system team, you may decide to change the
circuit board architecture (this can be really expensive if the system design
has progressed to any significant level).

 EMBEDDED MULTIPLIERS, RAMS, ETC.

 At some stage you will need to estimate the amount of distributed RAM and
the number of embedded block RAMs you are going to require (along with the
required widths and depths of the block RAMs).

CH008-H8974.indd 188CH008-H8974.indd 188 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

189Chapter | 8 Choosing the Right Device

www.newnespress.com

 Similarly, you will need to muse over the number of special embedded
functions (and their widths and capabilities) like multipliers and adders. In the
case of DSP-centric designs, some FPGAs may contain embedded functions
like MACs that will be particularly useful for this class of design problem and
may help to steer your component selection decisions.

 EMBEDDED PROCESSOR CORES

 If you wish to use an embedded processor core in your design, you will need
to decide whether a soft core will suffice (such a core may be implemented
across a number of device families) or if a hard core is the order of the day.

 In the case of a soft core, you may decide to use the offering supplied by
an FPGA vendor. In this case, you are going to become locked into using that
vendor, so you need to evaluate the various alternatives carefully before taking
the plunge. Alternatively, you may decide to use a third-party soft-core solu-
tion that can be implemented using devices from multiple vendors.

 If you decide on a hard core, you have little option but to become locked
into a particular vendor. One consideration that may affect your decision pro-
cess is your existing experience with different types of processors. Let’s say
that you hold a black belt in designing systems based around the PowerPC,
for example. In such a case, you would want to preserve your investment in
PowerPC design tools and flows (and your experience and knowledge in using
such tools and flows). Thus, you would probably decide on an FPGA offering
from Xilinx because they support the PowerPC. Alternatively, if you are a guru
with respect to ARM or MIPS processors, then selecting devices from Altera
or QuickLogic, respectively, may be the way to go.

 GIGABIT I/O CAPABILITIES

 If your system requires the use of gigabit transceivers, then points to consider
are the number of such transceivers in the device and the particular standard
that’s been selected by your system architects at the circuit board level.

 IP AVAILABILITY

 Each of the FPGA vendors has an IP portfolio. In many cases there will be
significant overlap between vendors, but more esoteric functions may only be
available from selected vendors, which may have an impact on your compo-
nent selection.

 Alternatively, you may decide to purchase your IP from a third-party
provider. In such a case, this IP may be available for use with multiple
FPGAs from different vendors (and a subset of device families from those
vendors).

CH008-H8974.indd 189CH008-H8974.indd 189 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

FPGAs: Instant Access190

www.newnespress.com

 SPEED GRADES

 Once you’ve decided on a particular FPGA component for your design, one
final decision is the speed grade of this device. The FPGA vendors ’ traditional
pricing model makes the performance (speed grade) of a device a major factor
with regard to the cost of that device.

 —Technology Trade-offs—
 As a rule of thumb, moving up a speed grade will increase performance by
12 to 15 percent, but the cost of the device will increase by 20 to 30 percent.
Conversely, if you can manipulate the architecture of your design to improve
performance by 12 to 15 percent (say, by adding additional pipelining stages),
then you can drop a speed grade and save 20 to 30 percent on the cost of your
silicon (FPGA).

 If you are only contemplating a single device for prototyping applications,
then this may not be a particularly significant factor for you. On the other
hand, if you are going to be purchasing hundreds or thousands of these little
rascals, then you should start thinking very seriously about using the lowest
speed grade you can get away with.

 The problem is that modifying and reverifying RTL to perform a series of
what-if evaluations of alternative implementations is difficult and time-
c onsuming. (Such evaluations may include performing certain operations in
parallel versus sequentially, pipelining portions of the design versus nonpipe-
lining, resource sharing, etc.) This means that the design team may be limited
to the number of evaluations it can perform, which can result in a less-than-
optimal implementation.

 As discussed in Chapter 6, one alternative is to use a pure untimed
C/C � � -based flow. Such a flow should feature a C/C � � analysis and synthe-
sis engine that allows you to perform microarchitecture trade-offs and evaluate
their effects in terms of size/are and speed/clock cycles. Such a flow facilitates
improving the performance of a design, thereby allowing it to make use of a
slower speed grade if required.

 Key Concept

 We commonly think of IP in terms of hardware design functions, but some IP
may come in the form of software routines. For example, consider a communica-
tions function that might be realized as a hardware implementation in the FPGA
fabric or as a software stack running on the embedded processor. In the latter
case, you might decide to purchase the software stack routines from a third
party, in which case you are essentially acquiring software IP.

CH008-H8974.indd 190CH008-H8974.indd 190 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

191Chapter | 8 Choosing the Right Device

www.newnespress.com

 FUTURE FPGA DEVELOPMENTS

 One thing is certain—any predictions of the future that we might make are
probably going to be of interest only for the purposes of saying, “ Well, we
didn’t see that coming, did we? ” If you had told me back in 1980 when I started
my career in electronics that one day we’d be designing with devices contain-
ing hundreds of millions of logic gates and the devices would be reconfigurable
like today’s SRAM-based FPGAs, I’d have laughed my socks off. Xilinx now
has a family of 65-nm FPGA products on the market with over a billion transis-
tors on one chip.

 Super-fast I/O
 When it comes to the gigabit transceivers discussed in Chapter 2, today’s high-
end FPGA chips typically sport one or more of these transceiver blocks, each
of which has multiple channels. Each channel can carry 2.5 Gbps of real data;
so four channels have to be combined to achieve 10 Gbps. Furthermore, an
external device has to be employed to convert an incoming optical signal into
the four channels of electrical data that are passed to the FPGA. Conversely,
this device will accept four channels of electrical data from the FPGA and con-
vert them into a single outgoing optical signal. Some FPGAs today can accept
and generate these 10 Gbps optical signals internally.

 Insider Info

 On the bright side, once a design team has selected an FPGA vendor and become
familiar with a product family, it tends to stick with that family for quite some time,
which makes life (in the form of the device selection process) much easier for
subsequent projects.

 Insider Info

 Another technology that may come our way at some stage in the future is FPGA-
to-FPGA and FPGA-to-ASIC wireless or wireless-like interchip communications.
With regard to my use of the term wireless-like, I’m referring to techniques such as
the experimental work currently being performed by Sun Microsystems on inter-
chip communication based on extremely fast, low-powered capacitive coupling.
This requires the affected chips to be mounted very (VERY) close to each other on
the circuit board, but should offer interchip signal speeds 60 times higher than the
fastest board-level interconnect technologies available today.

 Super-fast Confi guration
 The vast majority of today’s FPGAs are configured using a serial bit-stream
or a parallel stream only 8 bits wide. This severely limits the way in which

CH008-H8974.indd 191CH008-H8974.indd 191 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

FPGAs: Instant Access192

www.newnespress.com

these devices can be used in reconfigurable computing-type applications.
Quite some time ago (somewhere around the mid-1990s), a team at Pilkington
Microelectronics (PMEL) in the United Kingdom came up with a novel FPGA
architecture in which the device’s primary I/O pins were also used to load the
configuration data. This provided a superwide bus (256 or more pins/bits) that
could program the device in a jiffy.

 As an example of where this sort of architecture might be applicable,
consider the fact that there is a wide variety of compressor/decompressor
(CODEC) algorithms that can be used to compress and decompress audio and
video data. If you have a system that needs to decompress different files that
were compressed using different algorithms, then you are going to need to sup-
port a variety of different CODECs.

 Assuming that you wished to perform this decompression in hardware using
an FPGA, then with traditional devices you would either have to implement
each CODEC in its own device or as a separate area in a larger device. You
wouldn’t wish to reprogram the FPGA to perform the different algorithms on
the fly because this would take from 1 to 2.5 seconds with a large component,
which is too long for an end user to wait (we demand instant gratification these
days). By comparison, in the case of the PMEL architecture, the reconfigura-
tion data could be appended to the front of the file to be processed (Figure 8-1).

 The idea was that the configuration data would flood through the wide bus,
program the device in a fraction of a second, and be immediately followed by
the main audio or video data file to be decompressed. If the next file to be
processed required a different CODEC, then the appropriate configuration file
could be used to reprogram the device.

 This concept was applicable to a wide variety of applications. Unfortunately,
the original incarnation of this technology fell by the wayside, but it’s not

Files containing configuration data
for different CODEC algorithms

Audio and video files compressed
using different CODEC algorithms

PMEL
FPGA

 FIGURE 8-1 A wide configuration bus.

CH008-H8974.indd 192CH008-H8974.indd 192 6/21/2008 6:59:01 PM6/21/2008 6:59:01 PM

193Chapter | 8 Choosing the Right Device

www.newnespress.com

beyond the bounds of possibility that something like this could reappear in the
not-so-distant future.

 More Hard IP
 In the case of technology nodes of 90 nm and below, it’s possible to squeeze
so many transistors onto a chip that we are almost certainly going to see an
increased amount of hard IP blocks for such things as communications functions,
special-purpose processing functions, microprocessor peripherals, and the like.

 Analog and Mixed-signal Devices
 Traditional digital FPGA vendors have a burning desire to grab as many of
the functions on a circuit board as possible and to suck these functions into
their devices. In the short term, this might mean that FPGAs start to include
hard IP blocks with analog content such as analog-to-digital (A/D) and digital-
to-a nalog (D/A) converters. Such blocks would be programmable with regard
to such things as the number of quanta (width) and the dynamic range of the
analog signals they support. They might also include amplification and some
filtering and signal conditioning functions.

 Furthermore, over the years a number of companies have promoted differ-
ent flavors of field-programmable analog arrays (FPAAs). Thus, there is more
than a chance that predominantly digital FPGAs will start to include areas of
truly programmable analog functionality similar to that provided in pure FPAA
devices.

 ASMBL and Other Architectures
 In 2003, Xilinx announced their Application Specific Modular BLock
(ASMBL™) architecture. The idea here is that you have an underlying c olumn-
based architecture, where the folks at Xilinx have put a lot of effort into design-
ing different flavors of columns for such things as:

 General-purpose programmable logic
 Memory
 DSP-centric functions
 Processing functions
 High-speed I/O functions
 Hard IP functions
 Mixed-signal functions

 Xilinx provides a selection of off-the-shelf devices, each with different mixes
of column types targeted toward different application domains (Figure 8-2).

 Different Granularity
 As we discussed in Chapter 2, FPGA vendors and university students have
spent a lot of time researching the relative merits of 3-, 4-, 5-, and even 6-input

CH008-H8974.indd 193CH008-H8974.indd 193 6/21/2008 6:59:02 PM6/21/2008 6:59:02 PM

FPGAs: Instant Access194

www.newnespress.com

LUTs. In the past, some devices were created using a mixture of different LUT
sizes, such as 3-input and 4-input LUTs, because this offered the promise of
optimal device utilization. For a variety of reasons, the vast majority of today’s
FPGAs contain only 4-input LUTs, but it’s not beyond the range of possibility
that future offerings will sport a mixture of different LUT sizes.

 Embedding FPGA Cores in ASIC Fabric
 The cost of developing a modern ASIC at the 90-nm technology node is hor-
rendous. This problem is compounded by the fact that, once you’ve completed
a design and built the chip, your algorithms and functions are effectively “ fro-
zen in silicon. ” This means that if you have to make any changes in the future,
you’re going to have to regenerate the design, create a new set of photo-masks
(costing around $1 million), and build a completely new chip.

 To address these issues, some users are interested in creating ASICs with
FPGA cores embedded into the fabric. Apart from anything else, this means
that you can use the same design for multiple end applications without having
to create new mask sets.

 I also think that we are going to see increased deployment of structured
ASICs and that these will lend themselves to sporting embedded FPGA cores
because their design styles and tools will exhibit a lot of commonality.

 MRAM-based Devices
 In Chapter 1, we introduced the concept of MRAM. MRAM cells have the
potential to combine the high speed of SRAM, the storage capacity of DRAM,

Memory

DSP

DSP

Logic

Logic

Hard IP

A
pp

lic
at

io
n

do
m

ai
n

B

A
pp

lic
at

io
n

do
m

ai
n

A

Memory

 FIGURE 8-2 Using the underlying ASMBL architecture to create a variety of off-the-shelf devices
with domain-specific functionality.

CH008-H8974.indd 194CH008-H8974.indd 194 6/21/2008 6:59:02 PM6/21/2008 6:59:02 PM

195Chapter | 8 Choosing the Right Device

www.newnespress.com

and the nonvolatility of FLASH, all while consuming a miniscule amount of
power. MRAM-based memory chips are now available, and other devices, such
as MRAM-based FPGAs, will probably start to appear soon.

 Don’t Forget the Design Tools
 As we discussed above, some FPGAs now contain 1 billion transistors or
more. Existing HDL-based design flows in which designs are captured at the
RTL-level of abstraction are already starting to falter with the current genera-
tion of devices, and it won’t be long before they essentially grind to a halt.

 One useful step up the ladder will be increasing the level of design abstrac-
tion by using the pure C/C � � -based flows introduced in Chapter 6. Really
required, however, are true system-level design environments that help users
explore the design space at an extremely high level of abstraction. In addition
to algorithmic modeling and verification, these environments will aid in parti-
tioning the design into its hardware and software components.

 These system-level environments will also need to provide performance
analysis capabilities to aid users in evaluating which blocks are too slow when
realized in software and, thus, need to be implemented in hardware, and which
blocks realized in hardware should really be implemented in software so as to
optimize the use of the chip’s resources.

 People have been talking about this sort of thing for ages, and various
available environments and tools go some way toward addressing these issues.
In reality, however, such applications have a long way to go with regard to
their capabilities and ease of use.

 Expect the Unexpected
 Before closing, I’d just like to reiterate that anything you or I might guess at
for the future is likely to be a shallow reflection of what actually comes to pass.
There are device technologies and design tools that have yet to be conceived,
and when they eventually appear on the stage (and based on past experience,
this will be sooner than we think), we are all going to say, “ WOW! What a cool
idea! ” and “ Why didn’t I think of that? ” Good grief, I LOVE electronics!

CH008-H8974.indd 195CH008-H8974.indd 195 6/21/2008 6:59:02 PM6/21/2008 6:59:02 PM

FPGAs: Instant Access196

www.newnespress.com

 TABLE 8-1 Choosing an FPGA

 1. Already deal with a specifi c vendor or product family? Any compelling
reasons to change?

 2. Which technology to use?

 3. ASIC equivalent gates or FPGA system gates?

 4. I/O pin requirements?

 5. I/O interface technology?

 6. Acceptable packaging options?

 7. Need special options such as gigabit transceivers or embedded functions
like adders, multipliers, MACs, RAMS?

 8. Need embedded processor cores? If so, hard or soft?

 9. IP requirements?

 10. Which speed grade?

 INSTANT SUMMARY

 Table 8-1 shows the general approach for choosing an FPGA device.

CH008-H8974.indd 196CH008-H8974.indd 196 6/21/2008 6:59:02 PM6/21/2008 6:59:02 PM

www.newnespress.com

 A
 16-bit shift register , 53
 AND gate , 6
 AND gate , 6
 Altera , 24 , 25 , 43 , 68 , 142 , 144 , 189
 Amorphous silicon , 7 , 8
 Analog and mixed-signal devices , 193
 Antifuse-based FPGA , 16 – 17 , 51 , 187
 Antifuse technology , 7 – 8
 Application programming interface (API) , 96
 Application-specifi c integrated circuits

(ASICs) , 2
 Application-specifi c standard parts (ASSPs) , 2
 Applications, of FPGAs , 3 – 4
 Architectural features, of FPGAs:

 CLBs vs. LABs vs. slices , 23
 CLBs and LABs , 25 – 6
 distributed RAMs , 26
 logic cell (LC) , 24
 logic element (LE) , 24
 shift registers , 26 – 7
 slicing and dicing , 24 – 5

 clock managers , 33 – 6
 clock trees , 32 – 3
 coarse-grained architecture , 18
 core voltages vs. I/O supply voltages , 37 – 8
 embedded adders , 28 – 9
 embedded multipliers , 27 – 9
 embedded processor cores , 29

 hard microprocessor cores , 30 – 1
 soft microprocessor cores , 31 – 2

 embedded RAMs , 27
 fi ne-grained architecture , 18 , 19
 general-purpose I/O:

 confi gurable I/O impedances , 37
 confi gurable I/O standards , 36 – 7

 gigabit transceivers , 38 – 40
 multiple standards , 39

 intellectual property (IP) , 40 – 4
 block/core generators , 43 – 4
 handcrafted IP , 41 – 3

 logic blocks:
 LUT-based approach , 20 – 1

Index

 LUT vs. distributed RAM vs. SR , 22 – 3
 MUX-based approach , 19 – 20

 medium-grained architecture , 19
 programming technologies:

 antifuse-based devices , 16 – 17
 E 2 PROM/FLASH-based devices , 17 – 18
 hybrid FLASH-SRAM devices , 18
 SRAM-based devices , 14 – 15

 system gates vs. real gates , 44 – 6
 Architecturally aware FPGA fl ows , 93
 ASIC fabric, embedded FPGA cores in , 194
 ASIC hardware , 126
 ASIC-to-FPGA design , 71 – 2
 ASIC vs. FPGA designs , 61

 asynchronous design practices:
 asynchronous structures , 65
 combinational loops , 65
 delay chains , 65

 clock considerations:
 clock balancing , 65 – 6
 clock domains , 65
 clock gating vs. clock enabling , 66
 PLLs and clock conditioning circuitry ,

 66
 reliable data transfer, across multiclock

domains , 66
 coding styles , 62
 fl ip-fl ops, with set and reset inputs , 67
 global resets and initial conditions , 67
 latches , 67
 levels of logic , 64
 migration:

 ASIC-to-FPGA , 71 – 2
 FPGA only , 69
 FPGA-to-ASIC , 70 – 1
 FPGA-to-FPGA , 69 – 70

 pipelining , 62 – 3
 resource sharing , 67 – 8
 state machine encoding , 68
 test methodologies , 69

 ASMBL architecture , 185 , 193
 Assertion, defi nition of , 176
 Assertion-based verifi cation (ABV) , 175

index-h8974.indd 197index-h8974.indd 197 6/20/2008 3:27:41 PM6/20/2008 3:27:41 PM

Index198

www.newnespress.com

 Assertions/properties , 175 , 176 , 183
 specifi cation techniques , 178 – 9

 Asynchronous design practices:
 asynchronous structures , 65
 combinational loops , 65
 delay chains , 65

 Augmented C/C � � -based fl ows , 117
 alternatives , 119 – 20

 Automated reasoning , 175
 Automatic test pattern generation (ATPG) , 69
 Auto-skew correction, in clock managers , 35 – 6

 B
 Back-end tools , 81
 Basic code coverage , 182
 Basic resources and packaging requirements ,

 187 – 8
 Behavioral level of abstraction , 91
 Bidirectional buffers , 106
 Bit fi les , 49
 Bitstream encryption , 15
 Block-level IP environments , 138 – 9
 Block RAM , 27
 Boolean equations , 90 , 91
 Boundary scan technique , 58 – 9
 Branch coverage , 182
 Built-in self-test (BIST) , 69
 Bus functional models (BFMs) , 172
 Bus interface model (BIM) , 108
 Bytes , 55

 C
 C vs. C � � , 110 – 11
 C/C � � -based design fl ow , 108

 ASIC vs. FPGA , 70 – 1
 C/C � � model, of CPU , 150
 C/C � � synthesis abstraction, different levels

of , 123 – 4
 Cadence Design Systems , 97
 Case statement synthesis , 104
 Central processing unit (CPU) , 140 , 141 , 148 ,

 149 , 150
 Choosing an FPGA , 185

 basic resources and packaging , 187 – 8
 embedded multipliers and RAMS , 188 – 9
 embedded processor cores , 189
 future FPGA developments , 191

 analog and mixed-signal devices , 193
 ASIC fabric, embedded FPGA cores

in , 194
 ASMBL , 193
 design tools , 195

 different granularity , 193 – 4
 hard IP blocks , 193
 MRAM-based devices , 194 – 5
 super-fast confi guration , 191 – 3
 super-fast I/O , 191

 general-purpose I/O interfaces , 188
 gigabit I/O capabilities , 189
 IP availability , 189
 speed grades , 190
 technology , 187

 CLBs vs. LABs vs. Slices , 23
 CLBs and LABs , 25 – 6
 distributed RAMs , 26
 logic cell (LC) , 24
 logic element (LE) , 24
 shift registers , 26 – 7
 slicing and dicing , 24 – 5

 Clock balancing , 65 – 6
 Clock domains , 65 , 71
 Clock gating vs. clock enabling , 66
 Clock managers:

 auto-skew correction , 35 – 6
 frequency synthesis , 33 – 4
 jitter removal , 33 , 34
 phase shifting , 34 – 5

 Clock trees , 32 – 3
 Clunky fl at schematics , 86 , 87
 Coarse-grained architecture , 18
 Code coverage , 182 – 3
 Co-Design Automation , 101
 Combinational loops , 61 , 65
 Compressor/decompressor (CODEC)

algorithm , 192
 Computer-aided design (CAD) , 81
 Computer-aided engineering (CAE) , 81
 Condition coverage , 183
 Confi gurable I/O impedances , 37
 Confi gurable I/O standards , 36 – 7
 Confi gurable logic block (CLB) , 25 – 6 ,

 83 , 85
 Confi guration bitstream , 49
 Confi guration cells , 50 – 1
 Confi guration commands , 49
 Confi guration data , 49
 Confi guration fi les , 49
 Confi guration port usage , 53

 parallel load:
 with FPGA as master , 55 – 6
 with FPGA as slave , 56 – 7

 serial load:
 with FPGA as master , 54 – 5
 with FPGA as slave , 57 – 8

 Constants usage , 104

index-h8974.indd 198index-h8974.indd 198 6/20/2008 3:27:41 PM6/20/2008 3:27:41 PM

199Index

www.newnespress.com

 Constraints , 177
 Core voltages vs. supply voltage , 37 – 8
 Corner case , 180
 Corner condition , 179 – 80
 CoWare , 3 , 127
 Cycle-based simulators , 163 – 5

 D
 D-type fl ip-fl op , 79 , 80
 Daisy-chaining FPGAs , 55
 Daughter clocks , 33 , 34 , 35
 Declarative , 177
 Deep submicron (DSM) , 14
 Delay chains , 61 , 65
 Delay-locked loops (DLLs) , 36
 Design Automation Conference (DAC) , 99
 Design fl ows , 108

 augmented C/C � � -based fl ows , 117
 alternatives , 119 – 20

 C vs. C � � , 110 – 11
 C/C � � model, of CPU , 150
 C/C � � synthesis abstraction, different

levels of , 123 – 4
 C/C � � -based design fl ows , 108
 concurrent vs. sequential nature, of

C/C � � , 110 – 11
 DSP-based design fl ows , 125 – 6
 DSP implementations , 126

 DSP algorithm , 128 – 30
 DSP-related embedded FPGA

resources , 130 – 1
 software running on DSP core , 127 – 8
 system-level evaluation and algorithmic

verifi cation , 126 – 7
 embedded processor-based design fl ows ,

 140
 hard microprocessor cores , 142 – 3
 soft microprocessor cores , 143 – 4

 FPGA, using:
 as its own developmental environment ,

 147
 FPGA-centric design fl ows, for DSPs , 131

 block-level IP environments , 138 – 9
 domain-specifi c languages , 131 – 3
 fl oating-point vs. fi xed-point

representations , 133 – 4
 system-level design and simulation

environments , 133
 system/algorithmic level, to C/C � � ,

 137 – 8
 system/algorithmic level, to RTL ,

 134 – 6 , 136 – 7
 testbench , 139

 hardware modeler, physical chip in , 150
 instruction set simulator , 151
 mixed DSP and VHDL/Verilog

environments , 139 – 40
 mixed-language design and verifi cation

environments , 124 – 5
 partitioning design, into hardware and

software components , 145 – 7
 pure C/C � � -based fl ows , 120 – 3
 RTL model, of CPU , 150
 systemC-based fl ows , 112

 alternatives , 114 – 17
 levels of abstraction , 113 – 14

 visibility improvement, in design , 147 – 8
 Design tools , 195

 code coverage , 182 – 3
 formal verifi cation , 174

 assertion/property specifi cation
techniques , 178 – 9

 fl avors , 174 – 6
 static formal vs. dynamic formal

verifi cation , 179 – 82
 terminologies , 176 – 7

 HDL to C conversion , 182
 logic/HDL synthesis technology , 166
 performance analysis , 183
 physically aware synthesis technology , 167
 replication , 168 – 9
 resynthesis , 169
 retiming , 168
 simulation tool:

 cycle-based simulators , 163 – 165
 delay modeling , 160 – 3
 event-driven logic simulators , 156 – 8
 logic simulator, choosing , 165 – 6
 logic values , 158 – 9
 mixed-language simulation , 159 – 60

 timing analysis:
 static timing analysis (STA) , 169 – 70
 statistical static timing analysis , 170 – 1

 verifi cation:
 environments , 173
 simulation results, analyzing , 174
 testbenches creation , 173
 verifi cation IP , 171 – 2

 Device under test (DUT) , 171 , 172
 Digital signal processing (DSP) , 3 – 4

 DSP-based design fl ows , 125
 alternative implementations , 126 – 31
 FPGA-centric design fl ows , 131 – 9
 mixed DSP and VHDL/Verilog

environments , 139 – 40
 Direct Programming Interface (DPI) , 102

index-h8974.indd 199index-h8974.indd 199 6/20/2008 3:27:41 PM6/20/2008 3:27:41 PM

Index200

www.newnespress.com

 Distributed RAMs , 26 , 53 , 188
 Domain-specifi c languages (DSLs) , 108 , 131 – 2
 DSP algorithm , 128 – 30
 DSP implementations , 126

 DSP algorithms , 128 – 30
 DSP-related embedded FPGA resources ,

 130 – 1
 software running, on DSP core , 127 – 8
 system-level evaluation and algorithmic

verifi cation , 126 – 7
 DSP-based design fl ows , 125 – 6
 DSP-related embedded FPGA resources , 130 – 1
 Dynamic formal verifi cation , 175

 vs. static formal verifi cation , 179 – 82
 Dynamic RAM (DRAM) , 8

 E
 e verifi cation language , 173
 e-RAMs , 27
 E 2 PROM-based devices , 17 – 18
 EDA vendors , 70 , 88 , 89 , 94 , 103
 Electrically erasable PLDs (EEPLDs/E 2 PLDs) ,

 11
 Electrically erasable programmable read-only

memories (EEPROMs/E 2 PROMs) , 11
 Electronic design automation (EDA) , 75 , 81
 Electronic system level (ESL) environment , 145
 Embedded adders , 28 – 9
 Embedded microcontrollers , 4
 Embedded multipliers , 27 – 9 , 189
 Embedded processor-based design fl ows , 140

 hard microprocessor cores , 142 – 3
 soft microprocessor cores , 143 – 4

 Embedded processor cores , 59 – 60 , 29 , 189
 hard microprocessor cores , 30 – 1
 soft microprocessor cores , 31 – 2

 Embedded RAMs , 27
 Emitter-coupled logic (ECL) , 162 , 28
 EPROM , see Erasable programmable read-

only memory
 Erasable PLDs (EPLDs) , 11
 Erasable programmable read-only memory

(EPROM) , 9 , 10 , 11
 Event wheel , 156 – 7
 Event , 177
 Event-driven logic simulators , 156 – 8
 Expression coverage , 183

 F
 Fast carry chain , 27
 Fast Fourier transform (FFT) , 96
 Field-effect transistor (FET) , 13 – 14

 Field programmable analog arrays (FPAAs) ,
 185 , 193

 Field programmable gate arrays (FPGAs)
 applications , 3 – 4
 defi nition , 1
 need for , 1 – 3
 technologies:

 antifuse technology , 7 – 8
 FLASH-based technologies , 9 – 11
 fusible-link technology , 4 – 6
 SRAM-based technology , 8 – 9

 Fine-grained architecture , 18 , 19
 Firm IP , 41
 Fixed-point representations:

 vs. fl oating-point representations , 133 – 4
 FLASH-based devices , 17 – 18 , 51
 FLASH-based FPGA , 17 , 187
 FLASH-based technologies , 9 – 11
 Flat vs. hierarchical schematics:

 clunky fl at schematics , 86 , 87
 hierarchical block-based schematics , 87 – 8

 Flip-fl ops, with set and reset inputs , 67
 Floating-point representations:

 vs. fi xed-point representations , 133 – 4
 Foreign language translation , 159
 Formal verifi cation (FV) , 174

 assertion/property specifi cation techniques ,
 178 – 9

 fl avors , 174 – 6
 static formal vs. dynamic formal

verifi cation , 179 – 82
 terminologies , 176 – 7

 FPGA-centric design fl ows, for DSPs , 131
 block-level IP environments , 138 – 9
 domain-specifi c languages , 131 – 3
 fl oating-point vs. fi xed-point

representations , 133 – 4
 system-level design and simulation

environments , 133
 system/algorithmic level:

 to C/C � � , 137 – 8
 to RTL , 134 – 6 , 136 – 7

 testbench , 139
 FPGA only design , 69
 FPGA-to-ASIC design , 70 – 1
 FPGA-to-FPGA design , 69 – 70
 FPGA vendors , 14 , 24 , 40 , 43 , 45 , 70 , 88 , 103 ,

 144 , 166 , 186 , 189 , 190
 “ fred-in-the-shed ” -type operations , 2
 “ frozen in silicon ” , 2 , 194
 Functional coverage , 183
 Functional level of abstraction , 90
 Functional verifi cation , 76 , 83 , 171

index-h8974.indd 200index-h8974.indd 200 6/20/2008 3:27:42 PM6/20/2008 3:27:42 PM

201Index

www.newnespress.com

 Fusible-link technology , 4 – 6
 Future FPGA developments , 191

 analog and mixed-signal devices , 193
 ASIC fabric, embedded FPGA cores in ,

 194
 ASMBL architecture , 193
 design tools , 195
 different granularity , 193 – 4
 hard IP blocks , 193
 MRAM-based devices , 194 – 5
 super-fast confi guration , 191 – 3
 super-fast I/O , 191

 “ fuzzy ” clock , 33 , 34

 G
 Gate-level design , 75 , 76
 Gate-level netlist , 76 , 77 , 78 , 79 , 80 , 86 , 90 , 92
 Gate-level netlist and pure untimed C/C � � ,

 122
 Gate level of abstraction , 90
 Gateway Design Automation , 96 , 97
 General-purpose I/O interfaces , 188
 General-purpose microprocessor , 126 , 140
 Gigabit I/O capabilities , 189
 Gigabit transceivers , 38

 multiple standards , 39 – 40
 Global resets and initial conditions , 67
 Graphical design entry , 95 – 6

 H
 Handcrafted IP , 41 – 3
 Hard IP blocks , 40 , 41 , 193
 Hard microprocessor core , 30 – 1 , 108 , 142 – 3
 Hard-wired mode pins , 54
 Hardware description languages (HDLs) , 75
 Hardware description languages (HDL)-based

design fl ows:
 architecturally aware FPGA fl ows , 93
 bidirectional buffers , 106
 constants usage , 104
 graphical design entry , 95 – 6
 internal tri-state buffers , 105 – 6
 latchware inference , 104
 levels of abstraction , 89 – 91
 logic vs. Physically aware synthesis , 93 – 4
 mixed-language designs , 99 – 100
 resource sharing , 104 – 5
 serial vs. parallel multiplexers , 103 – 4
 simple (early) HDL-based ASIC fl ow , 91 – 2
 simple (early) HDL-based FPGA fl ow , 92 – 3
 Superlog and SystemVerilog , 101 – 2
 SystemC , 102

 unifi ed design language for integrated
circuits , 100 – 1

 Verilog HDL , 96 – 8
 VHDL and VITAL , 98 – 9

 Hardware modeler, physical chip in , 150
 Hardware verifi cation languages (HVLs) , 173
 HDL synthesis technology , 166
 HDL to C conversion , 182
 HDL Wars , 100
 Hierarchical block-based schematics , 87 – 8
 HL delay , 160 , 161
 Hybrid FLASH-SRAM devices , 18
 IEEE 1364 , 98

 I
 Implementation-level coverage , 183
 “ Incontext ” assertion/properties , 177
 Inertial delay model , 162
 Instruction set simulator (ISS) , 108 , 151
 In-system programmable (ISP) device , 1
 Integrated development environment (IDE) , 144
 Intellectual property (IP) , 14 , 40

 availability , 189
 handcrafted IP , 41 – 3
 IP block/core generators , 43 – 4

 J
 Jitter removal, in clock managers , 33 , 34
 JTAG port usage , 58 – 9

 L
 Language interference manual (LRM) , 98
 Latches , 67
 Latchware inference , 104
 Latency , 61 , 64
 Levels of abstraction , 89 – 91
 Levels of logic , 61
 LH delay , 160 , 161
 Linux , 112
 Logic array block (LAB) , 25
 Logic blocks:

 LUT-based approach , 20 – 1
 LUT vs. distributed RAM vs. SR , 22 – 3
 MUX-based approach , 19 – 20

 Logic cell (LC) , 24 , 188
 Logic element (LE) , 24 , 188
 Logic minimization , 75
 Logic simulation , 156
 Logic simulators , 76 , 78 – 9

 choosing , 165 – 6
 Logic values , 158 – 9
 Logic vs. physically aware synthesis , 93 – 4

index-h8974.indd 201index-h8974.indd 201 6/20/2008 3:27:42 PM6/20/2008 3:27:42 PM

Index202

www.newnespress.com

 Logic/HDL synthesis technology , 166
 LUT-based logic block , 20 – 1
 LUT vs. distributed RAM vs. SR , 22 – 3
 LUT/CLB-level netlist , 147

 M
 MAC , see Multiply-and-accumulate
 Main FPGA fabric , 30 – 1
 Main memory (MEM) , 140
 Mapping , 84
 Mathworks, The , 126 , 127 , 133
 MATLAB , 127 , 132
 Medium-grained architecture , 19
 Microarchitecture defi nition tasks , 108
 Microblaze , 144
 Microcontroller , 108
 Microprocessor unit (MPU) , 140
 Microsecond logic , 29 , 145
 Millisecond logic , 29 – 30 , 145
 Min:typ:max delays , 160 , 161
 Mixed-language designs , 99 – 100

 and verifi cation environments , 124 – 5
 Mixed-language simulation , 159 – 60
 Mixed-level design capture environment , 95
 Model checking , 174
 MOS transistor , 9 , 10
 MRAM-based devices , 194 – 5
 Multichip module (MCM) , 30 , 142
 Multiple programming chain , 53
 Multiply-and-accumulate (MAC) , 28 – 9 , 131
 MUX-based logic block , 19 – 20

 N
 Nios , 144
 Nonrecurring engineering (NRE) , 2
 NOT gate , 6

 O
 “ One-hot ” encoding scheme , 68
 One-time programmable (OTP) device , 1 , 6 , 51
 Open International Verilog (OVI) , 98
 Open verifi cation library (OVL) , 180 , 181
 OpenVera Assertions (OVA) , 180 , 181
 OpenVera ™ , 180
 Optimization , 75
 OVA language , 178

 P
 Packing , 84
 Parallel load:

 with FPGA as master , 55 – 6 , 57
 with FPGA as slave , 56 – 7

 Parallel multiplexers vs. serial multiplexers ,
 103 – 4

 Parallel statement, in augmented C/C � �
language , 118

 Partitioning design, into hardware and software
components , 145 – 7

 Performance analysis , 183
 Phase-locked loops (PLLs) , 36

 and clock conditioning circuitry , 66
 Physical layer communications , 4
 Physically aware synthesis technology , 167
 PicoBlaze , 144
 Picosecond and nanosecond logic , 29 , 145
 Pilkington Microelectronics (PMEL) , 192
 Pipelined design , 163 , 164
 Pipelining , 61 , 62 – 3
 Place-and-route software , 82 , 85
 PLDs , see Programmable logic devices
 Polygonal editors , 81
 Post-place-and-route simulation , 86
 Pragma , 107 , 177 , 179
 Procedural , 177
 Programmable logic devices (PLDs) , 1 – 2
 Programming (confi guring), an FPGA , 49

 antifuse-based FPGAs , 51
 confi guration cells , 50 – 1
 confi guration port usage , 53

 parallel load with FPGA, as master ,
 55 – 6

 parallel load with FPGA, as slave , 56 – 7
 serial load with FPGA, as master ,

 54 – 5
 serial load with FPGA, as slave , 57 – 8

 embedded processor usage , 59 – 60
 JTAG port usage , 58 – 9
 SRAM-based FPGAS , 51

 distributed RAMs , 53
 multiple programming chains , 53
 programming embedded (block)

RAMs , 52
 quickly reinitializing device , 53

 Programming embedded (block) RAMs , 52
 Programming language interface (PLI) , 96
 Programming technologies, of FPGAs:

 antifuse-based devices , 16 – 17
 E 2 PROM/FLASH-based devices , 17 – 18
 hybrid FLASH-SRAM devices , 18
 SRAM-based devices , 14

 security issues , 15
 Property, defi nition of , 176
 Property specifi cation language (PSL) , 178 ,

 181
 Pure C/C � � -based fl ows , 120 – 3

index-h8974.indd 202index-h8974.indd 202 6/20/2008 3:27:42 PM6/20/2008 3:27:42 PM

203Index

www.newnespress.com

 Q
 Quantization , 134
 Quantizers , 134
 Quickly reinitializing device , 53

 R
 Real gates vs. system gates , 44 – 6
 Reconfi gurable computing (RC) , 4
 Register transfer level (RTL) , 41 , 75 , 90 ,

 108 – 9 , 110 , 150 , 171
 Reliable data transfer across multiclock

domains , 66
 Replication , 168 – 9
 Resource sharing , 67 – 8 , 104 – 5
 Resynthesis , 169
 Retiming , 168

 S
 SCAN chain insertion , 69
 Schematic-based design fl ows , 76

 back-end tools , 81
 CAE and CAD tools , 81
 fl at vs. hierarchical schematics , 86 – 8
 schematic-driven FPGA design fl ows , 88
 simple (early) schematic-driven ASIC fl ow ,

 81 – 3
 simple (early) schematic-driven FPGA

fl ow , 83 – 6
 Schematic-driven FPGA design fl ows , 88
 Schematic diagrams , 75 , 76 , 77
 Sequential statement, in augmented C/C � �

language , 118
 Serial load:

 with FPGA, as master , 54 – 5
 with FPGA, as slave , 57 – 8

 Serial multiplexers vs. parallel multiplexers ,
 103 – 4

 Shift registers , 26 – 7
 Signal Processing Worksystem (SPW) , 127
 Simple (early) HDL-based ASIC fl ow , 91 – 2
 Simple (early) HDL-based FPGA fl ow , 92 – 3
 Simple (early) schematic-driven ASIC fl ow ,

 81 – 2
 Simple (early) schematic-driven FPGA fl ow , 83

 mapping , 84
 packing , 84
 place-and-route , 85
 post-place-and-route simulation , 86
 timing analysis , 86

 Simulation primitives , 77
 Simulation tools:

 cycle-based simulators , 163 – 5

 delay modeling , 160 – 3
 event-driven logic simulators , 156 – 8
 logic simulator, choosing , 165 – 6
 logic values , 158 – 9
 mixed-language simulation , 159 – 60

 Simulink® , 127 , 133
 Skew , 32 , 35
 Slicing, and dicing , 24 – 5
 Soft core , 108
 Soft IP , 40 – 1
 Soft microprocessor cores , 31 – 2 , 143 – 4
 Special languages , 178
 Specifi cation-level coverage , 183
 Speed grades , 190
 SRAM-based devices , 14 – 15
 SRAM-based FPGAS , 51 , 187

 multiple programming chains , 53
 programming embedded (Block) RAMs ,

 52 – 3
 quickly reinitializing device , 53

 SRAM confi guration cells, visualization of , 52
 Standard delay format (SDF) , 86 , 97 , 158
 State coverage , 183
 State machine encoding , 68
 State variables , 179
 Static formal verifi cation , 175

 vs. dynamic formal verifi cation , 179 – 82
 Static RAM (SRAM)-based technology , 8 – 9
 Static timing analysis (STA) , 86 , 160 , 169 – 70
 Statistical static timing analysis , 170 – 1
 Stimulus , 78 – 9

 see also Test vectors
 Structured ASICs , 185
 Sugar language , 178 , 182
 Super-fast confi guration, of FPGA , 191 – 3
 Super-fast I/O, of FPGA , 191
 Superlog, and SystemVerilog , 101 – 2
 Supply voltage vs. core voltages , 37 – 8
 Switch level of abstraction , 90
 Synopsis , 101
 Synthesis:

 logic/HDL synthesis technology , 166
 physically aware synthesis technology , 167
 replication , 168 – 9
 resynthesis , 169
 retiming , 168

 Synthesis tools , 93 , 94
 System/algorithmic level:

 to C/C � � , 137 – 8
 to RTL , 134 – 6 , 136 – 7

 System gates vs. real gates , 44 – 6
 System-level design and simulation

environments , 133

index-h8974.indd 203index-h8974.indd 203 6/20/2008 3:27:42 PM6/20/2008 3:27:42 PM

Index204

www.newnespress.com

 System level of abstraction , 91
 System-level evaluation and algorithmic

verifi cation , 126 – 7
 System-on-chip (SoC) , 3 , 110
 SystemC , 102 , 112
 SystemC 1.0 , 112
 SystemC 2.0 , 112 , 116
 SystemC-based fl ows , 112

 alternatives , 114 – 17
 levels of abstraction , 113 – 14

 SystemVerilog , 101 – 2 , 178
 SystemVerilog 3.0 , 101

 T
 Technology background, of FPGAs , 187

 antifuse technology , 7 – 8
 FLASH-based technologies , 9 – 11
 fusible-link technology , 4 – 6
 SRAM-based technology , 8 – 9

 Test vectors , 78 – 9
 see also Stimulus

 Testbench , 139 , 173
 “ The Stripe ” , 30
 Three-band delay model , 163 , 164
 Time-division multiplexing (TDM) , see

 Resource sharing
 Timebase unit , 160
 Timing analysis , 86

 static timing analysis , 169 – 70
 statistical static timing analysis , 170 – 1

 Timing analysis program , 82
 Timing verifi cation , 76
 “ Traditional ” design fl ows , 75

 HDL-based design fl ows , 89 – 106
 schematic-based design fl ows , 76 – 83

 back-end tools like layout , 81
 CAE and CAD tools , 81
 fl at vs. hierarchical schematics , 86 – 8
 schematic-driven FPGA design fl ows

today , 88
 simple (early) schematic-driven ASIC

fl ow , 81 – 3
 simple (early) schematic-driven FPGA

fl ow , 83 – 6

 Transistor-transistor logic (TTL) , 162
 Transmission gate-based LUT , 21
 Transport delay model , 162 – 3
 Tri-state buffers , 105 – 6
 Turing machines , 128

 U
 Ultradeep submicron (UDSM) , 14
 Unifi ed design language for integrated circuits

(UDL/I) , 100 – 1
 “ Use-it-or-lose-it ” considerations , 67

 V
 Value change dump (VCD) fi le , 158 , 174
 Vera® , 180
 Verifi cation:

 environments , 173
 languages , 180 – 1
 simulation results, analyzing , 174
 testbenches creation , 173
 verifi cation IP , 171 – 2

 Verilog , 159 , 179
 Verilog HDL , 96 – 8

 vs.VHDL , 100
 Very high speed integrated circuit (VHSIC)

program , 98
 VHDL Initiative toward ASIC Libraries

(VITAL) , 99
 VHDL International , 101
 VHSIC HDL (VHDL) , 98 – 9 , 159

 vs. Verilog , 100
 and VITAL , 98 – 9

 Visibility improvement, in design , 147 – 8
 Vulcan Death Grip , 88

 W
 Wizard application , 186

 X
 Xilinx , 144 , 191 , 193
 Xilinx LC , 24

index-h8974.indd 204index-h8974.indd 204 6/20/2008 3:27:42 PM6/20/2008 3:27:42 PM

	cover.jpg
	sdarticle.pdf
	About the Author

	sdarticle_001.pdf
	Chapter 1: Why Use FPGAs?
	Applications
	Some Technology Background
	Instant summary

	sdarticle_002.pdf
	Chapter 2: FPGA Architectures
	More on Programming Technologies
	Fine-, medium-, and coarse-grained architectures
	Logic Blocks
	LUT versus Distributed RAM versus SR
	CLBs versus LABs versus Slices
	Slicing and Dicing
	Embedded RAMs
	Embedded Multipliers, Adders, etc.
	Embedded Processor Cores
	Clock Managers
	General-purpose I/O
	Gigabit Transceivers
	Intellectual Property (IP)
	System Gates versus Real Gates
	Instant summary

	sdarticle_003.pdf
	Chapter 3: Programming (Configuring) an FPGA
	Configuration Cells
	Antifuse-based FPGAs
	SRAM-based FPGAs
	Using the Configuration Port
	Using the JTAG Port
	Using an Embedded Processor
	Instant summary

	sdarticle_004.pdf
	Chapter 4: FPGA vs. ASIC Designs
	When You Switch from ASIC to FPGA Design, or Vice Versa
	Coding Styles
	Pipelining and Levels of Logic
	Asynchronous design practices
	Clock considerations
	Register and latch considerations
	Resource sharing (time-division multiplexing)
	State machine encoding
	Test methodologies
	Migrating ASIC Designs to FPGAs and Vice Versa
	Instant summary

	sdarticle_005.pdf
	Chapter 5: Traditional Design Flows
	Schematic-based Design Flows
	HDL-Based Design Flows
	Instant Summary

	sdarticle_006.pdf
	Chapter 6: Other Design Flows
	C/C11 Based Design Flows
	DSP-Based Design Flows
	Embedded Processor-Based Design Flows
	Instant Summary

	sdarticle_007.pdf
	Chapter 7: Simulation Tools
	Synthesis (logic/HDL versus physically aware)
	Timing analysis
	Verification in general
	Formal verification
	Miscellaneous
	Instant Summary

	sdarticle_008.pdf
	Chapter 8: Choosing the Right Device
	Choosing
	Technology
	Basic Resources and Packaging
	General-purpose I/O Interfaces
	Embedded Multipliers, RAMs, etc.
	Embedded Processor Cores
	Gigabit I/O Capabilities
	IP Availability
	Speed Grades
	Future FPGA Developments
	Instant summary

	sdarticle_009.pdf
	Index

