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                    The Fundamentals 

 Chapter 1 

          FPGA Defi nitions      

          ●       Field programmable gate arrays  (FPGAs) are digital integrated circuits (ICs) that 
contain confi gurable (programmable) blocks of logic along with confi gurable 
interconnects between these blocks. Design engineers can confi gure, or pro-
gram, such devices to perform a tremendous variety of tasks.  

      ●      Depending on how they are implemented, some FPGAs may only be pro-
grammed a single time, while others may be reprogrammed over and over 
again. Not surprisingly, a device that can be programmed only one time is 
referred to as  one-time programmable  (OTP).  

      ●      The  “ fi eld programmable ”  portion of the FPGA’s name refers to the fact that its 
programming takes place  “ in the fi eld ”  (as opposed to devices whose internal 
functionality is hardwired by the manufacturer). This may mean that FPGAs are 
confi gured in the laboratory, or it may refer to modifying the function of a device 
resident in an electronic system that has already been deployed in the outside 
world. If a device is capable of being programmed while remaining resident in a 
higher-level system, it is referred to as being  in-system programmable  (ISP).  

      ●      In this book, we’ll be referring to programmable logic devices (PLDs), 
a pplication-specifi c integrated circuits (ASICs), application-specifi c standard 
parts (ASSPs), and—of course—FPGAs.         

    WHY USE FPGAS? 

   Various aspects of PLDs, ASICs, and FPGAs will be discussed later in more 
detail. For now, we need only be aware that PLDs are devices whose i nternal 
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architecture is predetermined by the manufacturer, but are created in such a 
way that they can be configured by engineers in the field to perform a variety 
of different functions. In comparison to an FPGA, however, these devices con-
tain a relatively limited number of logic gates, and the functions they can be 
used to implement are much smaller and simpler. 

   At the other end of the spectrum are ASICs and ASSPs that can contain 
hundreds of millions of logic gates and can be used to create incredibly large and 
complex functions. ASICs and ASSPs are based on the same design processes 
and manufacturing technologies. Both are custom-designed to address a specific 
application, the only difference being that an ASIC is designed and built to order 
for use by a specific company, while an ASSP is marketed to multiple customers.

        ALERT      !

    When we use the term ASIC from now on, it may be assumed that we are also 
referring to ASSPs unless otherwise noted or where such interpretation is incon-
sistent with the context.       

   Although ASICs offer the ultimate in size (number of transistors), com-
plexity, and performance, designing and building one is an extremely time-
consuming and expensive process, with the added disadvantage that the final 
design is  “ frozen in silicon ”  and cannot be modified without creating a new 
version of the device. 

   Thus, FPGAs occupy a middle ground between PLDs and ASICs because 
their functionality can be customized in the field like PLDs, but they can con-
tain millions of logic gates and be used to implement extremely large and 
c omplex functions that previously could be realized using only ASICs. 

    —Technology Trade-offs— 
          ●      The cost of an FPGA design is much lower than that of an ASIC (although 

the ensuing ASIC components are much cheaper in large production runs).  
      ●      Implementing design changes is much easier in FPGAs.  
      ●      Time to market for FPGAs is much faster.    

   FPGAs make many small, innovative design companies viable because—
in addition to their use by large system design houses—FPGAs facilitate 
 “ Fred-in-the-shed ” -type operations. This means they allow individual engi-
neers or small groups of engineers to realize their hardware and software con-
cepts on an FPGA-based test platform without having to incur the enormous 
nonrecurring engineering (NRE) costs or purchase the expensive toolsets asso-
ciated with ASIC designs. Hence, there were estimated to be only 1,500 to 
4,000 ASIC design starts and 5,000 ASSP design starts in 2003 (these numbers 
are falling dramatically year by year), as opposed to an educated  “ guesstimate ”  
of around 450,000 FPGA design starts in the same year.
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    APPLICATIONS 

   When they first arrived on the scene in the mid-1980s, FPGAs were largely 
used to implement glue logic, medium-complexity state machines, and rela-
tively limited data processing tasks. During the early 1990s, as the size and 
sophistication of FPGAs started to increase, their big markets at that time were 
in the telecommunications and networking arenas, both of which involved pro-
cessing large blocks of data and pushing that data around. Later, toward the 
end of the 1990s, the use of FPGAs in consumer, automotive, and industrial 
applications underwent a humongous growth spurt. 

   FPGAs are often used to prototype ASIC designs or to provide a hardware 
platform on which to verify the physical implementation of new algorithms. 
However, their low development cost and short time-to-market mean that they 
are increasingly finding their way into final products (some of the major FPGA 
vendors actually have devices they specifically market as competing directly 
against ASICs). 

   High-performance FPGAs containing millions of gates are currently avail-
able. Some of these devices feature embedded microprocessor cores, high-
speed input/output (I/O) devices, and the like. The result is that today’s FPGAs 
can be used to implement just about anything, including communications 
devices and software-defined radio; radar, image, and other digital signal pro-
cessing (DSP) applications; and all the way up to  system-on-chip  (SoC) com-
ponents that contain both hardware and software elements.

        Insider Info      

    These design-start numbers are a little hard to pin down because it’s difficult to 
get everyone to agree what a  “ design start ”  actually is. In the case of an ASIC, for 
example, should we include designs that are canceled in the middle, or should we 
only consider designs that make it all the way to tape-out? Things become even 
fluffier when it comes to FPGAs due to their reconfigurability. Perhaps even more 
telling is the fact that, after pointing me toward an FPGA-centric industry analyst’s 
Web site, a representative from one FPGA vendor added,  “ But the values given 
there aren’t very accurate. ”  When I asked why, he replied with a sly grin,  “ Mainly 
because we don’t provide him with very good data! ”          

        FAQs      

    What are the major market segments for FPGAs? 

          ●       ASIC and custom silicon : FPGAs are increasingly being used to implement 
designs that previously were realized by using only ASICs and custom silicon.  

      ●       Digital signal processing : Today’s FPGAs can contain embedded multipliers, 
dedicated arithmetic routing, and large amounts of on-chip RAM, all of which 
facilitate DSP operations. When coupled with the massive parallelism provided 
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    SOME TECHNOLOGY BACKGROUND 

   The first FPGA devices contained only a few thousand simple logic gates (or 
the equivalent), and the flows used to design these components—p redominantly 
based on the use of schematic capture—were easy to understand and use. By 
comparison, today’s FPGAs are incredibly complex, and there are more design 
tools, flows, and techniques than you can swing a stick at. In this section we’ll 
look at some technology basics.

        Key Concept      

    What distinguishes an FPGA from an ASIC is embodied in the name:            

ProgrammableField Gate Array

    Fusible-link Technology 

   Let’s first consider a very simple programmable function with two inputs 
called  a  and  b  and a single output  y  ( Figure 1-1   ). 

   The inverting NOT gates associated with the inputs mean that each input 
is available in both its  true  (unmodified) and  complemented  (inverted) form. 
Observe the locations of the potential links. In the absence of any of these 

by FPGAs, this results in outperforming the fastest DSP chips by a factor of 500 
or more.  

      ●       Embedded microcontrollers : Low-cost microcontrollers, which contain on-chip 
program and instruction memories, timers and I/O peripherals wrapped around 
a processor core, are used in small control functions. With falling FPGA prices, 
however, and increased capability to implement a soft processor core com-
bined with a selection of custom I/O functions, FPGAs are becoming increas-
ingly attractive for embedded control applications.  

      ●       Physical layer communications : FPGAs have long been used for the glue logic 
that interfaces between physical layer communication chips and high-level 
networking protocol layers. Now high-end FPGAs can contain multiple high-
speed transceivers, which means that communications and networking func-
tions can be consolidated into a single device.  

      ●       Reconfi gurable computing (RC) : FPGAs have created this new market seg-
ment. This refers to exploiting the inherent parallelism and reconfi gurabil-
ity provided by FPGAs to  “ hardware accelerate ”  software algorithms. Various 
companies are currently building huge FPGA-based reconfi gurable computing 
engines for tasks ranging from hardware simulation to cryptography analysis to 
discovering new drugs.           
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links, all of the inputs to the AND gate are connected via pull-up resistors to 
a logic 1 value. In turn, this means that the output  y  will always be driving a 
logic 1, which makes this circuit a very boring one in its current state. To make 
this function more interesting, we need a mechanism that allows us to establish 
one or more of the potential links. This mechanism is  fusible-link technology.  
In this case, the device is manufactured with all of the links in place, with each 
link referred to as a  fuse  ( Figure 1-2   ). 

   These fuses are similar to the fuses you find in household products like a 
television. If anything untoward occurs such that the television starts to con-
sume too much power, its fuse will burn out, resulting in an open circuit, which 
protects the rest of the unit from harm. Of course, the fuses in silicon chips are 
formed using the same processes that are employed to create the transistors 
and wires on the chip, so they’re microscopically small. 

a 

Logic 1 

y � 1 (N/A) & 
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Pull-up resistors 
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NOT 

NOT 

AND 

 FIGURE 1-1          A simple programmable function.    
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 FIGURE 1-2          Augmenting the device with unprogrammed fusible links.    
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   Although fusible-link technology is not used in today’s FPGAs, it sets the 
stage for understanding technologies that are, so we’ll explore it briefly. When 
you purchase a programmable device based on fusible links, all the fuses are 
initially intact. This means that, in its unprogrammed state, the output from 
our example function is always logic 0. (Any 0 presented to the input of an 
AND gate will cause its output to be 0, so if input  a  is 0, the output from the 
AND will be 0. Alternatively, if input  a  is 1, then the output from its NOT 
gate—which we shall call  !a —will be 0, and once again the output from the 
AND will be 0. A similar situation occurs in the case of input  b .) 

   The point is that design engineers can selectively remove undesired fuses 
by applying pulses of relatively high voltage and current to the device’s inputs. 
For example, consider what happens if we remove fuses F af  and F bt  ( Figure 1-3   ). 

   Removing these fuses disconnects the complementary version of input  a  
and the true version of input  b  from the AND gate (the pull-up resistors asso-
ciated with these signals cause their associated inputs to the AND to be pre-
sented with logic 1 values). This leaves the device to perform its new function, 
which is  y       �       a   &   !b . (The  “  &  ”  character in this equation is used to represent 
the AND, while the  “ ! ”  character is used to represent the NOT.) This process 
of removing fuses is typically called  programming  the device, but it may also 
be called  blowing  the fuses or  burning  the device.

a 

Fat

Logic 1 

y � a & !b & 

b 

Fbf

Pull-up resistors 

NOT 

NOT 

AND 

 FIGURE 1-3          Programmed fusible links.    

        Key Concept      

    Devices based on fusible-link technologies are    one-time programmable   , or 
OTP, because once a fuse has been blown, it can’t be replaced and there’s no 
going back.        
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    FPGA Programming Technologies 

   Three different major technologies are in use today for programming FPGAs: 
antifuse, SRAM, and FLASH EPROM. 

    Antifuse Technology 
   As a diametric alternative to fusible-link technologies, we have their antifuse 
counterparts, in which each configurable path has an associated link called an 
antifuse. In its unprogrammed state, an antifuse has such a high resistance that 
it may be considered an open circuit (a break in the wire).

        How It Works      
    Figure 1-4     shows how the device appears when first purchased. However, antifuses 
can be selectively  “ grown ”  (programmed) by applying pulses of relatively high voltage 
and current to the device’s inputs. For example, if we add the antifuses associated with 
the complementary version of input a and the true version of input b, our device will 
now perform the function y      �      !a  &  b  ( Figure 1-5   ). 

    An antifuse commences life as a microscopic column of amorphous (noncrystal-
line) silicon linking two metal tracks. In its unprogrammed state, the amorphous 
silicon acts as an insulator with a very high resistance in excess of 1 billion ohms  
( Figure 1-6a   ). 

    The act of programming this particular element effectively  “ grows ”  a link, known 
as a via, by converting the insulating amorphous silicon in conducting polysilicon  
( Figure 1-6b ).       
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Unprogrammed
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NOT 

NOT 

AND 

 FIGURE 1-4          Unprogrammed antifuse links.    
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    —Technology Trade-offs— 
          ●      Not surprisingly, devices based on antifuse technologies are OTP, because 

once an antifuse has been grown, it cannot be removed, and there’s no 
changing your mind.  

      ●      Antifuse devices tend to be faster and require lower power.     

    SRAM-based Technology 
   There are two main versions of semiconductor RAM devices: dynamic RAM 
(DRAM) and static RAM (SRAM). DRAM technology is of very little interest 
with regard to programmable logic, so we will focus on SRAM.

a 

Logic 1 

y � !a & b & 

b 

Pull-up resistors 

Programmed 
antifuses 

NOT 

NOT 

AND 

 FIGURE 1-5          Programmed antifuse links.    

Amorphous silicon column Polysilicon via

Metal
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Metal

Substrate

(a) Before programming (b) After programming

 FIGURE 1-6          Growing an antifuse.    

        Key Concept      

    SRAM is currently the dominant FPGA technology.       
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   The  “ static ”  qualifier associated with SRAM means that—once a value has 
been loaded into an SRAM cell—it will remain unchanged unless it is specifi-
cally altered or until power is removed from the system.

        How It Works      
    Consider the symbol for an SRAM-based programmable cell  (  Figure 1-7    ). 

    The entire cell comprises a multitransistor SRAM storage element whose output 
drives an additional control transistor. Depending on the contents of the storage ele-
ment (logic 0 or logic 1), the control transistor will be either OFF (disabled) or ON 
(enabled).  

    SRAM is currently the dominant FPGA technology.        

SRAM 

 FIGURE 1-7          An SRAM-based programmable cell.    

 

    —Technology Trade-offs— 
          ●      A disadvantage of SRAM-based programmable devices is that each cell 

consumes a significant amount of silicon real estate because the cells are 
formed from four or six transistors configured as a latch.  

      ●      Another disadvantage is that the device’s configuration data (programmed 
state) will be lost when power is removed from the system, so these devices 
always have to be reprogrammed when the system is powered on.  

      ●      Advantages are that such devices can be reprogrammed quickly and eas-
ily, and SRAM uses a standard fabrication technology that is always being 
improved upon.     

    FLASH-based Technologies 
   A relatively new technology known as FLASH is being used in some FPGAs 
today. This technology grew out of an earlier technology known as  erasable 
programmable read-only memory  (EPROM) that allows devices to be pro-
grammed, erased, and reprogrammed with new data. We will first look at how 
EPROMs work before discussing FLASH. 

   An EPROM transistor has the same basic structure as a standard MOS tran-
sistor, but with the addition of a second polysilicon floating gate isolated by 
layers of oxide ( Figure 1-8   ).
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        How It Works      
    In its unprogrammed state, the floating gate is uncharged and doesn’t affect the nor-
mal operation of the control gate. In order to program the transistor, a relatively high 
voltage (on the order of 12V) is applied between the control gate and drain terminals. 
This causes the transistor to be turned hard on, and energetic electrons force their way 
through the oxide into the floating gate in a process known as hot (high energy) elec-
tron injection. When the programming signal is removed, a negative charge remains 
on the floating gate. This charge is very stable and will not dissipate for more than 
a decade under normal operating conditions. The stored charge on the floating gate 
inhibits the normal operation of the control gate and, thus, distinguishes those cells 
that have been programmed from those that have not. This means we can use such a 
transistor to form a memory cell  (  Figure 1-9    ). 

    In its unprogrammed state, as provided by the manufacturer, all of the floating gates 
in the EPROM transistors are uncharged. In this case, placing a row line in its active 
state will turn on all of the transistors connected to that row, thereby causing all of the 
column lines to be pulled down to logic 0 via their respective transistors. In order to 
program the device, engineers can use the inputs to the device to charge the floating 
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 FIGURE 1-8          Standard MOS versus EPROM transistors.    
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 FIGURE 1-9          An EPROM transistor-based memory cell.    
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gates associated with selected transistors, thereby disabling those transistors. In these 
cases, the cells will appear to contain logic 1 values.  

    These devices were initially intended for use as programmable memories, but the 
same technology was applied to more general-purpose PLDs, which became known 
as erasable PLDs (EPLDs). The main problems with EPROMs are their expensive pack-
ages (with quartz windows through which ultraviolet (UV) radiation is used to erase 
the device) and the time it takes to erase them, on the order of 20 minutes.  

    The next rung up the technology ladder was electrically erasable programmable 
read-only memories (EEPROMs or E 2 PROMs). An E 2 PROM cell is approximately 2.5 
times larger than an equivalent EPROM cell because it comprises two transistors and 
the space between them  (  Figure 1-10    ). 

    The E2PROM transistor is similar to an EPROM transistor in that it contains a float-
ing gate, but the insulating oxide layers surrounding this gate are very much thinner. 
The second transistor can be used to erase the cell electrically. E2PROMs first saw the 
light of day as computer memories, but the same technology was eventually applied to 
PLDs, which became known as electrically erasable PLDs (EEPLDs or E2PLDs).  

    FLASH can trace its ancestry to both EPROM and EEPROM technologies. The name 
 “ FLASH ”  was originally coined to reflect this technology’s rapid erasure times compared 
to EPROM. Components based on FLASH can employ a variety of architectures. Some 
have a single floating gate transistor cell with the same area as an EPROM cell, but with 
the thinner oxide layers characteristic of an E2PROM component. These devices can 
be electrically erased, but only by clearing the whole device or large portions thereof. 
Other architectures feature a two-transistor cell similar to that of an E2PROM cell, 
thereby allowing them to be erased and reprogrammed on a word-by-word basis.        

 

    —Technology Trade-offs— 
          ●      FLASH FPGAs are nonvolatile like antifuse FPGAs, but they are also 

reprogrammable like SRAM FPGAs.  
      ●      FLASH FPGAs use a standard fabrication process like SRAM FPGAs and 

use lower power like antifuse FPGAs.  
      ●      FLASH FPGAs are relatively fast.      

E2PROM cell   

Normal
MOS transistor 

E2PROM
transistor

 FIGURE 1-10          An E2PROM—cell.    
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    INSTANT SUMMARY      

 TABLE 1-1          Summary of Programming Technologies  

   Technology  Symbol  Predominantly associated with ... 

   Fusible-link        SPLDs 

   Antifuse        FPGAs 

   EPROM        SPLDs and CPLDs 

   E 2 PROM/FLASH        SPLDs and CPLDs (some FPGAs) 

   SRAM   
SRAM

     FPGAs (some CPLDs) 
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                                       FPGA Architectures  

 Chapter 2 

                                Defi nitions      

   In this chapter we’ll discuss a plethora of architectural features of FPGAs. But first, 
some definitions. 

      ●      The term  fabric  is used throughout this book. In the context of a silicon chip, 
this refers to the underlying structure of the device, sort of like the phrase  “ the 
underlying fabric of civilization. ”   

      ●      When we talk about the  geometry  of an IC, we are referring to the size of the 
individual structures constructed on the chip, such as the portion of a fi eld-effect 
transistor (FET) known as its  channel . These structures are incredibly small. In 
the early to mid-1980s, devices were based on 3        μ m geometries, which means 
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    MORE ON PROGRAMMING TECHNOLOGIES 

    SRAM-based Devices 

   As seen in Chapter 1, the majority of FPGAs are based on the use of SRAM 
configuration cells, which means that they can be configured over and over 
again. The main advantages of this programming technology are that new 
design ideas can be quickly implemented and tested, while evolving standards 
and protocols can be accommodated relatively easily. Furthermore, when the 
system is first powered up, the FPGA can initially be programmed to perform 
one function such as a self-test or board/system test, and it can then be repro-
grammed to perform its main task. 

   Another big advantage of the SRAM-based approach is that these devices 
are at the forefront of technology. FPGA vendors can leverage the fact that many 
other companies specializing in memory devices expend tremendous resources 
on  research and development (R & D)  in this area. Furthermore, the SRAM cells 
are created using exactly the same CMOS technologies as the rest of the device, 
so no special processing steps are required in order to create these components. 

   Unfortunately, there’s no such thing as a free lunch. One downside of SRAM-
based devices is that they have to be reconfigured every time the system is pow-
ered up. This either requires the use of a special external memory device (which 
has an associated cost and consumes real estate on the board) or of an on-board 
microprocessor (or some variation of these techniques—see also Chapter 3). 

that their smallest structures were 3 millionths of a meter in size. Now, devices 
at 0.09        μ m have appeared.  

      ●      Any geometry smaller than around 0.5        μ m is referred to as  deep submicron 
(DSM) . At some point that is not well defi ned (or that has multiple defi nitions 
depending on whom one is talking to), we move into the  ultradeep submicron 
(UDSM)  realm.  

      ●      We’ll also discuss the important topic of  intellectual property  (IP) in this chap-
ter. This term refers to functional design blocks that have already been devel-
oped and can be purchased to put into an IC design. IP blocks can range all the 
way up to sophisticated communications functions and microprocessors. The 
more complex functions, like microprocessors, may be referred to as  “ cores. ”         

        Insider Info      

    When geometries dropped below 1        μ m, things became a little awkward, not the 
least because it’s a pain to keep saying things like  “ zero point one three microns. ”  
For this reason, when conversing it’s becoming common to talk in terms of nano, 
where one nano (short for nanometer) equates to a thousandth of a micron. 
Instead of mumbling  “ point zero nine microns ”  (0.09        μ m), one can simply 
 proclaim  “ ninety nano ”  (90 nano) and have done with it.       
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   On the bright side, some of today’s SRAM-based FPGAs support the 
concept of  bitstream encryption . In this case, the final configuration data is 
encrypted before being stored in the external memory device. The encryption 
key itself is loaded into a special SRAM-based register in the FPGA via its 
JTAG port (see also Chapter 3). In conjunction with some associated logic, this 
key allows the incoming encrypted configuration bitstream to be decrypted as 
it’s being loaded into the device. 

   The command/process of loading an encrypted bitstream automatically dis-
ables the FPGA’s read-back capability. This means that you will typically use 
unencrypted configuration data during development (where you need to use 
read-back) and then start to use encrypted data when you move into produc-
tion. (You can load an unencrypted bitstream at any time, so you can easily 
load a test configuration and then reload the encrypted version.)    

       —Technology Trade-offs— 
          ●      The main downside to the encrypted bitstream scheme is that you require a 

battery backup on the circuit board to maintain the contents of the encryp-
tion key register in the FPGA when power is removed from the system. 
This battery will have a lifetime of years or decades because it need only 
maintain a single register in the device, but it does add to the size, weight, 
complexity, and cost of the board.     

        ALERT!      

    Remember that there are reverse-engineering companies all over the world special-
izing in the recovery of  “ design IP. ”  And there are also a number of countries whose 
governments turn a blind eye to IP theft so long as the money keeps rolling in (you 
know who you are). So if a design is a high-profit item, you can bet that there are 
folks out there who are ready and eager to replicate it while you’re not looking.  

    In reality, the real issue here is not related to those stealing your IP by 
reverse-engineering the contents of the configuration file, but rather their abil-
ity to clone your design, irrespective of whether they understand how it works. 
Using readily available technology, it is relatively easy for someone to take a cir-
cuit board, put it on a  “ bed of nails ”  tester, and quickly extract a complete netlist 
for the board. This netlist can subsequently be used to reproduce the board. Now 
the only task remaining for the nefarious scoundrels is to copy your FPGA con-
figuration file from its boot PROM (or EPROM, E2PROM, or whatever), and they 
have a duplicate of the entire design.       

    Security Issues 
   Another consideration with regard to SRAM-based devices is that it can be 
difficult to protect your  intellectual property , or IP, in the form of your design. 
This is because the configuration file used to program the device is stored in 
some form of external memory.
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    Antifuse-based Devices 

   Unlike SRAM-based devices, which are programmed while resident in the 
system, antifuse-based devices are programmed off-line using a special device 
programmer. The proponents of antifuse-based FPGAs are proud to point to an 
assortment of (not-insignificant) advantages: 

    1.     First, these devices are  nonvolatile  (their configuration data remains when 
the system is powered down), which means that they are immediately 
available as soon as power is applied to the system, and they don’t require 
an external memory chip to store their configuration data, which saves the 
cost of an additional component and saves real estate on the board.  

    2.     Another noteworthy advantage of antifuse-based FPGAs is the fact that 
their interconnect structure is naturally  rad hard , which means they are 
relatively immune to the effects of radiation. This is of particular interest in 
the case of military and aerospace applications because the state of a con-
figuration cell in an SRAM-based component can be  “ flipped ”  if that cell 
is hit by radiation (of which there is a lot in space). By comparison, once 
an antifuse has been programmed, it cannot be altered in this way.   

        ALERT!      

    It should be noted that any flip-flops in these devices remain sensitive to radia-
tion, so chips intended for radiation-intensive environments must have their flip-
flops protected by triple redundancy design. This refers to having three copies of 
each register and taking a majority vote (ideally all three registers will contain 
identical values, but if one has been  “ flipped ”  such that two registers say 0 and 
the third says 1, then the 0s have it, or vice versa if two registers say 1 and the 
third says 0).       

    3.     Perhaps the most significant advantage of antifuse-based FPGAs is that 
their  configuration data is buried deep inside them, making it almost 
impossible to reverse-engineer the design . By default, it is possible for 
the device programmer to read this data out because this is actually how 
the programmer works. As each antifuse is being processed, the device pro-
grammer keeps on testing it to determine when that element has been fully 
programmed; then it moves on to the next antifuse. Furthermore, the device 
programmer can be used to automatically verify that the configuration was 
performed successfully (this is well worth doing when you’re talking about 
devices containing 50 million plus programmable elements). Once the 
device has been programmed, however, it is possible to set (grow) a special 
security antifuse that subsequently prevents any programming data (in the 
form of the presence or absence of antifuses) from being read out of the 
device. Even if the device is decapped (its top is removed), programmed 
and unprogrammed antifuses appear to be identical, and the fact that all of 
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the antifuses are buried in the internal metallization layers makes reverse-
engineering close to impossible.    

   Of course, the main disadvantage associated with antifuse-based devices is that 
they are OTP, so once you’ve programmed one, its function is set in stone. This 
makes these components a poor choice for use in a development or prototyp-
ing environment.   

       —Technology Trade-offs— 
          ●      Vendors of antifuse-based FPGAs may tout the fact that an antifuse-based 

device consumes only 20 percent (approximately) of the standby power of an 
equivalent SRAM-based component, that their operational power consumption 
is also significantly lower, and that their interconnect-related delays are smaller. 
Also, they might casually mention that an antifuse is much smaller and thus 
occupies much less real estate on the chip than an equivalent SRAM cell.  

      ●      They may neglect to mention, however, that antifuse devices also require 
extra programming circuitry, including a large, hairy programming transis-
tor for each antifuse.  

      ●      Also, antifuse technology requires the use of around three additional pro-
cess steps after the main manufacturing process has been qualified. For this 
(and related) reason, antifuse devices are always at least one—and usually 
several—generations (technology nodes) behind SRAM-based components, 
which effectively wipes out any speed or power consumption advantages 
that might otherwise be of interest.      

       E 2 PROM/FLASH-based Devices 

   E 2 PROM- or FLASH-based FPGAs are similar to their SRAM counterparts 
in that their configuration cells are connected together in a long shift-register-
style chain. These devices can be configured off-line using a device program-
mer. Alternatively, some versions are in-system programmable, or ISP, but 
their programming time is about three times that of an SRAM-based compo-
nent. However, they do have some advantages: 

    1.     Once programmed, the data they contain is  nonvolatile , so these devices 
would be  “ instant on ”  when power is first applied to the system.  

    2.     With regard to protection, some of these devices use the concept of a  mul-
tibit key , which can range from around 50 bits to several hundred bits in 
size. Once you’ve programmed the device, you can load your user-defined 
key (bit-pattern) to secure its configuration data. After the key has been 
loaded, the only way to read data out of the device, or to write new data 
into it, is to load a copy of your key via the JTAG port (this port is dis-
cussed later in this chapter and in Chapter 3). The fact that the JTAG port 
in today’s devices runs at around 20       MHz means that it would take billions 
of years to crack the key by exhaustively trying every possible value.  
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    3.     Two-transistor E 2 PROM and FLASH cells are approximately 2.5 times the 
size of their one-transistor EPROM cousins, but they are still way  smaller 
than their SRAM counterparts . This means that the rest of the logic can 
be much closer together, thereby  reducing interconnect delays .    

   On the downside, these devices require around five additional process steps 
on top of standard CMOS technology, which results in their lagging behind 
SRAM-based devices by one or more generations (technology nodes). Last but 
not least, these devices tend to have relatively high static power consumption 
due to their containing vast numbers of internal pull-up resistors.  

    Hybrid FLASH-SRAM Devices 

   Last but not least, there’s always someone who wants to add yet one more 
ingredient to the cooking pot. In the case of FPGAs, some vendors offer esoteric 
combinations of programming technologies. For example, consider a device 
where each configuration element is formed from the combination of a FLASH 
(or E 2 PROM) cell and an associated SRAM cell. 

   In this case, the FLASH elements can be preprogrammed. Then, when the 
system is powered up, the contents of the FLASH cells are copied in a mas-
sively parallel fashion into their corresponding SRAM cells. This technique 
gives you the nonvolatility associated with antifuse devices, which means the 
device is immediately available when power is first applied to the system. But 
unlike an antifuse-based component, you can subsequently use the SRAM cells 
to reconfigure the device while it remains resident in the system. Alternatively, 
you can reconfigure the device using its FLASH cells either while it remains 
in the system or off-line by means of a device programmer.   

    FINE-, MEDIUM-, AND COARSE-GRAINED ARCHITECTURES 

   It is common to categorize FPGA offerings as being either fine grained or 
coarse grained. In order to understand what this means, we first need to remind 
ourselves that the main feature that distinguishes FPGAs from other devices is 
that their underlying fabric predominantly consists of large numbers of rela-
tively simple programmable logic block  “ islands ”  embedded in a  “ sea ”  of pro-
grammable interconnect ( Figure 2-1   ). 

   In the case of a  fine-grained architecture , each logic block can be used to 
implement only a very simple function. For example, it might be possible to con-
figure the block to act as any 3-input function, such as a primitive logic gate (AND, 
OR, NAND, etc.) or a storage element (D-type flip-flop, D-type latch, etc.). 

   In the case of a  coarse-grained architecture , each logic block contains a 
relatively large amount of logic compared to their fine-grained counterparts. 
For example, a logic block might contain four 4-input LUTs, four multiplex-
ers, four D-type flip-flops, and some fast carry logic (see the following topics 
in this chapter for more details). 
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   An important consideration with regard to architectural granularity is that 
fine-grained implementations require a relatively large number of co nnections 
into and out of each block compared to the amount of functionality that can be 
supported by those blocks. As the granularity of the blocks increases to  medium-
grained  and higher, the amount of connections into the blocks decreases com-
pared to the amount of functionality they can support. This is important because 
the programmable interblock interconnect accounts for the vast majority of the 
delays associated with signals as they propagate through an FPGA.

Programmable
interconnect 

Programmable
logic blocks  

 FIGURE 2-1          Underlying FPGA fabric.    

        Insider Info      

    In addition to implementing glue logic and irregular structures like state machines, 
fine-grained architectures are said to be particularly efficient when executing sys-
tolic algorithms (functions that benefit from massively parallel implementations). 
These architectures are also said to offer some advantages with regard to traditional 
logic synthesis technology, which is geared toward fine-grained ASIC architectures.        

    LOGIC BLOCKS 

   There are two fundamental incarnations of the programmable logic blocks 
used to form the medium-grained architectures referenced in the previous sec-
tion: MUX (multiplexer) based and LUT (lookup table) based. 

    MUX-based 

   As an example of a MUX-based approach, consider one way in which the 
3-input function  y       �      ( a   &   b ) |  c  could be implemented using a block contain-
ing only multiplexers ( Figure 2-2   ). 
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   The device can be programmed such that each input to the block is p resented 
with a logic 0, a logic 1, or the true or inverse version of a signal ( a ,  b , 
or  c  in this case) coming from another block or from a primary input to the 
device. This allows each block to be configured in myriad ways to implement 
a plethora of possible functions. (The  x  shown on the input to the central multi-
plexer in  Figure 2-2  indicates that we don’t care whether this input is con-
nected to a 0 or a 1.)  

    LUT-based 

   The underlying concept behind a LUT is relatively simple. A group of input sig-
nals is used as an index (pointer) to a lookup table. The contents of this table are 
arranged such that the cell pointed to by each input combination contains the 
desired value. For example, let’s assume that we wish to implement the function: 

 y a b c� (  & ) �      

   This can be achieved by loading a 3-input LUT with the appropriate values. 
For the purposes of the following examples, we shall assume that the LUT is 
formed from SRAM cells (but it could be formed using antifuses, E2PROM, 
or FLASH cells, as discussed earlier in this chapter). A commonly used tech-
nique is to use the inputs to select the desired SRAM cell using a cascade of 
transmission gates as shown in  Figure 2-3   . (Note that the SRAM cells will also 
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 FIGURE 2-2          MUX-based logic block.    
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be connected together in a chain for configuration purposes—that is, to load 
them with the required values—but these connections have been omitted from 
this illustration to keep things simple.) 

   If a transmission gate is enabled (active), it passes the signal seen on its 
input through to its output. If the gate is disabled, its output is electrically dis-
connected from the wire it is driving. 

   The transmission gate symbols shown with a small circle (called a  “ bobble ”  or 
a  “ bubble ” ) indicate that these gates will be activated by a logic 0 on their control 
input. By comparison, symbols without bobbles indicate that these gates will be 
activated by a logic 1. Based on this understanding, it’s easy to see how different 
input combinations can be used to select the contents of the various SRAM cells.  

    —Technology Trade-offs— 
          ●      If you take a group of logic gates several layers deep, then a LUT approach 

can be very efficient in terms of resource utilization and input-to-output 
delays. (In this context,  “ deep ”  refers to the number of logic gates between 
the inputs and the outputs. Thus, the function illustrated in  Figure 2-4    would 
be said to be two layers deep.) However, one downside to a LUT-based 
architecture is that if you only want to implement a small function—such 
as a 2-input AND gate—somewhere in your design, you’ll end up using an 
entire LUT to do so. In addition to being wasteful in terms of resources, the 
resulting delays are high for such a simple function.  

      ●      By comparison, in the case of MUX-based architectures containing a 
 mixture of MUXes and logic gates, it’s often possible to gain access to 
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 FIGURE 2-3          A transmission gate-based LUT (programming chain omitted for purposes of 
clarity).    
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intermediate values from the signals linking the logic gates and the MUXes. 
In this case, each logic block can be broken down into smaller fragments, 
each of which can be used to implement a simple function. Thus, these 
architectures may offer advantages in terms of performance and silicon uti-
lization for designs containing large numbers of independent simple logic 
functions.  

      ●      It is said that MUX-based architectures have an advantage when it comes 
to implementing control logic along the lines of  “ if this input is  true  and 
this input is  false , then make that output  true  …  ”  However, some of these 
architectures don’t provide high speed carry logic chains, in which case 
their LUT-based counterparts are left as the leaders in anything to do with 
arithmetic processing.   

Required function Truth table 
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 FIGURE 2-4          Required function and associated truth table.    

        Insider Info      

    In the past, some devices were created using a mixture of different LUT sizes, such 
as 3-input and 4-input LUTs, because this offered the promise of optimal device 
utilization. However, one of the main tools in the design engineer’s treasure chest 
is logic synthesis, and uniformity and regularity are what a synthesis tool likes best. 
Thus, all the really successful architectures are currently based only on the use of 
4-input LUTs. (This is not to say that mixed-size LUT architectures won’t reemerge 
in the future as design software continues to increase in sophistication.)         

       LUT versus Distributed RAM versus SR 

   The fact that the core of a LUT in an SRAM-based device comprises a num-
ber of SRAM cells offers some interesting possibilities. In addition to its pri-
mary role as a lookup table, some vendors allow the cells forming the LUT 
to be used as a small block of RAM (the 16 cells forming a 4-input LUT, for 
example, could be cast in the role of a 16      �      1 RAM). This is referred to as 
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di stributed RAM because (a) the LUTs are strewn (distributed) across the sur-
face of the chip, and (b) this differentiates it from the larger chunks of block 
RAM (introduced later in this chapter). 

   Yet another possibility devolves from the fact that all of the FPGA’s con-
figuration cells—including those forming the LUT—are effectively strung 
together in a long chain ( Figure 2-5   ). 

   This aspect of the architecture is discussed in more detail in Chapter 3. The 
point here is that, once the device has been programmed, some vendors allow 
the SRAM cells forming a LUT to be treated independently of the main body 
of the chain and to be used in the form of a shift register. Thus, each LUT may 
be considered multifaceted ( Figure 2-6   ).   

    CLBS VERSUS LABS VERSUS SLICES 

   In addition to one or more LUTs, a programmable logic block will contain 
other elements, such as multiplexers and registers. But before we delve into 
this topic, we first need to wrap our brains around some terminology. 

From the previous
cell in the chain 

To the next cell
in the chain 

SRAM
cells

0 

1 

0 

0 

 FIGURE 2-5          Configuration cells linked in a chain.    

16-bit SR 

16 � 1 RAM 

4-input LUT 

 FIGURE 2-6          A multifaceted LUT.    
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    Logic Cells/Logic Elements 

   Each FPGA vendor has its own names for things. For example, the core build-
ing block in a modern FPGA from Xilinx is called a  logic cell  (LC). Among 
other things, an LC comprises a 4-input LUT (which can also act as a 16      �      1 
RAM or a 16-bit shift register), a multiplexer, and a register ( Figure 2-7 ).

        How It Works      
    The illustration presented in   Figure 2-7     is a gross simplification, but it serves our pur-
poses here. The register can be configured to act as a flip-flop, as shown in   Figure 2-7  , 
or as a latch. The polarity of the clock (rising-edge triggered or falling-edge triggered) 
can be configured, as can the polarity of the clock enable and set/reset signals (active-
high or active-low). In addition to the LUT, MUX, and register, the LC also contains a 
smattering of other elements, including some special fast carry logic for use in arithme-
tic operations (this is discussed in more detail a little later).  

    Just for reference, the equivalent core building block in an FPGA from Altera is 
called a  logic element  (LE). There are a number of differences between a Xilinx LC and 
an Altera LE, but the overall concepts are very similar.         

 

       Slicing and Dicing 

   The next step up the hierarchy is what Xilinx calls a slice (Altera and the other 
vendors have their own equivalent names). At the time of this writing, a slice 
contains two logic cells ( Figure 2-8   ). 

16-bit SR 

Flip-flop 

Clock 

MUX

y 

q 
e 
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b 
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d 

16�1 RAM 

4-input 
LUT 

Clock enable 

Set/reset 

 FIGURE 2-7          A simplified view of a Xilinx LC.    
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   The internal wires have been omitted from this illustration to keep things 
simple; it should be noted, however, that although each logic cell’s LUT, 
MUX, and register have their own data inputs and outputs, the slice has one set 
of clock, clock enable, and set/reset signals common to both logic cells.  

    CLBs and LABs 

   And moving one more level up the hierarchy, we come to what Xilinx calls 
a  configurable logic block  (CLB) and what Altera refers to as a  logic array 
block  (LAB). 

   Using CLBs as an example, some Xilinx FPGAs have two slices in each 
CLB, while others have four. At the time of this writing, a CLB equates to a 
single logic block in our original visualization of  “ islands ”  of programmable 
logic in a  “ sea ”  of programmable interconnect ( Figure 2-9   ). 

   There is also some fast programmable interconnect within the CLB. This 
interconnect (not shown in  Figure 2-9  for reasons of clarity) is used to connect 
neighboring slices.

16-bit SR 

16 � 1 RAM 

4-input 

LUT 

LUT MUX REG 

Logic cell (LC) 

16-bit SR 

16 � 1 RAM 

4-input 

LUT 

LUT MUX REG 

Logic cell (LC) 

Slice 

 FIGURE 2-8          A slice containing two logic cells.    
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    Distributed RAMs and Shift Registers 

   We previously noted that each 4-bit LUT can be used as a 16      �      1 RAM. And 
things just keep on getting better because, assuming the four-slices-per-CLB 
configuration illustrated in  Figure 2-9 , all of the LUTs within a CLB can be 
configured together to implement the following: 

      ●      Single-port 16               �      8 bit RAM  
      ●      Single-port 32               �      4 bit RAM  
      ●      Single-port 64               �      2 bit RAM  
      ●      Single-port 128              �      1 bit RAM  
      ●      Dual-port 16               �      4 bit RAM  
      ●      Dual-port 32               �      2 bit RAM  
      ●      Dual-port 64               �      1 bit RAM    

   Alternatively, each 4-bit LUT can be used as a 16-bit shift register. In this case, 
there are special dedicated connections between the logic cells within a slice 
and between the slices themselves that allow the last bit of one shift register to 

CLB CLB 

CLB CLB 

Logic cell 

Slice 

Logic cell 

Logic cell 

Slice 

Logic cell 

Logic cell 

Slice 

Logic cell 

Logic cell 

Slice 

Logic cell 

Configurable logic block (CLB) 

 FIGURE 2-9          A CLB containing four slices (the number of slices depends on the FPGA family).    

        Insider Info      

    The reason for having this type of logic-block hierarchy—LC  →  Slice (with two 
LCs)  →  CLB (with four slices)—is that it is complemented by an equivalent hier-
archy in the interconnect. Thus, there is fast interconnect between the LCs in a 
slice, then slightly slower interconnect between slices in a CLB, followed by the 
interconnect between CLBs. The idea is to achieve the optimum trade-off between 
making it easy to connect things together without incurring excessive intercon-
nect-related delays.        
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be connected to the first bit of another without using the ordinary LUT output 
(which can be used to view the contents of a selected bit within that 16-bit reg-
ister). This allows the LUTs within a single CLB to be configured together to 
implement a shift register containing up to 128 bits as required.

        FAQs      

    What is a fast carry chain? 

   A key feature of modern FPGAs is that they include the special logic and inter-
connect required to implement fast carry chains. In the context of the CLBs 
introduced in the previous section, each LC contains special carry logic. This is 
complemented by dedicated interconnect between the two LCs in each slice, 
between the slices in each CLB, and between the CLBs themselves. This special 
carry logic and dedicated routing boosts the performance of logical functions 
such as c ounters and arithmetic functions such as adders. The availability of these 
fast carry chains—in conjunction with features like the shift register incarnations 
of LUTs (discussed previously) and embedded multipliers and the like (intro-
duced in following sections)—provided the wherewithal for FPGAs to be used for 
a pplications like DSP.         

    EMBEDDED RAMS 

   Many applications require the use of memory, so FPGAs now include relatively 
large chunks of embedded RAM called  e-RAM  or  block RAM . Depending on 
the architecture of the component, these blocks might be positioned around the 
periphery of the device, scattered across the face of the chip in relative isola-
tion, or organized in columns, as shown in  Figure 2-10   . 

   Depending on the device, such a RAM might be able to hold anywhere 
from a few thousand to tens of thousands of bits. Furthermore, a device might 
contain anywhere from tens to hundreds of these RAM blocks, thereby provid-
ing a total storage capacity of a few hundred thousand bits all the way up to 
several million bits. 

   Each block of RAM can be used independently, or multiple blocks can be 
combined together to implement larger blocks. These blocks can be used for a 
variety of purposes, such as implementing standard single- or dual-port RAMs, 
first-in first-out (FIFO) functions, state machines, and so forth.  

    EMBEDDED MULTIPLIERS, ADDERS, ETC. 

   Some functions, like multipliers, are inherently slow if they are imple-
mented by connecting a large number of programmable logic blocks together. 
Since many applications require these functions, many FPGAs incorpo-
rate special hardwired multiplier blocks. These are typically located in 
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close  proximity to the embedded RAM blocks introduced in the previous 
point because these functions are often used in conjunction with each other 
( Figure 2-11   ). 

   Similarly, some FPGAs offer dedicated adder blocks. One operation 
very common in DSP-type applications is called a multiply-and-a ccumulate 

RAM blocks 

Multipliers 

Logic blocks 

 FIGURE 2-11          Bird’s-eye view of chip with columns of embedded multipliers and RAM blocks.    

Columns of embedded
RAM blocks 

Arrays of
programmable
logic blocks 

 FIGURE 2-10          Bird’s-eye view of chip with columns of embedded RAM blocks.    
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(MAC) ( Figure 2-12   ). As its name would suggest, this function multiplies two 
numbers together and adds the result to a running total stored in an accumulator.

x 

+ 

x 

+ 

A[n:0] 

B[n:0] Y[(2n � 1):0] 

Multiplier 

Adder 

Accumulator 

MAC 
 FIGURE 2-12          The functions forming a MAC.    

    EMBEDDED PROCESSOR CORES 

   Almost any portion of an electronic design can be realized in hardware (using 
logic gates and registers, etc.) or software (as instructions to be executed on a 
microprocessor). One of the main partitioning criteria is how fast you wish the 
various functions to perform their tasks: 

      ●      Picosecond and nanosecond logic: This has to run insanely fast, which 
mandates that it be implemented in hardware (in the FPGA fabric).  

      ●      Microsecond logic: This is reasonably fast and can be implemented either 
in hardware or software (this type of logic is where you spend the bulk of 
your time deciding which way to go).  

      ●      Millisecond logic: This is the logic used to implement interfaces such as 
reading switch positions and flashing light-emitting diodes (LEDs). It’s a 

        Key Concept      

    If the FPGA you are working with supplies only embedded multipliers, you will 
have to implement this function by combining the multiplier with an adder 
formed from a number of programmable logic blocks, while the result is stored 
in some associated flip-flops, in a block RAM, or in a number of distributed 
RAMs. Life becomes a little easier if the FPGA also provides embedded adders, 
and some FPGAs provide entire MACs as embedded functions.        
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pain slowing the hardware down to implement this sort of function (using 
huge counters to generate delays, for example). Thus, it’s often better to 
implement these tasks as microprocessor code (because processors give you 
lousy speed—compared to dedicated hardware—but fantastic complexity).    

   The fact is that the majority of designs make use of microprocessors in one 
form or another. Until recently, these appeared as discrete devices on the cir-
cuit board. Of late, high-end FPGAs have become available that contain one 
or more embedded microprocessors, which are typically referred to as micro-
processor cores. In this case, it often makes sense to move all of the tasks that 
used to be performed by the external microprocessor into the internal core. 
This provides a number of advantages, not the least being that it saves the cost 
of having two devices; it eliminates large numbers of tracks, pads, and pins on 
the circuit board; and it makes the board smaller and lighter. 

    Hard Microprocessor Cores 

   A hard microprocessor core is implemented as a dedicated, predefined block. 
There are two main approaches for integrating such a core into the FPGA: 

    1.     Locate it in a strip (actually called  “ The Stripe ” ) to the side of the main 
FPGA fabric ( Figure 2-13   ). In this scenario, all of the components are typi-
cally formed on the same silicon chip, although they could also be formed 
on two chips and packaged as a multichip module (MCM). The main FPGA 
fabric would also include the embedded RAM blocks, multipliers, and so 
on, but these have been omitted from this illustration to keep things simpler. 

uP 

RAM 

I/O 

etc. 

Main FPGA fabric 

Microprocessor 
core, special RAM, 

peripherals and 
I/O, etc. 

The “Stripe” 

 FIGURE 2-13          Bird’s-eye view of chip with embedded core outside of the main fabric.    
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    One advantage of this implementation is that the main FPGA fabric is 
identical for devices with and without the embedded microprocessor core, 
which can help make things easier for the design tools used by the engi-
neers. The other advantage is that the FPGA vendor can bundle a whole 
load of additional functions in the strip to complement the microprocessor 
core, such as memory, special peripherals, and so forth.     

    2.     An alternative is to embed one or more microprocessor cores directly into 
the main FPGA fabric. One-, two-, and even four-core implementations 
are currently available ( Figure 2-14   ). In this case, the design tools have to 
be able to take account of the presence of these blocks in the fabric; any 
memory used by the core is formed from embedded RAM blocks, and 
any peripheral functions are formed from groups of general-purpose pro-
grammable logic blocks. Proponents of this scheme will argue that there 
are inherent speed advantages to be gained from having the microprocessor 
core in intimate proximity to the main FPGA fabric.     

    Soft Microprocessor Cores 

   As opposed to embedding a microprocessor physically into the fabric of the 
chip, it is possible to configure a group of programmable logic blocks to act 
as a microprocessor. These are typically called soft cores, but they may be 
more precisely categorized as either  “ soft ”  or  “ firm ”  depending on the way 
in which the microprocessor’s functionality is mapped onto the logic blocks. 
Soft cores are simpler (more primitive) and slower than their hard-core 
counterparts.  

uP 

(a) One embedded core (b) Four embedded cores 

uP uP 

uP uP 

 FIGURE 2-14          Bird’s-eye view of chips with embedded cores inside the main fabric.    
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    —Technology Trade-offs— 
          ●       A soft core typically runs at 30 to 50 percent of the speed of a hard core.   
      ●       However, they have the advantage that you only need to implement a core if 

you need it and that you can instantiate as many cores as you require until 
you run out of resources in the form of programmable logic blocks.       

    CLOCK MANAGERS 

   All of the synchronous elements inside an FPGA—for example, the registers 
configured to act as flip-flops inside the programmable logic blocks—need to 
be driven by a clock signal. Such a clock signal typically originates in the out-
side world, comes into the FPGA via a special clock input pin, and is then 
routed through the device and connected to the appropriate registers. 

    Clock Trees 

   Consider a simplified representation that omits the programmable logic 
blocks and shows only the clock tree and the registers to which it is connected 
( Figure 2-15   ). 

   This is called a  clock tree  because the main clock signal branches again 
and again (the flip-flops can be considered the  “ leaves ”  on the end of the 
branches). This structure is used to ensure that all of the flip-flops see their 
versions of the clock signal as close together as possible. If the clock were 
distributed as a single long track driving all of the flip-flops one after another, 
then the flip-flop closest to the clock pin would see the clock signal much 
sooner than the one at the end of the chain. This is referred to as skew, and it 

Clock signal from 
outside world 

Clock 
tree 

Flip-flops 

Special clock 
pin and pad 

 FIGURE 2-15          A simple clock tree.    
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can cause all sorts of problems (even when using a clock tree, there will be 
a certain amount of skew between the registers on a branch and between 
branches). The clock tree is implemented using special tracks and is separate 
from the general-purpose programmable interconnect. The scenario shown 
above is actually very simplistic.  

    Clock Managers 

   Instead of configuring a clock pin to connect directly into an internal clock 
tree, that pin can be used to drive a special hard-wired function (block) called 
a  clock manager  that generates a number of daughter clocks ( Figure 2-16   ). 

   These daughter clocks may be used to drive internal clock trees or external 
output pins that can be used to provide clocking services to other devices on 
the host circuit board. Each family of FPGAs has its own type of clock man-
ager (there may be multiple clock manager blocks in a device), where different 
clock managers may support only a subset of the following features: 

     Jitter removal  : For the purposes of a simple example, assume that the clock 
signal has a frequency of 1       MHz (in reality, of course, this could be much, much 
higher). In an ideal environment each clock edge from the outside world would 
arrive exactly 1 millionth of a second after its predecessor. In the real world, 
however, clock edges may arrive a little early or a little late. As one way to visu-
alize this effect—known as  jitter —imagine if we were to superimpose multiple 
edges on top of each other; the result would be a  “ fuzzy ”  clock ( Figure 2-17   ). 
The FPGA’s clock manager can be used to detect and correct for this jitter and to 
provide  “ clean ”  daughter clock signals for use inside the device ( Figure 2-18   ). 

     Frequency synthesis  : It may be that the frequency of the clock signal being 
presented to the FPGA from the outside world is not exactly what the design 
engineers wish for. In this case, the clock manager can be used to generate 
daughter clocks with frequencies that are derived by multiplying or dividing 
the original signal. As a really simple example, consider three daughter clock 
signals: the first with a frequency equal to that of the original clock, the second 
multiplied to be twice that of the original clock, and the third divided to be 

Clock signal from 
outside world 

Special clock 
pin and pad 

Daughter clocks 
used to drive 

internal clock trees 
or output pins 

Clock 
manager 

etc. 

 FIGURE 2-16          A clock manager generates daughter clocks.    
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half that of the original clock ( Figure 2-19   ). Once again,  Figure 2-19  reflects 
very simple examples. In the real world, one can synthesize all sorts of internal 
clocks, such as an output that is four-fifths the frequency of the original clock. 

     Phase shifting  : Certain designs require the use of clocks that are phase 
shifted (delayed) with respect to each other. Some clock managers allow you 
to select from fixed phase shifts of common values such as 120° and 240° (for 
a three-phase clocking scheme) or 90°, 180°, and 270° (if a four-phase clock-
ing scheme is required). Others allow you to configure the exact amount of 
phase shift you require for each daughter clock. For example, let’s assume that 
we are deriving four internal clocks from a master clock, where the first is in 

Ideal clock signal 

1 2 3 4 

Real clock signal with jitter 

Cycle 1 

Cycle 2 

Cycle 3 

Cycle 4 

Superimposed cycles 

 FIGURE 2-17          Jitter results in a fuzzy clock.    

Special clock
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etc. 

Clock signal from
outside world

with jitter 

 FIGURE 2-18          The clock manager can remove jitter.    

1.0 � original clock frequency 

2.0 � original clock frequency 

0.5 � original clock frequency 

 FIGURE 2-19          Using the clock manager to perform frequency synthesis.    
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phase with the original clock, the second is phase shifted by 90°, the third by 
180°, and so forth ( Figure 2-20   ). 

     Auto-skew correction  : For the sake of simplicity, let’s assume that we’re 
talking about a daughter clock that has been configured to have the same fre-
quency and phase as the main clock signal coming into the FPGA. By default, 
however, the clock manager will add some element of delay to the signal as 
it performs its machinations. Also, more significant delays will be added by 
the driving gates and interconnect employed in the clock’s distribution. The 
result is that—if nothing is done to correct it—the daughter clock will lag 
behind the input clock by some amount. Once again, the difference between 
the two signals is known as  skew . Depending on how the main clock and the 
daughter clock are used in the FPGA (and on the rest of the circuit board), this 
can cause a variety of problems. Thus, the clock manager may allow a special 
input to feed the daughter clock. In this case, the clock manager will compare 
the two signals and specifically add additional delay to the daughter clock suf-
ficient to realign it with the main clock ( Figure 2-21   ). 

0° Phase shifted

90° Phase shifted

180° Phase shifted

270° Phase shifted

 FIGURE 2-20          Using the clock manager to phase-shift the daughter clocks.    
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or output pins 

Daughter clock (monitored
downstream of the clock manager)

fed back to special input 

 FIGURE 2-21          Deskewing with reference to the mother clock.    
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   To be a tad more specific, only the  prime  (zero phase-shifted) daughter 
clock will be treated in this way, and all of the other daughter clocks will be 
phase aligned to this prime daughter clock.  

    —Technology Trade-offs— 
          ●       Some FPGA clock managers are based on phase-locked loops (PLLs), 

while others are based on digital delay-locked loops (DLLs). PLLs have 
been used since the 1940s in analog implementations, but recent emphasis 
on digital methods has made it desirable to match signal phases digitally. 
PLLs can be implemented using either analog or digital techniques, while 
DLLs are by definition digital in nature.   

      ●       The proponents of DLLs say that they offer advantages in terms of precision, 
stability, power management, noise insensitivity, and jitter performance.       

    GENERAL-PURPOSE I/O 

   Today’s FPGA packages can have a thousand or more pins, which are arranged 
as an array across the base of the package. Similarly, when it comes to the silicon 
chip inside the package, flip-chip packaging strategies allow the power, ground, 
clock, and I/O pins to be presented across the surface of the chip. Purely for the 
purposes of these discussions (and illustrations), however, it makes things sim-
pler if we assume that all of the connections to the chip are presented in a ring 
around the circumference of the device, as indeed they were for many years. 

    Confi gurable I/O Standards 

   Let’s consider for a moment an electronic product from the perspective of the 
architects and engineers designing the circuit board. Depending on what they 
are trying to do, the devices they are using, the environment the board will 
operate in, and so on, these designers will select a particular standard to be 
used to transfer data signals. (In this context,  “ standard ”  refers to electrical 
aspects of the signals, such as their logic 0 and logic 1 voltage levels.) The 
problem is that there is a wide variety of such standards, and it would be pain-
ful to have to create special FPGAs to accommodate each variation. For this 
reason, an FPGA’s general-purpose I/O can be configured to accept and gen-
erate signals conforming to whichever standard is required. These general-
p urpose I/O signals will be split into a number of banks—we’ll assume eight 
such banks numbered from 0 to 7 ( Figure 2-22   ). 

   The interesting point is that each bank can be configured individually to sup-
port a particular I/O standard. Thus, in addition to allowing the FPGA to work 
with devices using multiple I/O standards, this allows the FPGA to actually be 
used to interface between different I/O standards (and to translate between 
different protocols that may be based on particular electrical standards).  
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    Confi gurable I/O Impedances 

   The signals used to connect devices on today’s circuit board often have fast 
edge rates (this refers to the time it takes the signal to switch between one 
logic value and another). In order to prevent signals reflecting back (bounc-
ing around), it is necessary to apply appropriate terminating resistors to the 
FPGA’s input or output pins. In the past, these resistors were applied as dis-
crete components that were attached to the circuit board outside the FPGA. 
However, this technique became increasingly problematic as the number of 
pins started to increase and their pitch (the distance between them) shrank. 
For this reason, today’s FPGAs allow the use of internal terminating resistors 
whose values can be configured by the user to accommodate different circuit 
board environments and I/O standards. 

    Core versus I/O Supply Voltages 

 TABLE 2-1          Supply Voltages versus Technology Nodes  

   Year  Supply (Core Voltage (V))  Technology Node (nm) 

   1998  3.3  350 

   1999  2.5  250 

   2000  1.8  180 

   2001  1.5  150 

   2003  1.2  130 

0 1 

5 4 

6 

7 

3 

2 

General-purpose I/O
banks 0 through 7 

 FIGURE 2-22          Bird’s-eye view of chip showing general-purpose I/O banks.    
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   The supply voltage (which is actually provided using large numbers of 
power and ground pins) is used to power the FPGA’s internal logic. For this 
reason, this is known as the  core voltage . However, different I/O standards may 
use signals with voltage levels significantly different from the core voltage, so 
each bank of general-purpose I/Os can have its own additional supply pins.

        Insider Info      

    It’s interesting to note that—from the 350       nm node onward—the core voltage has 
scaled fairly linearly with the process technology. However, there are physical rea-
sons not to go much below 1       V (these reasons are based on technology aspects 
such as transistor input switching thresholds and voltage drops), so this  “ voltage 
staircase ”  might start to tail off in the not-so-distant future.          

    GIGABIT TRANSCEIVERS 

   The traditional way to move large amounts of data between devices is to use a 
bus, a collection of signals that carry similar data and perform a common func-
tion ( Figure 2-23   ). Early microprocessor-based systems circa 1975 used 8-bit 
buses to pass data around. As the need to push more data around and to move 
it faster grew, buses grew to 16 bits in width, then 32 bits, then 64 bits, and so 
forth. The problem is that this requires a lot of pins on the device and a lot of 
tracks connecting the devices together. Routing these tracks so that they all 
have the same length and impedance becomes increasingly painful as boards 
grow in complexity. Furthermore, it becomes increasingly difficult to manage 
signal integrity issues (such as susceptibility to noise) when you are dealing 
with large numbers of bus-based tracks. 

   For this reason, today’s high-end FPGAs include special hard-wired giga-
bit transceiver blocks. These blocks use one pair of  differential signals  (which 
means a pair of signals that always carry opposite logical values) to transmit 
(TX) data and another pair to receive (RX) data ( Figure 2-24   ). 

   These transceivers operate at incredibly high speeds, allowing them to 
transmit and receive billions of bits of data per second. Furthermore, each 
block actually supports a number (say four) of such transceivers, and an FPGA 

FPGA 

Other
device 

n-bit bus 

 FIGURE 2-23          Using a bus to communicate between devices.    
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may contain a number of these transceiver blocks. At the time of this writing 
only a few percent of designs make use of these transceivers, but this number 
is expected to rise dramatically over the next few years. Using these gigabit 
transceivers is something of an art form, but each FPGA vendor will provide 
detailed user guides and application notes for its particular technology. 

    Multiple Standards 

   Of course, electronics wouldn’t be electronics if there weren’t a variety of 
standards for this sort of thing. Each standard defines things from the high-
level protocols on down to the  physical layer  (PHY). A few of the more com-
mon standards are: 

      ●      Fibre Channel  
      ●      InfiniBand®  
      ●      PCI Express  
      ●      RapidIO TM   
      ●      SkyRail TM  (from MindSpeed Technologies)  
      ●      10-gigabit Ethernet    

   This situation is further complicated by the fact that, in the case of some of 
these standards, like PCI Express and SkyRail, device vendors might use the 
same underlying concepts, but rebrand things using their own names and ter-
minology. Also, implementing some standards requires the use of multiple 
transceiver blocks.  

    —Technology Trade-offs— 
          ●       Let’s assume that we’re building a circuit board and wish to use some form 

of high-speed serial interface. In this case, the system architects will deter-
mine which standard is to be used. Each of the gigabit transceiver blocks 
in an FPGA can generally be configured to support a number of different 
standards, but usually not all of them. This means that the system architects 
will either select a standard that is supported by the FPGAs they intend to 
use, or they will select FPGAs that will support the interface standard they 
wish to employ.   

FPGA 

Differential pairs 

Transceiver block 

 FIGURE 2-24          Using high-speed transceivers to communicate between devices.    
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      ●       If the system under consideration includes creating one or more ASICs, 
we can of course implement the standard of our choice from the ground 
up (or more likely we would purchase an appropriate block of IP from a 
third-party vendor). Off-the-shelf (ASSP-type) devices, however, will typi-
cally support only one, or a subset, of the above standards. In this case, an 
FPGA may be used to act as an interface between two (or more) standards  
( Figure 2-25   ).      

    INTELLECTUAL PROPERTY (IP) 

   Today’s FPGA designs are so big and complex that it would be impractical to 
create every portion of the design from scratch. One solution is to reuse exist-
ing functional blocks for the boring stuff and spend the bulk of your time and 
resources creating the new portions of the design that will differentiate your 
design from any competing offerings. 

   Any existing functional blocks are typically referred to as  intellectual 
 property  (IP). The three main sources of such IP are: 

    1.     internally created blocks reused from previous designs,  
    2.     FPGA vendors, and  
    3.     third-party IP providers.    

   For the purposes of these discussions, we shall concentrate on the latter two 
categories. 

   Each FPGA vendor offers its own selection of hard, firm, and soft IP. 
 Hard IP  comes in the form of preimplemented blocks such as microproces-
sor cores, gigabit interfaces, multipliers, adders, MAC functions, and the like. 
These blocks are designed to be as efficient as possible in terms of power con-
sumption, silicon real estate, and performance. Each FPGA family will feature 
different combinations of such blocks, together with various quantities of pro-
grammable logic blocks. 

   At the other end of the spectrum,  soft IP  refers to a source-level library of 
high-level functions that can be included to the users ’  designs. These functions 
are typically represented using a hardware description language, or HDL, such 

Chip B Chip A FPGA 

“Stuff” 

Transceiver
blocks 

Gigibit interface
standard A 

Gigibit interface
standard B 

 FIGURE 2-25          Using an FPGA to interface between multiple standards.    
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as Verilog or VHDL at the register transfer level (RTL) of abstraction. Any 
soft IP functions the design engineers decide to use are incorporated into the 
main body of the design—which is also specified in RTL—and subsequently 
synthesized down into a group of programmable logic blocks (possibly com-
bined with some hard IP blocks like multipliers, etc.). 

   Holding somewhat of a middle ground is  firm IP , which also comes in the 
form of a library of high-level functions. Unlike their soft IP equivalents, how-
ever, these functions have already been optimally mapped, placed, and routed 
into a group of programmable logic blocks (possibly combined with some hard 
IP blocks like multipliers, etc.). One or more copies of each predefined firm IP 
block can be instantiated (called up) into the design as required.

   Some IP that used to be  “ soft ”  is now becoming  “ hard. ”  For example, the 
most current generation of FPGAs contains hard processor, clock manager, 
Ethernet, and gigabit I/O blocks, among others. These help bring high-end 
ASIC functionality into standard FPGAs. Over time, it is likely that additional 
functions of this ilk will be incorporated into the FPGA device.

        Insider Info      

    Generally speaking, once FPGA vendors add a function like this into their device, 
they’ve essentially placed the component into a niche. Sometimes this must be 
done to achieve the desired performance, but this is a classic problem because 
the next generation of the device is often fast enough to perform this function in 
its main (programmable) fabric.       

    Handcrafted IP 

   One scenario is that the IP provider has handcrafted an IP block starting 
with an RTL description (the provider might also have used an IP block/core 

        FAQs      

    How do you decide whether to use hard, fi rm, or soft IP? 

   It can be hard to draw the line between those functions that are best implemented 
as hard IP and those that should be implemented as soft or firm IP. In the case of 
functions like the multipliers, adders, and MACs discussed earlier in this chapter, 
these are generally useful for a wide range of applications. On the other hand, 
some FPGAs contain dedicated blocks to handle specific interface protocols like 
the PCI standard. It can, of course, make your life much easier if this happens to 
be the interface you wish to use to connect your device to the rest of the board. 
On the other hand, if you decide you need to use some other interface, a dedi-
cated PCI block will serve only to waste space, block traffic, and burn power in 
your chip.       
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g enerator application, as discussed later in this chapter). In this case, there 
are several ways in which the end user might purchase and use such a block 
( Figure 2-26   ): 

    1.      Blocks of unencrypted source code . These blocks can then be integrated 
into the RTL code for the body of the design ( Figure 2-26a ). (Note that the 
IP provider would already have simulated, synthesized, and verified the IP 
blocks before handing over the RTL source code.)   

Create RTL
for IP block 

IP Provider FPGA Designer 

Incorporate
IP block(s) 

Unplaced-and-
unrouted netlist 

Create RTL for
body of design 

Unplaced-and-
unrouted netlist 

Incorporate
IP block(s) 

Placed-and-routed
netlist

Placed-and-routed
netlist 

(a) 

(b) 

(c) 

Synthesis Synthesis 

Place-and-route Place-and-route 

 FIGURE 2-26          Alternative potential IP acquisition points.    

        Insider Info      

    Generally speaking, this is an expensive option because IP providers typically 
don’t want anyone to see their RTL source code. Certainly, FPGA vendors are usu-
ally reluctant to provide unencrypted RTL because they don’t want anyone to 
retarget it toward a competitor’s device offering. So if you really wish to go this 
route, whoever is providing the IP will charge you an arm and a leg, and you’ll 
end up signing all sorts of licensing and nondisclosure agreements (NDAs).       
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    2.      Encrypted RTL level . Unfortunately, at the time of this writing, there is no 
industry-standard encryption technique for RTL that has popular tool support. 
This has led companies like Altera and Xilinx to develop their own encryp-
tion schemes and tools. RTL encrypted by a particular FPGA vendor’s tools 
can only be processed by that vendor’s own synthesis tools (or sometimes by 
a third-party synthesis tool that has been OEM’d by the FPGA vendor).  

    3.      Unplaced-and-unrouted netlist level . Perhaps the most common scenario 
is for FPGA designers to purchase IP at the unplaced-and-unrouted LUT/
CLB netlist level ( Figure 2-26b ). Such netlists are typically provided in 
encrypted form, either as encrypted EDIF or using some FPGA vendor-spe-
cific format. In this case, the IP vendor may also provide a compiled cycle-
accurate C/C �      �  model to be used for functional verification because such 
a model will simulate much faster than the LUT/CLB netlist-level model.     

    —Technology Trade-offs— 
          ●       The main advantage of this scenario is that the IP provider has often gone 

to a lot of effort tuning the synthesis engine and handcrafting certain por-
tions of the function to achieve an optimal implementation in terms of 
resource utilization and performance.   

      ●       One disadvantage is that the FPGA designer doesn’t have any ability to 
remove unwanted functionality.   

      ●       Another disadvantage is that the IP block is tied to a particular FPGA ven-
dor and device family.     

    4.      Placed-and-routed netlist level.  In certain cases, the FPGA designer may 
purchase IP at the placed-and-routed LUT/CLB netlist level ( Figure 2-26c ). 
Once again, such netlists are typically provided in encrypted form, either 
as encrypted EDIF or using some FPGA vendor-specific format. The rea-
son for having placed-and-routed representations is to obtain the highest 
levels of performance. In some cases the placements will be relative, which 
means that the locations of all of the LUT, CLB, and other elements form-
ing the block are fixed with respect to each other, but the block as a whole 
may be positioned anywhere (suitable) within the FPGA. Alternatively, in 
the case of IP blocks such as communications or bus protocol functions 
with specific I/O pin requirements, the placements of the elements form-
ing the block may be absolute, which means that they cannot be changed 
in any way. Once again, the IP vendor may also provide a compiled cycle-
a ccurate C/C �  �  model to be used for functional verification because such 
a model will simulate much faster than the LUT/CLB netlist-level model.     

    IP Core Generators 

   Another very common practice is for FPGA vendors (sometimes EDA  vendors, 
IP providers, and even small, independent design houses) to provide special 
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tools that act as IP block/core generators. These generator applications are 
almost invariably parameterized, thereby allowing you to specify the widths 
and depths, or both of buses and functional elements. 

   First, you get to select from a list of different blocks/cores, and then you 
get to specify the parameters to be associated with each. Furthermore, in the 
case of some blocks/cores, the generator application may allow you to select 
from a list of functional elements that you wish to be included or excluded 
from the final representation. In the case of a communications block, for exam-
ple, it might be possible to include or exclude certain error-checking logic. Or 
in the case of a CPU core, it might be possible to omit certain instructions 
or addressing modes. This allows the generator application to create the most 
efficient IP block/core in terms of its resource requirements and performance. 

   Depending on the origin of the generator application (or sometimes 
the licensing option you’ve signed up for), its output may be in the form of 
encrypted or unencrypted RTL source code, an unplaced-and-unrouted netlist, 
or a placed-and-routed netlist. In some cases, the generator may also output a 
cycle-accurate C/C     �      �  model for use in simulation ( Figure 2-27   ).   

    SYSTEM GATES VERSUS REAL GATES 

   One common metric used to measure the size of a device in the ASIC world 
is that of equivalent gates. The idea is that different vendors provide different 
functions in their cell libraries, where each implementation of each function 
requires a different number of transistors. This makes it difficult to compare 
the relative capacity and complexity of two devices. 

   The answer is to assign each function an equivalent gate value along the 
lines of  “ Function A equates to five equivalent gates; function B equates to 

RTL 
for IP block 

FPGA Designer Input 

Unplaced-and- 
unrouted netlist 

Placed-and- 
routed netlist 

Cycle-accurate 
C/C�� model 

IP block/core
generator 

 FIGURE 2-27          IP block/core generator.    
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three equivalent gates …  ”  The next step is to count all of the instances of each 
function, convert them into their equivalent gate values, sum all of these  values 
together, and proudly proclaim,  “ My ASIC contains 10 million equivalent 
gates, which makes it much bigger than your ASIC! ”  

   Unfortunately, nothing is simple because the definition of what actu-
ally constitutes an equivalent gate can vary depending on whom one is talk-
ing to. One common convention is for a 2-input NAND function to represent 
one equivalent gate. Alternatively, some vendors define an equivalent gate as 
equaling an arbitrary number of transistors. And a more esoteric convention 
defines an ECL equivalent gate as being  “ one-eleventh the minimum logic 
required to implement a single-bit full adder ”  (who on earth came up with 
this one?). 

   As usual, the best policy here is to make sure that everyone is talking about 
the same thing before releasing your grip on your hard-earned money. 

   And so we come to FPGAs. One of the problems FPGA vendors run into 
occurs when they are trying to establish a basis for comparison between their 
devices and ASICs. For example, if someone has an existing ASIC design that 
contains 500,000 equivalent gates and he wishes to migrate this design into 
an FPGA implementation, how can he tell if his design will fit into a particu-
lar FPGA? The fact that each 4-input LUT can be used to represent anywhere 
between one and more than twenty 2-input primitive logic gates makes such a 
comparison rather tricky. 

   In order to address this issue, FPGA vendors started talking about system 
gates in the early 1990s. Some folks say that this was a noble attempt to use 
terminology that ASIC designers could relate to, while others say that it was 
purely a marketing ploy that didn’t do anyone any favors. Sad to relate, there 
appears to be no clear definition as to exactly what a system gate is. The situa-
tion was difficult enough when FPGAs essentially contained only generic pro-
grammable logic in the form of LUTs and registers. Even then, it was hard 
to state whether a particular ASIC design containing  x  equivalent gates could 
fit into an FPGA containing  y  system gates. This is because some ASIC 
designs may be predominantly combinatorial, while others may make exces-
sively heavy use of registers. Both cases may result in a suboptimal mapping 
onto the FPGA. 

   The problem became worse when FPGAs started containing embedded 
blocks of RAM, because some functions can be implemented much more effi-
ciently in RAM than in general-purpose logic. And the fact that LUTs can act 
as distributed RAM only serves to muddy the waters; for example, one ven-
dor’s system gate count values now include the qualifier,  “ Assumes 20 per-
cent to 30 percent of LUTs are used as RAM. ”  And, of course, the problems 
are exacerbated when we come to consider FPGAs containing embedded pro-
cessor cores and similar functions, to the extent that some vendors now say, 
 “ System gate values are not meaningful for these devices. ” 

FP
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        Insider Info      

    Is there a rule of thumb that allows you to convert system gates to equivalent gates 
and vice versa? Sure, there are lots of them! Some folks say that if you are feeling 
optimistic, then you should divide the system gate value by three (in which case 
3 million FPGA system gates would equate to 1 million ASIC equivalent gates, 
for example). Or if you’re feeling a tad more on the pessimistic side, you could 
divide the system gates by five (in which case 3 million system gates would equate 
to 600,000 equivalent gates). However, other folks would say that the above is 
only true if you assume that the system gate’s value encompasses all of the func-
tions that you can implement using both the general-purpose programmable logic 
and the block RAMs. These folks would go on to say that if you remove the block 
RAMs from the equation, then you should divide the system gates value by ten 
(in which case, 3 million system gates would equate to only 300,000 equivalent 
gates), but in this case you still have the block RAMs to play with  …  arrggghhhh!  

    Ultimately, this topic spirals down into such a quagmire that even the FPGA 
vendors are trying desperately not to talk about system gates any more. When 
FPGAs were new on the scene, people were comfortable with the thought of 
equivalent gates and not so at ease considering designs in terms of LUTs, slices, 
and the like; however, the vast number of FPGA designs that have been under-
taken over the years means that engineers are now much happier thinking in 
FPGA terms. For this reason, speaking as someone living in the trenches, I would 
prefer to see FPGAs specified and compared using only simple counts of:  

    Number of logic cells or logic elements or whatever (which equates to the  number 
of 4-input LUTs and associated flip-flops/latches)  

    Number (and size) of embedded RAM blocks  
    Number (and size) of embedded multipliers  
    Number (and size) of embedded adders  
    Number (and size) of embedded MACs  
    etc.        
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    INSTANT SUMMARY 

    Table 2-2    summarizes the key points associated with the various programming 
technologies discussed in this chapter. 

 TABLE 2-2            Summary of Programming Technologies  

   Feature  SRAM  Antifuse  E2PROM/FLASH 

    Technology node   State-of-the-art  One or more 
generations behind 

 One or more 
generations behind 

    Reprogrammable   Yes (in system)  No  Yes (in-system or 
offl ine) 

    Reprogramming 
speed (inc. erasing)  

 Fast  —  3x slower than 
SRAM 

    Volatile (must be 
programmed on 
power-up)  

 Yes  No  No 
(but can be if 
required) 

    Requires external 
confi guration fi le  

 Yes  No  No 

    Good for 
prototyping  

 Yes 
(very good) 

 No  Yes 
(reasonable) 

    Instant-on   No  Yes  Yes 

    IP Security   Acceptable 
(especially when 
using bitstream 
encryption 

 Very good  Very good 

    Size of 
confi guration cell  

 Large 
(six transistors) 

 Very small  Medium-small 
(two transistors) 

    Power 
consumption  

 Medium  Low  Medium 

    Rad Hard   No  Yes  Not really 
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    Table 2-3    summarizes the key FPGA architectural features and choices avail-
able to designers.        

 TABLE 2-3          FPGA Architectural Features  

   Granularity  Fine, Medium, Coarse Grained 

   Logic Blocks  MUX-based, LUT-based 

   Embedded RAM   
   Embedded Multipliers, Adders   
   Embedded Processor Cores   
   Clock Managers   
   General-purpose I/O   
   Gigabit Transceivers   
   Intellectual Property   
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                     Programming (Configuring) 
an FPGA  

 Chapter 3 

         Defi nitions      

          ●       Confi guration fi les  (also called  bit fi les ) contain the information that will be 
uploaded into the FPGA in order to program it to perform a specifi c function.  

      ●      In the case of SRAM-based FPGAs, the confi guration fi le contains a mixture 
of  confi guration data  (bits that are used to defi ne the state of programmable 
logic elements directly) and  confi guration commands  (instructions that tell the 
device what to do with the confi guration data). When the confi guration fi le is 
in the process of being loaded into the device, the information being trans-
ferred is referred to as the  confi guration bitstream .         

       —Technology Trade-offs— 
          ●      E 2 -based and FLASH-based devices are programmed in a similar manner 

to their SRAM-based cousins. By comparison, in the case of antifuse-based 
FPGAs, the configuration file predominantly contains only a representation 
of the configuration data that will be used to grow the antifuses.      

In an Instant

Confi guration Cells
Antifuse-based FPGAS

SRAM-based FPGAS

Programming Embedded 
(Block) RAMs, Distributed 
RAMs, etc.

Multiple Programming Chains
Quickly Reinitializing the 

Device

Using the Confi guration Port
Serial Load with FPGA as Master
Parallel Load with FPGA as 

Master
Parallel Load with FPGA as Slave
Serial Load with FPGA as Slave

Using the JTAG Port
Using an Embedded Processor
Instant Summary
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    CONFIGURATION CELLS 

   The underlying concept associated with programming an FPGA is relatively sim-
ple (i.e., load the configuration file into the device). It can, however, be a little 
tricky to wrap one’s brain around all of the different facets associated with this 
process, so we’ll start with the basics and work our way up. Initially, let’s assume 
we have a rudimentary device consisting only of an array of very simple pro-
grammable logic blocks surrounded by programmable interconnect ( Figure 3-1   ). 

   Any facets of the device that may be programmed are done so by means 
of special configuration cells. The majority of FPGAs are based on the use of 
SRAM cells, but some employ FLASH (or E 2 ) cells, while others use antifuses. 

   Irrespective of the underlying technology, the device’s interconnect has a 
large number of associated cells that can be used to configure it so as to con-
nect the device’s primary inputs and outputs to the programmable logic blocks 
and these logic blocks to each other. (In the case of the device’s primary I/Os, 
which are not shown in  Figure 3-1 , each has a number of associated cells that 
can be used to configure them to accommodate specific I/O interface standards 
and so forth.) 

   For the purpose of this portion of our discussions, we shall assume that each 
programmable logic block comprises only a 4-input LUT, a multiplexer, and a 
register ( Figure 3-2   ). The multiplexer requires an associated c onfiguration cell 
to specify which input is to be selected. The register requires associated cells 
to specify whether it is to act as an edge-triggered flip-flop (as shown in  Figure 
3-2 ) or a level-sensitive latch, whether it is to be triggered by a positive- or 
negative-going clock edge (in the case of the flip-flop option) or an active-low 
or active-high enable (if the register is instructed to act as a latch), and whether 
it is to be initialized with a logic 0 or a logic 1. Meanwhile, the 4-input LUT is 
itself based on 16 configuration cells.  

Programmable
interconnect 

Programmable
logic blocks 

 FIGURE 3-1          Top-down view of simple FPGA architecture.    
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    ANTIFUSE-BASED FPGAS 

   In the case of antifuse-based FPGAs, the antifuse cells can be visualized as 
scattered across the face of the device at strategic locations. The device is 
placed in a special device programmer, the configuration (bit) file is uploaded 
into the device programmer from the host computer, and the device program-
mer uses this file to guide it in applying pulses of relatively high voltage and 
current to selected pins to grow each antifuse in turn. 

   A very simplified way of thinking about this is that each antifuse has a 
 “ virtual ”  x-y location on the surface of the chip, where these x-y values are 
specified as integers. Based on this scenario, we can visualize using one group 
of I/O pins to represent the x value associated with a particular antifuse and 
another group of pins to represent the y value. 

   Once all of the fuses have been grown, the FPGA is removed from the 
device programmer and attached to a circuit board. Antifuse-based devices are, 
of course, one-time programmable (OTP) because once you’ve started the pro-
gramming process, you’re committed and it’s too late to change your mind. 

    —Technology Trade-offs— 
          ●      Unlike SRAM-based FPGAs, FLASH-based devices are nonvolatile. They 

retain their configuration when power is removed from the system, and 
they don’t need to be reprogrammed when power is reapplied to the system 
(although they can be if required).  

      ●      Also, FLASH-based devices can be programmed in-system (on the circuit 
board) or outside the system by means of a device programmer.      

    SRAM-BASED FPGAS 

   For the remainder of this chapter we shall consider only SRAM-based FPGAs. 
Remember that these devices are volatile, which means they have to be pro-
grammed in-system (on the circuit board), and they always need to be repro-
grammed when power is first applied to the system. 

4-input 
LUT 

Flip-flop 

Clock 

MUX 
y 

q 
e 

a 

b 

c 

d 

 FIGURE 3-2          A very simple programmable logic block.    
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        Insider Info      

    Programming an FPGA can take a significant amount of time. Consider a rea-
sonably high-end device containing 25 million SRAM-based configuration cells. 
Programming such a device using a serial mode and a 25 MHz clock would take 
one second. This isn’t too bad when you are first powering up a system, but it 
means that you really don’t want to keep on reconfiguring the FPGA when the 
system is in operation.        

   From the outside world, we can visualize all of the SRAM configuration 
cells as comprising a single (long) shift register. Consider a simple bird’s-eye 
view of the surface of the chip showing only the I/O pins/pads and the SRAM 
configuration cells ( Figure 3-3   ). 

   As a starting point, we shall assume that the beginning and end of this 
register chain are directly accessible from the outside world. However, it’s 
important to note that this is only the case when using the  configuration port  
programming mechanism in conjunction with the  serial load with FPGA as 
master  or  serial load with FPGA as slave  programming modes, as discussed 
below. 

   Also note that the  configuration data out  pin/signal shown in  Figure 3-3  
is only used if multiple FPGAs are to be configured by cascading (daisy-
 chaining) them together or if it is required to be able to read the configuration 
data back out of the device for any reason.

Configuration data in 

Configuration data out 

� I/O pin/pad 

� SRAM cell 

 FIGURE 3-3          Visualizing the SRAM cells as a long shift register.    

    Programming Embedded (Block) RAMs, Distributed RAMs, etc. 

   In the case of FPGAs containing large blocks of embedded (block) RAM, the 
cores of these blocks are implemented out of SRAM latches, and each of these 
latches is a configuration cell that forms a part of our  “ imaginary ”  register chain. 
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   One interesting point is that each 4-input LUT (see  Figure 3-2 ) can be con-
figured to act as a LUT, as a small (16  �  1) chunk of distributed RAM, or as a 
16-bit shift register. All of these manifestations employ the same group of 16 
SRAM latches, where each of these latches is a configuration cell that forms a 
part of our imaginary register chain.

        FAQ      

    How is the 16-bit shift register implemented? 

   A trick circuit is employed using the concept of a capacitive latch that prevents 
classic race conditions (this is pretty much the same way designers built flip-flops 
out of discrete transistors, resistors, and capacitors in the early 1960s).       

    Multiple Programming Chains 

    Figure 3-3  shows the configuration cells presented as a single programming 
chain. As there can be tens of millions of configuration cells, this chain can be 
very long indeed. Some FPGAs are architected so that the configuration port 
actually drives a number of smaller chains. This allows individual portions of 
the device to be configured and facilitates a variety of concepts such as modu-
lar and incremental design.  

    Quickly Reinitializing the Device 

   As was previously noted, the register in the programmable logic block has an 
associated configuration cell that specifies whether it is to be initialized with 
a logic 0 or a logic 1. Each FPGA family typically provides some mechanism 
such as an initialization pin that, when placed in its active state, causes all of 
these registers to be returned to their initialization values (this mechanism does 
not reinitialize any embedded [block] or distributed RAMs).   

    USING THE CONFIGURATION PORT 

   The early FPGAs made use of something called the  configuration port . 
Even today, when more sophisticated techniques are available (like the JTAG 
interface discussed later in this chapter), this method is still widely used 
because it’s relatively simple and is well understood by stalwarts in the FPGA 
fraternity. 

   We start with a small group of dedicated configuration mode pins that are 
used to inform the device which configuration mode is going to be used. In the 
early days, only two pins were employed to provide four modes. 

   Note that the names of the modes shown in this table—and also the rela-
tionship between the codes on the mode pins and the modes themselves—are 
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intended for use only as an example. The actual codes and mode names vary 
from vendor to vendor. 

   The mode pins are typically hardwired to the desired logic 0 and logic 1 
values at the circuit board level. (These pins can be driven from some other 
logic that allows the programming mode to be modified, but this is rarely done 
in practice.) 

   In addition to the hard-wired mode pins, an additional pin is used to instruct 
the FPGA to actually commence the configuration, while yet another pin is 
used by the device to report back when it’s finished (there are also ways to 
determine if an error occurred during the process). This means that in addition 
to configuring the FPGA when the system is first powered up, the device may 
also be reinitialized using the original configuration data, if such an occurrence 
is deemed necessary. 

   The configuration port also makes use of additional pins to control the loading 
of the data and to input the data itself. The number of these pins depends on the 
configuration mode selected, as discussed below. The important point here is that 
once the configuration has been completed, most of these pins can subsequently 
be used as general-purpose I/O pins (we will return to this point a little later). 

    Serial Load with FPGA as Master 

   This is perhaps the simplest programming mode. In the early days, it involved 
the use of an external PROM. This was subsequently superceded by an EPROM, 
then an E 2 PROM, and now—most commonly—a FLASH-based device. This 
special-purpose memory component has a single data output pin that is con-
nected to a configuration data in pin on the FPGA ( Figure 3-4   ). 

   The FPGA also uses several bits to control the external memory device, 
such as a reset signal to inform it when the FPGA is ready to start reading data 
and a clock signal to clock the data out. 

Configuration data in 

M
em

o
ry

d
ev

ic
e 

Control 

Configuration 
data out 

FPGA 

Cdata In 

Cdata Out 

 FIGURE 3-4          Serial load with FPGA as master.    
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   The idea with this mode is that the FPGA doesn’t need to supply the exter-
nal memory device with a series of addresses. Instead, it simply pulses the 
reset signal to indicate that it wishes to start reading data from the beginning, 
and then it sends a series of clock pulses to clock the configuration data out of 
the memory device. 

   The configuration data out signal coming from the FPGA need only be 
connected if it is required to read the configuration data from the device for 
any reason. One such scenario occurs when there are multiple FPGAs on the 
circuit board. In this case, each could have its own dedicated external memory 
device and be configured in isolation, as shown in  Figure 3-4 . Alternatively, 
the FPGAs could be cascaded (daisy-chained) together and share a single 
external memory ( Figure 3-5   ). 

   In this scenario, the first FPGA in the chain (the one connected directly 
to the external memory) would be configured to use the serial master mode, 
while the others would be serial slaves, as discussed later in this chapter.  

    Parallel Load with FPGA as Master 

   In many respects, this is very similar to the previous mode, except that the data 
is read in 8-bit chunks from a memory device with eight output pins. Groups of 
eight bits are very common and are referred to as bytes. In addition to provid-
ing control signals, the original FPGAs supplied the external memory device 
with an address that was used to point to whichever byte of configuration data 
was to be loaded next ( Figure 3-6   ). 

   The way this worked was that the FPGA had an internal counter that was 
used to generate the address for the external memory. (The original FPGAs 
had 24-bit counters, which allowed them to address 16 million bytes of data.) 
At the beginning of the configuration sequence, this counter would be initial-
ized with zero. After the byte of data pointed to by the counter had been read, 
the counter would be incremented to point to the next byte of data. This pro-
cess would continue until all of the configuration data had been loaded.
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 FIGURE 3-5          Daisy-chaining FPGAs.    
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   Special-purpose memory devices created for use with FPGAs are now rel-
atively inexpensive (and being FLASH-based, they are also reusable). Thus, 
modern FPGAs now use a new variation on this parallel-loading technique. In 
this case, the external memory is a special-purpose device that doesn’t require 
an external address, which means that the FPGA no longer requires an internal 
counter for this purpose ( Figure 3-7   ). 

   As for the serial mode discussed earlier, the FPGA simply pulses the exter-
nal memory device’s reset signal to indicate that it wishes to start reading data 
from the beginning, and then it sends a series of clock pulses to clock the con-
figuration data out of the memory device.  

    Parallel Load with FPGA as Slave 

   The modes discussed above, in which the FPGA is the master, are attractive 
because of their inherent simplicity and because they only require the FPGA 
itself, along with a single external memory device. 

Configuration data [7:0] 

Control FPGA 
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 FIGURE 3-6          Parallel load with FPGA as master (original technique).    

        Insider Info      

    It’s easy to assume that this parallel-loading technique offers speed advantages, but 
it didn’t for quite some time. This is because—in early devices—as soon as a byte 
of data had been read into the device, it was clocked into the internal configuration 
shift register in a serial manner. Happily, this situation has been rectified in more 
modern FPGA families. On the other hand, although the eight pins can be used as 
general-purpose I/O pins once the configuration data has been loaded, in reality this 
is less than ideal. This is because these pins still have the tracks connecting them to 
the external memory device, which can cause a variety of signal integrity problems.  

    The real reason why this technique was so popular in the days of yore is that 
the special-purpose memory devices used in the serial load with FPGA as master 
mode were quite expensive. By comparison, this parallel technique allowed design 
engineers to use off-the-shelf memory devices, which were much cheaper.       
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   However, a large number of circuit boards also include a microprocessor, 
which is typically already used to perform a wide variety of housekeeping 
tasks. In this case, the design engineers might decide to use the microprocessor 
to load the FPGA ( Figure 3-8   ). 

   The idea here is that the microprocessor is in control. The microprocessor 
informs the FPGA when it wishes to commence the configuration process. It 
then reads a byte of data from the appropriate memory device (or peripheral, 
or whatever), writes that data into the FPGA, reads the next byte of data from 
the memory device, writes that byte into the FPGA, and so on until the con-
figuration is complete. 

   This scenario conveys a number of advantages, not the least being that the 
microprocessor might be used to query the environment in which its surround-
ing system resides and to then select the configuration data to be loaded into 
the FPGA accordingly.  

    Serial Load with FPGA as Slave 

   This mode is almost identical to its parallel counterpart, except that only a sin-
gle bit is used to load data into the FPGA (the microprocessor still reads data 
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 FIGURE 3-7          Parallel load with FPGA as the master (modern technique).    
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 FIGURE 3-8          Parallel load with FPGA as slave.    

CH003-H8974.indd   57CH003-H8974.indd   57 6/21/2008   5:04:25 PM6/21/2008   5:04:25 PM



FPGAs: Instant Access58

www.newnespress.com

out of the memory device one byte at a time, but it then converts this data into 
a series of bits to be written to the FPGA).  

    —Technology Trade-offs— 
     ●      The main advantage of this approach is that it uses fewer I/O pins on the 

FPGA. This means that—following the configuration process—only a sin-
gle I/O pin has the additional track required to connect it to the micropro-
cessor’s data bus.   

    USING THE JTAG PORT 

   Like many other modern devices, today’s FPGAs are equipped with a JTAG 
port. Standing for the  Joint Test Action Group  and officially known to engineers 
by its IEEE 1149.1 specification designator, JTAG was originally designed to 
implement the  boundary scan  technique for testing circuit boards and ICs. 

   A detailed description of JTAG and boundary scan is beyond the scope of 
this book. For our purposes here, it is sufficient to understand that the FPGA 
has a number of pins that are used as a JTAG port. One of these pins is used to 
input JTAG data, and another is used to output that data. Each of the FPGA’s 
remaining I/O pins has an associated JTAG register (a flip-flop), where these 
registers are daisy-chained together ( Figure 3-9   ). 

   The idea behind boundary scan is that, by means of the JTAG port, it’s pos-
sible to serially clock data into the JTAG registers associated with the input 
pins, let the device (the FPGA in this case) operate on that data, store the results 
from this processing in the JTAG registers associated with the output pins, and, 
ultimately, to serially clock this result data back out of the JTAG port. 

JTAG data in 

Input pin from
outside world 

Output pin to
outside world

To internal
logic 

From internal
logic  

From previous
JTAG flip-flop

To next
JTAG flip-flop

Input pad 

Output pad 

JTAG flip-flops 

JTAG data out 

 FIGURE 3-9          JTAG boundary scan registers.    
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   However, JTAG devices also contain a variety of additional JTAG-related 
control logic, and, with regard to FPGAs, JTAG can be used for much more 
than boundary scans. For example, it’s possible to issue special commands that 
are loaded into a special JTAG command register (not shown in  Figure 3-9 ) by 
means of the JTAG port’s data-in pin. One such command instructs the FPGA to 
connect its internal SRAM configuration shift register to the JTAG scan chain. 
In this case, the JTAG port can be used to program the FPGA. Thus, today’s 
FPGAs now support five different programming modes and, therefore, require 
the use of three mode pins (additional modes may be added in the future).

JTAG data in JTAG data out 

FPGA 

Core 

Primary scan chain 

Internal (core) scan chain 

 FIGURE 3-10          Embedded processor boundary scan chain.    

        Key Concept      

    Note that the JTAG port is always available, so the device can initially be con-
figured via the traditional configuration port using one of the standard configu-
ration modes, and it can subsequently be reconfigured using the JTAG port as 
required. Alternately, the device can be configured using only the JTAG port.        

    USING AN EMBEDDED PROCESSOR 

   But wait, there’s more! We have discussed the fact that some FPGAs sport 
embedded processor cores, and each of these cores will have its own dedicated 
JTAG boundary scan chain. Consider an FPGA containing just one embedded 
processor ( Figure 3-10   ). 

   The FPGA itself would only have a single external JTAG port. If required, a 
JTAG command can be loaded via this port that instructs the device to link the 
processor’s local JTAG chain into the device’s main JTAG chain. (Depending 
on the vendor, the two chains could be linked by default, in which case a com-
plementary command could be used to disengage the internal chain.) 
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 TABLE 3-2          Today’s Five Confi guration Modes  

   Mode pins  Mode   

   0    0    0  Serial load with FPGA as master 

   0    0  1  Serial load with FPGA as slave 

   0  1    0  Parallel load with FPGA as master 

   0    1  1  Parallel load with FPGA as slave 

   1    x    x  Use only the JTAG port 

 TABLE 3-1          The Four Original Confi guration Modes  

   Mode pins  Mode   

   0         0  Serial load with FPGA as master 

   0         1  Serial load with FPGA as slave 

   1         0  Parallel load with FPGA as master 

   1         1  Parallel load with FPGA as slave 

   The idea here is that the JTAG port can be used to initialize the internal 
microprocessor core (and associated peripherals) to the extent that the main 
body of the configuration process can then be handed over to the core. In some 
cases, the core might be used to query the environment in which the FPGA 
resides and to then select the configuration data to be loaded into the FPGA 
accordingly.  

    INSTANT SUMMARY 

    Table 3-1    shows the four original configuration modes, still widely used. 
    Table 3-2    summarizes today’s five configuration modes.        

CH003-H8974.indd   60CH003-H8974.indd   60 6/21/2008   5:04:26 PM6/21/2008   5:04:26 PM



www.newnespress.com

                FPGA vs. ASIC Designs  

 Chapter 4 

         Defi nitions      

   Here are some terms we’ll be using in this chapter. 

      ●       Pipelining  is analogous to an automobile assembly line, where the output of 
one logic block is the input of the next one. It will be explained in more detail 
in the following sections.  

      ●       Latency  is the time in clock cycles that it takes for a specifi c block of data to 
work it way through a function, device, or system.  

      ●       Levels of logic  refers to the number of gates between the inputs and outputs of 
a logic block.  

      ●       Combinational loops  occur when the generation of a signal depends on itself 
feeding back through one or more logic gates.  

      ●       Delay chains  are formed from a series of buffer or inverter gates and used for a 
variety of purposes, which we’ll discuss later in this chapter.         
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       When You Switch from ASIC to FPGA Design, or Vice Versa 

   Some design engineers have spent the best years of their young lives develop-
ing a seemingly endless series of ASICs, while others have languished in their 
cubicles learning the arcane secrets that are the province of the FPGA maestro. 
The problem arises when an engineer steeped in one of these implementation 
technologies is suddenly thrust into the antipodal domain. For example, a com-
mon scenario these days is for engineers who bask in the knowledge that they 
know everything there is to know about ASICs to be suddenly tasked with cre-
ating a design targeted toward an FPGA implementation. 

   This is a tricky topic because there are so many facets to it; the best we can 
hope for here is to provide an overview as to some of the more significant dif-
ferences between ASIC and FPGA design styles.  

    CODING STYLES 

   When it comes to language-driven design flows, ASIC designers tend to write 
very portable code (in VHDL or Verilog) and to make the minimum use of 
instantiated (specifically named) cells. 

   By comparison, FPGA designers are more likely to instantiate specific low-
level cells. For example, FPGA users may not be happy with the way the syn-
thesis tool generates something like a multiplexer, so they may handcraft their 
own version and then instantiate it from within their code. Furthermore, pure 
FPGA users tend to use far more technology-specific attributes with regard to 
their synthesis engine than do their ASIC counterparts.  

    PIPELINING AND LEVELS OF LOGIC 

           FAQ      

    What is pipelining? 

   One tends to hear the word  pipelining  quite a lot, but this term is rarely explained 
in a clear way. Pipelining can be compared to an assembly line used in manufac-
turing automobiles. Assume that different specialists are needed for each step of 
the process: someone to attach the wheels to the chassis, the engine to the chassis, 
the body to the chassis, and paint the whole thing. It would be highly inefficient 
and time-consuming for all these specialists to sit around waiting for their turn to 
do their job. Instead, several cars are put on the assembly line at once, and each 
specialist does his or her job as the car moves down the line. Once the assembly 
line is in full flow, everyone will be working all the time and cars are created 
much more quickly. 

   We can often replicate this scenario in electronics. Assume we have a 
design (or a function forming part of a design) that can be implemented as a 
series of blocks of combinatorial logic ( Figure 4-1   ). Let’s say that each block takes 
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   Generally speaking, in the arrangement shown in  Figure 4-1 , we wouldn’t 
want to present a new word of data to the inputs until we have stored the out-
put results associated with the first word of data. This means that we end up 
with the same result as our inefficient car assembly scenario in that it takes a 
long time to process each word of data, and the majority of the workers (logic 
blocks) are sitting around twiddling their metaphorical thumbs for most of the 
time. In the pipelined design technique shown in  Figure 4-2   , all of the register 
banks are driven by a common clock signal. On each active clock edge, the 
registers feeding a block of logic are loaded with the results from the previ-
ous stage. These values then propagate through that block of logic until they 
arrive at its outputs, at which point they are ready to be loaded into the next 
set of registers on the next clock. In this case, as soon as  “ the pump has been 
primed ”  and the pipeline is fully loaded, a new word of data can be processed 
every Y nanoseconds.  

Clock 

Data in 

Registers Registers Registers Combinatorial
logic 

Combinatorial
logic 

etc. 

 FIGURE 4-2          Pipelining the design.    

Data in 

Combinatorial
logic 

Combinatorial
logic 

Combinatorial
logic 

etc. 

 FIGURE 4-1          A function implemented using only combinatorial logic.    

Y nanoseconds to perform its task and that we have five such blocks (of which 
only three are shown in  Figure 4-1 , of course). In this case, it will take 5      �      Y 
n anoseconds for a word of data to propagate through the function, starting with 
its arrival at the inputs to the first block and ending with its departure from the 
outputs of the last block. However, we can instead use a pipelined design tech-
nique in which  “ islands ”  of combinatorial logic are sandwiched between blocks 
of registers.       
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        Key Concept      

    One way to think of latency is to return to the concept of an automobile assem-
bly line. In this case, the throughput of the system might be one car rolling off 
the end of the line every minute. However, the latency of the system might be a 
full eight-hour shift since it takes hundreds of steps to finish a car (where each of 
these steps corresponds to a logic/register stage in a pipelined design).         

    Levels of Logic 

   All of this boils down to the design engineer’s having to perform a balanc-
ing act. Partitioning the combinational logic into smaller blocks and increasing 
the number of register stages will increase the performance of the design, but 
it will also consume more resources (and silicon real estate) on the chip and 
increase the latency of the design. 

   This is also the point where we start to run into the concept of levels of 
logic. For example,  Figure 4-3    would be said to comprise three levels of logic 
because the worst-case path involves a signal having to pass through three gates 
before reaching the output. 

   In the case of an ASIC, a group of gates as shown in  Figure 4-3  can be 
placed close to each other such that their track delays are very small. This means 
that, depending on the design, ASIC engineers can sometimes be a little sloppy 
about this sort of thing (it’s not unheard of to have paths with, say, 15 or more 
levels of logic). 

   By comparison, if this sort of design were implemented on an FPGA with 
each of the gates implemented in a separate LUT, it would  “ fly like a brick ”  
(go incredibly slowly) because the track delays on FPGAs are much more signif-
icant, relatively speaking. In reality, of course, a LUT can actually represent sev-
eral levels of logic (the function shown in  Figure 4-3  could be implemented in a 
single 4-input LUT), so the position isn’t quite as dire as it may seem at first. 

   Having said this, the bottom line is that in order to bring up (or maintain) per-
formance, FPGA designs tend to be more highly pipelined than their ASIC coun-
terparts. This is facilitated by the fact that every FPGA logic cell tends to comprise 
both a LUT and a register, which makes registering the output very easy.

& 

| 

AND 

OR 

| 

NOR 
From previous

bank of registers 
To next bank
of registers 

Three levels of logic 

 FIGURE 4-3          Levels of logic.    

CH004-H8974.indd   64CH004-H8974.indd   64 6/21/2008   5:06:26 PM6/21/2008   5:06:26 PM



65Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

    ASYNCHRONOUS DESIGN PRACTICES 

    Asynchronous Structures 

   Depending on the task at hand, ASIC engineers may include asynchronous struc-
tures in their designs, where these constructs rely on the relative p ropagation 
delays of signals in order to function correctly. These techniques do not work in 
the FPGA world as the routing (and associated delays) can change dramatically 
with each new run of the place-and-route engines.  

    Combinational Loops 

   As a somewhat related topic, combinational loops are a major source of critical 
race conditions where logic values depend on routing delays. Although the prac-
tice is frowned upon in some circles, ASIC engineers can be little rapscallions 
when it comes to using these structures because they can fix track routing (and 
therefore the associated propagation delays) very precisely. This is not the case in 
the FPGA domain, so all such feedback loops should include a register element.  

    Delay Chains 

   Last but not least, ASIC engineers may use a series of buffer or inverter gates 
to create a delay chain. These delay chains may be used for a variety of pur-
poses, such as addressing race conditions in asynchronous portions of the 
design. In addition to the delay from such a chain being hard to predict in the 
FPGA world, this type of structure increases the design’s sensitivity to operat-
ing conditions, decreases its reliability, and can be a source of problems when 
migrating to another architecture or implementation technology.   

    CLOCK CONSIDERATIONS 

    Clock Domains 

   ASIC designs can feature a huge number of clocks (one hears of designs with 
more than 300 different clock domains). In the case of an FPGA, however, 
there are a limited number of dedicated global clock resources in any particular 
device. It is highly recommended that designers budget their clock systems to 
stay within the dedicated clock resources (as opposed to using general-p urpose 
inputs as user-defined clocks). 

   Some FPGAs allow their clock trees to be fragmented into clock segments. 
If the target technology does support this feature, it should be identified and 
accounted for while mapping external or internal clocks.  

    Clock Balancing 

   In the case of ASIC designs, special techniques must be used to balance clock 
delays throughout the device. By comparison, FPGAs feature device-wide, 
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low-skew clock routing resources. This makes clock balancing unnecessary by 
the design engineer because the FPGA vendor has already taken care of it.  

    Clock Gating versus Clock Enabling 

   ASIC designs often use the technique of gated clocks to help reduce power 
dissipation, as shown in  Figure 4-4a   . However, these tend to give the design 
asynchronous characteristics and make it sensitive to glitches caused by inputs 
switching too closely together on the gating logic. 

   By comparison, FPGA designers tend to use the technique of enabling 
clocks. Originally this was performed by means of an external multiplexer as 
illustrated in  Figure 4-4b ; today, however, almost all FPGA architectures have 
a dedicated clock enable pin on the register itself, as shown in  Figure 4-4c .  

    PLLs and Clock Conditioning Circuitry 

   FPGAs typically include PLL or DLL functions—one for each dedicated global 
clock (see also the discussions in Chapter 2). If these resources are used for 
on-chip clock generation, then the design should also include some mechanism 
for disabling or bypassing them to facilitate chip testing and debugging.  

    Reliable Data Transfer across Multiclock Domains 

   In reality, this topic is true for both ASIC and FPGA designs, the point being 
that the exchange of data between two independent clock domains must be 
performed very carefully to avoid losing or corrupting data. Bad synchroni-
zation may lead to metastability issues and tricky timing analysis problems. 
In order to achieve reliable transfers across domains, it is recommended to 
employ handshaking, double flopping, or asynchronous FIFO techniques.   
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Data
Enable

Clock

Data
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Clock

Reg-out

Reg-out Reg-out

(a) Clock gating

(b) Clock enabling (“then”) (c) Clock enabling (“now”)
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MUX Register
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&

 FIGURE 4-4          Clock gating versus clock enabling.    

CH004-H8974.indd   66CH004-H8974.indd   66 6/21/2008   5:06:26 PM6/21/2008   5:06:26 PM



67Chapter | 4 FPGA vs. ASIC Designs

www.newnespress.com

    REGISTER AND LATCH CONSIDERATIONS 

    Latches 

   ASIC engineers often make use of latches in their designs. As a general rule-of-
thumb, if you are designing an FPGA, and you are tempted to use a latch,  don’t !  

    Flip-fl ops with both  “ Set ”  and  “ Reset ”  Inputs 

   Many ASIC libraries offer a wide range of flip-flops, including a selection that 
offer both set and reset inputs (both synchronous and asynchronous versions 
are usually available). 

   By comparison, FPGA flip-flops can usually be configured with either a 
set input or a reset input. In this case, implementing both set and reset inputs 
requires the use of a LUT, so FPGA design engineers often try to work around 
this and come up with an alternative implementation.  

    Global Resets and Initial Conditions 

   Every register in an FPGA is programmed with a default initial condition (that 
is, to contain a logic 0 or a logic 1). 

   Furthermore, the FPGA typically has a global reset signal that will return all 
of the registers (but not the embedded RAMs) to their initial conditions. ASIC 
designers typically don’t implement anything equivalent to this capability.   

    RESOURCE SHARING (TIME-DIVISION MULTIPLEXING) 

   Resource sharing is an optimization technique that uses a single functional 
block (such as an adder or comparator) to implement several operations. For 
example, a multiplier may first be used to process two values called A and B, 
and then the same multiplier may be used to process two other values called C 
and D. (A good example of resource sharing is provided in Chapter 6.) 

   Another name for resource sharing is  time-division multiplexing  (TDM). 
Resources on an FPGA are more limited than on an ASIC. For this reason, 
FPGA designers tend to spend more effort on resource sharing than do their 
ASIC counterparts. 

    Use It or Lose It! 

   Actually, things are a little subtler than the brief note above might suggest 
because there is a fundamental use-it-or-lose-it consideration with regard to 
FPGA hardware. This means that FPGAs only come in certain sizes, so if you 
can’t drop down to the next lower size, you might as well use everything that’s 
available on the part you have. 

   For example, let’s assume you have a design that requires two embedded 
hard processor cores. In addition to these processors, you might decide that 
by means of resource sharing, you could squeeze by with say 10 m ultipliers 
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and 2 megabytes of RAM. But if the only FPGA containing two processors 
also comes equipped with 50 multipliers and 10 megabytes of RAM, you can’t 
get a refund, so you might as well make full use of the extra capabilities.  

    But Wait, There’s More 

   In the case of FPGAs, getting data from LUTs/CLBs to and from special compo-
nents like multipliers and MACs is usually more expensive (in terms of connec-
tivity) than connecting with other LUTs/CLBs. Since resource sharing increases 
the amount of connectivity, you need to keep a watchful eye on this situation.  

    —Technology Trade-offs— 
          ●      In addition to the big components like multipliers and MACs, you can also 

share things like adders. Interestingly enough, in the carry-chain technolo-
gies (such as those fielded by Altera and Xilinx), as a first-order approxi-
mation, the cost of building an adder is pretty much equivalent to the cost 
of building a data bus’s worth of sharing logic. For example, implement-
ing two adders  “ as is ”  with completely independent inputs and outputs will 
cost you two adders and no resource-sharing multiplexers. But if you share, 
you will have one adder and two multiplexers (one for each set of inputs). 
In FPGA terms, this will be more expensive rather than less (in ASICs, the 
cost of a multiplexer is far less than the cost of an adder, so you would have 
a different trade-off point).    

   In the real world, the interactions between  “ using it or losing it ”  and connec-
tivity costs are different for each technology and each situation; that is, Altera 
parts are different from Xilinx parts and so on.   

    STATE MACHINE ENCODING 

   The encoding scheme used for state machines is a good example of an area 
where what’s good for an ASIC design might not be well suited for an FPGA 
implementation. 

   As we know, every LUT in an FPGA has a companion flip-flop. This 
 usually means that there are a reasonable number of flip-flops sitting around 
waiting for something to do. In turn, this means that in many cases, a  “ one-hot ”  
encoding scheme will be the best option for an FPGA-based state machine, 
especially if the activities in the various states are inherently independent.

        Key Concept      

    The  “ one-hot ”  encoding scheme refers to the fact that each state in a state 
machine has its own state variable in the form of a flip-flop, and only one state 
variable may be active ( “ hot ” ) at any particular time.        
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    TEST METHODOLOGIES 

   ASIC designers typically spend a lot of time working with tools that perform 
SCAN chain insertion and  automatic test pattern generation  (ATPG). They 
may also include logic in their designs to perform  built-in self-test  (BIST). 
A large proportion of these efforts are intended to test the device for manufac-
turing defects. By comparison, FPGA designers typically don’t worry about 
this form of device testing because FPGAs are preverified by the vendor. 

   Similarly, ASIC engineers typically expend a lot of effort inserting bound-
ary scan (JTAG) into their designs and verifying them. By comparison, FPGAs 
already contain boundary scan capabilities in their fabric.  

    MIGRATING ASIC DESIGNS TO FPGAS AND VICE VERSA 

    Alternative Design Scenarios 

   When it comes to creating an FPGA design, there are a number of possible 
scenarios depending on what you are trying to do ( Figure 4-5   ). 

    FPGA Only 
   This refers to a design that is intended for an FPGA implementation only. In 
this case, one might use any of the design flows and tools discussed elsewhere 
in this book.  

    FPGA-to-FPGA 
   This refers to taking an existing FPGA-based design and migrating it to a new 
FPGA technology (the new technology is often presented in the form of a new 
device family from the same FPGA vendor you used to implement the original 
design, but you may be moving to a new vendor also). With this scenario, it is 
rare that you will be performing a simple one-to-one migration, which means 
taking the contents of an existing component and migrating them directly 

Existing design New design Final implementation 

N/A FPGA FPGA FPGA Only 

FPGA-to-FPGA FPGA FPGA FPGA 

FPGA-to-ASIC FPGA ASIC 

ASIC-to-FPGA ASIC FPGA FPGA 

N/A 

 FIGURE 4-5          Alternative design scenarios.    
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to a new device. It is much more common to migrate the functionality from 
multiple existing FPGAs to a single new FPGA. Alternatively, you might be 
gathering the functionality of one or more existing FPGAs, plus a load of sur-
rounding discrete logic, and bundling it all into a new device. 

   In these cases, the typical route is to gather all of the RTL code describing 
the original devices and discrete logic into a single design. The code may be 
tweaked to take advantage of any new features available in the targeted device 
and then resynthesized.  

    FPGA-to-ASIC 
   This refers to using one or more FPGAs to prototype an ASIC design. One 
big issue here is that, unless you’re working with a small to medium ASIC, it 
is often necessary to partition the design across multiple FPGAs. Some EDA 
and FPGA vendors have (or used to have) applications that will perform this 
partitioning automatically, but tools like this come and go with the seasons. 
Also, their features and capabilities, along with the quality of their results, can 
change on an almost weekly basis (which is my roundabout way of telling you 
that you’ll have to evaluate the latest offerings for yourself). 

   Another consideration is that functions like RAMs configured to act as 
FIFO memories or dual-port memories have specific realizations when they 
are implemented using embedded RAM blocks in FPGAs. These realizations 
are typically different from the way in which these functions will be imple-
mented in an ASIC, which may cause problems. One solution is to create your 
own RTL library of ASIC functions for such things as multipliers, compara-
tors, memory blocks, and the like that will give you a one-for-one mapping 
with their FPGA counterparts. Unfortunately, this means instantiating these 
elements in the RTL code for your design, as opposed to using generic RTL 
and letting the synthesis engine handle everything (so it’s a balancing act like 
everything else in engineering). 

   As we discussed earlier, a design intended for an FPGA implementation 
typically contains fewer levels of logic between register stages than would a 
pure ASIC design. In some cases, it’s best to create the RTL code associated 
with the design with the final ASIC implementation in mind and just take the 
hit with regard to reduced performance in the FPGA prototype. 

   Alternatively, one might generate two flavors of the RTL—one for use with 
the FPGA prototype and the other to provide the final ASIC. But this is gener-
ally regarded to be a horrible way to do things because it’s easy for the two 
representations to lose synchronization and end up going in two totally differ-
ent directions. 

   One way around this might be to use the pure C/C     �      �  based tools intro-
duced in Chapter 6. As you may recall, the idea here is that, as opposed to 
adding intelligence to the RTL source code by hand (thereby locking it into a 
target implementation), all of the intelligence is provided by your controlling 
and guiding the C/C     �      �  synthesis engine itself ( Figure 4-6   ). 
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   Once the synthesis engine has parsed the C/C     �      �  source code, you can use 
it to perform microarchitecture trade-offs and evaluate their effects in terms of 
size and speed. The user-defined configuration associated with each  “ what-if ”  
scenario can be named, saved, and reused as required. Thus, you could first 
create a configuration for use as an FPGA prototype and, once this had been 
verified, you could create a second configuration to be used for the final ASIC 
implementation. The key point is that the same C/C �      �  source code is used to 
drive both flows. 

   Another point to ponder is that a modern ASIC design can contain an 
unbelievable number of clock domains and subdomains (we’re talking about 
hundreds of domains/subdomains here). By comparison, an FPGA has a lim-
ited number of primary clock domains (on the order of 10). This means that 
if you’re using one or more FPGAs to prototype your ASIC, you’re going to 
have to put a lot of thought into how you handle your clocks.

– Non-implementation-specific 
– Easy to create 
– Fast to simulate 
– Easy to modify 

Pure C/C��
Pure C/C��
Synthesis 

User interaction 
and guidance 

Gate-level 
netlist 

Verilog/ 
VHDL RTL 

LUT/CLB- 
level netlist 

ASIC 
target 

Verilog/ 
VHDL RTL 

RTL 
Synthesis 

RTL 
Synthesis 

FPGA 
target 

Auto-generated, 
implementation-specific 

 FIGURE 4-6          A pure C/C     �      � -based design flow.    

        Insider Info      

    There’s an interesting European Patent numbered EP0437491 (B1), which, when 
you read it—and, good grief, it’s soooo boring—seems to lock down the idea of 
using multiple programmable devices like FPGAs to temporarily realize a design 
intended for final implementation as an ASIC. In reality, I think this patent was 
probably targeted toward using FPGAs to create a logic emulator, but the way 
it’s worded would prevent anyone from using two or more FPGAs to prototype 
an ASIC.          

          ASIC-to-FPGA 
   This refers to taking an existing ASIC design and migrating it to an FPGA. The 
reasons for doing this are wide and varied, but they often involve the desire 
to tweak an existing ASIC’s functionality without spending vast amounts of 
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money. Alternatively, the original ASIC technology may have become obso-
lete, but parts might still be required to support ongoing contracts (this is often 
the case with regard to military programs). One point of interest is that the 
latest generation of FPGAs has usually jumped so far so fast that it’s possible 
to place an entire ASIC design from just a few years ago into a single mod-
ern FPGA (if you do have to partition the design across multiple FPGAs, then 
there are tools to aid you in this task, as discussed in the  “ FPGA-to-ASIC ”  
section above). Here are the steps needed: 

      ●      First, you are going to have to go through your RTL code with a fine-tooth 
comb to  remove (or at least evaluate) any asynchronous logic, combina-
torial loops, delay chains, and things of this ilk . In the case of flip-flops 
with both set and reset inputs, you might wish to recode these to use only 
one or the other. You might also wish to look for any latches and redesign 
the circuit to use flip-flops instead.  

      ●      Also, you should keep a watchful eye open for  statements like if-then-else 
without the else clause  because, in these cases, synthesis tools will infer 
latches.  

      ●      In the case of clocks, you will have to  ensure that your target FPGA pro-
vides enough clock domains to handle the requirements of the original 
ASIC design —otherwise, you’ll have to redesign your clock circuitry.  

      ●      Furthermore, if your original ASIC design made use of  clock-gating tech-
niques, you will have to strip these out and possibly replace them with 
clock-enable equivalents . Once again, some FPGA and EDA vendors pro-
vide synthesis tools that can automatically convert an ASIC design using 
gated clocks to an equivalent FPGA design using clocks with enables.  

      ●      In the case of  complex functional elements such as memory blocks (e.g., 
FIFOs and dual-port RAMs), it will probably be necessary to tweak 
the RTL code to fit the design into the FPGA . In some cases, this will 
involve replacing generic RTL statements (that will be processed by the 
synthesis engine) with calls to instantiate specific subcircuits or FPGA 
elements.  

      ●      Last, but not least, the  original pipelined ASIC design probably had 
more levels of logic between register elements than you would like in 
the FPGA implementation if you wish to maintain performance . Most 
modern logic synthesis and physically aware tools provide retiming capa-
bility, which allows them to move logic back and forth across pipeline reg-
ister boundaries to achieve better timing (the physically aware synthesis 
engines typically do a much better job at this; see also Chapter 7).  

      ●      It’s also true that your modern FPGA is probably based on a later technology 
node (say, 130 nano) than your original ASIC design (say, 250 nano). This 
gives the FPGA an inherent speed advantage, which serves to offset its inher-
ent track-delay disadvantages. At the end of the day, however, you may still 
end up         having to hand-tweak the code to add in more pipeline stages.
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     INSTANT SUMMARY 

    Table 4-1    summarizes the design features of ASICs and FPGAs.    

 TABLE 4-1          Summary of Design Features of ASICs and FPGAs  

     ASIC  FPGA 

   Coding styles  Portable code, minimal use 
of instantiated cells 

 Instantiate specifi c low level cells 

   Levels of logic  More levels of logic typically 
used 

 More highly pipelined 

   Asynchronous 
practices 

 May include asynchronous 
structures; can use delay 
chains 

 Do not include; no delay chains 

   Clock 
considerations 

 Large no. of clocks can be 
used; Special techniques 
needed to balance clock 
delays; use gated clock 
techniques 

 Limited no. of dedicated global 
clock resources; Onboard clock 
routing resources that make 
clock balancing unnecessary; Use 
enabling clocks 

   Register and latch 
considerations 

 Use latches  No latches 

   Global resets and 
initial conditions 

 No  Yes 

   Test methodologies  SCAN insertion; ATPG; BIST  FPGAs preverifi ed by vendor; 
already contain boundary scan 
capabilities in fabric 
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                                 “ Traditional ”  Design Flows  

 Chapter 5 

           Defi nitions      

   Let’s begin as usual by defining some terms we’ll encounter in this chapter. 

        ●       Schematic  is the common name for a circuit diagram.  
        ●       Logic minimization  or  optimization  means replacing one group of gates with 

another that will perform the same task faster or use less real estate on the 
silicon.  

      ●       Gate-level design  refers to a design represented as a collection of primitive 
logic gates and functions and the connections between them.  

      ●       Electronic design automation  (EDA) is the name now applied to all of the CAE 
and CAD tools used to design electronic components and systems.  

      ●       Hardware description languages  (HDLs) are computer languages used to 
describe hardware, namely the electronic portions of ICs and printed circuit 
boards.  

      ●       Register transfer level  (RTL) is a higher level of abstraction than HDL. In 
RTL, the circuit is described as a collection of storage elements (registers), 
Boolean equations, control logic such as if-then-else statements, and complex 
sequences of events. The most popular languages used for capturing designs 
in RTL are VHDL and Verilog (with SystemVerilog starting to gain a larger 
following).         

In an Instant

Schematic-based Design Flows
Back-end Tools like Layout
CAE � CAD � EDA
A Simple (early) Schematic-

driven ASIC Flow
A Simple (early) Schematic-

driven FPGA Flow
Flat versus Hierarchical 

Schematics

Schematic-driven FPGA Design 
Flows Today

HDL-based Design Flows
Advent of HDL-based Flows
A Plethora of HDLs
Points to Ponder

Instant Summary
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    SCHEMATIC-BASED DESIGN FLOWS 

   First, let’s briefly consider the way digital ICs were designed in the days of 
old—circa the early 1960s. The purpose of revisiting this ancient history is to 
establish an underlying framework that will facilitate understanding the more 
advanced design flows introduced in subsequent chapters. 

   In those days, electronic circuits were crafted by hand. Circuit diagrams—
also known as  schematic diagrams  or just  schematics —were hand-drawn and 
showed the symbols for the logic gates and functions that were to be used to 
implement the design, along with the connections between them. Each design 
team usually had at least one member who was really good at performing 
logic minimization and optimization. Checking that the design would work as 
planned insofar as its logical implementation— functional verification —was 
typically performed by a group of engineers sitting around a table working 
their way through the schematics saying,  “ Well, that looks OK. ”  Similarly, 
timing verification—checking that the design met its required input-to-output 
and internal path delays and that no violation times (such as setup and hold 
parameters) associated with any of the internal registers were violated—was 
performed using a pencil and paper.

        Insider Info      

    The wires connecting the logic gates on an integrated circuit may be referred to as 
wires, tracks, or interconnect, and all of these terms may be used interchangeably. 
In certain cases, the term metallization may also be used to refer to these tracks 
because they are predominantly formed by means of the IC’s metal ( metallization) 
layers .      

   Finally, a set of drawings representing the structures used to form the logic 
gates and the interconnections between them were drawn by hand. These 
drawings, which were formed from groups of simple polygons such as squares 
and rectangles, were subsequently used to create the photo-masks, which were 
themselves used to create the actual silicon chip. 

   Not surprisingly, this way of designing was time-consuming and prone to 
error. Something had to be done, and a number of companies and universities 
leapt into the fray in a variety of different directions. In the case of functional 
verification, for example, the late 1960s and early 1970s saw the advent of spe-
cial programs in the form of rudimentary  logic simulators . 

   In order to understand how these work, let’s assume that we have a really 
simple gate-level design whose schematic diagram has been hand-drawn on 
paper ( Figure 5-1   ). In order to use the logic simulator, the engineers first need to 
create a textual representation of the circuit called a gate-level netlist. In those 
days, the engineers would typically have been using a mainframe c omputer, and 
the netlist would have been captured as a set of punched cards called a deck. 

CH005-H8974.indd   76CH005-H8974.indd   76 6/21/2008   5:13:35 PM6/21/2008   5:13:35 PM



77Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

G1 � NAND 

G2 � NOT 

G3 � OR 

SET_A 

SET_B 

DATA 

CLOCK 

CLEAR_A 

CLEAR_B 

CLEAR 

SET 

N_DATA 
Q 

N-Q 

G4 � DFF 

 FIGURE 5-1          A simple schematic diagram (on paper).    

As computers (along with storage devices like hard disks) became more acces-
sible, netlists began to be stored as text files ( Figure 5-2   ). 

   It was also possible to associate delays with each logic gate. These 
delays—which are omitted here to keep things simple—were typically refer-
enced as integer multiples of some core simulation time unit. 

   Note that the format shown in  Figure 5-2  was made up purely for the pur-
poses of this example. This was in keeping with the times because—just to 
keep everyone on their toes—anyone who created a tool like a logic simulator 
also tended to invent his or her own proprietary netlist language. 

   All of the early logic simulators had internal representations of primitive gates 
like AND, NAND, OR, NOR, etc. These were referred to as simulation primitives. 
Some simulators also had internal representations of more s ophisticated functions 
like D-type flip-flops. In this case, the G4      �      DFF function in  Figure 5-2  would 

BEGIN CIRCUIT=TEST 

INPUT  SET_A, SET-B, DATA, CLOCK, CLEAR_A, CLEAR_B; 

OUTPUT Q, N_Q; 

WIRE   SET, N_DATA, CLEAR; 

GATE G1=NAND (IN1=SET_A, IN2=SET_B, OUT1=SET); 

GATE G2=NOT  (IN1=DATA, OUT1=N_DATA); 

GATE G3=OR   (IN1=CLEAR_A, IN2=CLEAR_B, OUT1=CLEAR); 

GATE G4=DFF  (IN1=SET, IN2=N_DATA, IN3=CLOCK, 

                 IN4=CLEAR, OUT1=Q, OUT2=N_Q); 

END CIRCUIT=TEST; 

 FIGURE 5-2          A simple gate-level netlist (text file).    
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map directly onto this internal representation. Alternatively, one could create a 
subcircuit called DFF, whose functionality was captured as a netlist of primitive 
AND, NAND, etc. gates. In this case, the G4      �      DFF function in  Figure 5-2  would 
actually be seen by the simulator as a call to instantiate a copy of this subcircuit. 

   Next, the user would create a set of  test vectors —also known as  s timulus —
which were patterns of logic 0 and logic 1 values to be applied to the circuit’s 
inputs. Once again, these test vectors were textual in nature, and they were typi-
cally presented in a tabular form looking something like that shown in  Figure 5-3   . 
The times at which the stimulus values were to be applied were shown in the left-
hand column. The names of the input signals are presented vertically to save space. 

   As we know from        Figures 5-1 and 5-2 , there is an inverting (NOT) gate 
between the DATA input and the D-type flip-flop. Thus, when the DATA input is 
presented with 1 at time zero, this value will be inverted to a 0, which is the value 
that will be loaded into the register when the clock undergoes a rising (0-to-1) edge 
at time 500. Similarly, when the DATA input is presented with 0 at time 1,500, this 
value will be inverted to a 1, which is the value that will be loaded into the register 
when the clock undergoes its next rising (0-to-1) transition at time 2,000. 

   In today’s terminology, the file of test vectors shown in  Figure 5-3  would 
be considered a rudimentary testbench. Once again, time values were typically 
specified as integer multiples of some core simulation time unit. 

   The engineer would then invoke the logic simulator, which would read 
in the gate-level netlist and construct a virtual representation of the circuit in 
the computer’s memory. The simulator would then read in the first test vector 
(the first line from the stimulus file), apply those values to the appropri-
ate virtual inputs, and propagate their effects through the circuit. This would 
be repeated for each of the subsequent test vectors forming the testbench 

              C C 
              L L 
      S S   C E E 
      E E D L A A 
      T T A O R R 

      _ _ T C _ _ 
 TIME A B A K A B 
----- ----------- 
    0 1 1 1 0 0 0    ; Set up initial values 
  500 1 1 1 1 0 0    ; Rising edge on clock (load 0) 
 1000 1 1 1 0 0 0    ; Falling edge on clock 
 1500 1 1 0 0 0 0    ; Set data to 0 (N_data = 1) 
 2000 1 1 0 1 0 0    ; Rising edge on clock (load 1) 
 2500 1 1 0 1 0 1    ; Clear_B goes active (load 0) 
   : 
  etc. 

 FIGURE 5-3          A simple set of test vectors (text file).    
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( Figure 5-4   ). The simulator would also use one or more control files (or online 
co mmands) to tell it which internal nodes (wires) and output pins to moni-
tor, how long to simulate for, and so forth. The results, along with the original 
stimulus, would be stored in tabular form in a textual output file. 

   Let’s assume that we’ve just traveled back in time and run one of the old 
simulators using the circuit represented in        Figures 5-1 and 5-2  along with the 
stimulus shown in  Figure 5-3 . We will also assume that the NOT gate has a 
delay of five simulator time units associated with it, which means that a 
change on that gate’s input will take five time units to propagate through the 
gate and appear on its output. Similarly, we’ll assume that both the NAND and 
OR gates have associated delays of 10 time units, while the D-type flip-flop 
has associated delays of 20 time units. 

   In this case, if the simulator were instructed to monitor all of the internal 
nodes and output pins, the output file containing the simulation results would 
look something like that shown in  Figure 5-5   . For the purposes of our discus-
sions, any changes to a signal’s value are shown in bold font in this illustration, 
but this was not the case in the real world. 

   In this example, the initial values are applied to the input pins at time 0. At 
this time, all of the internal nodes and output pins show X values, which indi-
cates unknown states. After five time units, the initial logic 1 that was applied 
to the DATA input propagates through the inverting NOT gate and appears as 

BEGIN CIRCUIT=TEST 
   INPUT  SET_A, SET-B, 

          DATA, CLOCK, 
          CLEAR_A, CLEAR_B; 

   OUTPUT Q, N_Q; 
   WIRE   SET, N_DATA, CLEAR; 

   GATE G1=NAND (IN1=SET_A, 
                 IN2=SET_B, 

                 OUT1=SET); 
   GATE G2=NOT  (IN1=DATA, 

                 OUT1=N_DATA); 
   GATE G3=OR   (IN1=CLEAR_A, 
                 IN2=CLEAR_B, 

                 OUT1=CLEAR); 
   GATE G4=DFF  (IN1=SET, IN2=N_DATA, 

                 IN3=CLOCK, IN4=CLEAR, 
                 OUT1=Q, OUT2=N_Q); 

END CIRCUIT=TEST; 

Textual gate-level netlist 

Textual (tabular) stimulus 

              C C 
              L L 
      S S   C E E 

      E E D L A A 
      T T A O R R 

      _ _ T C _ _ 
 TIME A B A K A B 

----- ----------- 
    0 1 1 1 0 0 0    ; Set up 
  500 1 1 1 1 0 0    ; Rising edge 

 1000 1 1 1 0 0 0    ; Falling edge 
 1500 1 1 0 0 0 0    ; Set data 

 2000 1 1 0 1 0 0    ; Rising edge 
 2500 1 1 0 1 0 1    ; Clear active 
   : 

  etc. 

Logic
Simulator 

              C C 
              L L    N 

      S S   C E E    _ C 
      E E D L A A    D L 
      T T A O R R  S A E    N 

      _ _ T C _ _  E T A    _ 
 TIME A B A K A B  T A R  Q Q 

----- -----------  -----  --- 
    0 1 1 1 0 0 0  X X X  X X 

5 1 1 1 0 0 0  X  0  X  X X 
10 1 1 1 0 0 0   0  0  0   X X 

  500 1 1 1  1  0 0  0 0 0  X X 

520 1 1 1 1 0 0  0 0 0   0 1 
 1000 1 1 1  0  0 0  0 0 0  0 1 
 1500 1 1  0  0 0 0  0 0 0  0 1 
 1505 1 1 0 0 0 0  0  1  0  0 1 
 2000 1 1 0  1  0 0  0 1 0  0 1 

2020 1 1 0 1 0 0  0 1 0   1 0 
 2500 1 1 0 1 0  1   0 1 0   1 0 

2510  1 1 0 1 0 1  0 1  1   1 0 
2530 1 1 0 1 0 1  0 1 1   0 1 

  : 
  etc. 

Textual (tabular) results file
(stimulus and response) 

 FIGURE 5-4          Running the logic simulator.    

CH005-H8974.indd   79CH005-H8974.indd   79 6/21/2008   5:13:36 PM6/21/2008   5:13:36 PM



FPGAs: Instant Access80

www.newnespress.com

a logic 0 on the internal N_DATA node. Similarly, at time 10, the initial v alues 
that were applied to the SET_A and SET_B inputs propagate through the 
NAND gate to the internal SET node, while the values on the CLEAR_A and 
CLEAR_B inputs propagate through the OR gate to the internal CLEAR node. 

   At time 500, a rising (0-to-1) edge on the CLOCK input causes the D-type 
flip-flop to load the value from the N_DATA node. The result appears on the Q 
and N_Q output pins 20 time units later. And so it goes. 

   Blank lines in the output file, such as the one shown between time 10 and 
time 500, were used to separate related groups of actions. For example, setting 
the initial values at time 0 caused signal changes at times 5 and 10. Then the 
transition on the CLOCK input at time 500 caused signal changes at time 520. 
As these two groups of actions were totally independent of each other, they 
were separated by a blank line. 

   It wasn’t long before engineers were working with circuits that could con-
tain thousands of gates and internal nodes along with simulation runs that 
could encompass thousands of time steps. 

              C C 
              L L    N 
      S S   C E E    _ C 
      E E D L A A    D L 
      T T A O R R  S A E    N 

      _ _ T C _ _  E T A    _ 
 TIME A B A K A B  T A R  Q Q 
----- -----------  -----  --- 
    0 1 1 1 0 0 0  X X X  X X  ; Set up initial values 

5 1 1 1 0 0 0  X  0  X  X X 
10 1 1 1 0 0 0   0  0  0   X X 

  500 1 1 1  1  0 0  0 0 0  X X  ; Rising edge on clock 
520 1 1 1 1 0 0  0 0 0   0 1 

 1000 1 1 1  0  0 0  0 0 0  0 1  ; Falling edge on clock 

 1500 1 1  0  0 0 0  0 0 0  0 1  ; Set data to 0 
 1505 1 1 0 0 0 0  0  1  0  0 1 

 2000 1 1 0  1  0 0  0 1 0  0 1  ; Rising edge on clock 

2020 1 1 0 1 0 0  0 1 0   1 0 

 2500 1 1 0 1 0  1   0 1 0   1 0  ; Clear_B goes active 
2510  1 1 0 1 0 1  0 1  1   1 0 
2530 1 1 0 1 0 1  0 1 1   0 1 
  : 
  etc. 

 FIGURE 5-5          Output results (text file).    
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    Back-end Tools like Layout 

   As opposed to tools like logic simulators that were intended to aid the engi-
neers who were defining the function of ICs (and circuit boards), some compa-
nies focused on creating tools that would help in the process of laying the ICs 
out. In this context,  layout  refers to determining where to place the logic gates 
(actually, the transistors forming the logic gates) on the surface of the chip and 
how to route the wires between them. 

   These tools started out as early computer-aided drafting tools and evolved 
into interactive programs called polygon editors that allowed users to draw the 
polygons used to define the transistors and interconnect directly onto the com-
puter screen. Descendants of these tools eventually gained the capability to 
accept the same netlist used to drive the logic simulator and to perform the 
layout (place-and-route) tasks automatically. 

     CAE      �      CAD      �      EDA     

   Tools like logic simulators that were used in the front-end (logical design cap-
ture and functional verification) portion of the design flow were originally 
gathered together under the umbrella name of  computer-aided engineering  
(CAE). By comparison, tools like layout ( place-and-route ) that were used in 
the back-end (physical) portion of the design flow were originally gathered 
together under the name of  computer-aided design  (CAD). 

   Sometime during the 1980s, all of the CAE and CAD tools used to design 
electronic components and systems were gathered under the name  electronic 
design automation , or EDA.

        Insider Info      

    For historical reasons that are largely based on the origins of the terms CAE and 
CAD, the term design engineer—or simply engineer—typically refers to someone 
who works in the front-end of the design flow; that is, someone who performs tasks 
like conceiving and describing (capturing) the functionality of an IC (what it does 
and how it does it). By comparison, the term layout designer—or simply designer—
commonly refers to someone who is ensconced in the back-end of the design flow; 
that is, someone who performs tasks such as laying out an IC (determining the 
locations of the gates and the routes of the tracks connecting them together) .       

    A simple (early) Schematic-driven ASIC Flow 

   Toward the end of the 1970s and the beginning of the 1980s, some companies 
started providing graphical schematic capture programs that allowed engineers 
to create circuit (schematic) diagrams interactively. Using the mouse, an engi-
neer could select symbols representing such entities as I/O pins and logic gates 
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and functions from a special symbol library and place them on the screen. 
The engineer could then use the mouse to draw lines (wires) on the screen con-
necting the symbols together. 

   Once the circuit had been entered, the schematic capture package could 
be instructed to generate a corresponding gate-level netlist. This netlist could 
first be used to drive a logic simulator to verify the functionality of the design. 
The same netlist could then be used to drive the  place-and-route software  
( Figure 5-6   ). 

   Any timing information that was initially used by the logic simulator 
would be estimated—particularly in the case of the tracks—and accurate tim-
ing analysis was only possible once all of the logic gates had been placed and 
the tracks connecting them had been routed. Thus, following place-and-route, 
an  extraction program  would be used to calculate the parasitic resistance and 
capacitance values associated with the structures (track segments, vias, tran-
sistors, etc.) forming the circuit. A  timing analysis program  would then use 
these values to generate a timing report for the device. In some flows, this tim-
ing information was also fed back to the logic simulator in order to perform a 
more accurate simulation.  

    —Technology Trade-offs— 
          ●      It’s important to note here that, when creating the original schematic, the user 

would access the symbols for the logic gates and functions from a special 
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 FIGURE 5-6          Simple (early) schematic-driven ASIC flow.    
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library that was associated with the targeted ASIC technology. Similarly, the 
simulator would be instructed to use a corresponding library of s imulation 
models with the appropriate logical functionality and timing for the targeted 
ASIC technology. The result was that the gate-level netlist presented to the 
place-and-route software directly mapped onto the logic gates and f unctions 
being physically implemented on the silicon chip. This is a tad different from 
the FPGA flow, as discussed in the following subsection.     

    A Simple (early) Schematic-driven FPGA Flow 

   When the first FPGAs arrived on the scene in 1984, it was natural that their 
design flows would be based on existing schematic-driven ASIC flows. 
Indeed, the early portions of the flows were very similar in that, once again, a 
schematic capture package was used to represent the circuit as a collection of 
primitive logic gates and functions and to generate a corresponding gate-level 
netlist. As before, this netlist was subsequently used to drive the logic simula-
tor to perform the functional verification. 

   The differences began with the implementation portion of the flow because 
the FPGA fabric consisted of an array of  configurable logic blocks  (CLBs), each 
of which was formed from a number of LUTs and registers. This required the 
introduction of some additional steps called  mapping  and  packing  into the flow 
( Figure 5-7   ). 

Gate-level
netlist 

BEGIN CIRCUIT=TEST 
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          DATA, CLOCK, 

          CLEAR_A, CLEAR_B; 

   OUTPUT Q, N_Q; 
   WIRE   SET, N_DATA, CLEAR; 

   GATE G1=NAND (IN1=SET_A, 

                 IN2=SET_B, 

                 OUT1=SET); 
   GATE G2=NOT  (IN1=DATA, 

                 OUT1=N_DATA); 
   GATE G3=OR   (IN1=CLEAR_A, 

                 IN2=CLEAR_B, 

                 OUT1=CLEAR); 
   GATE G4=DFF  (IN1=SET, IN2=N_DATA,

                 IN3=CLOCK, IN4=CLEAR,
                 OUT1=Q, OUT2=N_Q); 

END CIRCUIT=TEST; 
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 FIGURE 5-7          Simple (early) schematic-driven FPGA flow.    
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    Mapping 
   In this context,  mapping  refers to the process of associating entities such as 
the gate-level functions in the gate-level netlist with the LUT-level functions 
 available on the FPGA. Of course, this isn’t a one-for-one mapping because 
each LUT can be used to represent a number of logic gates ( Figure 5-8   ). 
Mapping (which is still performed today, but elsewhere in the flow, as will 
be discussed later) is a nontrivial problem because there are a large number 
of ways in which the logic gates forming a netlist can be partitioned into the 
smaller groups to be mapped into LUTs. As a simple example, the functional-
ity of the NOT gate shown in  Figure 5-8  might have been omitted from this 
LUT and instead incorporated into the upstream LUT driving wire c.  

    Packing 
   Only 12 of the 24 possible permutations are shown here. Furthermore, in real-
ity there are actually only 12 permutations of significance because each has 
a  “ mirror image ”  that is functionally its equivalent, such as the AC-BD and 
BD-AC pairs shown in  Figure 5-9   . The reason for this is that when we come to 
place-and-route, the relative locations of the two CLBs can be exchanged.  
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 FIGURE 5-8          Mapping logic gates into LUTs.    
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 FIGURE 5-9          Packing LUTs into CLBs.    
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    Place-and-route 
   Following packing, we move to  place-and-route . With regard to the pr evious 
point, let’s assume that our two CLBs need to be connected together, but 
that—purely for the purposes of this portion of our discussions—they can only 
be placed horizontally or vertically adjacent to each other, in which case there 
are four possibilities ( Figure 5-10   ). 

   In the case of placement (i) for example, if CLB 1 contained LUTs A-C 
and CLB 2 contained LUTs B-D, this would be identical to swapping the posi-
tions of the two CLBs and exchanging their contents. 

   If we only had the two CLBs shown in  Figure 5-10 , it would be easy to 
determine their optimal placement with respect to each other (which would 
have to be one of the four options shown above) and the absolute placement of 
this two-CLB group with respect to the entire chip.   

    —Technology Trade-offs— 
          ●      The placement problem is much more complex in the real world because 

a real design can contain extremely large numbers of CLBs. In addition to 
CLBs 1 and 2 being connected together, they will almost certainly need 
to be connected to other CLBs. For example, CLB 1 may also need to be 
connected to CLBs 3, 5, and 8, while CLB 2 may need to be connected 
to CLBs 4, 6, 7, and 8. And each of these new CLBs may need to be con-
nected to each other or to yet more CLBs. Thus, although placing CLBs 1 
and 2 next to each other would be best for them, it might be detrimental to 
their relationships with the other CLBs, and the most optimal solution over-
all might be to separate CLBs 1 and 2 by some amount.    

   Although placement is difficult, deciding on the optimal way to route the sig-
nals between the various CLBs poses an even more Byzantine problem. The 
complexity of these tasks is mind-boggling, so we’ll leave it to those guys and 
gals who write the place-and-route algorithms. 
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(i) (ii) (iii) (iv) 

Alternative placements 

 FIGURE 5-10          Placing the CLBs.    
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    Timing Analysis and Post-place-and-route Simulation 
   Following place-and-route, we have a fully routed physical (CLB-level) netlist, 
as was illustrated in  Figure 5-7 . At this point, a  static timing analysis  (STA) 
utility will be run to calculate all of the input-to-output and internal path delays 
and to check for any timing violations (setup, hold, etc.) associated with any of 
the internal registers. 

   One interesting point occurs if the design engineers wish to resimulate 
their design with accurate (post-place-and-route) timing information. In this 
case, they have to use the FPGA tool suite to generate a new gate-level netlist 
along with associated timing information in the form of an industry-standard 
file format called—perhaps not surprisingly— standard delay format  (SDF). 
The main reason for generating this new gate-level netlist is that—once the 
original netlist has been coerced into its CLB-level equivalent—it simply isn’t 
possible to relate the timings associated with this new representation back into 
the original gate-level incarnation.   

    Flat versus Hierarchical Schematics 

    Clunky Flat Schematics 
   The very first schematic packages essentially allowed a design to be captured 
as a humongous, flat circuit diagram split into a number of  “ pages. ”  You cre-
ated a single flat schematic as a series of pages linked together by interpage 
connector symbols, where the names you gave these symbols told the system 
which ones were to be connected together. For example, consider a simple cir-
cuit sketched on a piece of paper ( Figure 5-11   ). 

   Assume that the gates on the left represent some control logic, while the 
four registers on the right are implementing a 4-bit shift register. Obviously, 
this is a trivial example, and a real circuit would have many more logic gates. 
We’re just trying to tie down some underlying concepts here, such as the fact 
that when you entered this circuit into your schematic capture system, you 
might split it into two pages ( Figure 5-12   ).  

 FIGURE 5-11          Simple schematic drawn on a piece of paper.    
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    Sleek Hierarchical (block-based) Schematics 
   There were a number of problems associated with the flat schematics, espe-
cially when dealing with real-world circuits requiring 50 or more pages: 

      ●      It was difficult to visualize a high-level, top-down view of the design.  
      ●      It was difficult to save and reuse portions of the design in future projects.  
      ●      In the case of designs in which some portion of the circuit was repeated 

multiple times (which is very common), that portion would have to be 
redrawn or copied onto multiple pages. This became very painful if you 
subsequently realized that you had to make a change because you would 
have to make the same change to all the copies.    

   The answer was to enhance schematic capture packages to support the concept 
of hierarchy. In the case of our shift register circuit, for example, you might start 
with a top-level page in which you would create two blocks called control and 
shift, each with the requisite number of input and output pins. You would then 
connect these blocks to each other and to some primary inputs and outputs. 

   Next, you would instruct the system to  “ push down ”  into the control block, 
which would open a new schematic page. If you were lucky, the system would 
automatically pre-populate this page with input and output connector symbols (and 
with associated names) corresponding to the pins on its parent block. You would 
then create the schematic corresponding to that block as usual ( Figure 5-13   ). 

Schematic
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system 

Page 1
(Control logic) 

Page 2
(Shift register) 

 FIGURE 5-12          Simple two-page flat schematic.    
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 FIGURE 5-13          Simple hierarchical schematic.    
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        Insider Info      

    For many engineers today, driving a design using schematic capture at the gate-
level of abstraction is but a distant memory. In some cases, FPGA vendors offer lit-
tle support for this type of flow for their latest devices to the extent that they only 
provide schematic libraries for older component generations. However, schematic 
capture does still find a role with some older engineers and with folks who need 
to make minor functional changes to legacy designs. Furthermore, graphical entry 
mechanisms that are descended from early schematic capture packages still find a 
place in modern design flows .        

   In fact, each block could contain a further block-level schematic, or a gate-
level schematic, or (very commonly) a mixture of both. These hierarchical 
block-based schematics answered the problems associated with flat schematics: 

      ●      They made it easier to visualize a high-level, top-down view of the design 
and to work one’s way through the design.  

      ●      They made it easier to save and reuse portions of the design in future projects.  
      ●      In the case of designs in which some portion of the circuit was repeated 

multiple times, it was only necessary to create that portion—as a discrete 
block—once and then to instantiate (call) that block multiple times. This 
made things easy if you subsequently realized that you had to make a change 
because you would only have to modify the contents of the initial block.      

    Schematic-driven FPGA Design Flows Today 

   All of the original schematic, mapping, packing, and place-and-route applica-
tions were typically created and owned by the FPGA companies. However, the 
general feeling is that a company can either be good at creating EDA tools or 
it can be good at creating silicon chips, but not both. 

   Another facet of the problem is that design tools were originally extremely 
expensive in the ASIC world (even tools like schematic capture, which today 
are commonly regarded as commodity products). By comparison, the FPGA 
vendors were focused on selling chips, so right from the get-go they offered 
their tools at a very low cost (in fact, if you were a big enough customer, 
they’d give you the entire design tool suite for free). While this had its obvious 
attractions to the end user, the downside was that the FPGA vendors weren’t 
too keen on spending vast amounts of money enhancing tools for which they 
received little recompense. 

   Over time, therefore, external EDA vendors started to supply portions of 
the puzzle, starting with schematic capture and then moving into mapping and 
packing. Having said this, the FPGA vendors still typically provide internally 
developed, less sophisticated (compared to the state-of-the-art) versions of 
tools like schematic capture as part of their basic tool suite, and they also main-
tain a Vulcan Death Grip on their crown jewels (the place-and-route software).
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    HDL-BASED DESIGN FLOWS 

    Advent of HDL-based Flows 

   Toward the end of the 1980s, as designs grew in size and complexity, 
s chematic-based ASIC flows began to run out of steam. Visualizing, captur-
ing, debugging, understanding, and maintaining a design at the gate level of 
abstraction became increasingly difficult and inefficient when juggling 5,000 or 
more gates and reams of schematic pages. In addition to the fact that capturing 
a large design at the gate level of abstraction is prone to error, it is extremely 
time-consuming. Thus, some EDA vendors started to develop design tools and 
flows based on the use of  hardware description languages , or HDLs. 

   The idea behind a hardware description language is, perhaps not surpris-
ingly, that you can use it to describe hardware, in particular the electronic por-
tions (components and wires) of ICs and printed circuit boards. (The HDL may 
also be used to provide limited representations of the cables and connectors 
linking circuit boards together.) 

   In the early days of electronics, almost anyone who created an EDA tool 
created his or her own HDL to go with it. Some of these were analog HDLs in 
that they were intended to represent circuits in the analog domain, while oth-
ers were focused on representing digital functionality. For the purposes of this 
book, we are interested in HDLs only in the context of designing digital ICs in 
the form of ASICs and FPGAs. 

   Some of the more popular digital HDLs are introduced later in this chapter. 
For the nonce, however, let’s focus more on how a generic digital HDL is used 
as part of a design flow. The first thing to note is that the functionality of a digital 
circuit can be represented at different levels of abstraction and that different HDLs 
support these levels of abstraction to a greater or lesser extent ( Figure 5-14   ). 
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 FIGURE 5-14          Different levels of abstraction.    
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   The lowest level of abstraction for a digital HDL would be the  switch 
level , which refers to the ability to describe the circuit as a netlist of transistor 
switches. 

   A slightly higher level of abstraction would be the  gate level , which refers 
to the ability to describe the circuit as a netlist of primitive logic gates and func-
tions. Thus, the early gate-level netlist formats generated by schematic capture 
packages as discussed in the previous section were in fact rudimentary HDLs.

        ALERT!      

    Both switch-level and gate-level netlists may be classed as structural representa-
tions. It should be noted, however, that  “ structural ”  can have different connota-
tions because it may also be used to refer to a hierarchical block-level netlist 
in which each block may have its contents specified using any of the levels of 
abstraction shown in   Figure 5-14 .      

   The next level of HDL sophistication is the ability to support  functional 
representations , which covers a range of constructs. At the lower end is the 
capability to describe a function using Boolean equations. For example, assum-
ing we had already declared a set of signals called Y, SELECT, DATA-A, and 
DATA-B, we could capture the functionality of a simple 2:1 multiplexer using 
the following Boolean equation: 

 Y (SELECT & DATA-A) (!SELECT & DATA-B);� �      
   Note that this is a generic syntax that does not favor any particular HDL and is 
used only for the purposes of this example. 

   The functional level of abstraction also encompasses register transfer level 
(RTL) representations. The term RTL covers a multitude of manifestations, but 
the easiest way to wrap one’s brain around the underlying concept is to con-
sider a design formed from a collection of registers linked by combinational 
logic. These registers are often controlled by a common clock signal, so assum-
ing that we have already declared two signals called CLOCK and CONTROL, 
along with a set of registers called REGA, REGB, REGC, and REGD, then an 
RTL-type statement might look something like the following: 

when CLOCK rises if CONTROL �� “1”

 

then REGA REGB & REGC; else REGA REGB REGD; 
end if; 
end wh

� � �

een;      

   In this case, symbols like  when ,  rises ,  if ,  then ,  else , and the like are keywords 
whose semantics are defined by the owners of the HDL. Once again, this is a 
generic syntax that does not favor any particular HDL and is used only for the 
purposes of this example. 
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   The highest level of abstraction sported by traditional HDLs is known as 
 behavioral , which refers to the ability to describe the behavior of a circuit 
using abstract constructs like loops and processes. This also encompasses using 
algorithmic elements like adders and multipliers in equations; for example: 

 Y (DATA-A DATA-B) * DATA-C; � �      

   We should note that there is also a system level of abstraction (not shown in 
 Figure 5-14 ) that features constructs intended for system-level design applica-
tions, but we’ll worry about this level a little later. 

   Many of the early digital HDLs supported only structural representations 
in the form of switch or gate-level netlists. Others such as ABEL, CUPL, and 
PALASM were used to capture the required functionality for PLD devices. 
These languages supported different levels of functional abstraction, such as 
Boolean equations, text-based truth tables, and text-based finite state machine 
(FSM) descriptions. 

   The next generation of HDLs, which were predominantly targeted toward 
logic simulation, supported more sophisticated levels of abstraction such as 
RTL and some behavioral constructs. It was these HDLs that formed the core 
of the first true HDL-based design flows. 

    A Simple (early) HDL-based ASIC Flow 
   The key feature of HDL-based ASIC design flows is their use of logic synthesis 
technology, which began to appear on the market around the mid-1980s. These 
tools could accept an RTL representation of a design along with a set of tim-
ing constraints. In this case, the timing constraints were presented in a side-file 
containing statements along the lines of  “ the maximum delay from input X to 
output Y should be no greater than N nanoseconds ”  (the actual format would be 
a little drier and more boring). 

   The logic synthesis application automatically converted the RTL represen-
tation into a mixture of registers and Boolean equations, performed a variety 
of minimizations and optimizations (including optimizing for area and timing), 
and then generated a gate-level netlist that would (or at least, should) meet the 
original timing constraints ( Figure 5-15   ).   

    —Technology Trade-offs— 
          ●      There were a number of advantages to this new type of flow. First the pro-

ductivity of the design engineers rose dramatically because it was much 
easier to specify, understand, discuss, and debug the required functionality 
of the design at the RTL level of abstraction as opposed to working with 
reams of gate-level schematics.  

      ●      Also, logic simulators could run designs described in RTL much more 
quickly than their gate-level counterparts.  
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      ●      One slight glitch was that logic simulators could work with designs speci-
fied at high levels of abstraction that included behavioral constructs, but 
early synthesis tools could only accept functional representations up to the 
level of RTL. Thus, design engineers were obliged to work with a synthe-
sizable subset of their HDL of choice.    

   Once the synthesis tool had generated a gate-level netlist, the flow became very 
similar to the schematic-based ASIC flows discussed in the previous chapter. 
The gate-level netlist could be simulated to ensure its functional validity, and 
it could also be used to perform timing analysis based on estimated values for 
tracks and other circuit elements. The netlist could then be used to drive the 
place-and-route software, following which a more accurate timing analysis 
could be performed using extracted resistance and linefeed capacitance values. 

    A Simple (early) HDL-based FPGA Flow 
   It took some time for HDL-based flows to flourish within the ASIC commu-
nity. Meanwhile, design engineers were still coming to grips with the concept 
of FPGAs. Thus, it wasn’t until the very early 1990s that HDL-based flows 
featuring logic synthesis technology became fully available in the FPGA world 
( Figure 5-16   ). 

   As before, once the synthesis tool had generated a gate-level netlist, the 
flow became very similar to the schematic-based FPGA flows discussed in the 
previous chapter. The gate-level netlist could be simulated to ensure its func-
tional validity, and it could also be used to perform timing analysis based on 
estimated values for tracks and other circuit elements. The netlist could then 
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 FIGURE 5-15          Simple HDL-based ASIC flow.    
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be used to drive the FPGA’s mapping, packing, and place-and-route software, 
following which a more accurate timing report could be generated using real-
world (physical) values.  

    Architecturally Aware FPGA Flows 
   The main problem besetting the original HDL-based FPGA flows was that their 
logic synthesis technologies were derived from the ASIC world. Thus, these 
tools  “ thought ”  in terms of primitive logic gates and registers. In turn, this 
meant that they output gate-level netlists, and it was left to the FPGA vendor to 
perform the mapping, packing, and place-and-route functions. 

   Sometime around 1994, synthesis tools were equipped with knowledge 
about different FPGA architectures. This meant that they could perform map-
ping—and some level of packing—functions internally and output a LUT/CLB-
level netlist. This netlist would subsequently be passed to the FPGA vendor’s 
place-and-route software. The main advantage of this approach was that these 
synthesis tools had a better idea about timing estimations and area utilization, 
which allowed them to generate a better quality of results (QoR). In real terms, 
FPGA designs generated by architecturally aware synthesis tools were 15 to 
20 percent faster than their counterparts created using traditional (gate-level) 
synthesis offerings.  

    Logic versus Physically Aware Synthesis 
   We’re jumping a little bit ahead of ourselves here, but this is as good a place 
as any to briefly introduce this topic. The original logic synthesis tools were 

Register
transfer level 

RTL 

Logic
Simulator 

RTL functional
verification 

Logic
Synthesis 

Gate-level
netlist 

Logic
Simulator 

Mapping 

Packing 

Place-and- 
Route 

Gate-level functional
verification 

 FIGURE 5-16          Simple HDL-based FPGA flow.    
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designed for use with the multimicron ASIC technologies of the mid-1980s. 
In these devices, the delays associated with the logic gates far outweighed the 
delays associated with the tracks connecting those gates together. In addition 
to being relatively small in terms of gate-count (by today’s standards), these 
designs featured relatively low clock frequencies and correspondingly loose 
design constraints. The combination of all of these factors meant that early 
logic synthesis tools could employ relatively simple algorithms to estimate the 
track delays, but that these estimations would be close enough to the real (post-
place-and-route) values that the device would work. 

   Over the years, ASIC designs increased in size (number of gates) and com-
plexity. At the same time, the dimensions of the structures on the silicon chip 
were shrinking with two important results: 

      ●      Delay effects became more complex in general.  
      ●      The delays associated with tracks began to outweigh the delays associated 

with gates.    

   By the mid-1990s, ASIC designs were orders of magnitude larger—and their 
delay effects were significantly more sophisticated—than those for which the 
original logic synthesis tools had been designed. The result was that the esti-
mated delays used by the logic synthesis tool had little relation to the final 
post-place-and-route delays. In turn, this meant that achieving timing closure 
(tweaking the design to make it achieve its original performance goals) became 
increasingly difficult and time-consuming. 

   For this reason, ASIC flows started to see the use of  physically aware syn-
thesis  somewhere around 1996. For the moment, we need only note that, during 
the course of performing its machinations, the physically aware synthesis engine 
makes initial placement decisions for the logic gates and functions. Based on 
these placements, the tool can generate more accurate timing estimations. 

   Ultimately, the physically aware synthesis tool outputs a placed (but not 
routed) gate-level netlist. The ASIC’s physical implementation (place-and-route) 
tools use this initial placement information as a starting point from which to per-
form local (fine-grained) placement optimizations followed by detailed routing. 
The result is that the estimated delays used by the physically aware synthesis 
application more closely correspond to the post-place-and-route delays. In turn, 
this means that achieving timing closure becomes a less taxing process. 

   But what of FPGAs? Well, these devices were also increasing in size 
and complexity throughout the 1990s. By the end of the millennium, FPGA 
 designers were running into significant problems with regard to timing clo-
sure. Thus, around 2000, EDA vendors started to provide FPGA-centric, physi-
cally aware synthesis offerings that could output a mapped, packed, and placed 
LUT/CLB-level netlist. In this case, the FPGA’s physical implementation 
(place-and-route) tools use this initial placement information as a starting point 
from which to perform local (fine-grained) placement optimizations f ollowed 
by detailed routing.
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 FIGURE 5-17          Mixed-level design capture environment.    
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        FAQ      

    Do FPGA designers still use graphical design entry? 

   When the first HDL-based flows appeared on the scene, many folks assumed that 
graphical design entry and visualization tools, such as schematic capture sys-
tems, were poised to exit the stage forever. Indeed, for some time, many design 
engineers prided themselves on using text editors like VI (from Visual Interface) 
or EMACS as their only design entry mechanism. But a picture tells a thousand 
words, as they say, and graphical entry techniques remain popular at a variety 
of levels. For example, it is extremely common to use a block-level schematic 
editor to capture the design as a collection of high-level blocks that are con-
nected together. The system might then be used to automatically create a skeleton 
HDL framework with all of the block names and inputs and outputs declared. 
Alternatively, the user might create a skeleton framework in HDL, and the system 
might use this to create a block-level schematic automatically. 

   From the user’s viewpoint,  “ pushing ”  down into one of these schematic blocks 
might automatically open an HDL editor. This could be a pure text-and-com-
mand–based editor like VI, or it might be a more sophisticated HDL-specific editor 
featuring the ability to show language keywords in different colors, automatically 
complete statements, and so forth. 

   Furthermore, when pushing down into a schematic block, modern design sys-
tems often give you a choice between entering and viewing the contents of that 
block as another, lower-level block-level schematic, raw HDL code, a graphical 
state diagram (used to represent an FSM), a graphical flow-chart, and so forth. In the 
case of the graphical representations like state diagrams and flowcharts, these can 
subsequently be used to generate their RTL equivalents automatically ( Figure 5-17   ). 
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   Furthermore, it is common to have a tabular file containing information relat-
ing to the device’s external inputs and outputs. In this case, both the top-level 
block diagram and the tabular file will (hopefully) be directly linked to the same 
data and will simply provide different views of that data. Making a change in any 
view will update the central data and be reflected immediately in all of the views.          

    A Plethora of HDLs 

   Life would be so simple if there were only a single HDL to worry about, but 
no one said that living was going to be easy. As previously noted, in the early 
days of digital IC electronics design (circa the 1970s), anyone who created an 
HDL-based design tool typically felt moved to create his or her own language 
to accompany it. Not surprisingly, the result was a morass of confusion (you 
had to be there to fully appreciate the dreadfulness of the situation). What was 
needed was an industry-standard HDL that could be used by multiple EDA 
tools and vendors, but where was such a gem to be found? 

       Verilog HDL 
   Sometime around the mid-1980s, Phil Moorby (one of the original members of 
the team that created the famous HILO logic simulator) designed a new HDL 
called Verilog. In 1985, the company he was working for, Gateway Design 
Automation, introduced this language to the market along with an accompany-
ing logic simulator called Verilog-XL. 

   One very cool concept that accompanied Verilog and Verilog-XL was the 
Verilog programming language interface (PLI). The more generic name for this 
sort of thing is  application programming interface  (API). An API is a library 
of software functions that allow external software programs to pass data into 
an application and access data from that application. Thus, the Verilog PLI is an 
API that allows users to extend the functionality of the Verilog language and 
simulator. 

   As one simple example, let’s assume that an engineer is designing a cir-
cuit that makes use of an existing module to perform a mathematical function 
such as a fast Fourier transform (FFT). A Verilog representation of this func-
tion might take a long time to simulate, which would be a pain if all the engi-
neer really wanted to do was verify the new portion of the circuit. In this case, 
the engineer might create a model of this function in the C programming lan-
guage, which would simulate, say, 1,000 times faster than its Verilog equiva-
lent. This model would incorporate PLI constructs, allowing it to be linked into 
the simulation environment. The model could subsequently be accessed from 
the Verilog description of the rest of the circuit by means of a PLI call provid-
ing a bidirectional link to pass data back and forth between the main circuit 
(represented in Verilog) and the FFT (captured in C). 
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   Yet one more very useful feature associated with Verilog and Verilog-XL 
was the ability to have timing information specified in an external text file 
known as a  standard delay format  (SDF) file. This allowed tools like post-
place-and-route timing analysis packages to generate SDF files that could be 
used by the simulator to provide more accurate results. 

   As a language, the original Verilog was reasonably strong at the structural 
(switch and gate) level of abstraction (especially with regard to delay modeling 
capability); it was very strong at the functional (Boolean equation and RTL) 
level of abstraction; and it supported some behavioral (algorithmic) constructs 
( Figure 5-18   ). 

   In 1989, Gateway Design Automation along with Verilog (the HDL) and 
Verilog-XL (the simulator) were acquired by Cadence Design Systems. The 
most likely scenario at that time was for Verilog to remain as just another pro-
prietary HDL. However, with a move that took the industry by surprise, Cadence 
put the Verilog HDL, Verilog PLI, and Verilog SDF specifications into the pub-
lic domain in 1990. 

   This was a very daring move because it meant that anybody could develop 
a Verilog simulator, thereby becoming a potential competitor to Cadence. The 
reason for Cadence’s largesse was that the VHDL language (introduced later in 
this section) was starting to gain a significant following. The upside of placing 
Verilog in the public domain was that a wide variety of companies developing 
HDL-based tools, such as logic synthesis applications, now felt comfortable 
using Verilog as their language of choice.    

       —Technology Trade-offs— 
          ●      Having a single design representation that could be used by simulation, syn-

thesis, and other tools made everyone’s life much easier. It is important to 
remember, however, that Verilog was originally conceived with  simulation 
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 FIGURE 5-18          Levels of abstraction (Verilog).    
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in mind; applications like synthesis were something of an afterthought. This 
means that when creating a Verilog representation to be used for both simu-
lation and synthesis, one is restricted to using a synthesizable subset of the 
language (which is loosely defined as whatever collection of language con-
structs your particular logic synthesis package understands and supports).    

   The formal definition of Verilog is encapsulated in a document known as the 
language reference manual (LRM), which details the syntax and semantics 
of the language. In this context, the term  syntax  refers to the grammar of the 
language—such as the ordering of the words and symbols in relation to each 
other—while the term  semantics  refers to the underlying meaning of the words 
and symbols and the relationships between the things they denote. 

   In an ideal world, an LRM would define things so rigorously that 
there would be no chance of any misinterpretation. In the real world, however, 
there were some ambiguities with respect to the Verilog LRM. Admittedly, 
these were c orner-case conditions along the lines of  “ if a control signal on this 
register goes inactive at the same time as the clock signal triggers, which sig-
nal will be evaluated by the simulator first? ”  But the result was that different 
Verilog simulators might generate different results, which is always somewhat 
disconcerting to the end user. 

   Verilog quickly became very popular. The problem was that different com-
panies started to extend the language in different directions. In order to curtail 
this sort of thing, a nonprofit body called Open Verilog International (OVI) 
was established in 1991. With representatives from all of the major EDA ven-
dors of the time, OVI’s mandate was to manage and standardize Verilog HDL 
and the Verilog PLI. 

   The popularity of Verilog continued to rise exponentially, with the result 
that OVI eventually asked the IEEE to form a working committee to estab-
lish Verilog as an IEEE standard. Known as IEEE 1364, this committee was 
formed in 1993. May 1995 saw the first official IEEE Verilog release, which 
is formally known as IEEE 1364–1995, and whose unofficial designation has 
come to be Verilog 95. 

   Minor modifications were made to this standard in 2001; hence, it is often 
referred to as the Verilog 2001 (or Verilog 2K1) release. At the time of this writ-
ing, the IEEE 1364 committee is working feverishly on a forthcoming Verilog 
2005 offering, while the design world holds its breath in dread anticipation (see 
also the section on  “ Superlog and System-Verilog ”  later in this chapter). 

    VHDL and VITAL 
   In 1980, the U.S. Department of Defense (DoD) launched the very high speed 
integrated circuit (VHSIC) program, whose primary objective was to advance 
the state of the art in digital IC technology. This program sought to address, 
among other things, the fact that it was difficult to reproduce ICs (and circuit 
boards) over the long life cycles of military equipment because the function 
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of the parts wasn’t documented in a rigorous fashion. Furthermore, different 
components forming a system were often designed and verified using diverse 
and incompatible simulation languages and design tools. 

   To address these issues, a project to develop a new hardware description 
language called VHSIC HDL (or VHDL for short) was launched in 1981. One 
unique feature of this process was that industry was involved from a very early 
stage. In 1983, a team comprising Intermetrics, IBM, and Texas Instruments was 
awarded a contract to develop VHDL, the first official release of which occurred 
in 1985. 

   Also of interest is the fact that in order to encourage acceptance by the 
industry, the DoD subsequently donated all rights to the VHDL language defi-
nition to the IEEE in 1986. After making some modifications to address a few 
known problems, VHDL was released as official standard IEEE 1076 in 1987. 
The language was further extended in a 1993 release and again in 1999.    

       —Technology Trade-offs— 
          ●      As a language, VHDL is very strong at the functional (Boolean equation 

and RTL) and behavioral (algorithmic) levels of abstraction, and supports 
some system-level design constructs. However, VHDL is a little weak 
when it comes to the structural (switch and gate) level of abstraction, espe-
cially with regard to its delay modeling capability.    

   It quickly became apparent that VHDL had insufficient timing accuracy to be 
used as a sign-off simulator. For this reason, the VITAL initiative was launched 
at the Design Automation Conference (DAC) in 1992. VHDL Initiative toward 
ASIC Libraries (VITAL) was an effort to enhance VHDL’s capabilities for 
modeling timing in ASIC and FPGA design environments. The result encom-
passed both a library of ASIC/FPGA primitive functions and an associated 
method for back-annotating delay information into these library models, where 
this delay mechanism was based on the same underlying tabular format used 
by Verilog ( Figure 5-19   ). 

    Mixed-language Designs 
   Once upon a time, it was fairly common for an entire design to be captured 
using a single HDL (Verilog or VHDL). As designs increased in size and com-
plexity, however, it became more common for different portions of the design 
to be created by different teams. These teams might be based in different com-
panies or even reside in different countries, and it was not uncommon for the 
different groups to be using different design languages. 

   Another consideration was the increasing use of legacy design blocks or 
third-party IP, where the latter refers to a design team purchasing a predefined 
function from an external supplier. As a general rule of thumb related to 
Murphy’s Law, if you were using one language, then the IP you wanted was 
probably available only in the other language. 

CH005-H8974.indd   99CH005-H8974.indd   99 6/21/2008   5:13:40 PM6/21/2008   5:13:40 PM



FPGAs: Instant Access100

www.newnespress.com

   The early 1990s saw a period known as the HDL Wars, in which the 
 proponents of one language (Verilog or VHDL) stridently predicted the immi-
nent demise of the other  …  but the years passed and both languages retained 
strong followings. The result was that EDA vendors began to support mixed-
language design environments featuring logic simulators, logic synthesis appli-
cations, and other tools that could work with designs composed from a mixture 
of Verilog and VHDL blocks (or modules, depending on your language roots).  

    UDL/I 
   As previously noted, Verilog was originally designed with simulation in mind. 
Similarly, VHDL was created as a design documentation and specification 
language that took simulation into account. As a result, one can use both of 
these languages to describe constructs that can be simulated, but not synthe-
sized. To address these problems, the Japan Electronic Industry Development 
Association (JEIDA) introduced its own HDL, the unified design language for 
integrated circuits (UDL/I) in 1990. 

   The key advantage of UDL/I was that it was designed from the ground up 
with both simulation and synthesis in mind. The UDL/I environment includes 
a simulator and a synthesis tool and is available for free (including the source 
code). However, by the time UDL/I arrived on the scene, Verilog and VHDL 
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 FIGURE 5-19          Levels of abstraction (Verilog versus VHDL).    
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already held the high ground, and UDL/I has never really managed to attract 
much interest outside of Japan.  

    Superlog and SystemVerilog 
   In 1997, things started to get complicated because that’s when a company 
called Co-Design Automation was formed. Working away furiously, the folks 
at Co-Design developed a  “ Verilog on steroids ”  called Superlog. 

   Superlog was an amazing beast that combined the simplicity of Verilog 
with the power of the C programming language. It also included things like 
temporal logic, sophisticated design verification capabilities, a dynamic API, 
and the concept of assertions that are key to the formal verification strategy 
known as model checking. (VHDL already had a simple assert construct, but 
the original Verilog had nothing to boast about in this area.) 

   The two main problems with Superlog were 

      ●      it was essentially another proprietary language, and  
      ●      it was so much more sophisticated than Verilog 95 (and later Verilog 2001) 

that getting other EDA vendors to enhance their tools to support it would 
have been a major feat.    

   Meanwhile, while everyone was scratching their heads wondering what the 
future held, the OVI group linked up with their equivalent VHDL organization 
called VHDL International to form a new body called Accellera. The mission 
of this new organization was to focus on identifying new standards and for-
mats, to develop these standards and formats, and to foster the adoption of new 
methodologies based on these standards and formats. 

   In the summer of 2002, Accellera released the specification for a hybrid 
language called SystemVerilog 3.0 (don’t even ask me about 1.0 and 2.0). The 
great advantage to this language was that it was an incremental enhancement 
to the existing Verilog, rather than the death-defying leap represented by a full-
up Superlog implementation. Actually, SystemVerilog 3.0 featured many of 
Superlog’s language constructs donated by Co-Design. It included things like 
the assertion and extended synthesis capabilities that everyone wanted and, 
being an Accellera standard, it was well placed to quickly gain widespread 
adoption. 

   The current state of play (at the time of this writing) is that Co-Design was 
acquired by Synopsys in the fall of 2002. Synopsys maintained the policy of 
donating language constructs from Superlog to SystemVerilog, but no one 
is really talking about Superlog as an independent language anymore. After 
a little pushing and pulling, all of the mainstream EDA vendors officially 
endorsed SystemVerilog and augmented their tools to accept various subsets of 
the language, depending on their particular application areas and requirements. 
System-Verilog 3.1 hit the streets in the summer   of 2003, followed by a 3.1a 
release (to add a few enhancements and fix some annoying problems) around 
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the beginning of 2004. Meanwhile, the IEEE determined to release the next 
version of Verilog in 2005. To avert a potential schism between Verilog 2005 
and SystemVerilog, Accellera promised to donate their SystemVerilog copy-
right to the IEEE by the summer of 2004. SystemVerilog was formally adopted 
as IEEE Standard 1800–2005. At the time of writing, the IEEE is working on 
the next major version of the standard, expected as 1800–2008. They are also 
extending the APIs to include assertions, coverage, and other aspects of the 
language. 

   Speaking of which  …  there is another aspect to SystemVerilog, the full 
potential of which has not yet been realized. This is the Direct Programming 
Interface (DPI). In fact, the concept behind this is incredibly simple. Since pro-
cesses in Verilog look very much like procedure calls in C, why not make them 
able to call each other directly without having to go through a massive inter-
face as was the case with the Verilog PLI? The resulting interface is extremely 
fast (although hidden dangers can lie there) and means that SystemVerilog now 
plays nicely with other languages, such as SystemC. In effect, that means that 
the SystemVerilog language has become more extensible.  

    SystemC 
   And then we have SystemC, which some design engineers love and others hate 
with a passion. SystemC—discussed in more detail in Chapter 6—can be used 
to describe designs at the RTL level of abstraction. These descriptions can sub-
sequently be simulated 5 to 10 times faster than their Verilog or VHDL coun-
terparts, and synthesis tools are available to convert the SystemC RTL into 
gate-level netlists.    

       —Technology Trade-offs— 
          ●      One big argument for SystemC is that it provides a more natural environ-

ment for hardware/software codesign and co-verification.  
      ●      One big argument against it is that the majority of design engineers are 

very familiar with Verilog or VHDL, but are not familiar with the object-
oriented aspects of SystemC.  

      ●      Another consideration is that the majority of today’s synthesis offerings rep-
resent hundreds of engineer years of development in translating Verilog or 
VHDL into gate-level netlists. By comparison, there are far fewer SystemC-
based synthesis tools, and those that are available tend to be somewhat less 
sophisticated than their more traditional counterparts.    

   In reality, SystemC is more applicable to a system-level versus an RTL design 
environment. Having said this, SystemC seems to be gaining a lot of momen-
tum in Asia and Europe, and the debate on SystemC versus SystemVerilog ver-
sus VHDL will doubtless be with us for quite some time.  
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    Points to Ponder 

   Sad to relate, the majority of designs described in RTL are almost unintelli-
gible to another designer. In an ideal world, the RTL description of a design 
should read like a book, starting with a  “ table of contents ”  (an explanation of 
the design’s structure), having a logical flow partitioned into  “ chapters ”  (logi-
cal breaks in the design), and having lots of  “ commentary ”  (comments explain-
ing the structure and operation of the design). 

   It’s also important to note that coding style can impact performance (this 
typically affects FPGAs more than ASICs). One reason for this is that, although 
they might be logically equivalent, different RTL statements can yield different 
results. Also, tools are part of the equation because different tools can yield dif-
ferent results. 

   The various FPGA vendors and EDA vendors are in a position to provide 
their customers with reams of information on particular coding styles and con-
siderations with regard to their chips and tools, respectively. However, the fol-
lowing points are reasonably generic and will apply to most situations. 

    Serial versus Parallel Multiplexers 
   When creating RTL code, it is useful to understand what your synthesis tool 
is going to do in certain circumstances. For example, every time you use an 
if-then-else statement, the result will be a 2:1 multiplexer. This becomes inter-
esting in the case of nested if-then-else statements, which will be synthesized 
into a priority structure. For example, assume that we have already declared 
signals Y, A, B, C, D, and SEL (for select) and that we use them to create a 
nested if-then-else ( Figure 5-20   ). 

if     SEL == 00“ then Y = A; 
elseif SEL == 01“ then Y = B; 
elseif SEL == 10“ then Y = C;

else                   Y = D;
end if; 
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2:1 MUX 
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SEL == 00 

SEL == 01 

SEL == 10 

Y 

 FIGURE 5-20          Synthesizing nested if-then-else statements.    
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   As before, the syntax used here is a generic one that doesn’t really reflect any 
of the mainstream languages. In this case, the innermost if-then-else will be the 
fastest path, while the outermost if-then-else will be the critical signal (in terms of 
timing). Having said this, in some FPGAs all of the paths through this structure 
will be faster than using a case statement. Speaking of which, a case statement 
implementation of the above will result in a 4:1 multiplexer, in which all of the 
timing paths associated with the inputs will be (relatively) equal ( Figure 5-21   ).  

    Beware of Latch Inference 
   Generally speaking, it’s a good idea to avoid the use of latches in FPGA designs 
unless you really need them. One other thing to watch out for: If you use an if-
then-else statement, but neglect to complete the  “ else ”  portion, then most syn-
thesis tools will infer a latch.  

    Use Constants Wisely 
   Adders are the most used of the more complex operators in a typical design. 
In certain cases, ASIC designers sometimes employ special versions using 
c ombinations of half-adders and full-adders. This may work very efficiently in 
the case of a gate array device, for example, but it will typically result in a very 
bad FPGA implementation. 

   When using an adder with constants, a little thought goes a long way. For 
example,  “ A      �      2 ”  can be implemented more efficiently as  “ A      �      1 with carry-in, ”  
while  “ A      �      2 ”  would be better implemented as  “ A      �      1 with carry-in. ”  

   Similarly, when using multipliers,  “ A * 2 ”  can be implemented much more 
efficiently as  “ A SHL 1 ”  (which translates to  “ A shifted left by one bit ” ), while 
 “ A * 3 ”  would be better implemented as  “ (A SHL 1)      �      A. ”  

   In fact, a little algebra also goes a long way in FPGAs. For example, replacing 
 “ A * 9 ”  with  “ (A SHL 3)      �      A ”  results in at least a 40-percent reduction in area.  

    Consider Resource Sharing 
    Resource sharing  is an optimization technique that uses a single functional block 
(such as an adder or comparator) to implement several operators in the HDL 

case SEL of; 
     00“: Y = A;
     01“: Y = B; 
     10“: Y = C; 
otherwise:Y = D; 
end case; 
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 FIGURE 5-21          Synthesizing a case statement.    

CH005-H8974.indd   104CH005-H8974.indd   104 6/21/2008   5:13:40 PM6/21/2008   5:13:40 PM



105Chapter | 5 “Traditional“ Design Flows

www.newnespress.com

code. If you do not use resource sharing, then each RTL operation is built using 
its own logic. This results in better performance, but it uses more logic gates, 
which equates to silicon real estate. If you do decide to use resource sharing, the 
result will be to reduce the gate-count, but you will typically take a hit in perfor-
mance. For example, consider the statement illustrated in  Figure 5-22   . Note that 
frequency values shown in this figure are of interest only for the purposes of this 
comparison, because these values will vary according to the particular FPGA 
architecture, and they will change as new process nodes come online. 

   The following operators can be shared with other instances of the same 
operator or with related operators on the same line: 

   For example, a      �      operator can be shared with instances of other      �      operators or 
with – operators, while a * operator can be shared only with other * operators. 

   If nothing else, it’s a good idea to check whether your synthesis application 
has resource sharing enabled or disabled by default. And one final point is that 
resource sharing in ASICs can alleviate routing congestion, but it may actually 
cause routing problems in FPGAs.  

    Last But Not Least 
   Internal tri-state buses are slow in most FPGAs and should be avoided unless 
you are 100-percent confident that you know what you’re doing. If at all possi-
ble, use tri-state buffers only at the top-most level of the design. If you do wish 

if (B > C) 

   then Y � A � B; 
   else Y � A � C; 
end if; 
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Clock frequency � 133.3 MHz (�52% !) 

 FIGURE 5-22          Resource sharing.    
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to use internal tri-state buffers, then in the case of FPGA families that don’t 
support these gates, the majority of today’s synthesis tools provide automatic 
tri-state-to-multiplexer conversion (this basically involves converting the tri-
state buffers specified in the RTL into corresponding LUT/CLB-based logic). 

   Also, bidirectional buffers can cause timing loop problems, so if you use 
them, make sure that any false paths are clearly marked.    

    INSTANT SUMMARY 

    Table 5-1    summarizes the features of the main HDLs as related to FPGA design.       

 TABLE 5.1          Summary of Major HDL Features  

   Verilog 2005  Syntax similar to C; 
     API/PLI support; 
     Timing specifi ed in external text (SDF) fi le; 
     Strong at structural level of abstraction especially w/ delay 

modeling; 
     Strong at functional level of abstraction; 
     Supports some behavioral constructs 

   SystemVerilog  Superset of Verilog 2005       w/ many new features to aid design; 
     Verifi cation and design modeling; 
     Assertion and extended synthesis capability 

   VHDL/VITAL  Strong at functional and behavioral levels of abstraction; 
     Supports some system-level design constructs 
     Somewhat weak on structural level of abstraction esp. regarding 

delay modeling; 
     VITAL enhances abilities for modeling timing in ASIC and FPGA 

design environments 

   SystemC  More of a system description language; 
     Implemented in C �      � ; 
     Can describe design at RTL level of abstraction, and these 

designs can be simulated 5–10 times faster than Verilog or 
VHDL counterparts; 

     Synthesis tools are available to convert SystemC RTL into  
gate-level netlists 

     More natural for hardware/software co-design 
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           Defi nitions      

   Again we’ll start with some basic terms and their definitions. 

      ●       Microarchitecture defi nition  tasks include such things as detailing control 
structures, bus structures, and primary data path elements.  

      ●      You were introduced to SystemC in the last chapter, but here we’ll go into 
more detail on this C �      � -based  system description language .  

      ●       Pragmas  are commented directives or special comments that can be put into 
pure C code to extend its capabilities, such as for use in FPGA design fl ows.  

      ●      We’ll look at  digital signal processing  (DSP) based design fl ows in this chapter, 
which refers to the branch of electronics concerned with the representation 
and manipulation of signals in digital form.  
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    C/C     �      � -BASED DESIGN FLOWS 

   With regard to the traditional HDL-based flows introduced in Chapter 5, a 
design commences with an original concept, whose high-level definition is 
determined by system architects and system designers. It is at this stage that 
macro-architecture decisions are made, such as partitioning the design into 
hardware and software components. 

   The resulting specification is then handed over to the hardware design 
engineers, who commence their portion of the development process by per-
forming  microarchitecture definition tasks  such as detailing control structures, 
bus structures, and primary data path elements. These microarchitecture defi-
nitions, which are often performed in brainstorming sessions on a whiteboard, 
may include performing certain operations in parallel versus sequential, pipe-
lining portions of the design versus nonpipelining, sharing common resources 
(for example, two operations sharing a single multiplier, versus using dedi-
cated resources) and so forth. 

   Eventually, the design intent is captured by writing RTL VHDL/Verilog. 
Following verification via simulation, this RTL is then synthesized down to 
a structural netlist suitable for use by the target technology’s place-and-route 
applications ( Figure 6-1   ). 

   At the time of this writing, these VHDL or Verilog-based flows account for 
around 95 percent of all ASIC and FPGA designs; however, there are a num-
ber of problems associated with these flows: 

      ●       Capturing the RTL is time-consuming : Even though Verilog and VHDL are 
intended to represent hardware, it is still time-consuming to use these lan-
guages to capture the functionality of a design.  

      ●       Verifying RTL is time-consuming : Using simulation to verify large designs 
represented in RTL is computationally expensive and time-consuming.  

      ●       Domain-specifi c languages  (DSLs) are languages, such as MATLAB, that pro-
vide more concise ways of representing specifi c tasks than do general-purpose 
languages.  

      ●      A  microcontroller  combines a CPU core with selected peripherals and special-
ized inputs and outputs.  

      ●      A  hard microprocessor core  is a core that is implemented as a dedicated, pre-
defi ned (hardwired) block.  

      ●      A  soft core  is a group of programmable logic blocks confi gured to act as a 
microprocessor.  

      ●      An  instruction set simulator  (ISS) provides a virtual representation of a CPU 
being implemented.  

      ●      A  bus interface model  (BIM) is an entity that acts as a translator between the 
simulator and the ISS.         
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      ●       Evaluating alternative implementations is difficult : Modifying and reveri-
fying RTL to perform a series of what-if evaluations of alternative micro-
architecture implementations is difficult and time-consuming. This means 
that the number of evaluations the design team can perform may be limited, 
which can result in a less-than-optimal implementation.  

      ●       Accommodating specification changes is difficult : If any changes to the 
specification are made during the course of the project, folding these 
changes into the RTL and performing any necessary reverification can be 
painful and time-consuming. This is a significant consideration in certain 
application areas, such as wireless projects, because broadcast standards 
and protocols are constantly evolving and changing.  

      ●       The RTL is implementation specific : Realizing a design in an FPGA typ-
ically requires a different RTL coding style from that used for an ASIC 
implementation. This means that it can be extremely difficult to retarget 
a complex design represented in RTL from one implementation technol-
ogy to another. This is of concern when one is migrating an existing ASIC 
design into an FPGA equivalent or creating an FPGA design to be used as 
a prototype for a future ASIC implementation.    

   One way to view this is that all of the implementation intelligence associated 
with the design is hardcoded into the RTL, which therefore becomes imple-
mentation specific. It’s important to understand that this implementation spec-
ificity goes beyond the coarse ASIC-versus-FPGA boundary, which dictates 
that RTL intended for an FPGA implementation is not suitable for an opti-
mal ASIC realization, and vice versa. Even assuming a single target device 
architecture, the way in which a set of algorithms is used to process data may 
require a number of different microarchitecture implementations, depending 
on the target application areas. 

   Actually, to be scrupulously fair, we should probably note that the same 
RTL may be used to drive both ASIC and FPGA implementations. The  reason 
for doing this is to avoid the risk of introducing a functional bug into the RTL 
when retargeting the code, but there is typically a penalty to be paid. That is, 

Implementation-specific RTL
(time-consuming to create, slow
to simulate, difficult to modify) 

FPGA
target

Gate-level
netlist 

LUT/CLB-
level netlist  

ASIC
target 

Original
Concept 

Capture
RTL

Simulate Synthesize

Capture
RTL

Simulate Synthesize 

uA
Definition

uA
Definition

Implementation-specific
micro-architecture

definition 

 FIGURE 6-1          Traditional (simplified) HDL-based flows.    
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if code originally targeted toward an FPGA implementation is subsequently 
used to drive an ASIC implementation, the resulting ASIC will typically 
require more silicon real estate and have higher power consumption as com-
pared to using RTL created with an ASIC architecture in mind. Similarly, if 
code originally targeted toward an ASIC implementation is subsequently used 
to drive an FPGA implementation, the ensuing FPGA will typically take a 
significant performance hit as compared to using RTL created with an FPGA 
architecture in mind. 

   RTL is less than ideal for hardware-software codesign: System-on-chip 
(SoC) devices are generally understood to be those that include microproces-
sor cores. Irrespective of whether these designs are to be realized using ASICs 
or FPGAs, today’s SoCs are exhibiting an ever-increasing amount of software 
content. When coupled with increased design reuse on the hardware side, in 
many cases it is necessary to verify the software and hardware concurrently 
so as to completely validate such things as the system diagnostics, RTOS, 
device drivers, and embedded application software. Generally speaking, it 
can be painful verifying (simulating) the hardware represented in VHDL or 
Verilog in conjunction with the software represented in C/C     �      �  or assembly 
language. 

   One approach that addresses the issues enumerated above is to perform the 
initial design capture at a higher level of abstraction than can be achieved with 
RTL VHDL/Verilog. The first such level is to use some form of C/C     �      � , but 
as usual nothing is simple because there are a variety of alternatives, including 
SystemC, augmented C/C     �  � , and pure C/C     �  � .  

    C versus C �  �  and Concurrent versus Sequential 

   Before we leap into the fray, we should tie down a couple of points to ensure 
that we’re all marching in step to the same beat. First, there is a wide vari-
ety of programming languages available, but—excepting specialist application 
areas—the most commonly used by far are traditional C and its object-oriented 
offspring C �      � . For our purposes here, we will refer to these collectively as 
C/C     �      � . 

   The next point of import is that, by default, statements in languages like 
C/C �  �  are executed sequentially. For example, assuming that we have already 
declared three integer variables called a, b, and c, then the following statements:

              a  =  6; /* Statement in C/C +      +  program */  
    b  =  2; /* Statement in C/C     +      +  program */  
    c  =  9; /* Statement in C/C     +      +  program */       
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   would, perhaps not surprisingly, occur one after the other. However, this has 
certain implications; for example, if we now assume that the following state-
ments occur sometime later in the program:

              a  =  b; /* Statement in C/C +      +  program */  
    b  =  a; /* Statement in C/C +  +  program */       

   then  a  (which initially contained 6) will be loaded with the value currently 
stored in  b  (which is 2). Next,  b  (which initially contained 2) will be loaded 
with the value currently stored in  a  (which is now 2), so both  a  and  b  will end 
up containing the same value. 

   The sequential nature of programming languages is the way in which soft-
ware engineers think. However, hardware design engineers have quite a dif-
ferent view of the world. Let’s assume that a piece of hardware contains two 
registers called  a  and  b  that are driven by a common clock signal. Let’s further 
assume that these registers have previously been loaded with values of 6 and 2, 
respectively. Finally, let’s assume that at some point in the HDL code, we see 
the following statements:

              a  =  b; /* Statement in VHDL/Verilog Code */  
    b  =  a; /* Statement in VHDL/Verilog Code */       

   As usual, this syntax doesn’t actually represent VHDL or Verilog; it’s just a 
generic syntax used only for the purposes of this example. Generally speaking, 
hardware engineers would expect both of these statements to be executed con-
currently (at the same time). This means that  a  (which initially contained 6) 
will be loaded with the value stored in  b  (which was 2) while—at the same 
time— b  (which initially contained 2) will be loaded with the value stored 
in  a  (which was 6). The result is that the initial contents of  a  and  b  will be 
exchanged. 

   As usual, of course, the above is something of a simplification. However, 
it’s fair to say that HDL statements will execute concurrently by default, 
unless sequential behavior is forced by means of techniques like block-
ing assignments. Thus, by default, RTL-based logic simulators will execute 
the statements shown above in this concurrent manner; similarly RTL-based 
logic synthesis tools will generate hardware that handles these two activities 
simultaneously. By comparison, unless explicitly directed to do otherwise (by 
means of the techniques introduced later in this chapter), C/C �  �  statements 
will e xecute sequentially. 
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    SystemC-based Flows 

           FAQs      

    What exactly is SystemC (and where did it come from)? 

   Before we consider SystemC-based flows, it is probably a good idea to elaborate 
a bit more on just what SystemC is, because there is typically some confusion on 
this point . 

    SystemC 1.0  – One of the underlying concepts behind SystemC is that it is an 
open-source environment to which everyone contributes. As an example, consider 
Linux, which was rough around the edges at first. Based on contributions from 
different folks, however, Linux eventually became a real operating system (OS) 
with the potential to challenge Microsoft. In this spirit, a relatively undocumented 
SystemC 1.0 was let loose to roam wild and free circa 2000. SystemC 1.0 was a 
C     �  �  class library that facilitated the representation of notions such as concur-
rency (things happening at the same time), timing, and I/O pins. By means of this 
class library, engineers could capture designs at the RTL level of abstraction. 

   One advantage of this early incarnation was that it facilitated hardware/soft-
ware codesign environments. Another was that SystemC representations at the 
RTL level of abstraction might simulate 5 to 10 times faster than their VHDL and 
Verilog counterparts. On the downside, it was harder and more time-c onsuming 
to capture an RTL-level design in SystemC 1.0 than with VHDL or Verilog. 
Furthermore, there was a scarcity of design tools that could synthesize SystemC 
1.0 representations into netlist-level equivalents with any degree of sophistication. 

    SystemC 2.0  – Later, in 2002, SystemC 2.0 arrived on the scene. This aug-
mented the 1.0 release with some high-level modeling constructs such as FIFOs 
(a form of memory that can accept and subsequently make available a series of 
words of data and that operates on a first-in first-out principle). The 2.0 release 
also included a variety of behavioral, algorithmic, and system-level modeling 
capabilities, such as the concepts of transactions and channels (which are used to 
describe the communication of data between blocks at an abstract level).       

   To gain a little more perspective on SystemC, let’s first consider a typical sce-
nario of how things would have worked using the original SystemC 1.0. As a 
simple example, let’s assume that we have two functions called  f ( x ) and  g ( x ) 
that have to communicate with each other ( Figure 6-2   ). 

   In this case, the interface between the blocks would have to be defined 
at the pin level. The real problem with this approach occurs when you are in 
the early stages of a design, because you are already defining implementation 
details such as bus widths. This makes things difficult to change if you wish to 
experiment with different what-if architectural scenarios. This aspect of things 
became much easier with SystemC 2.0, which allowed abstract interfaces to be 
declared between the blocks ( Figure 6-3   ). 

   Now, the interfacing between the blocks can be performed at the level of 
abstract records on the basis that, in the early stages of the design cycle, we 
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don’t really care how data gets from point a to point b, just that it does get 
there somehow. 

   These abstract interfaces facilitate performing architectural evaluation early 
in the design cycle. Once the architecture starts to firm up, you can start refin-
ing the interface by using high-level constructs such as a FIFO to which one 
would assign attributes like width and depth and characteristics like blocking 
write, nonblocking read, and how to behave when empty or full. Still later, this 
logical interface can be replaced by a completely specified (pin-level) interface 
that binds the functional blocks together at a more physical level. 

    Levels of Abstraction 
   Truth to tell, this is where things start to become a little fuzzy around the 
edges, not the least because one runs into different definitions depending on to 

Two functions captured
in high-level C/C��

f (x) g(x) 

Interface between
functions has to be

defined as pins 

 FIGURE 6-2          Interfacing in SystemC 1.0.    

Two functions captured
in high-level C/C��

Interface can be at the
level of abstract records 

Interfaces 

f (x) g(x) 

 FIGURE 6-3          Interfacing in SystemC 2.0.    
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whom one is talking. As a first pass, however, we might take a stab at captur-
ing the different levels of SystemC abstraction, as shown in  Figure 6-4   . 

   This is why things become confusing, because SystemC can mean all 
things to all people. To some it’s a replacement for RTL VHDL/Verilog, while 
to others it’s a single language that can be used for system-level specification, 
algorithmic and architectural analysis, behavioral design, and testbenches for 
use in verification. 

   One area of confusion comes when you start to talk about behavioral syn-
thesis. This encompasses certain aspects of both the algorithmic and transac-
tional levels (in the latter case, however, you have to be careful as to how to 
define your transactions).  

    SystemC-based Design-fl ow Alternatives 
   This is a tricky one because one might go various ways here. 

      ●      Many of today’s designs begin life as complex algorithms. In this case, it 
is very common to start by creating a C or C     �      �  representation. This rep-
resentation can be used to validate the algorithms by compiling it into a 
form that can be run (simulated) 1,000 or more times faster than an RTL 
equivalent. In the case of the HDL-based flows discussed in Chapter 5, this 
C/C     �      �  representation of the algorithms would then be hand-translated into 
RTL VHDL/Verilog. The C/C     �      �  representation will typically continue to 
be used as a golden model, which means it can be linked into the RTL sim-
ulator and run in parallel with the RTL simulation. The results from the C/
C     �      �  and RTL models can be compared so as to ensure that they are func-
tionally equivalent.  
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 FIGURE 6-4          Levels of SystemC abstraction.    
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      ●      Alternatively, in one flavor of a SystemC-based flow, the original C/C     �      �  
model could be incrementally modified by adding timing, concurrency, pin 
definitions, and so forth to transform it to a level at which it would be ame-
nable to SystemC-based RTL or behavioral synthesis.  

      ●      In another flavor of a SystemC-based flow, the design might be initially 
captured in SystemC using system, algorithmic, or transaction-level con-
structs that could be used for verification at a high level of abstraction. This 
representation could then be incrementally modified to bring it down to a 
level at which it would be amenable to SystemC-based RTL or behavioral 
synthesis.    

   Irrespective of the actual route by which one might get there, let’s assume that 
we are in possession of a SystemC representation of a design that is suitable 
for SystemC-based behavioral or RTL synthesis. In this case, there are two 
main design-flow alternatives, which are: 

    1.     to  translate the System C into RTL VHDL/Verilog automatically  and 
then to use conventional RTL synthesis technology, or  

    2.     to use  SystemC-based synthesis to generate an implementation-level 
netlist  directly.      

    —Technology Trade-offs— 
          ●      There are two schools of thought here. One says that synthesizing the 

SystemC directly into the implementation-level netlist offers the cleanest, 
fastest, and most efficient route.  

      ●      Another view is that it’s better to translate the SystemC into RTL VHDL/
Verilog first because RTL is the way design engineers really visualize their 
world; that this level is a natural staging point for integrating design blocks 
(including third-party IP) originating from multiple sources; and that 
Verilog/VHDL synthesis technology is extremely mature and powerful (as 
compared to SystemC-based synthesis technology).    

   Both of these flows can be applied to ASIC or FPGA targets ( Figure 6-5   ). 
   The first SystemC synthesis applications were predominantly geared 

toward ASIC flows, so they didn’t do a very good job at inferring FPGA-
s pecific entities such as embedded RAMs, embedded multipliers, and so forth. 
More recent incarnations do a much better job of this, but the level of sophisti-
cation exhibited by different tools is a moving target, so the prospective user is 
strongly advised to perform some indepth evaluations before slapping a bundle 
of cash onto the bargaining table. 

   Note that  Figure 6-5  shows the use of implementation specific SystemC 
to drive the ASIC versus FPGA flows. As soon as you start coding at the RTL 
level and adding timing concepts, be it in VHDL, Verilog, or SystemC, then 
achieving an optimal implementation requires that the code be written with a 
specific target architecture in mind.  
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    —Technology Trade-offs— 
          ●      Once again, having said this, the same SystemC can be used to drive 

both ASIC and FPGA flows, but there is typically a penalty to be paid. 
If SystemC code originally targeted toward an FPGA implementation is 
subsequently used to drive an ASIC flow, the resulting ASIC will typically 
require more silicon real estate and have higher power consumption as 
compared to using code created with an ASIC architecture in mind.  

      ●      Similarly, if code originally targeted toward an ASIC implementation is 
subsequently used to drive an FPGA flow, the ensuing FPGA will typically 
take a significant performance hit as compared to using code created with 
an FPGA architecture in mind. This is primarily a result of hard-coding the 
microarchitecture definition in the source.   

FPGA target 

Implementation-
specific code 

ASIC target 

Gate-level
netlist 

LUT/CLB-
level netlist 

Auto-RTL
Translation 

RTL
Synthesis 

SystemC 

SystemC
Synthesis 

Verilog/
VHDL RTL 

Auto-RTL
Translation 

RTL
Synthesis 

SystemC 

SystemC
Synthesis 

Verilog/
VHDL RTL

 FIGURE 6-5          Alternative SystemC flows.    

        Insider Info      

    Depending on who you are talking to, folks either love SystemC or they loath it. 
Most would agree that SystemC 2.0 is very promising and that there’s no other 
language that provides the same capabilities (some of these capabilities are being 
added into SystemVerilog, but not all of them).  

    On the downside, many design engineers are reasonably proficient at writing 
C, but most of them are significantly less familiar with the object-oriented aspects 
of C     �      � . So requiring them to use SystemC means giving them more power on the 
one hand, while thrusting them into a world they don’t like or understand on the 
other. It’s also true that while SystemC can be very useful for verification and high-
level system modeling, in some respects it’s still relatively immature toolwise with 
regard to actual implementation flows.  
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    Augmented C/C     �      � -based Flows 

    One school of thought says that, although SystemC is difficult to write by hand 
and also difficult to synthesize, which makes it a somewhat clumsy specification 
language, it does provide a powerful framework for simulation across languages 
and levels of abstraction. At the time of this writing, a number of companies that 
were strong supporters of SystemC in the United States have grown somewhat less 
vocal over the last few years. On the other hand, SystemC is gaining some ground 
in Europe and Asia. What does the future hold? Wait a few years, and I’ll be happy 
to tell you!        

           FAQs      

    What do we mean by augmented C/C     �      � ? 

   There are two ways in which standard C/C     �      �  can be augmented to extend its 
capabilities and the things it can be used to represent. The first is to include spe-
cial comments, known as commented directives or pragmas, into the pure C/C     �      �  
code. These comments can subsequently be recognized and interpreted by parsers, 
precompilers, compilers, and other tools and used to add constructs to the code or 
modify the way in which it is processed. One significant drawback to this approach 
is that simulation requires the use of proprietary C/C     �      �  compilers as opposed to 
using standard off-the-shelf compilers. This limits the options customers have and is 
only viable if standards are developed for multiple EDA vendors to leverage. 

   The other way in which C/C     �      �  can be augmented is to add special keywords 
and statements into the language. This is a very popular technique, and there is 
a veritable plethora of such language variants roaming wild and free around the 
world, each tailored toward a different application area. One downside of this 
approach is that, once again, it requires proprietary C/C     �      �  compilers; otherwise, 
tools such as simulators that have not been enhanced to understand these new 
keywords and statements will crash and burn. A common solution to this prob-
lem is to wrap standard #ifdef directives around the new keywords and statements 
such that a precompiler can be used to discard them as required (this is somewhat 
inelegant, but it works).       

   In the case of capturing the functionality of hardware for ASIC and FPGA 
designs, it is necessary to augment standard C/C     �      �  with special statements 
to support such concepts as clocks, pins, concurrency, synchronization, and 
resource sharing. 

   Assuming that you have an initial model represented in pure C/C     �      � , the 
first step would be to augment it with clock statements, along with interface 
statements used to define the input and output pins. You could then use an 
appropriate synthesis tool to generate an implementation (as discussed below). 
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However, because C/C     �      �  is by nature sequential, the resulting hardware can 
be horribly slow and inefficient if the synthesis tool is not capable of locating 
potential parallelisms and exploiting them. 

   For example, assume that we have the following statements in a C/C     �      �  
representation of the design:

              a  =  6;       /* Standard C/C     +      +  statement */  
    b  =  2;       /* Standard C/C     +  +  statement */  
    c  =  9;       /* Standard C/C     +  +  statement */  
    d  =  a  +  b;     /* Standard C/C     +      +  statement */  
    :  
    etc       

   By default, each  �  sign is assumed by the synthesis application to represent one 
clock cycle. Thus, if the above code were left as is, the augmented C/C     �      �  syn-
thesis tool would generate hardware that loaded variable (register)  a  with 6 on 
the first clock, then  b  with 2 on the next clock, then  c  with 9 on the next clock, 
and so forth. Thus, by hardware standards, this would run horribly slowly. 

   Of course, most synthesis tools would be capable of locating and exploiting 
the potential parallelisms in the above example, but they might well miss more 
complex cases that require human consideration and intervention. For the pur-
poses of these discussions, however, we shall continue to work with this simple 
test case. The point is that an augmented C/C     �      �  language will have keywords 
like  “ parallel ”  (or  “ par ” ) and  “ sequential ”  (or  “ seq ” ) that will instruct the 
downstream synthesis application as to which statements should be executed in 
parallel, and so forth. For example:

              parallel;        /*    Augmented C/C        +      +     statement */   
    a  =  6;       /* Standard C/C     +      +  statement */  
    b  =  2;       /* Standard C/C     +      +  statement */  
    c  =  9;       /* Standard C/C     +      +  statement */  
    sequential;          /* Augmented C/C        +      +     statement */   
    d  =  a  �  b;       /* Standard C/C     +      +  statement */  
    :  
    etc       

   In this case, the  parallel  statement instructs the synthesis tool that the follow-
ing statements can be implemented concurrently, while the  sequential  state-
ment implies that the preceding operations must occur prior to any subsequent 
actions taking place. Of course, these parallel and sequential statements can be 
nested as required. 
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   Things become more complex in the case of loops, depending on whether the 
designer wishes to unravel them partially or fully. Just to give a point of refer-
ence, we might visualize a loop as being something like  “  for i       �       1 to 10 in incre-
ments of 1 do xxxx, yyyy, and zzzz  ” . In some cases, it may be possible to simply 
associate a parallel or sequential statement with the loop, but if more subtlety is 
required, the designer may be obliged to completely rewrite these constructs. 

   It may also be necessary to add  “ share ”  statements if resource sharing is 
required, and  “ channel ”  statements to share signals between expressions, and 
the list goes on.

        ALERT!      

   As was previously noted, tools such as simulators that have not been enhanced 
to understand these new keywords and statements will  “ crash-and-burn ”  when 
presented with this representation. One solution is to  “ wrap ”  standard  “ #ifdef ”  
directives around the new keywords and statements such that a precompiler can 
be used to discard them as required. However, this means that the simulator and 
synthesis engines will be working on different views of the design, which is typi-
cally not a good idea. The other solution is to use a proprietary simulator, but 
this may not have the power, capacity, or capabilities of your existing simulation 
technology.      

    Augmented C/C     �      �  Design-fl ow Alternatives 
   As usual, one might go various ways here. As we previously discussed, in the 
case of a design that begins life as a suite of algorithms, it is very common 
to start by creating a C or C     �      �  representation. Following verification, this 
C/C     �      �  model can be incrementally modified by adding statements for clocks, 
pins, concurrency, synchronization, and resource sharing so as to make the 
model suitable for the appropriate synthesis utility. Alternatively, the design 
might be captured using the augmented C/C     �      �  language from the get-go. 

   Irrespective of the actual route we might take to get there, let’s assume that 
we are in possession of an augmented C/C     �      �  representation of a design that is 
suitable for synthesis. Once again, there are two main design-flow alternatives, 
which are (1) to translate the augmented C/C     �      �  into Verilog or VHDL at the 
RTL level of abstraction automatically and to then use conventional RTL synthe-
sis technology, or (2) to use an appropriate augmented C/C     �      �  synthesis engine. 

   And, once again, one school of thought says that synthesizing the aug-
mented C/C     �      �  directly into the implementation level netlist offers the clean-
est, fastest, and most efficient route. Others say that the RTL Verilog/VHDL 
level is the natural staging post for design integration and that today’s RTL 
synthesis technology is extremely mature and powerful. 

   Both of these flows can be applied to ASIC or FPGA targets ( Figure 6-6   ). 
The first augmented C/C     �      �  synthesis applications were predominantly geared 
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toward ASIC flows. This meant that these early incarnations didn’t do a tremen-
dous job when it came to inferring FPGA-specific entities such as embedded 
RAMs, embedded multipliers, and so forth. More recent versions of these tools 
do a much better job at this, but, as usual, the prospective user is strongly advised 
to perform some in-depth evaluations before handing over any hard-earned cash. 

   Note that  Figure 6-6  shows the use of implementation-specific code to drive 
the ASIC versus FPGA flows because achieving an optimal implementation 
requires that the code be written with a specific target architecture in mind. In 
reality, the same code can be used to drive both ASIC and FPGA flows, but there 
is usually a penalty to be paid (see the discussions on SystemC for more details).   

    Pure C/C     �      � -based Flows 

   Last, but not least, we come to pure C/C     �      � -based flows. In reality, the term  pure 
C/C      �      �  actually refers to industry-standard C/C     �      �  that is minimally augmented 
with SystemC data types to allow specific bit widths to be associated with vari-
ables and constants. 

   Although relatively new, pure C/C     �      � -based flows offer a number of advan-
tages as compared to other C-based flows and traditional Verilog-/VHDL-based 
flows: 

      ●       Creating pure C/C      �      �   is fast and efficient : Pure untimed C/C     �      �  represen-
tations are more compact and easier to create and understand than equivalent 
SystemC and augmented C/C     �      �  representations (and they are much more 
compact than their RTL equivalents, requiring perhaps 1/10th to 1/100th of 
the code).  

      ●       Verifying C/C      �      �   is fast and efficient : A pure untimed C/C     �      �  representa-
tion will simulate significantly faster than a timed SystemC or augmented 
C/C     �      �  model and 100 to 10,000 times faster than an equivalent RTL 
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 FIGURE 6-6          Alternative augmented C/C     �      �  flows.    
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r epresentation. In fact, pure C/C     �      �  models are already widely created and 
used by system designers for algorithm and system validation.  

      ●       Evaluating alternative implementations is fast and efficient : Modifying 
and reverifying pure untimed C/C     �      �  to perform a series of what-if evalua-
tions of alternative microarchitecture implementations is fast and efficient. 
This facilitates the design team’s ability to arrive at fundamentally superior 
microarchitecture solutions. In turn, this can result in significantly smaller 
and faster designs as compared to flows based on traditional hand-coded 
RTL methods.  

      ●       Accommodating specification changes is relatively easy : If any changes to 
the specification are made during the course of the project, it’s relatively 
easy to implement and evaluate these changes in a pure untimed C/C     �      �  
representation, thereby allowing the changes to be folded into the resulting 
implementation.    

   Furthermore, as noted earlier in this chapter, one of the most significant prob-
lems associated with existing SystemC and augmented C/C     �      � -based design 
flows is that the implementation intelligence associated with the design has to be 
hard-coded into the model, which therefore becomes implementation specific. 

   A key aspect associated with a pure untimed C/C     �      � -based design flow is 
that the code presented to the synthesis engine is just what someone would 
write if he or she didn’t have any preconceived hardware implementation or 
target device architecture in mind. This means that the C/C     �      �  code that sys-
tem designers write today is an ideal input to this form of synthesis. The only 
modification typically required to use a pure C/C     �      �  model with the synthesis 
engine is to add a single special comment to the source code to indicate the top 
of the functional portion of the design (anything conceptually above this point 
is considered to form part of the testbench). 

   As opposed to adding intelligence to the source code (thereby locking it 
into a target implementation), all of the intelligence is provided by the user 
controlling and guiding the synthesis engine itself ( Figure 6-7 ). 
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– Easy to modify 

Pure C/C��

Gate-level
netlist 

Verilog/
VHDL RTL

LUT/CLB-
level netlist 

ASIC
target 

Pure C/C��
Synthesis 

User interaction
and guidance 

Verilog/
VHDL RTL

RTL
Synthesis

RTL
Synthesis

FPGA
target 

Auto-generated, 
implementation-specific 

 FIGURE 6-7          A pure untimed C/C     �      � -based design flow.    
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        FAQs      

    Why not synthesize directly into a gate-level netlist? 

   As usual, it would be possible to synthesize the pure untimed C/C     �      �  directly into 
a gate-level netlist (this alternative is not shown in  Figure 6-7   ). However, generating 
the intermediate RTL provides a comfort zone for the engineers by  allowing them 
to check that they are satisfied with the implementation decisions that have been 

   Once the synthesis engine has parsed the source code, the user can use it to 
perform microarchitecture trade-offs and evaluate their effects in terms of size 
and speed. The synthesis engine analyzes the code, identifies its various con-
structs and operators, along with their associated data and memory dependen-
cies, and automatically provides for parallelism wherever possible. The engine 
also provides a graphical interface that allows the user to specify how different 
elements should be handled. For example, the interface 

      ●      allows the user to associate ports with registers or RAM blocks;  
      ●      identifies constructs like loops and allows the user to specify on an individual 

basis whether they should be fully unraveled, partially unraveled, or left alone;  
      ●      allows the user to specify whether loops and other constructs should be 

pipelined;  
      ●      allows the user to perform resource sharing on specific entities;  
      ●      and so forth.    

   These evaluations are performed on the fly, and the synthesis engine reports 
total size/area and latency in terms of clock cycles and I/O delays (or through-
put time/cycles in the case of pipelined designs). The user-defined configura-
tion associated with each what-if scenario can be named, saved, and reused as 
required (it would be almost impossible to perform these trade-offs in a timely 
manner using a conventional hand-coded RTL-based flow).

        Key Concept      

    The fact that the pure untimed C/C      �      �   source code used by the synthesis engine 
is not required to contain any implementation intelligence and that all such 
intelligence is supplied by controlling the engine itself means that the same 
source code can be easily retargeted to alternative microarchitectures and dif-
ferent implementation technologies.       

   Once the user’s evaluations are completed, clicking the  “ Go ”  button causes the 
synthesis engine to generate corresponding RTL VHDL. This code can subse-
quently be used by conventional logic synthesis or physically aware synthesis 
applications to generate the netlist used to drive the downstream implementa-
tion (place-and-route, etc.) tools.
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    Different Levels of Synthesis Abstraction 

   The fundamental difference between the various C/C     �      � -based flows pre-
sented in this chapter is the level of synthesis abstraction each can support. 
For example, although SystemC offers significant system-level, algorithmic, 
and transaction-level modeling capabilities, its synthesizable subset is at a rel-
atively low level of abstraction. Similarly, although augmented C/C     �      �  rep-
resentations are closer to pure C/C     �      �  than are their SystemC counterparts, 
which means that they simulate much more quickly, their synthesizable subset 
remains significantly lower than would be ideal. 

   This lack of synthesis abstraction causes the timed SystemC and aug-
mented C/C     �      �  representations to be implementation specific. In turn, this 
makes them difficult to create and modify and significantly reduces their flex-
ibility with regard to performing what-if evaluations and retargeting them 
toward alternative implementation technologies ( Figure 6-8   ). 
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 FIGURE 6-8          Different levels of C/C     �      �  synthesis abstraction.    

made during the course of the C/C     �      �  to RTL translation. Furthermore, generating 
intermediate RTL is useful because this is the level of abstraction where hardware 
design engineers generally stitch together the various functional blocks forming 
their designs. Large portions of today’s designs are typically presented in the form 
of IP blocks represented in RTL. This means that the intermediate RTL step shown 
in  Figure 6-7  is a useful point in the design flow for integrating and verifying the 
entire hardware system. The design engineers can then take full advantage of their 
existing RTL synthesis technology, which is mature, robust, and well understood.        
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   By comparison, the latest generation of pure untimed C/C     �      �  synthesis 
technology supports a high level of synthesis abstraction. Non-i mplementation-
specific C/C     �      �  models are very compact and can be quickly and easily 
created and modified. By means of the synthesis engine itself, the user can 
quickly and easily perform what-if evaluations and retarget the design toward 
alternative implementation technologies. The result is that a pure C/C     �      � -
based design flow can dramatically speed implementation and increase design 
flexibility as compared to other C/C     �      � -based flows.

        Insider Info      

    Before anyone starts to pen irate letters claiming the author is anti-SystemC, it 
should be reiterated that the discussions presented here are focused on the use of 
the various flavors of C/C     �      �  in the context of FPGA implementation flows. In this 
case, the tool-chain used to progress SystemC representations through to actual 
implementations is relatively immature and unsophisticated.  

    When it comes to system-level modeling and verification applications, however, 
SystemC can be extremely efficacious (many users see SystemC and SystemVerilog 
being used in conjunction with each other, with SystemC being employed for the 
initial system-level design representation, and then SystemVerilog being used to 
 “ flesh out ”  the implementation-level details.        

    Mixed-language Design and Verifi cation Environments 

   Last, but not least, we should note that a number of EDA companies can pro-
vide mixed-level design and verification environments that can support the 
cosimulation of models specified at multiple levels of abstraction. 

   In some cases, this may simply involve linking a C/C     �      �  model to a Verilog 
simulator via its  programming language interface  (PLI) or to a VHDL simu-
lator via its  foreign language interface  (FLI). Alternatively, one might find a 
SystemC environment with the capability to accept blocks represented in 
Verilog or VHDL. 

   And then there are very sophisticated environments that start with a graphi-
cal block-based editor showing the design’s major functional units, where the 
contents of each block can be represented using the following: 

      ●      VHDL  
      ●      Verilog  
      ●      SystemVerilog  
      ●      SystemC  
      ●      Handel-C  
      ●      Pure C/C     �      �     

   The top-level design might be in a traditional HDL that calls submodules 
in the various HDLs and in one or more flavors of C/C     �      � . Alternatively, the 
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t op-level design might be in one of the flavors of C/C     �      �  that calls submod-
ules in the various languages. 

   In this type of environment, the VHDL, Verilog, and SystemVerilog rep-
resentations are usually handled by a single-kernel simulation engine. This 
engine is then cosimulated with appropriate engines for the various flavors of 
C/C     �      � . Furthermore, this type of environment will incorporate source-code 
debuggers that support the various flavors of C/C     �      � ; it will allow testbenches 
to be created using any of the languages; and supporting tools like graphical 
waveform displays will be capable of displaying signals and variables associ-
ated with any of the language blocks. 

   In reality, the various mixed-language design and verification environ-
ment solution combinations and permutations change on an almost weekly 
basis, so you need to take a good look at what’s out there before you leap into 
the fray.

A/D DSP D/A 
Analog input

signal 
Digital input

samples 
Modified output

samples 
Analog output

signal 

Analog domain Digital domain Analog domain 

 FIGURE 6-9          What is DSP?    

        Key Concept      

    One advantage of a mixed-language design and verification environment is that 
you can continue to use your original C/C     �      �  testbench to drive the downstream 
version of your design in VHDL/Verilog at the RTL and gate levels of abstraction. 
You may need to tweak a few things, but that’s much better than rewriting every-
thing from the ground up.         

    DSP-BASED DESIGN FLOWS 

   Digital signal processing includes compression, decompression, modulation, 
error correction, filtering, and otherwise manipulating audio (voice, music, etc.), 
video, image, and similar data for such applications as telecommunications, 
radar, and image processing (including medical imaging). In many cases, the 
data to be processed starts out as a signal in the real (analog) world. This analog 
signal is periodically sampled, with each sample being converted into a digital 
equivalent by means of an analog-to-digital (A/D) converter ( Figure 6-9   ). 
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   These samples are then processed in the digital domain. In many cases, the 
processed digital samples are subsequently converted into an analog equivalent 
by means of a digital-to-analog (D/A) converter. 

   DSP occurs all over the place—in cell phones and telephone systems; CD, 
DVD, and MP3 players; cable desktop boxes; wireless and medical equipment; 
electronic vision systems; … the list goes on. This means that the overall DSP 
market is huge. 

    Alternative DSP Implementations 

   As usual, nothing is simple because DSP tasks can be implemented in a 
n umber of different ways: 

      ●       A general-purpose microprocessor  (µP): This may also be referred to as a 
central processing unit (CPU) or a microprocessor unit (MPU). The proces-
sor can perform DSP by running an appropriate DSP algorithm.  

      ●       A digital signal processor  (DSP): This is a special form of microprocessor 
chip (or core, as discussed below) that has been designed to perform DSP 
tasks much faster and more efficiently than can be achieved by means of a 
general-purpose microprocessor.  

      ●       Dedicated ASIC hardware : For the purposes of these discussions, we will 
assume that this refers to a custom hardware implementation that executes 
the DSP task. However, we should also note that the DSP task could be 
implemented in software by including a microprocessor or DSP core on the 
ASIC.  

      ●       Dedicated FPGA hardware : For the purposes of these discussions, we will 
assume that this refers to a custom hardware implementation that executes 
the DSP task. Once again, however, we should also note that the DSP 
functionality could be implemented in software by means of an embedded 
microprocessor core on the FPGA.    

    System-level Evaluation and Algorithmic Verifi cation 
   Irrespective of the final implementation technology (µP, DSP, ASIC, FPGA), if 
one is creating a product that is to be based on a new DSP algorithm, it is com-
mon practice to first perform system-level evaluation and algorithmic verifica-
tion using an appropriate environment (we consider this in more detail later in 
this chapter). 

   Although this book attempts to avoid focusing on companies and products 
as far as possible, it is encumbant on us to mention that—at the time of this 
writing—the de facto industry standard for DSP algorithmic verification is 
MATLAB® from The MathWorks  (   www.mathworks.com   ).2  

   For the purposes of these discussions, therefore, we shall refer to MATLAB 
as necessary. However, it should be noted that there are a number of other very 
powerful tools and environments available to DSP developers. For  example, 
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Simulink® from The MathWorks has a certain following; the Signal Processing 
Worksystem (SPW) environment from CoWare3 (www.coware.com) is very 
popular, especially in telecom markets; and tools from Elanix (www.elanix.
com) also find favor with many designers.  

    Software Running on a DSP Core 
   Let’s assume that our new DSP algorithm is to be implemented using a micro-
processor or DSP chip (or core). In this case, the flow might be as shown in 
 Figure 6-10   . 

      ●      The process commences with someone having an idea for a new algorithm 
or suite of algorithms. This new concept typically undergoes verification 
using tools such as MATLAB as discussed above. In some cases, one might 
leap directly from the concept into handcrafting C/C     �      �  (or assembly 
language).  

      ●      Once the algorithms have been verified, they have to be regenerated in 
C/C     �      �  or in assembly language. MATLAB can be used to generate C/
C     �      �  tuned for the target DSP core automatically, but in some cases, 
design teams may prefer to perform this translation step by hand because 
they feel that they can achieve a more optimal representation this way. As 
yet another alternative, one might first auto-generate C/C     �      �  code from 
the algorithmic verification environment, analyze and profile this code to 
determine any performance bottlenecks, and then recode the most critical 
portions by hand.  

      ●      Once you have your C/C     �      �  (or assembly language) representation, you 
compile it (or assemble it) into the machine code that will ultimately be 
executed by the microprocessor or DSP core.    

   This type of implementation is very flexible because any desired changes can 
be addressed relatively quickly and easily by simply modifying and recompil-
ing the source code. However, this also results in the slowest performance for 
the DSP algorithm because microprocessor and DSP chips are both classed 
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 FIGURE 6-10          A simple design flow for a software DSP realization.    
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as Turing machines. This means that their primary role in life is to process 
instructions, so both of these devices operate as follows: 

      ●      Fetch an instruction.  
      ●      Decode the instruction.  
      ●      Fetch a piece of data.  
      ●      Perform an operation on the data.  
      ●      Store the result somewhere.  
      ●      :  
      ●      Fetch another instruction and start all over again.   

        Key Concept      

    Of course, the DSP algorithm actually runs on hardware in the form of the 
microprocessor or DSP, but we consider this to be a software implementation 
because the actual (physical) manifestation of the algorithm is the program that 
is executed on the chip.          

    Dedicated DSP Hardware 
   There are myriad ways in which one might implement a DSP algorithm in an 
ASIC or FPGA—the latter option being the focus of this chapter, of course. 
But before we hurl ourselves into the mire, let’s first consider how different 
architectures can affect the speed and area (in terms of silicon real estate) of 
the implementation. 

   DSP algorithms typically require huge numbers of multiplications and 
additions. As a really simple example, let’s assume that we have a new DSP 
algorithm that contains an expression something like the following:

              Y  =  (A * B)  +  (C * D)  +  (E * F)  +  (G * H);       

   As usual, this is a generic syntax that does not favor any particular HDL and 
is used only for the purposes of these discussions. Of course, this would be a 
minuscule element in a horrendously complex algorithm, but DSP algorithms 
tend to contain a lot of this type of thing. 

   The point is that we can exploit the parallelism inherent in hardware to 
perform DSP functions much more quickly than can be achieved by means of 
software running on a DSP core. For example, suppose that all of the multipli-
cations were performed in parallel (simultaneously) followed by two stages of 
additions ( Figure 6-11   ). 

   Remembering that multipliers are relatively large and complex and that 
adders are sort of large, this implementation will be very fast, but will con-
sume a correspondingly large amount of chip resources. 
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   As an alternative, we might employ  resource sharing  (sharing some of the 
multipliers and adders between multiple operations) and opt for a solution that 
is a mixture of parallel and serial ( Figure 6-12   ). 

   This solution requires the addition of four 2:1 multiplexers and a register 
(remember that each of these will be the same multibit width as their r espective 
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 FIGURE 6-11          A parallel implementation of the function.    
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 FIGURE 6-12          An in-between implementation of the function.    
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signal paths). However, multiplexers and registers consume much less area than 
the two multipliers and adder that are no longer required as compared to our 
initial solution. 

   On the downside, this approach is slower, because we must first perform the 
(A * B) and (C * D) multiplications, add the results together, add this total to 
the existing contents of the register (which will have been initialized to contain 
zero), and store the result in the register. Next, we must perform the (E * F) and 
(G * H) multiplications, add these results together, add this total to the existing 
contents of the register (which currently contains the results from the first set of 
multiplications and additions), and store this result in the register. 

   As yet another alternative, we might decide to use a fully serial solution 
( Figure 6-13   ). 

   This latter implementation is very efficient in terms of area because it 
requires only a single multiplier and a single adder. This is the slowest imple-
mentation, however, because we must first perform the (A * B) multiplication, 
add the result to the existing contents of the register (which will have been ini-
tialized to contain zero), and store the total in the register. Next, we must per-
form the (C * D) multiplication, add this result to the existing contents of the 
register, and store this new total in the register. And so forth for the remaining 
multiplication operations. (Note that when we say  “ this is the slowest imple-
mentation, ”  we are referring to these hardware solutions, but even the slowest 
hardware implementation remains much, much faster than a software equiva-
lent running on a microprocessor or DSP.) 

       DSP-related Embedded FPGA Resources 

   As previously discussed, some functions like multipliers are inherently slow 
if they are implemented by connecting a large number of programmable logic 
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 FIGURE 6-13          A serial implementation of the function.    
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blocks together inside an FPGA. Since many applications require these func-
tions, many FPGAs incorporate special hard-wired multiplier blocks. (These 
are typically located in close proximity to embedded RAM blocks because 
these functions are often used in conjunction with each other.) 

   Similarly, some FPGAs offer dedicated adder blocks. One operation that 
is very common in DSP-type applications is ulate. As its name would suggest, 
this function multiplies two numbers together and adds the result into a run-
ning total stored in an accumulator (register). Hence, it is commonly referred 
to as a MAC, which stands for multiply, add, and accumulate ( Figure 6-14   ). 

   Note that the multiplier, adder, and register portions of the serial imple-
mentation of our function shown in  Figure 6-13  offer a classic example of a 
MAC. If the FPGA you are working with supplies only embedded multipliers, 
you would be obliged to implement this function by combining the multiplier 
with an adder formed from a number of programmable logic blocks, while the 
result would be stored in a block RAM or in a number of distributed RAMs. 
Life becomes a little easier if the FPGA also provides embedded adders, and 
some FPGAs provide entire MACs as embedded functions.   

    FPGA-centric Design Flows for DSPs 

   At the time of this writing, using FPGAs to perform DSP is still relatively new. 
Thus, there really are no definitive design flows or methodologies here—everyone 
seems to have his or her unique way of doing things, and whichever option you 
choose, you’ll almost certainly end up breaking new ground one way or another. 

    Domain-specifi c Languages 
   The way of the world is that electronic designs increase in size and complex-
ity over time. To manage this problem while maintaining—or, more usually, 
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A[n:0] 
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Multiplier 

Adder 

Accumulator 

MAC 

 FIGURE 6-14          The functions forming a MAC.    
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increasing—productivity, it is necessary to keep raising the level of abstraction 
used to capture the design’s functionality and verify its intent. 

   For this reason the gate-level schematics were superceded by the RTL rep-
resentations in VHDL and Verilog, as discussed in Chapter 5. Similarly, the 
drive toward C-based flows as discussed earlier is powered by the desire to 
capture complex concepts quickly and easily while facilitating architectural 
analysis and exploration. 

   In the case of specialist areas such as DSPs, system architects and design 
engineers can achieve a dramatic improvement in productivity by means of 
domain-specific languages (DSLs), which provide more concise ways of rep-
resenting specific tasks than do general-purpose languages such as C/C     �      �  and 
SystemC. 

   One such language is MATLAB, which allows DSP designers to represent 
a signal transformation, such as an FFT, that can potentially take up an entire 
FPGA, using a single line of code4 along the lines of 

     y      =      fft(x);     

   Actually, the term MATLAB refers both to a language and an algorithmic-
level simulation environment. To avoid confusion, it is common to talk about 
M-code (meaning  “ MATLAB code ” ) and M-files (files containing MATLAB 
code).

   In addition to sophisticated transformation operators like the FFT shown 
above, there are also much simpler transformations like adders, subtractors, 
multipliers, logical operators, matrix arithmetic, and so forth. The more com-
plex transformations like an FFT can be formed from these fundamental enti-
ties if required. The output from each transformation can be used as the input 
to one or more downstream transformations, and so forth, until the entire sys-
tem has been represented at this high level of abstraction. 

   One important point is that such a system-level representation does not ini-
tially imply a hardware or software implementation. In the case of DSP core, 
for example, it could be that the entire function is implemented in software as 
discussed earlier in this chapter. Alternatively, the system architects could par-
tition the design such that some functions are implemented in software, while 
other performance-critical tasks are implemented in hardware using dedicated 
ASIC or FPGA fabric. In this case, one typically needs to have access to a 
hardware or software codesign environment. For the purposes of these discus-
sions, however, we shall assume pure hardware implementations.

        Insider Info      

    Some engineers in the trenches occasionally refer to the  “ M language, ”  but this is 
not argot favored by the folks at The MathWorks.       
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        Key Concept      

    M-files can contain scripts (actions to be performed) or transformations or a 
mixture of both. Also, M-files can call other M-files in a hierarchical manner. The 
primary (top-level) M-file typically contains a script that defines the simulation 
run. This script might prompt the user for information like the values of filter 
coefficients that are to be used, the name of an input stimulus file, and so forth, 
and then call other M-files and pass them these user-defined values as required.        

    System-level Design and Simulation Environments 
   System-level design and simulation environments are conceptually at a higher 
level than DSLs. One well-known example of this genre is Simulink from The 
MathWorks. Depending on who you’re talking to, there may be a perception 
that Simulink is simply a graphical user interface to MATLAB. In reality, 
however, it is an independent dynamic modeling application that works  with  
MATLAB. 

   If you are using Simulink, you typically commence the design process by 
creating a graphical block diagram of your system showing a schematic of 
functional blocks and the connections between them. Each of these blocks may 
be user-num defined, or they may originate in one of the libraries supplied with 
Simulink (these include DSP, communications, and control function block sets). 
In the case of a user-defined block, you can  “ push ”  into that block and represent 
its contents as a new graphical block diagram. You can also create blocks con-
taining MATLAB functions, M-code, C/C     �      � , FORTRAN … the list goes on. 

   Once you’ve captured the design’s intent, you use Simulink to simulate and 
verify its functionality. As with MATLAB, the input stimulus to a Simulink 
simulation might come from one or more mathematical functions, such as sine-
wave generators, or it might be provided in the form of real-world data such as 
audio or video files. In many cases, it comes as a mixture of both; for example, 
real-world data might be augmented with pseudorandom noise supplied by a 
Simulink block.   

    —Technology Trade-offs— 
          ●      The point here is that there’s no hard-and-fast rule. Some DSP designers 

prefer to use MATLAB as their starting point, while others opt for Simulink 
(this latter case is much rarer in the scheme of things). Some folks say that 
this preference depends on the user’s background (software DSP develop-
ment versus ASIC/FPGA designs), but others say that this is a load of tosh.    

    Floating-point versus Fixed-point Representations 
   Irrespective as to whether one opts for Simulink or MATLAB (or a similar 
environment from another vendor) as a starting point, the first-pass model 
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of the system is almost invariably described using floating-point representa-
tions. In the context of the decimal number system, this refers to numbers like 
1.235      �      103 (that is, a fractional number raised to some power of 10). In the 
context of applications like MATLAB, equivalent binary values are represented 
inside the computer using the IEEE standard for double-precision floating-
point numbers. 

   Floating-point numbers of this type have the advantage of providing 
extremely accurate values across a tremendous dynamic range. However, imple-
menting floating-point calculations of this type in dedicated FPGA or ASIC 
hardware requires a humongous amount of silicon resources, and the result 
is painfully slow (in hardware terms). Thus, at some stage, the design will be 
migrated over to use fixed-point representations, which refers to numbers hav-
ing a fixed number of bits to represent their integer and fractional portions. This 
process is commonly referred to as  quantization . 

   This is totally system/algorithm dependent, and it may take a considerable 
amount of experimentation to determine the optimum balance between using 
the fewest number of bits to represent a set of values (thereby decreasing the 
amount of silicon resources required and speeding the calculations), while 
maintaining sufficient accuracy to perform the task in hand. (One can think 
of this trade-off in terms of how much noise the designer is willing to accept 
for a given number of bits.) In some cases, designers may spend days deciding 
 “ should we use 14, 15, or 16 bits to represent these particular values? ”  And, 
just to increase the fun, it may be best to vary the number of bits used to repre-
sent values at different locations in the system/algorithm. 

   Things start to get really fun in that the conversion from floating-point to 
fixed-point representations may take place upstream in the system/a lgorithmic 
design and verification environment, or downstream in the C/C     �      �  code. This 
is shown in more detail in the  “ System/algorithmic level to C/C     �      �  ”  section 
below. Suffice it to say that if one is working in a MATLAB environment, 
these conversions can be performed by passing the floating-point signals 
through special transformation functions called  quantizers . Alternatively, if 
one is working in a Simulink environment, the conversions can be performed 
by running the floating-point signals through special fixed-point blocks.  

    System/algorithmic Level to RTL (Manual Translation) 
   At the time of this writing, many DSP design teams commence by perform-
ing their system-level evaluations and algorithmic validation in MATLAB (or 
the equivalent) using floating-point representations. (It is also very common to 
include an intermediate step in which a fixed-point C/C     �      �  model is created for 
use in rapid simulation/validation.) At this point, many design teams bounce 
directly into hand-coding fixed-point RTL equivalents of the design in VHDL or 
Verilog ( Figure 6-14a   ). Alternatively, they may first transition the floating-point 
representations into their fixed-point counterparts at the system/ algorithmic 
level, and then hand-code the RTL in VHDL or Verilog ( Figure 6-14b ). 
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   Of course, once an RTL representation of the design has been created, we 
can assume the use of the downstream logic-synthesis-based flows that were 
introduced in Chapter 5.   

    —Technology Trade-offs— 
          ●      There are a number of problems with this flow, not the least being that 

there is a significant conceptual and representational divide between the 
system architects working at the system/algorithmic level and the hardware 
design engineers working with RTL representations in VHDL or Verilog.  

      ●      Because the system/algorithmic and RTL domains are so different, manual 
translation from one to the other is time-consuming and prone to error.  

      ●      There is also the fact that the resulting RTL is implementation specific 
because realizing the optimal design in an FPGA requires a different RTL 
coding style from that used for an optimal ASIC implementation.  

      ●      Another consideration is that manually modifying and reverifying RTL to 
perform a series of what-if evaluations of alternative microarchitecture imple-
mentations is extremely time-consuming (such evaluations may include per-
forming certain operations in parallel versus sequential, pipelining portions of 
the design versus nonpipelining, sharing common resources—for example, two 
operations sharing a single multiplier—versus using dedicated resources, etc.)  

      ●      Similarly, if any changes are made to the original specification dur-
ing the course of the project, it’s relatively easy to implement and evalu-
ate these changes in the system-/algorithmic-level representations, but 

Original
Concept 

To standard RTL-based
simulation and synthesis 

(a) (b) 

Handcraft Verilog/VHDL RTL
(Fixed-point) 

System/Algorithmic Verification
(Floating-point) 

System/Algorithmic Verification
(Fixed-point) 

 FIGURE 6-14a,b          Manual RTL generation.    
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su bsequently folding these changes into the RTL by hand can be painful 
and time-consuming.    

    System/Algorithmic Level to RTL (Automatic-generation) 
   As was noted in the previous section, performing system-/algorithmic-level-
to-RTL translation manually is time-consuming and prone to error. There are 
alternatives, however, because some system-/algorithmic-level design environ-
ments offer direct VHDL or Verilog RTL code generation ( Figure 6-15   ). 

   As usual, the system-/algorithmic-level design would commence by 
using floating-point representations. In one version of the flow, the system/ 
algorithmic environment is used to migrate these representations into their 
fixed-point counter-parts and then to generate the equivalent RTL in VHDL or 
Verilog automatically ( Figure 6-15a ). 

   Alternatively, a third-party environment might be used to take the floating-
point system-/algorithmic-level representation, autointeractively quantize it 
into its fixed-point counterpart, and then automatically generate the equivalent 
RTL in VHDL or Verilog ( Figure 6-15b ). 

System/Algorithmic Environment 

Original
Concept 

To standard RTL-based
simulation and synthesis 

System/Algorithmic Environment 

Third-party Environment 

(a) (b) 

(a) (b) 

System/Algorithmic Verification
(Fixed-point) 

Auto-generate Verilog/VHDL RTL
(Fixed-point) 

System/Algorithmic Verification
(Floating-point) 

Auto-generate Verilog/VHDL RTL
(Fixed-point) 

Auto-interactive quantization
(Fixed-point) 

System/Algorithmic Verification
(Floating-point) 

 FIGURE 6-15          Direct RTL generation.    
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   As before, once an RTL representation of the design has been created, we 
can assume the use of the downstream logic-synthesis-based flows that were 
introduced in Chapter 5.  

    System/Algorithmic Level to C/C     �      �  
   Due to the problems associated with exploring the design at the RTL level, 
there is an increasing trend to use a stepping-stone approach. This involves 
transitioning from the system-/algorithmic-level domain into to some sort of 
C/C     �      �  representation, which itself is subsequently migrated into an RTL 
equivalent. One reason this is attractive is that the majority of DSP design 
teams already generate a C/C     �      �  model for use as a golden (reference) model, 
in which case this sort of comes for free as far as the downstream RTL design 
engineer is concerned. 

   Of course, the first thing to decide is when and where in the flow one should 
transition from floating-point to fixed-point representations ( Figure 6-16   ). 

   Frighteningly enough,  Figure 6-16  shows only a subset of the various 
potential flows. For example, in the case of the handcrafted options, as opposed 
to first hand-coding the C/C     �      �  and then gradually transmogrifying this repre-
sentation into Handel-C or SystemC, one could hand-code directly into these 
languages.

Original
Concept 

System/Algorithmic Verification
(Fixed-point) 

Simulink/MATLAB
(or equivalent) 

Handcraft C/C��
(Fixed-point) 

Auto-generate C/C��
(Fixed-point) 

Hand-convert C/C��
(Fixed-point) 

Direct to pure C/C�� synthesis,
or hand-convert to Handel-C then Handel-C synthesis,

or hand-convert to SystemC then SystemC synthesis, or ... 

Handcraft C/C��
(Floating-point) 

Auto-generate C/C��
(Floating-point) 

System/Algorithmic Verification
(Floating-point) 

 FIGURE 6-16          Migrating from floating point to fixed point.    
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    Block-level IP Environments 
   Nothing is simple in this world because there is always just one more way to 
do things. As an example, one might create a library of DSP functional blocks 
at the system/algorithmic level of abstraction along with a one-to-one equiva-
lent library of blocks at the RTL level of abstraction in VHDL or Verilog. 

   The idea here is that you could then capture and verify your design using 
a hierarchy of functional blocks specified at the system/algorithmic level of 
abstraction. Once you were happy with your design, you could then generate a 
structural netlist instantiating the RTL-level blocks, and use this to drive down-
stream simulation and synthesis tools. (These blocks would have to be param-
eterized at all levels of abstraction to allow you to specify such things as bus 
widths and so forth.) 

   As an alternative, the larger FPGA vendors typically offer IP core genera-
tors (in this context, the term core is considered to refer to a block that per-
forms a specific logical function; it does not refer to a microprocessor or DSP 
core). In several cases, these core generators have been integrated into system-/ 
algorithmic-level environments. This means that you can create a design based 
on a collection of these blocks in the system-/algorithmic-level environment, 
specify any parameters associated with these blocks, and perform your system-/
algorithmic-level verification. 

   Later, when you’re ready to rock and roll, the core generator will auto-
matically generate the hardware models corresponding to each of these blocks. 
(The system-/algorithmic-level models and the hardware models ensuing from 
the core generator are bit identical and cycle identical.) In some cases the 
hardware blocks will be generated as synthesizable RTL in VHDL or Verilog. 
Alternatively, they may be presented as firm cores at the LUT/CLB level of 
abstraction, thereby making the maximum use of the targeted FPGA’s internal 
resources.   

    —Technology Trade-offs— 
          ●      One big drawback associated with this approach is that, by their very 

nature, IP blocks are based on hard-coded microarchitectures. This means 
that the ability to create highly tuned implementations to address specific 
design goals is somewhat diminished. The result is that IP-based flows may 
achieve an implementation faster with less risk, but such an i mplementation 

        Key Concept      

    The main thing to remember is that once we have a fixed-point representation in 
one of the flavors of C/C     �      � , we can assume the use of the downstream C/C     �      �  
flows introduced earlier (one flow of particular interest in this area is the pure 
untimed C/C     �      �  approach used by Precision C from Mentor) .       
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may be less optimal in terms of area, performance, and power as compared 
to a custom hardware implementation.    

    Don’t Forget the Testbench! 
   One point the folks selling you DSP design tools often neglect to mention is 
the test bench. For example, let’s assume that your flow involves taking your 
system-/algorithmic-level design and hand-translating it into RTL. In that case, 
you are going to have to do the same with your testbench. In many cases, this 
is a nontrivial task that can take days or weeks! 

   Or let’s say that your flow is based on taking your floating- point system-/
algorithmic-level design and hand-translating it into floating-point C/C     �      � , at 
which point you will wish to verify this new representation. Then you might 
take your floating-point C/C     �      �  and hand-translate it into fixed-point C/C     �      � , 
at which point you will wish to verify this representation. And then you might 
take your fixed-point C/C     �      �  and (hopefully) automatically synthesize an 
equivalent RTL representation, at which point  …  but you get my drift. 

   The problem is that at each stage you are going to have to do the same 
thing with your testbench (unless you do something cunning as discussed in 
the next (and last—hurray!) section.   

    Mixed DSP and VHDL/Verilog etc. Environments 

   In the previous chapter, we noted that a number of EDA companies can pro-
vide mixed-level design and verification environments that can support the 
cosimulation of models specified at multiple levels of abstraction. For example, 
one might start with a graphical block-based editor showing the design’s major 
functional units, where the contents of each block can be represented using 

      ●      VHDL  
      ●      Verilog  
      ●      SystemVerilog  
      ●      SystemC  
      ●      Handel-C  
      ●      Pure C/C     �      �     

   In this case, the top-level design might be in a traditional HDL that calls 
submodules represented in the various HDLs and in one or more flavors of 
C/C     �      � . Alternatively, the top-level design might be in one of the flavors of 
C/C     �      �  that calls submodules in the other languages. 

   More recently, integrations between system-/algorithmic-level and 
i mplementation-level environments have become available. The way in which 
this works depends on who is doing what and what that person is trying to. For 
example, a system architect working at the system/algorithmic level (e.g., in 
MATLAB) might decide to replace one or more blocks with equivalent repre-
sentations in VHDL or Verilog at the RTL level of abstraction. Alternatively, 
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a design engineer working in VHDL or Verilog at the RTL level of abstrac-
tion might decide to call one or more blocks at the system/algorithmic level of 
abstraction. 

   Both of these cases require cosimulation between the system-/algorith-
mic-level environment and the VHDL/Verilog environment, the main differ-
ence being who calls whom. Of course, this sounds easy if you say it quickly, 
but there is a whole host of considerations to be addressed, such as synchro-
nizing the concept of time between the two domains and specifying how dif-
ferent signal types are translated as they pass from one domain to the other 
(and back again).

        Insider Info      

    Treat any canned demonstration with a healthy amount of suspicion. If you are 
planning on doing this sort of thing, you need to sit down with the vendor’s engi-
neer and work your own example through from beginning to end. Call me an old 
cynic if you will, but my advice is to let their engineer guide you, while keep-
ing your hands firmly on the keyboard and mouse. (You’d be amazed how much 
activity can go on in just a few seconds should you turn your head in response to 
the age-old question,  “ Good grief! Did you see what just flew by the window? ” )         

    EMBEDDED PROCESSOR-BASED DESIGN FLOWS 

   We are concerned only with electronic systems that include one or more 
FPGAs on the printed circuit board (PCB). The vast majority of such systems 
also make use of a general-purpose microprocessor, or  μ P, to perform a vari-
ety of control and data-processing applications. This is often referred to as the 
central processing unit (CPU) or microprocessor unit (MPU). 

   Until recently, the CPU and its peripherals typically appeared in the form 
of discrete chips on the circuit board. There are an almost infinite number of 
possible scenarios here, but the two main ones involve the way in which the 
CPU is connected to its memory ( Figure 6-17   ). 

   In both of these scenarios, the CPU is connected to an FPGA and some 
other stuff via a general-purpose processor bus. (By  “ stuff ”  we predominantly 
mean peripheral devices such as counter timers, interrupt controllers, commu-
nications devices, etc.) 

   In some cases, the main memory (MEM) will also be connected to the CPU 
by means of the main processor bus, as shown in  Figure 6-17a  (actually, this 
connection will be via a special peripheral called a memory controller, which 
is not shown here because we’re trying to keep things simple). Alternatively, 
the memory may be connected directly to the CPU by means of a dedicated 
memory bus, as shown in  Figure 6-17b . 
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   The point is that presenting the CPU and its various peripheral devices in 
the form of dedicated chips on the circuit board costs money and occupies real 
estate. It also impacts the reliability of the board because every solder joint 
(connection point) is a potential failure mechanism. 

   One alternative is to embed the CPU along with some of its peripherals in 
the FPGA itself ( Figure 6-18   ). 

   It is common for a relatively small amount of memory used by the CPU to 
be included locally in the FPGA. At the time of this writing, however, it is rare 
for all of the CPU’s memory to be included in the FPGA. 

   Creating an FPGA design of this type brings a whole slew of new problems 
to the table: 

      ●      First, the system architects have to decide which functions will be imple-
mented in software (as instructions to be executed by the CPU) and which 
functions will be implemented in hardware (using the main FPGA fabric).  

CPU FPGA 
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Circuit Board 
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MEM
(TCM) 

Dedicated
memory bus 

(a) Memory connected to CPU via
general-purpose processor bus

(b) Tightly coupled memory (TCM)
connected to CPU via dedicated bus

More
“Stuff” 
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“Stuff”
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“Stuff” 

Processor
bus 
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 FIGURE 6-17          Two scenarios at the circuit board level    
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 FIGURE 6-18          Two scenarios at the FPGA level.    
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      ●      Next, the design environment must support the concept of coverification, in 
which the hardware and embedded software portions of the system can be 
verified together to ensure that everything works as it should.    

   Both of these topics are considered in more detail later in this chapter. 

    Hard versus Soft Cores 

    Hard Cores 
   As defined previously, a hard microprocessor core is one that is implemented 
as a dedicated, predefined (hardwired) block (these cores are only available in 
certain device families). Each of the main FPGA vendors has opted for a par-
ticular processor type to implement its hard cores. For example, Altera offers 
embedded ARM processors, QuickLogic has opted for MIPS-based solutions, 
and Xilinx sports PowerPC cores. 

   Of course, each vendor will be delighted to explain at great length why its 
implementation is far superior to any of the others (the problem of deciding 
which one actually is better is only compounded by the fact that different pro-
cessors may be better suited to different tasks). 

   As noted in Chapter 2, there are two main approaches for integrating such 
cores into the FPGA. The first is to  locate it in a strip to the side of the main 
FPGA fabric  ( Figure 6-19   ). 

   In this scenario, all of the components are typically formed on the same 
silicon chip, although they could also be formed on two chips and packaged as 
a  multichip module  (MCM). 

uP

RAM

I/O

etc.

Main FPGA fabric 

Microprocessor
core, special RAM,

peripherals and
I/O, etc. 

The “Stripe” 

 FIGURE 6-19          Bird’s-eye view of chip with embedded core outside of the main fabric.    
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   One advantage of this implementation is that the main FPGA fabric is iden-
tical for devices with and without the embedded microprocessor core, which 
can make things easier for the design tools used by the engineers. The other 
advantage is that the FPGA vendor can bundle a whole load of additional func-
tions in the strip to complement the microprocessor core, such as memory and 
special peripherals. 

   The second alternative is to  embed one or more microprocessor cores 
directly into the main FPGA fabric . One, two, and even four core implemen-
tations are currently available at the time of this writing ( Figure 6-20   ). 

   In this case, the design tools have to be able to take account of the pres-
ence of these blocks in the fabric; any memory used by the core is formed 
from embedded RAM blocks, and any peripheral functions are formed from 
groups of general-purpose programmable logic blocks. Proponents of this 
scheme can argue that there are inherent speed advantages to be gained from 
having the microprocessor core in intimate proximity to the main FPGA 
fabric.  

    Soft Microprocessor Cores 
   As opposed to embedding a microprocessor physically into the fabric of the 
chip, it is possible to configure a group of programmable logic blocks to act as 
a microprocessor. These are typically called  “ soft cores, ”  but they may be more 
precisely categorized as either soft or firm, depending on the way in which the 
microprocessor’s functionality is mapped onto the logic blocks. For example, 
if the core is provided in the form of an RTL netlist that will be synthesized 
with the other logic, then this truly is a soft implementation. Alternatively, if 
the core is presented in the form of a placed and routed block of LUTs/CLBs, 
then this would typically be considered a firm implementation. 

uP 

(a) One embedded core (b) Four embedded cores 

uP uP 

uP uP 

 FIGURE 6-20          Bird’s-eye view of chips with embedded cores inside the main fabric.    
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   In both of these cases, all of the peripheral devices like counter timers, 
interrupt controllers, memory controllers, communications functions, and so 
forth are also implemented as soft or firm cores (the FPGA vendors are typi-
cally able to supply a large library of such cores).   

    —Technology Trade-offs— 
          ●      Soft cores are slower and simpler than their hard-core counterparts (of 

course they are still incredibly fast in human terms). However, in addition 
to being practically free, they also have the advantages that you only have 
to implement a core if you need it and that you can instantiate as many 
cores as you require until you run out of resources in the form of program-
mable logic blocks.    

   Once again, each of the main FPGA vendors has opted for a particular proces-
sor type to implement its soft cores. For example, Altera offers the Nios, while 
Xilinx sports the MicroBlaze. The Nios has both 16-bit and 32-bit architec-
tural variants, which operate on 16-bit or 32-bit chunks of data, respectively 
(both variants share the same 16-bit-wide instruction set). By comparison, 
the MicroBlaze is a true 32-bit machine (that is, it has 32-bit-wide instruction 
words and performs its magic on 32-bit chunks of data). Once again, each ven-
dor will be more than happy to tell you why its soft core rules and how its 
competitors ’  offerings fail to make the grade (sorry, you’re on your own here). 

   One cool thing about the  integrated development environment  (IDE) 
fielded by Xilinx is that it treats the PowerPC hard core and the MicroBlaze 
soft core identically. This includes both processors being based on the same 
CoreConnect processor bus and sharing common soft peripheral IP cores. All 
of this makes it relatively easy to migrate from one processor to the other. 

   Also of interest is the fact that Xilinx offers a small 8-bit soft core called 
the PicoBlaze, which can be implemented using only 150 logic cells (give or 
take a handful). By comparison, the MicroBlaze requires around 1,000 logic 
cells (which is still extremely reasonable for a 32-bit processor implementa-
tion, especially when one is playing with FPGAs that can contain 70,000 or 
more such cells). 

        Insider Info      

    Some cynics say that those aspects of a design that are well understood are imple-
mented in hardware, while any portions of the design that are somewhat unde-
fined at the beginning of the design process are often relegated to a software 
realization (on the basis that the software can be tweaked right up until the last 
minute) .       
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    Partitioning a Design into Its Hardware and 
Software Components 

   As noted in Chapter 2, almost any portion of an electronic design can be 
realized in hardware (using logic gates and registers, etc.) or software (as 
 instructions to be executed on a microprocessor). One of the main partitioning 
criteria is how fast you wish the various functions to perform their tasks: 

      ●       Picosecond and nanosecond logic : This has to run insanely fast, which 
mandates that it be implemented in hardware (in the FPGA fabric).  

      ●       Microsecond logic : This is reasonably fast and can be implemented either 
in hardware or software (this type of logic is where you spend the bulk of 
your time deciding which way to go).  

      ●       Millisecond logic : This is the logic used to implement interfaces such as 
reading switch positions and flashing light-emitting diodes, or LEDs. 
It’s a pain slowing the hardware down to implement this sort of function 
(using huge counters to generate delays, for example). Thus, it’s often bet-
ter to implement these tasks as microprocessor code (because processors 
give you lousy speed—compared to dedicated hardware—but fantastic 
complexity).    

   The trick is to solve every problem in the most cost-effective way. Certain 
functions belong in hardware, others cry out for a software realization, and 
some functions can go either way depending on how you feel you can best 
use the resources (both chip-level resources and hardware/software engineers) 
available to you. 

   It is possible to envisage an  “ ideal ”   electronic system level  (ESL) environ-
ment in which the system architects initially capture the design via a graphi-
cal interface as a collection of functional blocks that are connected together. 
Each of these blocks could then be provided with a system-/algorithmic level 
SystemC representation, for example, and the entire design could be verified 
prior to any decisions being made as to which portions of the design were to 
be implemented in hardware and software. 

   When it comes to the partitioning process itself, we might dream of having 
the ability to tag each graphical block with the mouse and select a hardware or 
software option for its implementation. All we would then have to do would be 
to click the  “ Go ”  button, and the environment would take care of synthesizing 
the hardware, compiling the software, and pulling everything together. 

   And then we return to the real world with a resounding thud. Actually, 
a number of next-generation design environments show promise, and new 
tools and techniques are arriving on an almost daily basis. At the time of 
this writing, however, it is still very common for system architects to parti-
tion a design into its hardware and software portions by hand, and to then 
pass these top-level functions over to the appropriate engineers and hope for 
the best. 
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   With regard to the software portion of the design, this might be some-
thing as simple as a state machine used to control a human-level interface 
(reading the state of switches and controlling display devices). Although the 
state machine itself may be quite tricky, this level of software is certainly not 
rocket science. At the other end of the spectrum, one might have incredibly 
complex software requirements, including: 

      ●      System initialization routines and a hardware abstraction layer  
      ●      A hardware diagnostic test suite  
      ●      A real-time operating system (RTOS)  
      ●      RTOS device drivers  
      ●      Any embedded application code    

   This code will typically be captured in C/C     �      �  and then compiled down to the 
machine instructions that will be run on the processor core (in extreme cases 
where one is attempting to squeeze the last drop of performance out of the 
design, certain routines may be handcrafted in assembly code). 

   At the same time, the hardware design engineers will typically be captur-
ing their portions of the design at the RTL level of abstraction using VHDL or 
Verilog (or SystemVerilog). 

   Today’s designs are so complex that their hardware and software portions 
have to be verified together.

        Insider Info      

    One of the biggest problems to overcome when it comes to the coverification of 
the hardware and software portions of a design is the two totally different world-
views of their creators. The hardware folks typically visualize their portion of the 
design as blocks of RTL representing such things as registers, logical functions, 
and the wires connecting them together. When hardware engineers are debug-
ging their portion of the design, they think in terms of an editor showing their RTL 
source code, a logic simulator, and a graphical waveform display showing signals 
changing values at specific times. In a typical hardware design environment, click-
ing on a particular event in the waveform display will automatically locate the cor-
responding line of RTL code that caused this event to occur.  

    By comparison, the software guys and gals think in terms of C/C      �      �   source 
code, of registers in the CPU (and in the peripherals), and of the contents of vari-
ous memory locations. When software engineers are debugging a program, they 
often wish to single-step through the code one line at a time and watch the values 
in the various registers changing. Or they might wish to set one or more break-
points (this refers to placing markers at specific points in the code), run the pro-
gram until they hit one of those breakpoints, and then pause to see what’s going 
on. Alternatively, they might wish to specify certain conditions such as a register 
containing a particular value, then run the program until this condition is met, and 
once again pause to see what’s happening.  
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    Using an FPGA as Its Own Development Environment 

   Perhaps the simplest place to start is the scenario where the FPGA is used as 
its own development environment. The idea here is that you have an SRAM-
based FPGA with an embedded processor (hard or soft) mounted on a devel-
opment board that’s connected to your computer. In addition to the FPGA, this 
development board will also have a memory device that will be used to store 
the software programs that are to be run by the embedded CPU ( Figure 6-21   ). 

   Once the system architects have determined which portions of the design 
are to be implemented in hardware and software, the hardware engineers 
start to capture their RTL blocks and functions and synthesize them down to 
a LUT/CLB-level netlist. Meanwhile, the software engineers start to capture 
their C/C     �      �  programs and routines and compile them down to machine code. 
Eventually, the LUT/CLB-level netlist will be loaded into the FPGA via a con-
figuration file, the linked machine code image will be loaded into the memory 
device, and then you let the system run wild and free ( Figure 6-22   ). 

   Also, any of the machine code that is to be embedded in the FPGA’s on-
chip RAM blocks would actually be loaded via the configuration file.  

    Improving Visibility in the Design 

   The main problem with the scenario discussed in the previous section is lack 
of  “ visibility ”  as to what is happening in the hardware portion of the design. 

Development board

FPGA with
embedded CPU

Memory device to store
machine code program

 FIGURE 6-21          Using an FPGA as its own development environment.    

    When a software developer is writing application code such as a game, he or 
she has the luxury of being reasonably confident that the hardware (say, a home 
computer) is reasonably robust and bug-free. However, it’s a different ball game 
when one is talking about a software engineer creating embedded applications 
intended to run on hardware that’s being designed at the same time. When a prob-
lem occurs, it can be mega tricky determining if it was a fault in the software or if 
the hardware was to blame.        
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One way to mitigate this is to use a virtual logic analyzer to observe what’s 
happening in the hardware. 

   Things can be a little trickier when it comes to determining what’s h appening 
with the software. One point to remember is that—as discussed in Chapter 3—
an embedded CPU core will have its own dedicated JTAG boundary scan chain 
( Figure 6-23   ). 

   This is true of both hard cores and the more sophisticated soft cores. In 
this case, the coverification environment can use the scan chain to monitor the 
activity on the buses and control signals connecting the CPU to the rest of the 
system. The CPU’s internal registers can also be accessed via the JTAG port, 
thereby allowing an external debugger to take control of the device and single-
step through instructions, set breakpoints, and so forth.  

    A Few Coverifi cation Alternatives 

   If you really want to get visibility into what’s happening in the hardware 
portions of design, one approach is to use a logic simulator. In this case, the 

Hardware design
entry (RTL)

System architects partition design
into hardware and software
functional blocks (may be part
of system/algorithmic-level
environment or done by hand)

Synthesize

Place-and-Route

Configuration file Executable image

Link etc.

Compile and/or
Assemble

Software design
entry (C/C�� or A)

Download to
development board

Original
Concept

 FIGURE 6-22          A (very) simple design flow.    
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majority of the system will be modeled and simulated in VHDL or Verilog/
SystemVerilog at the RTL level of abstraction. When it comes to the CPU core, 
however, there are various ways in which to represent this ( Figure 6-24   ). 

   Irrespective of the type of model used to represent the CPU, the embed-
ded software (machine code) portion of the design will be loaded into some 
form of memory—either embedded memory in the FPGA or external mem-
ory devices—and the CPU model will then execute those machine code 
instructions. 

   Note that  Figure 6-24  shows a high-level representation of the contents 
of the FPGA only. If the machine code is to be stored in external memory 
devices, then these devices would also have to be part of the simulation. 

FPGA 

RTL RTL 

RTL RTL 

RTL 

RTL 

RTL RTL CPU 

RTL 

C/C��

Phy 

ISS 

VHDL/Verilog
model 

C/C��, SystemC,
etc. model 

Physical chip in
hardware modeller 

Instruction set
simulator 

 FIGURE 6-24          Alternative representations of the CPU.    

JTAG data in JTAG data out 

FPGA 

CPU 

Primary scan chain 

Internal (core) scan chain 

 FIGURE 6-23          Embedded processor JTAG boundary scan chain.    
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In fact, as a general rule of thumb, if the software talks to any stuff, then that 
stuff needs to be part of the coverification environment. 

    RTL (VHDL or Verilog) 
   Perhaps the simplest option here is when one has an RTL model of the CPU, in 
which case all of the activity takes place in the logic simulator. One disadvan-
tage of this approach is that a CPU performs tremendous numbers of internal 
operations in order to perform the simplest task, which equates to incredibly 
slow simulation runs (you’ll be lucky to be able to simulate 10 to 20 system 
clocks per second in real time). 

   The other disadvantage is that you have no visibility into what the software 
is doing at the source code level. All you’ll be able to do is to observe logic 
values changing on wires and inside registers. 

   And there’s always the fact that whoever supplies the real CPU doesn’t 
want you to know how it works internally because that supplier may be using 
cunning proprietary tricks and wish to preserve their IP. In this case, you may 
well find it very difficult to lay your hands on an RTL model of the CPU at all.   

    C/C     �      � , SystemC, etc. 
   As opposed to using an RTL model, it is very common to have access to some 
sort of C/C     �      �  model of the CPU. (The proponents of SystemC have a vision 
of a world in which the CPU and the main peripheral devices all have SystemC 
models provided as standard for use in this type of design environment.) 

   The compiled version of this CPU model would be linked into the simu-
lation via the programming language interface (PLI) in the case of a Verilog 
simulator or the foreign language interface (FLI)—or equivalent—in the case 
of a VHDL simulator. 

   The advantages of such a model are that it will run much faster than its 
RTL counterpart; that it can be delivered in compiled form, thereby preserving 
any secret IP; and that, at least in FPGA circles, such a model is usually pro-
vided for free (the FPGA vendors are trying to sell chips, not models). 

   One disadvantage of this approach is that the C/C     �      �  model may not pro-
vide a 100-percent cycle-accurate representation of the CPU, which has the 
potential to cause problems if you aren’t careful. But, once again, the main dis-
advantage of such a model is that its only purpose is to provide an engine to 
execute the machine code program, which means that you have no visibility 
into what the software is doing at the source code level. All you’ll be able to do 
is observe logic values changing on wires and inside registers. 

    Physical Chip in Hardware Modeler 
   Yet another possibility is to use a physical device to represent a hard CPU 
core. For example, if you are using a PowerPC core in a Xilinx FPGA, you 
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can e asily lay your hands on a real PowerPC chip. This chip can be installed in 
a box called a hardware modeler, which can then be linked into the logic simu-
lation system. 

   The advantage of this approach is that you know the physical model (chip) 
is going to functionally match your hard core as closely as possible. Some 
 disadvantages are that hardware modelers aren’t cheap and they can be a pain 
to use. 

   The majority of hardware-modeler-based solutions don’t support source-
level debugging, which, once again, means that you have no visibility into 
what the software is doing at the source code level. All you’ll be able to do is 
to observe logic values changing on wires and inside registers.  

    Instruction Set Simulator 
   As previously noted, in certain cases, the role of the software portion of a 
design may be somewhat limited. For example, the software may be acting as a 
state machine used to control some interface. Alternatively, the software’s role 
may be to initialize certain aspects of the hardware and then sit back and watch 
the hardware do all of the work. If this is the case, then a C/C     �      �  model or a 
physical model is probably sufficient—at least as far as the hardware design 
engineer is concerned. 

   At the other extreme, the hardware portions of the design may exist mainly 
to act as an interface with the outside world. For example, the hardware may 
read in a packet of data and store it in the FPGA’s memory, and then the CPU 
may perform huge amounts of complex processing on this data. In cases like 
these, it is necessary for the software engineer to have sophisticated source-
level debugging capabilities. This requires the use of an instruction set simula-
tor (ISS), which provides a virtual representation of the CPU. 

   Although an ISS will almost certainly be created in C/C     �      � , it will be 
architected very differently from the C/C     �      �  models of the CPU discussed 
earlier in this section. This is because the ISS is created at a very high level of 
abstraction; it thinks in terms of transactions like  “ get me a word of data from 
location x in the memory, ”  and it doesn’t concern itself with details like how 
signals will behave in the real world. 

        How It Works      
    The easiest way to explain how this works is by means of an illustration   ( Figure 6-25   ).  

    First, the software engineers capture their program as C/C      �      �   source code. This is 
then compiled using the -d (debug) option, which generates a symbol table and other 
debug-specific information along with the executable machine code image . 

    When we come to perform the coverification, there are a number of pieces to 
the puzzle. At one end we have the source-level debugger, whose interface is used 
by the software engineer to talk to the environment. At the other end we have the 

Ot
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logic s imulator, which is simulating representations of the memory, stuff like peripheral 
devices, general-purpose logic, and so forth (for the sake of simplicity, this illustration 
assumes that all of the program memory resides in the FPGA itself).  

    In the case of the CPU, however, the logic simulator essentially sees a hole where 
this function should be. To be more precise, the simulator actually sees a set of inputs 
and outputs corresponding to the CPU. These inputs and outputs are connected to an 
entity called a bus interface model (BIM), which acts as a translator between the simu-
lator and the ISS.  

    Both the source code and the executable image (along with the symbol table 
and other debug-centric information) are loaded into the source-level debugger. At 
the same time, the executable image is loaded into the MEM block. When the user 
requests the source-level debugger to perform an action like stepping through a line 
of source code, it issues commands to the ISS. In turn, the ISS will execute high-level 
transactions such as an instruction fetch, or a memory read/write, or an I/O com-
mand. These transactions are passed to the BIM, which causes the appropriate pins to 
 “  wiggle ”  in the simulation world.  

    Similarly, when something connected to the processor bus in the FPGA attempts 
to talk to the CPU, it will cause the pins driving the BIM to  “ wriggle. ”  The BIM will 
translate these low-level actions into high-level transactions that it passes to the ISS, 
which will in turn inform the source-level debugger what’s happening. The source-level 
debugger will then display the state of the program variables, the CPU registers, and 
other information of this ilk.      

 

CPU MEM FPGA 

Logic “Stuff” Processor
bus

BIM ISS Source-level
debugger

User-specified
action like STEP

Transaction like
instruction fetch

BIM causes pins
to “wiggle” in the
simulation world

C source
code file

*.c 

Compiler with
-d (debug) option

Machine
code file

*.exe 

Executable image 

Symbol table etc. 

Just the
executable image

Image plus
symbol table etc.

 FIGURE 6-25          How an ISS fits into the picture.    
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    INSTANT SUMMARY 

   The alternative FPGA design flows covered in this chapter were: 

      ●      SystemC-based flows  
      ●      Augmented C/C     �      � -based flows  
      ●      Pure C/C     �      � -based flows  
      ●      Mixed-language design/verification environments  
      ●      DSP-based flows using domain-specific languages  
      ●      DSP-based flows using system-level design/simulation environments 

      –      System/algorithmic level to RTL (both manual and automatic generation)  
      –      System/algorithmic level to C/C     �      �   
      –      Block level IP environments     

      ●      Mixed DSP and VHDL/Verilog environments  
      ●      Embedded processor-based flows using hard cores  
      ●      Embedded processor-based flows using soft cores        

        Insider Info      

    There are a variety of incredibly sophisticated (often frighteningly expensive) envi-
ronments of this type on the market. Each has its own cunning tricks and capabili-
ties, and some are more appropriate for ASIC designs than FPGAs or vice versa. As 
usual, however, this is a moving target, so you need to check around to see who is 
doing what before putting any of your precious money on the table.          
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           Defi nitions      

   Again we’ll start with some basic design tool terms and definitions. 

      ●       Event driven logic simulation  tools see the world as a series of discrete events.  
      ●       Mixed language simulation  allows the use of multiple languages, such as 

Verilog and VHDL.  
      ●       Logic synthesis  is a process in which a program is used to automatically con-

vert a high-level textual representation of a design (specifi ed using an HDL 
at the register transfer level (RTL) of abstraction) into equivalent registers and 

                        Using Design Tools  
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Boolean equations. A synthesis tool automatically performs simplifi cations and 
minimizations and eventually outputs a gate-level netlist.  

      ●       Physically aware synthesis  means taking actual placement information associ-
ated with the various logical elements in the design, using this information to 
estimate accurate track delays, and using these delays to fi ne-tune the place-
ment and perform other optimizations.  

      ●       Retiming  is a term used in the context of physical synthesis and is based on the 
concept of balancing out positive and negative slacks throughout the design, 
where  positive slack  refers to a path with some delay available that you’re not 
using, and  negative slack  refers to a path that is using more delay than is avail-
able to it.  

      ●       Replication  is similar to retiming, but focuses on breaking up long interconnect.  
      ●       Resynthesis  uses the physical placement information to perform local optimi-

zations on critical paths by means of operations like logic restructuring, reclus-
tering, substitution, and possible elimination of gates and wires.  

      ●       Formal verifi cation  means using rigorous mathematical techniques and tools 
that employ such techniques to verify designs. In the not-so-distant past, this 
term was considered synonymous with  equivalency checking .         

    SIMULATION TOOLS 

   Design engineers typically need to use a tremendous variety of tools to  cap-
ture ,  verify ,  synthesize , and  implement  their designs. In this chapter we’ll focus 
on some of the more significant contenders in the context of FPGA designs. 

    Event-driven Logic Simulators 

    Logic simulation  is currently one of the main verification tools in the design 
(or verification) engineer’s arsenal. The most common form of logic simula-
tion is known as  event driven  because, perhaps not surprisingly, these tools see 
the world as a series of discrete events. As an example, consider a very simple 
circuit comprising an OR gate driving both a BUF (buffer) gate and a brace of 
NOT (inverting) gates, as shown in  Figure 7-1   . 

   Just to keep things simple, let’s assume that NOT gates have a delay of 5 
picoseconds (ps), BUF gates have a delay of 10       ps, and OR gates have a delay 
of 15       ps. On this basis, let’s consider what will happen when a signal change 
occurs on one of the input pins ( Figure 7-2   ). 

   Internally, the simulator maintains something called an  event wheel  onto 
which it places events that are to be  “ actioned ”  at some time in the future. 
When the first event occurs on input  in1  at a time we might refer to as t 1 , the 
simulator looks to see what this input is connected to, which happens to be 
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our OR gate. We are assuming that the OR gate has a delay of 15       ps, so the 
 simulator sc hedules an event on the output of the OR gate—a rising (0 to 1) 
transition on wire  w1 —for 15       ps in the future at time t 2 . 

   The simulator then checks if any further actions need to be performed at 
the current time (t 1 ), then it looks at the event wheel to see what is to occur 
next. In the case of our example, the next event happens to be the one we just 
scheduled at time t 2 , which was for a rising transition on wire  w1 . At the same 
time as the simulator is performing this action, it looks to see what wire  w1  is 
connected to, which is BUF gate  g2  and NOT gate  g3 . 

   As NOT gate  g3  has a delay of 5       ps, the simulator schedules a falling (1 to 
0) transition on its output, wire  w2 , for 5       ps in the future at time t 3 . Similarly, 
as BUF gate  g2  has a delay of 10       ps, the simulator schedules a rising (0 to 1) 
transition on its output, output  out1 , for 10       ps in the future at time t 4 . And so it 
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OR 
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NOT 
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 FIGURE 7-1          An example circuit.    
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 FIGURE 7-2          Results from an event-driven simulation.    
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goes until all of the events triggered by the initial transition on input  in1  have 
been satisfied.  

    —Technology Trade-offs— 
          ●      The  advantage  of this event-driven approach is that simulators based on 

this technique can be used to represent almost any form of design, includ-
ing synchronous and asynchronous circuits, combinatorial feedback loops, 
and so forth. These simulators also offer extremely good visibility into the 
design for debugging purposes, and they can evaluate the effects of delay-
related narrow pulses and glitches that are very difficult to find using other 
techniques (see also the discussions on delays in the next section). The big 
 disadvantage  associated with these simulators is that they are extremely 
compute-intensive and correspondingly slow.    

   In the early days, event-driven digital logic simulators were simple tools that 
output results in the form of a textual (tabular) file. They evolved to a bit more 
advanced form, outputting results as graphical waveforms. Still later, the cre-
ators of digital simulators started to experiment with more sophisticated lan-
guages that could describe logical functions at higher levels of abstraction such 
as RTL. As the industry-standard HDLs such as Verilog and VHDL started to 
appear, they had the advantage that the same language could be used to repre-
sent both the functionality of the circuit and the testbench. (See also the discus-
sions on special verification languages like  e  in the  “ Verification in General ”  
section later in this chapter.) 

   Also, standard file formats for capturing simulation output results, such 
as the  value change dump  (VCD) format, started to appear on the scene. This 
facilitated third-party EDA companies creating sophisticated waveform display 
and analysis tools that could work with the outputs from multiple simulators. 
Similarly, innovations like the  standard delay format  (SDF) specification facil-
itated third-party EDA companies ’  creating sophisticated timing analysis tools 
that could evaluate circuits, generate timing reports highlighting potential prob-
lems, and output SDF files that could be used to provide more accurate timing 
simulations (see also the discussion on alternative delay formats below).  

    Logic Values and Different Logic Value Systems 

   The minimum set of logic values required to represent the operation of binary 
logic gates is 0 and 1. The next step is the ability to represent unknown val-
ues, for which we typically use the character  X . These unknown values may 
be used to represent a variety of conditions, such as the contents of an unini-
tialized register or the clash resulting from two gates driving the same wire 
with opposing logical values. And it’s also nice to be able to represent high-
 impedance values driven by the outputs of tri-state gates, for which we typi-
cally use the character  Z .
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   But the 0, 1,  X , and  Z  states are only the tip of the iceberg. More advanced 
logic simulators have ways to associate different drive strengths with the out-
puts of different gates. This is combined with ways in which to resolve and 
represent situations where multiple gates are driving the same wire with differ-
ent logic values of different strengths. Just to make life fun, of course, VHDL 
and Verilog handle this sort of thing in somewhat different ways.  

    Mixed-language Simulation 

   The problem with having two industry-standard languages like Verilog and 
VHDL is that it’s not long before you find yourself with different portions of 
a design represented in different languages. Anything you design from scratch 
will obviously be written in the language du jour favored by your company. 
However, problems can arise if you wish to reuse legacy code that is in the 
other language. Similarly, you may wish to purchase blocks of IP from a third 
party, but this IP may be available only in the language you aren’t currently 
using yourself. And there’s also the case where your company merges with, 
commences a joint project with, another company, where the two companies 
are entrenched in design flows using disparate languages. 

   There have historically been several flavors of  mixed-language simulation , 
as described below: 

      ●      One technique used in the early days was to translate the  “ foreign ”  lan-
guage (the one you weren’t using) into the language you were working 
with. This was painful to say the least because the different languages sup-
ported different logic states and language constructs (even similar language 
statements had different semantics). The result was that when you simulated 
the translated design, it rarely behaved the way you expected it to, so this 
approach is rarely used today.  

      ●      Another technique was to have both a VHDL simulator and a Verilog sim-
ulator and to cosimulate the two simulation kernels. In this case the per-
formance of the ensuing simulation was sadly lacking because each kernel 
was forever stopping while it waited for the other to complete an action. 
Thus, once again, this approach is rarely used today.  

        ALERT!      

    As opposed to using the  “ X ”  character to represent  “ unknown ”  or  “ don’t know, ”  
data books typically use it to represent  “ don’t care. ”  By comparison, hardware 
description languages tend to use  “ ? ”  or  “ – ”  to represent  “ don’t care ”  values. 
Also,  “ don’t care ”  values cannot be assigned to outputs as driven states. Instead, 
they are used to specify how a model’s inputs should respond to different combi-
nations of signals.       
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      ●      The optimum solution is to have a single-kernel simulator that supports 
designs represented as a mixture of VHDL and Verilog blocks. All of the 
big boys in EDA have their own version of such a tool, and some go far 
beyond anything envisaged in the past because they can support multiple 
languages such as Verilog, SystemVerilog, VHDL, SystemC, and PSL 
(where PSL is introduced in more detail in the  “ Formal verification ”  sec-
tion in this chapter).     

    Alternative Delay Formats 

   How you decide to represent delays in the models you are creating for use with 
an event-driven simulator depends on two things: 

    a.     the delay modeling capabilities of the simulator itself and  
    b.     where in the flow (and with what tools) you intend to perform your timing 

analysis.    

   A very common scenario is for  static timing analysis  (STA) to be performed 
externally from the simulation. In this case, logic gates (and more complex 
statements) may be modeled with zero (0 timebase unit) delays or unit (1 time-
base unit) delays, where the term  timebase unit  refers to the smallest time seg-
ment recognized by the simulator. 

   Alternatively, we might associate more sophisticated delays with logic gates 
(and more complex statements) for use in the simulation itself. The first level 
of complexity is to separate rising delays from falling delays at the output from 
the gate (or more complex statement). For historical reasons, a rising (0-to-1) 
delay is often referred to as LH (standing for  “ low-to-high ” ). Correspondingly, 
a falling (1-to-0) delay may be referred to as HL (meaning  “ high-to-low ” ). For 
example, consider what happens if we were to apply a 12 ps positive-going 
(0-1-0) pulse to the input of a simple buffer gate with delays of LH      �      5       ps and 
HL      �      8       ps ( Figure 7-3   ). 

   Not surprisingly, the output of the gate rises 5       ps after the rising edge is 
applied to the input, and it falls 8       ps after the falling edge is applied to the input. 
The really interesting point is that, due to the unbalanced delays, the 12       ps 
input pulse has been stretched to 15       ps at the output of the gate, where the addi-
tional 3       ps reflect the difference between the LH and HL values. Similarly, if 
a n egative-going 12       ps (1-0-1) pulse were applied to the input of this gate, the 
corresponding pulse at the output would shrink to only 9       ps (try sketching this 
out on a piece of paper for yourself). 

   In addition to LH and HL delays, simulators also support minimum:typical:
maximum (min:typ:max) values for each delay. For example, consider a p ositive-
going pulse of 16       ps presented to the input of a buffer gate with rising and falling 
delays specified as 6:8:10       ps and 7:9:11       ps, respectively ( Figure 7-4   ). 

   This range of values is intended to accommodate variations in the operat-
ing conditions such as temperature and voltage. It also covers variations in the 
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manufacturing process because some chips may run slightly faster or slower 
than others of the same type. Similarly, gates in one area of a chip (e.g., an 
ASIC or an FPGA) may switch faster or slower than identical gates in another 
area of the chip. (See also the discussions on timing analysis, particularly 
dynamic timing analysis, later in this chapter.)

in1 out1

BUF 

out1 (min) 

6 ps 

in1 

LH � 6:8:10 ps 
HL � 7:9:11 ps 

16 ps 

7 ps 

out1 (typ) 

8 ps 9 ps 

out1 (max) 

10 ps 11 ps 

 FIGURE 7-4          Supporting min:typ:max delays.    
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in1 
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12 ns 

8 ps 

15 ps 

 FIGURE 7-3          Separating LH and HL delays.    
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   Another point to consider is what will happen when a narrow pulse is 
applied to the input of a gate (or more complex statement). By  “ narrow ”  we 
mean a pulse that is smaller than the propagation delay of the gate. The first 
logic simulators were largely targeted toward simple ICs implemented in 
 t ransistor-transistor logic  (TTL) being used at the circuit board level. These 
chips typically rejected narrow pulses, so that’s what the simulators did. This 
became known as the inertial delay model. As a simple example, consider two 
positive-going pulses of 8       ps and 4       ps applied to a buffer gate whose min:typ:
max rising and falling delays are all set to 6       ps ( Figure 7-5   ). 

   By comparison, logic gates implemented in later technologies such as  emitter-
coupled logic  (ECL) would pass pulses that were narrower than the p ropagation 
delay of the gate. To accommodate this, some simulators were equipped with a 

in1 out1

BUF 

out1

6 ps 

in1 

LH � 6:6:6 ps 
HL � 6:6:6 ps 

8 ps 

6 ps 

4 ps 

Passes Rejected 

 FIGURE 7-5          The inertial delay model rejects any pulse that is narrower than the gate’s propaga-
tion delay.    

        Insider Info      

    In the early days, all of the input-to-output delays associated with a multi-input 
gate (or more complex statement) were identical. For example, consider a 3-input 
AND gate with an output called y and inputs a, b, and c. In this case, any LH 
and HL delays would be identical for the paths a-to-y, b-to-y, and c-to-y. Initially, 
this didn’t cause any problems because it matched the way in which delays were 
specified in data books. Over time, however, data books began to specify indi-
vidual input-to-output delays, so simulators had to be enhanced to support this 
capability .      
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mode called the transport delay model. Once again, consider two positive-going 
pulses of 8       ps and 4       ps applied to a buffer gate whose min:typ:max rising and 
falling delays are all set to 6       ps ( Figure 7-6   ). 

   The problem with both the inertial and transport delay models is that they 
only provide for extreme cases, so the creators of some simulators started to 
experiment with more sophisticated narrow-pulse handling techniques, such as 
the  three-band delay model . In this case, each delay may be qualified with two 
values called  r  (for  “ reject ” ) and  p  (for  “ pass”), specified as percentages of the 
total delay. For example, assume we have a buffer gate whose min:typ:max 
delays have all been set to 6       ps qualified by  r  and  p  values of 33 percent and 66 
percent, respectively ( Figure 7-7   ). 

   Any pulses presented to the input that are greater than or equal to the  p  
value will propagate; any pulses that are less than the  r  value will be com-
pletely rejected; and any pulses that fall between these two extremes will be 
propagated as a pulse with an unknown  X  value to indicate that they are ambig-
uous because we don’t know whether they will propagate through the gate 
in the real world. (Setting both  r  and  p  to 100 percent equates to an inertial 
delay model, while setting them both to 0 percent reflects a pure transport 
delay model.)  

    Cycle-based Simulators 

   An alternative to the event-driven approach is to use a  cycle-based  simulation 
technique. This is particularly well suited to pipelined designs in which  “ islands ”  
of combinational logic are sandwiched between blocks of registers ( Figure 7-8   ). 

in1 out1
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out1

6 ps 

in1 

LH � 6:6:6 ps 
HL � 6:6:6 ps 
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6 ps 

4 ps 
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 FIGURE 7-6          The transport delay model propagates any pulse, irrespective of its width.    
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   In this case, a cycle-based simulator will throw away any timing informa-
tion associated with the gates forming the combinational logic and convert 
this logic into a series of Boolean operations that can be directly implemented 
using the CPU’s logical machine code instructions.  

    —Technology Trade-offs— 
          ●      Given an appropriate circuit with appropriate activity, cycle-based simu-

lators may offer significant  run-time advantages  over their event-driven 
counterparts. The  downside , however, is that they typically only work with 
0 and 1 logic values (no  X  or  Z  values, and no drive strength representa-
tions). Also, cycle-based simulators can’t represent asynchronous logic or 
combinatorial feedback loops.    

Clock 

Data In 

Registers Registers Registers Combinatorial 
Logic 

Combinatorial 
Logic 

etc. 

 FIGURE 7-8          A simple pipelined design.    
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 FIGURE 7-7          The three-band delay model.    
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   These days it’s rare to see anyone using a pure cycle-based simulator. However, 
several event-driven simulators have been augmented to have hybrid capabili-
ties. In this case, if you instruct the simulator to aim for extreme performance 
(as opposed to timing accuracy), it will automatically handle some portions 
of the circuit using an event-driven approach and other portions using cycle-
based techniques.  

    Choosing a Logic Simulator 

   Choosing a logic simulator is, as with anything else in engineering, a balanc-
ing act. Here are some things to consider: 

    1.     Think about whether you require  mixed-language capability . If you are a 
small startup, you may be planning to use only one language, but remem-
ber that any IP you decide to purchase down the road may not be available 
in this language. Having a solution that can work with VHDL, Verilog, and 
SystemVerilog would be a good start, and if it can also handle SystemC 
along with one or more formal verification languages, then it will probably 
stand you in good stead for some time to come.  

    2.     Generally speaking,  performance  is the number-one criterion for most 
folks. The trick here is how to determine the performance of a simulator 
without being bamboozled. The only way to really do this is to have your 
own benchmark design and to run it on a number of simulators. Creating a 
good benchmark design is a nontrivial exercise, but it’s much better than 
using a design supplied by an EDA vendor (because such a design will be 
tuned to favor their solution, while delivering a swift knee to the metaphor-
ical groins of competing tools).  

    3.     However, there’s more to life than raw performance. You also need to look 
for a good  interactive debugging solution  such that when you detect 
a problem, you can stop the simulator and poke around the design. All 
si mulators are not created equal in this department. In some cases, even 
if the simulator does let you do what you want, you may have to jump 
through hoops to get there. So the trick here is—after running your perfor-
mance benchmark—bring up the same circuit with a known bug and see 
how easy it is (and how long it takes) to detect and isolate the little rapscal-
lion. In reality, some simulators that give you the performance you require 
do such a poor job in this department that you are obliged to use third-party 
postsimulation analysis tools.  

    4.     Another thing to consider is the  capacity of the simulator . The tools sup-
plied by the big boys in EDA essentially have no capacity limitations, but 
simulators from smaller vendors might be based on ported 32-bit code 
if you were to look under the hood. Of course, if you are only going to 
work with smaller designs (say, equivalent to 500,000 gates or less), then 
you will probably be okay with the simulators supplied by the FPGA 
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vendors (these are typically  “ lite ”  versions of the tools supplied by the 
big EDA vendors).    

   Of course, you will have your own criteria in addition to the topics raised 
above, such as the  quality of the code coverage  and  performance analysis  
provided by the various tools. These used to be the province of specialist third-
party tools, but most of the larger simulators now provide some level of inte-
grated code coverage and performance analysis in the simulation environment 
itself. However, different simulators offer different feature sets (see also the 
discussions on code coverage and performance analysis in the  “ Miscellaneous ”  
section later in this chapter).   

    SYNTHESIS (LOGIC/HDL VERSUS PHYSICALLY AWARE) 

    Logic/HDL Synthesis Technology 

   Traditional  logic synthesis  tools appeared on the scene around the early to 
mid-1980s. Depending on whom you are talking to, these tools are now often 
referred to as HDL synthesis technology. 

   The role of the original logic/HDL synthesis tools was to take an RTL rep-
resentation of an ASIC design along with a set of timing constraints and to 
generate a corresponding gate-level netlist. During this process, the synthesis 
application performed a variety of minimizations and optimizations (including 
optimizing for area and timing). 

   Around the middle of the 1990s, synthesis tools were augmented to under-
stand the concept of FPGA architectures. These architecturally aware appli-
cations could output a LUT/CLB-level netlist, which would subsequently be 
passed to the FPGA vendor’s place-and-route software ( Figure 7-9   ).  

    —Technology Trade-offs— 
          ●      In real terms, the FPGA designs generated by architecturally aware synthe-

sis tools were 15 to 20 percent faster than their counterparts created using 
traditional gate-level synthesis offerings.     

Architecturally aware
logic/HDL synthesis 

Place-and-route
(FPGA Vendor) 

RTL 

Unplaced-and-unrouted
LUT/CLB netlist 

Placed-and-routed
LUT/CLB netlist 

 FIGURE 7-9          Traditional logic/HDL synthesis.    
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    Physically Aware Synthesis Technology 

   The problem with traditional logic/HDL synthesis is that it was developed 
when logic gates accounted for most of the delays in a timing path, while track 
delays were relatively insignificant. This meant that the synthesis tools could 
use simple wire-load models to evaluate the effects of the track delays. (These 
models were along the lines of: One load gate on a wire equates to  x  pF of 
capacitance; two load gates on a wire equates to y pF of capacitance; etc.) The 
synthesis tool would then estimate the delay associated with each track as a 
function of its load and the strength of the gate driving the wire. 

   This technique was adequate for the designs of the time, which were imple-
mented in multimicron technologies and which contained relatively few logic 
gates by today’s standards. By comparison, modern designs can contain tens of 
millions of logic gates, and their deep submicron feature sizes mean that track 
delays can account for up to 80 percent of a delay path. When using traditional 
logic/HDL synthesis technology on this class of design, the timing estimations 
made by the synthesis tool bear so little resemblance to reality that achieving 
timing closure can be well-nigh impossible. 

   For this reason, ASIC flows started to see the use of  physically aware syn-
thesis  somewhere around 1996, and FPGA flows began to adopt similar tech-
niques circa 2000 or 2001.

Architecturally aware
logic/HDL synthesis 

Place
(FPGA Vendor) 

RTL 

Unplaced-and-unrouted
LUT/CLB netlist 

Placed
LUT/CLB netlist 

Physically aware
synthesis  

Place-and-route
(FPGA Vendor)

Placed-and-routed
LUT/CLB netlist 

Placed/optimized
LUT/CLB netlist 

 FIGURE 7-10          Physically aware synthesis.    

        FAQ      

    What does  “ physically aware ”  really mean? 

   Of course there is a variety of different definitions as to exactly what the term 
physically aware synthesis implies. The core concept is to use physical informa-
tion earlier in the synthesis process, but what does this actually mean? For exam-
ple, some companies have added interactive floor-planning capabilities to the 
front of their synthesis engines, and they class this as being physical synthesis or 
physically aware synthesis. For most folks, however, physically aware synthesis 
means taking actual placement information associated with the various logical 
elements in the design, using this information to estimate accurate track delays, 
and using these delays to fine-tune the placement and perform other optimiza-
tions. Interestingly enough, physically aware synthesis commences with a firstpass 
run using a relatively traditional logic/HDL synthesis engine ( Figure 7-10   ).        
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    Retiming, Replication, and Resynthesis 

   In this section, we’ll discuss several concepts related to physical synthesis that 
were defined earlier:  retiming ,  replication , and  resynthesis . 

   As an example, let’s assume a pipelined design whose clock frequency is 
such that the maximum register-to-register delay is 15       ps. Now let’s assume 
that we have a situation as shown in  Figure 7-11a   , whereby the longest tim-
ing path in the first block of combinational logic is 10       ps (which means it has 
a  positive slack  of 5       ps), while the longest path in the next block of combina-
tional logic is 20       ps (which means it has a  negative slack  of 5       ps). 

   Once the initial path timing, including routing delays, has been calculated, 
combinational logic is moved across register boundaries (or vice versa, depend-
ing on your point of view) to steal from paths with positive slack and donate to 
paths with negative slack ( Figure 7-11b ). Retiming is very common in physi-
cally aware FPGA design flows because registers are plentiful in FPGA devices. 

   Replication is similar to retiming, but it focuses on breaking up long inter-
connect. For example, let’s assume that we have a register with 4       ps of positive 
slack on its input. Now let’s assume that this register is driving three paths, 
whose loads each see negative slack ( Figure 7-12a   ). 

   By replicating the register and placing the copies close to each load, we can 
redistribute the slack to make all of the timing paths work ( Figure 7-12b ). 

Clock 

Data In 

Data In 

Registers 

Clock 

Registers Registers 

etc. 

(a) Before retiming 

etc. 

(b) After retiming 

10 ps 20 ps 

15 ps 15 ps 15 ps 

“Push” some logic across
the register boundary 

 FIGURE 7-11          Retiming.    
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   Last, but not least, the concept of  resynthesis  is based on the fact that there 
are many different ways of implementing (and placing) different functions. 
Resynthesis uses the physical placement information to perform local optimi-
zations on critical paths by means of operations like logic restructuring, reclus-
tering, substitution, and possible elimination of gates and wires.

�4 ps 

�2 ps 

�1 ps 

�1 ps 
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�1 ps 

�2 ps 

�2 ps 
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�1 ps 

�1 ps 

(a) Before replication (b) After replication 

 FIGURE 7-12          Replication.    

        Insider Info      

    In the real world, the capabilities of the various synthesis engines, along with 
associated features like autointeractive floor planning, change on an almost daily 
basis, and the various vendors are constantly leapfrogging each other. There’s also 
the fact that different engines may work better (or worse) with different FPGA 
vendors ’  architectures. One thing to look for is the ability (or lack thereof) of the 
engine to infer things automatically, like clocking elements and embedded func-
tions, from your source code or constraints files without your having to define 
them explicitly .        

    TIMING ANALYSIS 

    Static Timing Analysis 

   The most common form of timing verification in use today is classed as STA. 
Conceptually, this is quite simple, although in practice things are, as usual, 
more complex than they might at first appear. 

   The timing analyzer essentially sums all of the gate and track delays form-
ing each path to give you the total input-to-output delays for each path. (In 
the case of pipelined designs, the analyzer calculates delays from one bank of 
registers to the next.) 

   Prior to place-and-route, the analyzer may make estimations as to track 
delays. Following place-and-route, the analyzer will employ extracted parasitic 
values (for resistance and capacitance) associated with the physical tracks to 
provide more accurate results. The analyzer will report any paths that fail to 
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meet their original timing constraints, and it will also warn of potential timing 
problems (e.g., setup and hold violations) associated with signals being pre-
sented to the inputs of any registers or latches.  

    —Technology Trade-offs— 
          ●      STA is particularly well suited to classical synchronous designs and pipe-

lined architectures. The main  advantages  of STA are that it is relatively 
fast, it doesn’t require a test bench, and it exhaustively tests every possible 
path into the ground.  On the downside , static timing analyzers are little 
rascals when it comes to detecting false paths that will never be exercised 
during the course of the design’s normal operation. Also, these tools aren’t 
at their best with designs employing latches, asynchronous circuits, and 
combinational feedback loops.     

    Statistical Static Timing Analysis 

   STA is a mainstay of modern ASIC and FPGA design flows, but it’s starting to 
run into problems with the latest process technology nodes. At the time of writing, 
an increasing number of folks are starting to design at the 45-nano node, with the 
32-nano node expected to see mainstream adoption starting around 2011/2012. 

   As previously discussed, in the case of modern silicon chips, interconnect 
delays dominate logic delays, especially with respect to FPGA architectures. 
In turn, interconnect delays are dependent on parasitic capacitance, resistance, 
and inductance values, which are themselves functions of the topology and 
cross-sectional shape of the wires. 

   The problem is that, in the case of the latest technology process nodes, 
photo lithographic processes are no longer capable of producing exact shapes. 
Thus, as opposed to working with squares and rectangles, we are now working 
with circles and ellipsoids. Feature sizes like the widths of tracks are now so 
small that small variations in the etching process cause deviations that, although 
slight, are significant with relation to the main feature size. (These irregulari-
ties are made more significant by the fact that in the case of high-frequency 
designs, the so-called skin-effect comes into play, which refers to the fact that 
high-f requency signals travel only through the outer surface, or skin, of the 
conductor.) Furthermore, there are variations in the vertical plane of the track’s 
cross section caused by processes like  chemical mechanical polishing  (CMP). 

   As an overall result, it’s becoming increasingly difficult to calculate track 
delays accurately. Of course, it is possible to use the traditional engineering 
fallback of guard-banding (using worst-case estimations), but excessively con-
servative design practices result in device performance significantly below the 
silicon’s full potential, which is an extremely unattractive option in today’s 
highly competitive marketplace. In fact, the effects of geometry variations are 
causing the probability distributions of delays to become so wide that worst-
case numbers may actually be slower than in an earlier process technology! 
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   One potential solution is the concept of the  statistical static timing analyzer  
(SSTA). This is based on generating a probability function for the delay asso-
ciated with each signal for each segment of a track, then evaluating the total 
delay probability functions of signals as they propagate through entire paths. 
The problem is that SSTA is very complex and the distribution functions are— 
in reality—not nice Gaussian curves. Just to add to the fun and frivolity, some 
of the distribution functions tend to be time-based; as a piece of equipment at 
the foundry undergoes  “ wear ”  over time, for example, this can affect some of 
the probability distributions. Having said this, by 2008 most of the  “ big boys ”  
supplying tools to design and verify integrated circuits (e.g., Cadence, Magma, 
Synopsys, etc.) had an SSTA offering of one form or another (some are better 
than others). Many of the folks designing chips at the 45-nano node are using 
SSTA, and many observers believe that the use of SSTA will be mandatory at 
the forthcoming 32-nano node (actually, in addition to timing analysis, statisti-
cal techniques are starting to appear in other analysis engines, such as power 
consumption and noise/signal integrity).   

    VERIFICATION IN GENERAL 

   As designs increase in complexity, verifying their functionality consumes 
more and more time and resources. Such verification includes implementing 
a verification environment, creating a testbench, performing logic simulations, 
analyzing the results to detect and isolate problems, and so forth. In fact, veri-
fying one of today’s high-end ASIC, SoC, or FPGA designs can consume 70 
percent or more of the total development effort from initial concept to final 
implementation. 

    Verifi cation IP 

   One way to alleviate this problem is to make use of  verification IP . The idea 
here is that the design, which is referred to as the  device under test  (DUT) for the 
purposes of verification, typically communicates with the outside world using 
standard interfaces and protocols. Furthermore, the DUT is typically communi-
cating with devices such as microprocessors, peripherals, arbiters, and the like. 

   The most commonly used technique for performing functional verification 
is to use an industry-standard event-driven logic simulator. One way to test the 
DUT would be to create a testbench describing the precise bit-level signals to 
be applied to the input pins and the bit-level responses expected at the outputs. 
However, the protocols for the various interfaces and buses are now so com-
plex that it is simply not possible to create a test suite in this manner. 

   Another technique would be to use RTL models of all of the exter-
nal devices forming the rest of the system. However, many of these devices 
are extremely proprietary and RTL models may not be readily available. 
Furthermore, s imulating an entire system using fully functional models of all 
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        Key Concept      

    It should be noted that, although they are much smaller and simpler (and hence 
simulate much faster) than fully functional models of the devices they represent, 
BFMs are by no means trivial. For example, sophisticated BFMs, which are often 
created as cycle-accurate, bit-accurate C/C     �      �  models, may include internal 
caches (along with the ability to initialize them), internal buffers, configuration 
registers, write-back queues, and so forth. Also, BFMs can provide a tremendous 
range of parameters that provide low-level control of such things as address tim-
ing, snoop timing, data wait states for different memory devices, and the like.        

of the processor and I/O devices would be prohibitively expensive in terms of 
time and computing requirements. 

   The solution is to use verification IP in the form of  bus functional mod-
els  (BFMs) to represent the processors and the I/O agents forming the system 
under test ( Figure 7-13   ). 

   A BFM doesn’t replicate the entire functionality of the device it represents; 
instead, it emulates the way the device works at the bus interface level by gen-
erating and accepting transactions. In this context, the term transaction refers 
to a high-level bus event such as performing a read or write cycle. The veri-
fication environment (or testbench) can instruct a BFM to perform a specific 
transaction like a memory write. The BFM then generates the complex low-
level ( “ bit-twiddling ” ) signal interactions on the bus driving the DUT’s inter-
face transparently to the user. 

   Similarly, when the DUT (the design) responds with a complex pattern of 
signals, another BFM (or maybe the original BFM) can interpret these signals 
and translate them back into corresponding high-level transactions. (See also 
the discussions on verification environments and creating testbenches below.)

BFMs of processors,
I/O agents, arbiters, etc. 

Complex signals at
the “bit twiddling” level 

These could be
the same BFM

DUT
(RTL)B

F
M
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High-level
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verification

environment 

High-level
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result to 
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 FIGURE 7-13          Using verification IP in the form of BFMs.    
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    Verifi cation Environments and Creating Testbenches 

   When I was a young man starting out in simulation, we created test vectors 
(stimulus and response) to be used with our simulations as tabular ASCII 
text files containing logic 0 and 1 values (or hexadecimal values if you were 
lucky). At that time, the designs we were trying to test were incredibly simple 
compared to today’s monsters, so an English translation of our tests would be 
something along the lines of: 

    At time 1,000 make the reset signal go into its active state.  
    At time 2,000 make the reset signal go into its inactive state.  
    At time 2,500 check to see that the 8-bit data bus is 00000000.  
    At time  …  and so it went.    

   Over time, designs became more complex, and the way in which they could 
be verified became more sophisticated with the advent of high-level languages 
that could be used to specify stimulus and expected response. These languages 
sported a variety of features such as loop constructs and the ability to vary the 
tests depending on the state of the outputs (e.g.,  “ If the status bus has a value 
of 010, then jump to test xyz ” ). At some stage, folks started referring to these 
tests as  testbenches .

        Insider Info      

    To be a tad more pedantic, the term  “ testbench ”  really refers to the infrastructure 
supporting test execution .      

   The current state of play is that many of today’s designs are now so com-
plex that it’s well nigh impossible to create an adequate testbench by hand. 
This has paved the way for sophisticated verification environments and lan-
guages. Perhaps the most sophisticated of the languages, known by some as 
 hardware verification languages  (HVLs), is the aspect-oriented   e   offering from 
Verisity Design ( www.verisity.com ). 

   In case you were wondering,   e   doesn’t actually stand for anything now, but 
originally it was intended to reflect the idea of  “ English-like ”  in that it has a 
natural language feel to it. You can use   e   to specify directed tests if you wish, 
but you would typically only wish to do this for special cases. Instead, the con-
cept behind   e  , which you can think of as a blend of C and Verilog with a hint 
of Pascal, is more about declaring valid ranges and sequences of input values 
(along with their invalid counterparts) and high-level verification strategies. 
This   e   description is then used by an appropriate verification environment to 
guide the simulations.  
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    Analyzing Simulation Results 

   Almost every simulator comes equipped with a graphical waveform viewer 
that can be used to display results interactively (as the simulator runs) or 
to accept and display postsimulation results from a  value change dump  
(VCD) file. 

   Sad to relate, however, some of these tools are not as effective as one might 
hope when it comes to really analyzing this information and tracking down 
problems. In this case, you might wish to use a tool from a third-party vendor.   

    FORMAL VERIFICATION 

   Although large computer and chip companies like IBM, Intel, and Motorola 
have been developing and using formal tools internally for decades (since 
around the mid-1980s), the whole field of  formal verification  (FV) is still 
relatively new to a lot of folks. This is particularly true in the FPGA arena, 
where the adoption of formal verification is lagging behind its use in ASIC 
design flows. Having said this, formal verification can be such an incred-
ibly powerful tool that more and more folks are starting to use it in 
earnest. 

   One big problem is that formal verification is still so new to mainstream 
usage that there are many players, all of whom are happily charging around 
in a bewildering variety of different directions. Also, as opposed to a lack of 
standards, there are now so many different offerings that the mind boggles. The 
confusion is only increased by the fact that almost everyone you talk to puts his 
or her unique spin on things (if, for example, you ask 20 EDA vendors to define 
and differentiate the terms assertion and property, your brains will leak out of 
your ears at the diametrically opposing responses). 

   Trying to unravel this morass is a daunting task to say the least. However, 
there is nothing to fear but fear itself, as my dear old dad used to say, so let’s 
take a stab at rending the veils asunder and describing formal verification in a 
way that we can all understand. 

    Different Flavors of Formal Verifi cation 

   As mentioned at the beginning of this chapter, the term  formal verification  was 
considered synonymous with equivalency checking for the majority of design 
engineers. In this context, an equivalency checker is a tool that uses formal 
(rigorous mathematical) techniques to compare two different representations 
of a design—say an RTL description with a gate-level netlist—to determine 
whether they have the same input-to-output functionality. 

   In fact, equivalency checking may be considered a subclass of formal veri-
fication called  model checking , which refers to techniques used to explore the 
state-space of a system to test whether certain properties, typically s pecified in 
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the form of assertions, are true. (Definitions of terms like property and asser-
tion are presented a little later in this section.) 

   For the purposes of the remainder of our discussions here, we shall under-
stand formal verification to refer to model checking. It should be noted, how-
ever, that there is another category of formal verification known as  automated 
reasoning , which uses logic to prove, much like a formal mathematical proof, 
that an implementation meets an associated specification.

        FAQs      

    What is formal verifi cation, and why is it so cool? 

   To provide a starting point for our discussions, let’s assume we have a design 
comprising a number of subblocks and that we are currently working with one of 
these blocks, whose role in life is to perform some specific function. In addition 
to the HDL representation that defines the functionality of this block, we can also 
associate one or more assertions/properties with that block (these assertions/prop-
erties may be associated with signals at the interface to the block or with signals 
and registers internal to the block). 

   A very simple assertion/property might be along the lines of  “ Signals A and 
B should never be active (low) at the same time. ”  But these statements can also 
extend to extremely complex transaction-level constructs, such as  “ When a PCI 
write command is received, then a memory write command of type xxxx must be 
issued within 5 to 36 clock cycles. ”  

   Thus, assertions/properties allow you to describe the behavior of a time-based 
system in a formal and rigorous manner that provides an unambiguous and uni-
versal representation of the design’s intent. Furthermore, assertions/properties can 
be used to describe both expected and prohibited behavior. 

   The fact that assertions/properties are both human and machine-readable 
makes them ideal for the purposes of capturing an executable specification, 
but they go far beyond this. Let’s return to considering a very simple assertion/
property such as  “ Signals A and B should never be active (low) at the same time. ”  
One term you will hear a lot is  assertion-based verification  (ABV), which comes 
in several flavors:  simulation, static formal verification,  and  dynamic formal 
verification.  

   In the case of static formal verification, an appropriate tool reads in the func-
tional description of the design (typically at the RTL level of abstraction) and then 
exhaustively analyzes the logic to ensure that this particular condition can never 
occur. 

   By comparison, in the case of dynamic formal verification, an appropriately 
augmented logic simulator will sum up to a certain point, then pause and auto-
matically invoke an associated formal verification tool (this is discussed in more 
detail below). 

   Of course, assertions/properties can be associated with the design at any level, 
from individual blocks, to the interfaces linking blocks, to the entire system. This 
leads to a very important point, that of  verification reuse.       
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   With regard to assertions/properties associated with the system’s primary 
inputs and outputs, the verification environment may use these to automatically 
create stimuli to drive the design. Furthermore, you can use assertions/proper-
ties throughout the design to augment code and functional coverage analysis 
(see also the  “ Miscellaneous ”  section below) to ensure that specific sequences 
of actions or conditions have been performed.  

    Terminology and Defi nitions 

   Now that we’ve discussed the overall concept of the model checking aspects 
of formal verification, we are better equipped to wade through some further 
terminology and definitions. To be fair, this is relatively uncharted water; the 
following was gleaned from talking with lots of folks and then desperately try-
ing to rationalize the discrepancies between the tales they told. 

      ●       Assertions/properties:  The term property comes from the model checking 
domain and refers to a specific functional behavior of the design that you 
want to (formally) verify (e.g.,  “ after a request, we expect a grant within 10 
clock cycles ” ). By comparison, the term assertion stems from the simula-
tion domain and refers to a specific functional behavior of the design that 
you want to monitor during simulation (and flag a violation if that assertion 
 “ fires ” ). 

    Today, with the use of formal tools and simulation tools in unified envi-
ronments and methodologies, the terms property and assertion tend to be 
used interchangeably; that is, a property is an assertion and vice versa. In 
general, we understand an assertion/property to be a statement about a spe-
cific attribute associated with the design that is expected to be true. Thus, 
assertions/properties can be used as checkers/monitors or as targets of for-
mal proofs, and they are usually used to identify/trap undesirable behavior.     

        Key Concept      

    Prior to formal verification, there was very little in the way of verification reuse. 
For example, when you purchase an IP core, it will typically come equipped with 
an associated testbench that focuses on the I/O signals at the core’s boundary. 
This allows you to verify the core in isolation, but once you’ve integrated the 
core into the middle of your design, its testbench is essentially useless to you. 
Now consider purchasing an IP core that comes equipped with a suite of pre-
defined assertions/properties, like  “ Signal A should never exhibit a rising tran-
sition within three clocks of Signal B going active. ”  These assertions/properties 
provide an excellent mechanism for communicating interface assumptions from 
the IP developer to downstream users. Furthermore, these assertions/properties 
remain true and can be evaluated by the verification environment, even when 
this IP core is integrated into your design.       
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      ●       Constraints:  The term constraint also derives from the model checking 
space. Formal model checkers consider all possible allowed input combi-
nations when performing their magic and working on a proof. Thus, there 
is often a need to constrain the inputs to their legal behavior; otherwise, the 
tool would report false negatives, which are property violations that would 
not normally occur in the actual design. 

    As with properties, constraints can be simple or complex. In some 
cases, constraints can be interpreted as properties to be proven. For exam-
ple, an input constraint associated with one module could also be an out-
put property of the module driving this input. So, properties and constraints 
may be dual in nature. (The term constraint is also used in the  “ constrained 
random simulation ”  domain, in which case the constraint is typically used 
to specify a range of values that can be used to drive a bus.)     

      ●       Event:  An event is similar to an assertion/property, and in general events 
may be considered a subset of assertions/properties. However, while asser-
tions/properties are typically used to trap undesirable behavior, events may 
be used to specify desirable behavior for the purposes of functional cover-
age analysis. 

    In some cases, assertions/properties may consist of a sequence of events. 
Also, events can be used to specify the window within which an assertion/
property is to be tested (e.g.,  “ After  a ,  b ,  c , we expect  d  to be true, until e 
occurs, ”  where  a ,  b ,  c , and  e  are all events, and  d  is the behavior being veri-
fied). Measuring the occurrence of events and assertions/properties yields 
quantitative data as to which corner cases and other attributes of the design 
have been verified. Statistics about events and assertions/properties can also 
be used to generate functional coverage metrics for a design.     

      ●       Procedural:  The term procedural refers to an assertion/property/event/con-
straint that is described within the context of an executing process or set of 
sequential statements, such as a VHDL process or a Verilog  “ always ”  block 
(thus, these are sometimes called  “ incontext ”  assertions/properties). In this 
case, the assertion/property is built into the logic of the design and will be 
evaluated based on the path taken through a set of sequential statements.  

      ●       Declarative:  The term declarative refers to an assertion/property/event/ 
constraint that exists within the structural context of the design and is evalu-
ated along with all of the other structural elements in the design (for example, 
a module that takes the form of a structural instantiation). Another way to 
view this is that a declarative assertion/property is always  “ on/active, ”  unlike 
its procedural counterpart that is only  “ on/active ”  when a specific path is 
taken/executed through the HDL code.  

      ●       Pragma:  The term pragma is an abbreviation for  “ pragmatic information, ”  
which refers to special pseudocomment directives that can be interpreted 
and used by parsers/compilers and other tools. (Note that this is a general-
purpose term, and pragma-based techniques are used in a variety of tools in 
addition to formal verification technology.)     
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    Alternative Assertion/Property Specifi cation Techniques 

   This is where the fun really starts, because there are various ways in which 
assertions/properties and so forth can be implemented, as summarized below: 

      ●        Special languages   :  This refers to using a formal property/assertion lan-
guage that has been specially constructed for the purpose of specifying 
assertions/ properties with maximum efficiency. Languages of this type, of 
which Sugar, PSL, and OVA are good examples, are very powerful in cre-
ating sophisticated, regular, and temporal expressions, and they allow com-
plex behavior to be specified with very little code (Sugar, PSL, and OVA 
are introduced in more detail later in this chapter). 

    Such languages are often used to define assertions/properties in  “ side-
files ”  that are maintained outside the main HDL design representation. These 
side-files may be accessed during parser/compile time and implemented in 
a declarative fashion. Alternatively, a parser/compiler/simulator may be 
augmented to allow statements in the special language to be embedded 
directly in the HDL as in-line code or as pragmas; in both of these cases, 
the statements may be implemented in a declarative and/or procedural 
manner.     

      ●        Special statements in the HDL itself  : Right from the get-go, VHDL came 
equipped with a simple assert statement that checks the value of a Boolean 
expression and displays a user-specified text string if the expression eval-
uates False. The original Verilog did not include such a statement, but 
SystemVerilog has been augmented to include this capability. 

    The advantage of this technique is that these statements are ignored by 
synthesis engines, so you don’t have to do anything special to prevent them 
from being physically implemented as logic gates in the final design. The 
disadvantage is that they are relatively simplistic compared to special asser-
tion/property languages and are not well equipped to specify complex tem-
poral sequences (although SystemVerilog is somewhat better than VHDL 
in this respect).     

      ●        Models written in the HDL and called from within the HDL  : This con-
cept refers to having access to a library of internally or externally devel-
oped models. These models represent assertions/properties using standard 
HDL statements, and they may be instantiated in the design like any other 
blocks. However, these instantiations will be wrapped by synthesis OFF/
ON pragmas to ensure that they aren’t physically implemented. A good 
example of this approach is the open verification library (OVL) from the 
Accellera standards committee ( www.accellera.org ), as discussed in the 
next section.  

      ●        Models written in the HDL and accessed via pragmas  : This is similar in 
concept to the previous approach in that it involves a library of models that 
represent assertions/properties using standard HDL statements. However, as 
opposed to instantiating these models directly from the main design code, 
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they are pointed to by pragmas. A good example of this technique is the 
CheckerWare® library from 0-In Design Automation ( www.0-In.com ). For 
example, consider a design containing the following line of Verilog code:   

              reg [5:0] STATE_VAR; // 0in one_hot       

   The left-hand side of this statement declares a 6-bit register called STATE_
VAR, which we can assume is going to be used to hold the state variables 
associated with an FSM. Meanwhile, the right-hand side ( “ 0in one_hot ” ) is 
a pragma. Most tools will simply treat this pragma as a comment and ignore 
it, but 0-In’s tools will use it to call a corresponding  “ one-hot ”  assertion/ 
property model from their CheckerWare library. Note that the 0-In implemen-
tation means that you don’t need to specify the variable, the clocking, or the 
bit-width of the assertion; this type of information is all picked up a utomatically. 
Also, depending on a pragma’s position in the code, it may be implemented in a 
declarative or procedural manner.  

    Static Formal versus Dynamic Formal 

   This is a little tricky to wrap one’s brain around, so let’s take things step by 
step. First, you can use assertions/properties in a simulation environment. In 
this case, if you have an assertion/property along the lines of  “ Signals A and B 
should never be active (low) at the same time, ”  then if this illegal case occurs 
during the course of a simulation, a warning flag will be raised, and the fact 
this happened can be logged. 

   Simulators can cover a lot of ground, but they require some sort of test-
bench or a verification environment that is dynamically generating stimulus. 
Another consideration is that some portions of a design are going to be diffi-
cult to verify via simulation because they are deeply buried in the design, mak-
ing them difficult to control from the primary inputs. Alternatively, some areas 
of a design that have large amounts of complex interactions with other state 
machines or external agents will be difficult to control. 

   At the other end of the spectrum is  static formal verification . These tools 
are incredibly rigorous and they examine 100 percent of the state space with-
out having to simulate anything. Their disadvantage is that they can typically 
be used for small portions of the design only, because the state space increases 
exponentially with complex properties, and one can quickly run into a  “ state 
space explosion. ”  By comparison, logic simulators, which can also be used to 
test for assertions, can cover a lot of ground, but they do require stimuli, and 
they don’t cover every possible case. 

   To address these issues, some solutions combine both techniques. For 
example, they may use simulation to reach a corner condition and then auto-
matically pause the simulator and invoke a static formal verification engine to 
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        FAQ      

    Is there a standard formal verifi cation language? 

   Let’s begin with something called Vera®, which began life with work done at Sun 
Microsystems in the early 1990s. It was provided to Systems Science Corporation 
somewhere around the mid-1990s, which was in turn acquired by Synopsys in 
1998. Vera is essentially an entire verification environment, similar to, but perhaps 
not as sophisticated as, the e verification language/environment introduced earlier 
in this chapter. Vera encapsulates testbench features and assertion-based capabil-
ities, and Synopsys promoted it as a stand-alone product (with integration into 
the Synopsys logic simulator). Sometime later, due to popular demand, Synopsys 
opened things up to for third-party use by making OpenVera™ and OpenVera 
Assertions (OVA) available. 

   Somewhere around this time, SystemVerilog was equipped with its first pass 
at an assert statement. Meanwhile, due to the increasing interest in formal veri-
fication technology, one of the Accellera standards committees started to look 
around for a formal verification language it could adopt as an industry standard. 
A number of languages were evaluated, including OVA, but in 2002, the com-
mittee eventually opted for the Sugar language from IBM. Just to add to the fun, 
Synopsys then donated OVA to the Accellera committee in charge of SystemVerilog 
(this was a different committee from the one evaluating formal property languages). 

   Yet another Accellera committee ended up in charge of something called the 
open verification library, or OVL, which refers to a library of assertion/property 
models available in both VHDL and Verilog 2K1. 

exhaustively evaluate that corner condition. (In this context, a general definition 
of a  “ corner condition ”  or  “ corner case ”  is a hard-to-exercise or hard-to-reach 
functional condition associated with the design.) Once the corner condition has 
been evaluated, control will automatically be returned to the simulator, which 
will then proceed on its merry way. This combination of simulation and tradi-
tional static formal verification is referred to as dynamic formal verification. 

   As one simple example of where this might be applicable, consider a 
FIFO memory, whose  “ Full ”  and  “ Empty ”  states may be regarded as corner 
cases. Reaching the  “ Full ”  state will require many clock cycles, which is best 
achieved using simulation. But exhaustively evaluating attributes/properties 
associated with this corner case, such as the fact that it should not be possi-
ble to write any more data while the FIFO is full, is best achieved using static 
techniques. 

   Once again, a good example of this dynamic formal verification approach 
is provided by 0-In. Corner cases are explicitly defined as such in their 
CheckerWare library models. When a corner case is reached during simulation, 
the simulator is paused, and a static tool is used to analyze that corner case in 
more detail.
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    Figure 7-14  attempts to show the state of things regarding the various veri-
fication styles and languages. It’s important to note that this figure just reflects 
one view of the world, and not everyone will agree with it (some folks will 
consider this to be a brilliant summation of an incredibly confusing situation, 
while others will regard it as being a gross simplification at best and utter 
twaddle at worst).

   So now we have the assert statements in VHDL and SystemVerilog, OVL (the 
library of models), OVA (the assertion language), and the  property specification lan-
guage  (PSL), which is the Accellera version of IBM’s Sugar language ( Figure 7-14   ). 
The advantage of PSL is that it has a life of its own in that it can be used indepen-
dently of the languages used to represent the functionality of the design itself. The 
disadvantage is that it doesn’t look like anything the hardware description lan-
guages design engineers are familiar with, such as VHDL, Verilog, C/C     �      � , and 
the like. There is some talk of spawning various flavors of PSL, such as a VHDL 
PSL, a Verilog PSL, a SystemC PSL, and so forth; the syntax would differ among 
these flavors so as to match the target language, but their semantics would be 
identical.       
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 FIGURE 7-14          Trying to put everything into context and perspective.    
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    MISCELLANEOUS 

    HDL to C Conversion 

   As we discussed in Chapter 6, there is an increasing push toward capturing 
designs at higher levels of abstraction such as C/C     �      � . In addition to facili-
tating architectural exploration, high-level (behavioral and/or algorithmic) 
C/C     �      �  models can simulate hundreds or thousands of times faster than can 
their HDL/RTL counterparts. 

   Having said this, many design engineers still prefer to work in their RTL 
comfort zone. The problem is that when you are simulating an entire SoC with 
an embedded processor core, memory, peripherals, and other logic all repre-
sented in RTL, you are lucky to achieve simulation speeds of more than a cou-
ple of hertz (that is, a few cycles of the main system clock for each second in 
real time). 

   To address this problem, some EDA companies are starting to offer ways 
to translate your  “ Golden RTL ”  models into faster-simulating alternatives that 
can achieve kilohertz simulation speeds. This is fast enough to allow you to 
run software on your hardware representation for milliseconds of real run time. 
In turn, this allows you to test critical foundation software, such as drivers, 
diagnostics, and firmware, thereby facilitating system validation and verifica-
tion to occur much faster than with traditional methods.  

    Code Coverage 

   In the not-so-distant past, code coverage tools were specialist items provided 
by third-party EDA vendors. However, this capability is now considered 
important enough that all of the big boys have code coverage integrated into 
their verification (simulation) environments, but, of course, the feature sets 
vary among offerings. 

   By now, it may not surprise you to learn that there are many different fla-
vors of code coverage, summarized briefly in order of increasing sophistica-
tion as follows: 

      ●       Basic code coverage : This is just line coverage; that is, how many times 
each line in the source code is hit (executed).  

      ●       Branch coverage : This refers to conditional statements like if-then-else; how 
many times do you go down the then path and how many down the else path.  

        Insider Info      

    Don’t make the mistake of referring to  “ PSL/Sugar ”  as a single/combined lan-
guage. There’s PSL and there’s Sugar and they’re not the same thing. PSL is the 
Accellera standard, while Sugar is the language used inside IBM.         
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      ●       Condition coverage : This refers to statements along the lines of  “ if (a OR 
b      �      �  TRUE) then. ”  In this case, we are interested in the number of times 
the then path was taken because variable  a  was TRUE compared to the 
number of times variable  b  was TRUE.  

      ●       Expression coverage : This refers to expressions like  “ a      �      (b AND c) OR 
!d ” . In this case, we are interested in analyzing the expression to determine 
all of the possible combinations of input values and also which combi-
nations triggered a change in the output and which variables were never 
tested.  

      ●       State coverage : This refers to analyzing state machines to determine which 
states were visited and which ones were neglected, as well as which guard 
conditions and paths between states are taken, and which aren’t, and so 
forth. You can derive this sort of information from line coverage, but you 
have to read between the lines (pun intended).  

      ●       Functional coverage : This refers to analyzing which transaction-
level events (e.g., memory-read and memory-write transactions) and 
which specific combinations and permutations of these events have been 
exercised.  

      ●       Assertion/property coverage : This refers to a verification environment that 
can gather, organize, and make available for analysis the results from all of 
the different simulation-driven, static formal, and dynamic formal assertion-/
property-based verification engines. This form of coverage can actually be 
split into two camps:  specification-level coverage  and  implementation-level  
coverage. In this context, specification-level coverage measures verifica-
tion activity with respect to items in the high-level functional or macro-
architecture definition. This includes the I/O behaviors of the design, the 
types of transactions that can be processed (including the relationships 
of different transaction types to each other), and the data transformations 
that must occur. By comparison, implementation-level coverage measures 
verification activity with respect to microarchitectural details of the actual 
implementation. This refers to design decisions that are embedded in the 
RTL that result in implementation-specific corner cases, for example, the 
depth of a FIFO buffer and the corner cases for its  “ high-water mark ”  
and  “ full ”  conditions. Such implementation details are rarely visible at 
the specification level.     

    Performance Analysis 

   One final feature that’s important in a modern verification environment is its 
ability to do  performance analysis . This refers to having some way of analyz-
ing and reporting exactly where the simulator is spending its time. This allows 
you to focus on high-activity areas of your design, which may reap huge 
rewards in terms of final system performance.   

CH007-H8974.indd   183CH007-H8974.indd   183 6/21/2008   6:16:15 PM6/21/2008   6:16:15 PM



FPGAs: Instant Access184

www.newnespress.com

    INSTANT SUMMARY 

    Table 7-1    shows the major types of design tools covered in this chapter, along 
with their important features.    

 TABLE 7-1            

   Simulation  Event-driven logic simulators 
     Mixed-language simulation 
     Delay modeling 
     Cycle-based simulators 

   Synthesis  HDL synthesis technology 
     Physically aware synthesis technology 
     Retiming 
     Replication 
     Resynthesis 

   Timing Analysis  Static timing analysis 
     Statistical static timing analysis 
     Dynamic timing analysis 

   Verifi cation  Verifi cation IP 
     Bus functional models 
     Hardware verifi cation languages 
     Formal verifi cation 
     Static formal/Dynamic formal 
     Verifi cation environments/languages 
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            Choosing the Right Device  

 Chapter 8 

In an Instant

Choosing
Technology
Basic Resources and Packaging
General-purpose I/O Interfaces
Embedded Multipliers, 

RAMs, etc.

Embedded Processor Cores
Gigabit I/O Capabilities
IP Availability
Speed Grades
Future FPGA Developments
Instant Summary

           Defi nitions      

   Most of the terms used in this chapter you will have seen before, but here are a 
few definitions of some terms that may be unfamiliar: 

      ●       Application Specifi c Modular Block  (ASMBL) is a new FPGA architecture that 
was developed by Xilinx. This is a highly modular, column-based architecture 
that makes use of fl ip-chip technology and eliminates geometric layout con-
straints associated with traditional chip design.  

      ●       Field programmable analog arrays  (FPAAs) refers to ICs that can be pro-
grammed to implement analog circuits by use of fl exible analog blocks and 
interconnect.  

      ●       Structured ASICs  are a relatively new item and the term can mean differ-
ent things depending on which vendor you’re talking to. The term generally 
refers to there being predefi ned metal layers (reducing manufacturing time) 
and precharacterization of what is on the silicon (reducing design cycle time). 
Structured ASICs bridge the gap between fi eld-programmable gate arrays and 
 “ standard-cell ”  ASICs.         

    CHOOSING 

   Choosing an FPGA can be a complex process because there are so many prod-
uct families from the different vendors. Product lines and families from the 
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same vendor overlap; product lines and families from different vendors both 
overlap and, at the same time, sport different features and capabilities; and 
things are constantly changing, seemingly on a daily basis. 

   Before we start, it’s worth noting that size isn’t everything in the FPGA 
design world. You really need to base your FPGA selection on your design 
needs, such as number of I/O pins, available logic resources, availability of 
special functional blocks, and so forth. 

   Another consideration is whether you already have dealings with a certain 
FPGA vendor and product family, or whether you are plunging into an FPGA 
design for the very first time. If you already have a history with a vendor and 
are familiar with using its components, tools, and design flows, then you will 
typically stay within that vendor’s offerings unless there’s an overriding reason 
for change. 

   For the purposes of the remainder of these discussions, however, we’ll 
assume that we are starting from ground zero and have no particular affiliation 
with any vendor. In this case, choosing the optimum device for a particular 
design is a daunting task. 

   Becoming familiar with the architectures, resources, and capabilities asso-
ciated with the various product families from the different FPGA vendors 
demands a considerable amount of time and effort. In the real world, time-to-
market pressures are so intense that design engineers typically have sufficient 
time to make only high-level evaluations before settling on a particular vendor, 
family, and device. In this case, the selected FPGA is almost certainly not the 
optimum component for the design, but this is the way of the world. 

   Given a choice, it would be wonderful to have access to some sort of FPGA 
selection wizard application (preferably Web based). This would allow you to 
choose a particular vendor, a selection of vendors, or make the search open to 
all vendors. 

   For the purposes of a basic design, the wizard should prompt you to enter 
estimates for such things as ASIC equivalent gates or FPGA system gates 
(assuming there are good definitions as to what equivalent gates and system 
gates are—see also Chapter 2). The wizard should also prompt for details on 
I/O pin requirements, I/O interface technologies, acceptable packaging options, 
and so forth. 

   In the case of a more advanced design, the wizard should prompt you for 
any specialist options such as gigabit transceivers or embedded functions like 
multipliers, adders, MACs, RAMs (both distributed and block RAM), and 
so forth. The wizard should also allow you to specify if you need access to 
embedded processor cores (hard or soft) along with selections of associated 
peripherals. 

   Last but not least, it would be nice if the wizard would prompt you as to 
any IP requirements (hey, since we’re dreaming, let’s dream on a grand scale). 
Finally, clicking the  “ Go ”  button would generate a report detailing the leading 
contenders and their capabilities (and costs). 
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   Returning to the real world with a sickening thump, we remember that no 
such utility actually exists at this time, so we have to perform all of these eval-
uations by hand, but wouldn’t it be nice …   

    TECHNOLOGY 

   One of your first choices is going to be deciding on the underlying FPGA tech-
nology. Your main options are as follows: 

      ●       SRAM-based : Although very flexible, this requires an external configura-
tion device and can take up to a few seconds to be configured when the 
system is first powered up. Early versions of these devices could have sub-
stantial power supply requirements due to high transient startup currents, 
but this problem has been addressed in the current generation of devices. 
One key advantage of this option is that it is based on standard CMOS 
technology and doesn’t require any esoteric process steps. This means that 
SRAM-based FPGAs are at the forefront of the components available with 
the most current technology node.  

      ●       Antifuse-based : Considered by many to offer the most security with regard 
to design IP, this also provides advantages like low power consumption, 
instant-on availability, and no requirement for any external configuration 
devices (which saves circuit board cost, space, and weight). Antifuse-based 
devices are also more radiation hardened than any of the other technolo-
gies, which makes them of particular interest for aerospace-type applica-
tions. On the downside, this technology is a pain to prototype with because 
it’s OTP. Antifuse devices are also typically one or more generations 
behind the most current technology node because they require additional 
process steps compared to standard CMOS components.  

      ●       FLASH-based : Although considered to be more secure than SRAM-based 
devices, these are slightly less secure than antifuse components with regard 
to design IP. FLASH-based FPGAs don’t require any external configura-
tion devices, but they can be reconfigured while resident in the system if 
required. In the same way as antifuse components, FLASH-based devices 
provide advantages like instant-on capability, but are also typically one or 
more generations behind the most current technology node because they 
require additional process steps compared to standard CMOS components. 
Also, these devices typically offer a much smaller logic (system) gate-
count than their SRAM-based counterparts.     

    BASIC RESOURCES AND PACKAGING 

   Once you’ve decided on the underlying technology, you need to determine 
which devices will satisfy your basic resource and packaging requirements. 
In the case of core resources, most designs are pin limited, and it’s typically 
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only in the case of designs featuring sophisticated algorithmic processing like 
color space conversion that you will find yourself logic limited. Regardless of 
the type of design, you will need to decide on the number of I/O pins you are 
going to require and the approximate number of fundamental logical entities 
(LUTs and registers). 

   As discussed in Chapter 2, the combination of a LUT, register, and associ-
ated logic is called a  logic element  (LE) by some and  logic cell  (LC) by others. 
It is typically more useful to think in these terms as opposed to higher-level 
structures like slices and configurable logic blocks (CLBs) or logic array 
blocks (LABs) because the definition of these more sophisticated structures 
can vary between device families. 

   Next, you need to determine which components contain a sufficient number of 
clock domains and associated PLLs, DLLs, and digital clock managers (DCMs). 

   Last, but not least, if you have any particular packaging requirements in 
mind, it would be a really good idea to ensure that the FPGA family that has 
caught your eye is actually available in your desired package. (I know this 
seems obvious, but would you care to place a bet that no one ever slipped up 
on this point before?)  

    GENERAL-PURPOSE I/O INTERFACES 

   The next point to ponder is which components have configurable general-
p urpose I/O blocks that support the signaling standard(s) and termination tech-
nologies required to interface with the other components on the circuit board. 

   Let’s assume that way back at the beginning of the design process, the sys-
tem architects selected one or more I/O standards for use on the circuit board. 
Ideally, you will find an FPGA that supports this standard and also provides all 
of the other capabilities you require. If not, you have several options: 

 ●     If your original FPGA selection doesn’t provide any must-have capabilities 
or functionality, you may decide to opt for another family of FPGAs (pos-
sibly from another vendor). 

 ●     If your original FPGA selection does provide some must-have capabili-
ties or functionality, you may decide to use some external bridging devices 
(this is expensive and consumes board real estate). Alternatively, in con-
junction with the rest of the system team, you may decide to change the 
circuit board architecture (this can be really expensive if the system design 
has progressed to any significant level).  

    EMBEDDED MULTIPLIERS, RAMS, ETC. 

   At some stage you will need to estimate the amount of distributed RAM and 
the number of embedded block RAMs you are going to require (along with the 
required widths and depths of the block RAMs). 
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   Similarly, you will need to muse over the number of special embedded 
functions (and their widths and capabilities) like multipliers and adders. In the 
case of DSP-centric designs, some FPGAs may contain embedded functions 
like MACs that will be particularly useful for this class of design problem and 
may help to steer your component selection decisions.  

    EMBEDDED PROCESSOR CORES 

   If you wish to use an embedded processor core in your design, you will need 
to decide whether a soft core will suffice (such a core may be implemented 
across a number of device families) or if a hard core is the order of the day. 

   In the case of a soft core, you may decide to use the offering supplied by 
an FPGA vendor. In this case, you are going to become locked into using that 
vendor, so you need to evaluate the various alternatives carefully before taking 
the plunge. Alternatively, you may decide to use a third-party soft-core solu-
tion that can be implemented using devices from multiple vendors. 

   If you decide on a hard core, you have little option but to become locked 
into a particular vendor. One consideration that may affect your decision pro-
cess is your existing experience with different types of processors. Let’s say 
that you hold a black belt in designing systems based around the PowerPC, 
for example. In such a case, you would want to preserve your investment in 
PowerPC design tools and flows (and your experience and knowledge in using 
such tools and flows). Thus, you would probably decide on an FPGA offering 
from Xilinx because they support the PowerPC. Alternatively, if you are a guru 
with respect to ARM or MIPS processors, then selecting devices from Altera 
or QuickLogic, respectively, may be the way to go.  

    GIGABIT I/O CAPABILITIES 

   If your system requires the use of gigabit transceivers, then points to consider 
are the number of such transceivers in the device and the particular standard 
that’s been selected by your system architects at the circuit board level.  

    IP AVAILABILITY 

   Each of the FPGA vendors has an IP portfolio. In many cases there will be 
significant overlap between vendors, but more esoteric functions may only be 
available from selected vendors, which may have an impact on your compo-
nent selection. 

   Alternatively, you may decide to purchase your IP from a third-party 
provider. In such a case, this IP may be available for use with multiple 
FPGAs from different vendors (and a subset of device families from those 
vendors).
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    SPEED GRADES 

   Once you’ve decided on a particular FPGA component for your design, one 
final decision is the speed grade of this device. The FPGA vendors ’  traditional 
pricing model makes the performance (speed grade) of a device a major factor 
with regard to the cost of that device. 

    —Technology Trade-offs— 
    As a rule of thumb, moving up a speed grade will increase performance by 
12 to 15 percent, but the cost of the device will increase by 20 to 30 percent. 
Conversely, if you can manipulate the architecture of your design to improve 
performance by 12 to 15 percent (say, by adding additional pipelining stages), 
then you can drop a speed grade and save 20 to 30 percent on the cost of your 
silicon (FPGA).  

    If you are only contemplating a single device for prototyping applications, 
then this may not be a particularly significant factor for you. On the other 
hand, if you are going to be purchasing hundreds or thousands of these little 
rascals, then you should start thinking very seriously about using the lowest 
speed grade you can get away with.  

   The problem is that modifying and reverifying RTL to perform a series of 
what-if evaluations of alternative implementations is difficult and time-
c onsuming. (Such evaluations may include performing certain operations in 
parallel versus sequentially, pipelining portions of the design versus nonpipe-
lining, resource sharing, etc.) This means that the design team may be limited 
to the number of evaluations it can perform, which can result in a less-than-
optimal implementation. 

   As discussed in Chapter 6, one alternative is to use a pure untimed 
C/C �  � -based flow. Such a flow should feature a C/C �  �  analysis and synthe-
sis engine that allows you to perform microarchitecture trade-offs and evaluate 
their effects in terms of size/are and speed/clock cycles. Such a flow facilitates 
improving the performance of a design, thereby allowing it to make use of a 
slower speed grade if required.

        Key Concept      

    We commonly think of IP in terms of hardware design functions, but some IP 
may come in the form of software routines. For example, consider a communica-
tions function that might be realized as a hardware implementation in the FPGA 
fabric or as a software stack running on the embedded processor. In the latter 
case, you might decide to purchase the software stack routines from a third 
party, in which case you are essentially acquiring software IP.        
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    FUTURE FPGA DEVELOPMENTS 

   One thing is certain—any predictions of the future that we might make are 
probably going to be of interest only for the purposes of saying,  “ Well, we 
didn’t see that coming, did we? ”  If you had told me back in 1980 when I started 
my career in electronics that one day we’d be designing with devices contain-
ing hundreds of millions of logic gates and the devices would be reconfigurable 
like today’s SRAM-based FPGAs, I’d have laughed my socks off. Xilinx now 
has a family of 65-nm FPGA products on the market with over a billion transis-
tors on one chip. 

     Super-fast I/O 
   When it comes to the gigabit transceivers discussed in Chapter 2, today’s high-
end FPGA chips typically sport one or more of these transceiver blocks, each 
of which has multiple channels. Each channel can carry 2.5       Gbps of real data; 
so four channels have to be combined to achieve 10       Gbps. Furthermore, an 
external device has to be employed to convert an incoming optical signal into 
the four channels of electrical data that are passed to the FPGA. Conversely, 
this device will accept four channels of electrical data from the FPGA and con-
vert them into a single outgoing optical signal. Some FPGAs today can accept 
and generate these 10       Gbps optical signals internally.

        Insider Info      

    On the bright side, once a design team has selected an FPGA vendor and become 
familiar with a product family, it tends to stick with that family for quite some time, 
which makes life (in the form of the device selection process) much easier for 
subsequent projects.         

        Insider Info      

    Another technology that may come our way at some stage in the future is FPGA-
to-FPGA and FPGA-to-ASIC wireless or wireless-like interchip communications. 
With regard to my use of the term wireless-like, I’m referring to techniques such as 
the experimental work currently being performed by Sun Microsystems on inter-
chip communication based on extremely fast, low-powered capacitive coupling. 
This requires the affected chips to be mounted very (VERY) close to each other on 
the circuit board, but should offer interchip signal speeds 60 times higher than the 
fastest board-level interconnect technologies available today.        

    Super-fast Confi guration 
   The vast majority of today’s FPGAs are configured using a serial bit-stream 
or a parallel stream only 8 bits wide. This severely limits the way in which 
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these devices can be used in reconfigurable computing-type applications. 
Quite some time ago (somewhere around the mid-1990s), a team at Pilkington 
Microelectronics (PMEL) in the United Kingdom came up with a novel FPGA 
architecture in which the device’s primary I/O pins were also used to load the 
configuration data. This provided a superwide bus (256 or more pins/bits) that 
could program the device in a jiffy. 

   As an example of where this sort of architecture might be applicable, 
consider the fact that there is a wide variety of compressor/decompressor 
(CODEC) algorithms that can be used to compress and decompress audio and 
video data. If you have a system that needs to decompress different files that 
were compressed using different algorithms, then you are going to need to sup-
port a variety of different CODECs. 

   Assuming that you wished to perform this decompression in hardware using 
an FPGA, then with traditional devices you would either have to implement 
each CODEC in its own device or as a separate area in a larger device. You 
wouldn’t wish to reprogram the FPGA to perform the different algorithms on 
the fly because this would take from 1 to 2.5 seconds with a large component, 
which is too long for an end user to wait (we demand instant gratification these 
days). By comparison, in the case of the PMEL architecture, the reconfigura-
tion data could be appended to the front of the file to be processed ( Figure 8-1   ). 

   The idea was that the configuration data would flood through the wide bus, 
program the device in a fraction of a second, and be immediately followed by 
the main audio or video data file to be decompressed. If the next file to be 
processed required a different CODEC, then the appropriate configuration file 
could be used to reprogram the device. 

   This concept was applicable to a wide variety of applications. Unfortunately, 
the original incarnation of this technology fell by the wayside, but it’s not 

Files containing configuration data
for different CODEC algorithms 

Audio and video files compressed
using different CODEC algorithms 

PMEL
FPGA

 FIGURE 8-1          A wide configuration bus.    
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beyond the bounds of possibility that something like this could reappear in the 
not-so-distant future.  

    More Hard IP 
   In the case of technology nodes of 90       nm and below, it’s possible to squeeze 
so many transistors onto a chip that we are almost certainly going to see an 
increased amount of hard IP blocks for such things as communications functions, 
special-purpose processing functions, microprocessor peripherals, and the like.  

    Analog and Mixed-signal Devices 
   Traditional digital FPGA vendors have a burning desire to grab as many of 
the functions on a circuit board as possible and to suck these functions into 
their devices. In the short term, this might mean that FPGAs start to include 
hard IP blocks with analog content such as analog-to-digital (A/D) and digital-
to-a nalog (D/A) converters. Such blocks would be programmable with regard 
to such things as the number of quanta (width) and the dynamic range of the 
analog signals they support. They might also include amplification and some 
filtering and signal conditioning functions. 

   Furthermore, over the years a number of companies have promoted differ-
ent flavors of field-programmable analog arrays (FPAAs). Thus, there is more 
than a chance that predominantly digital FPGAs will start to include areas of 
truly programmable analog functionality similar to that provided in pure FPAA 
devices.  

    ASMBL and Other Architectures 
   In 2003, Xilinx announced their Application Specific Modular BLock 
(ASMBL™) architecture. The idea here is that you have an underlying c olumn-
based architecture, where the folks at Xilinx have put a lot of effort into design-
ing different flavors of columns for such things as: 

    General-purpose programmable logic  
    Memory  
    DSP-centric functions  
    Processing functions  
    High-speed I/O functions  
    Hard IP functions  
    Mixed-signal functions    

   Xilinx provides a selection of off-the-shelf devices, each with different mixes 
of column types targeted toward different application domains ( Figure 8-2   ). 

     Different Granularity 
   As we discussed in Chapter 2, FPGA vendors and university students have 
spent a lot of time researching the relative merits of 3-, 4-, 5-, and even 6-input 
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LUTs. In the past, some devices were created using a mixture of different LUT 
sizes, such as 3-input and 4-input LUTs, because this offered the promise of 
optimal device utilization. For a variety of reasons, the vast majority of today’s 
FPGAs contain only 4-input LUTs, but it’s not beyond the range of possibility 
that future offerings will sport a mixture of different LUT sizes.  

    Embedding FPGA Cores in ASIC Fabric 
   The cost of developing a modern ASIC at the 90-nm technology node is hor-
rendous. This problem is compounded by the fact that, once you’ve completed 
a design and built the chip, your algorithms and functions are effectively  “ fro-
zen in silicon. ”  This means that if you have to make any changes in the future, 
you’re going to have to regenerate the design, create a new set of photo-masks 
(costing around $1 million), and build a completely new chip. 

   To address these issues, some users are interested in creating ASICs with 
FPGA cores embedded into the fabric. Apart from anything else, this means 
that you can use the same design for multiple end applications without having 
to create new mask sets. 

   I also think that we are going to see increased deployment of structured 
ASICs and that these will lend themselves to sporting embedded FPGA cores 
because their design styles and tools will exhibit a lot of commonality.  

    MRAM-based Devices 
   In Chapter 1, we introduced the concept of MRAM. MRAM cells have the 
potential to combine the high speed of SRAM, the storage capacity of DRAM, 
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 FIGURE 8-2          Using the underlying ASMBL architecture to create a variety of off-the-shelf devices 
with domain-specific functionality.    

CH008-H8974.indd   194CH008-H8974.indd   194 6/21/2008   6:59:02 PM6/21/2008   6:59:02 PM



195Chapter | 8 Choosing the Right Device

www.newnespress.com

and the nonvolatility of FLASH, all while consuming a miniscule amount of 
power. MRAM-based memory chips are now available, and other devices, such 
as MRAM-based FPGAs, will probably start to appear soon.  

    Don’t Forget the Design Tools 
   As we discussed above, some FPGAs now contain 1 billion transistors or 
more. Existing HDL-based design flows in which designs are captured at the 
RTL-level of abstraction are already starting to falter with the current genera-
tion of devices, and it won’t be long before they essentially grind to a halt. 

   One useful step up the ladder will be increasing the level of design abstrac-
tion by using the pure C/C     �      � -based flows introduced in Chapter 6. Really 
required, however, are true system-level design environments that help users 
explore the design space at an extremely high level of abstraction. In addition 
to algorithmic modeling and verification, these environments will aid in parti-
tioning the design into its hardware and software components. 

   These system-level environments will also need to provide performance 
analysis capabilities to aid users in evaluating which blocks are too slow when 
realized in software and, thus, need to be implemented in hardware, and which 
blocks realized in hardware should really be implemented in software so as to 
optimize the use of the chip’s resources. 

   People have been talking about this sort of thing for ages, and various 
available environments and tools go some way toward addressing these issues. 
In reality, however, such applications have a long way to go with regard to 
their capabilities and ease of use.  

    Expect the Unexpected 
   Before closing, I’d just like to reiterate that anything you or I might guess at 
for the future is likely to be a shallow reflection of what actually comes to pass. 
There are device technologies and design tools that have yet to be conceived, 
and when they eventually appear on the stage (and based on past experience, 
this will be sooner than we think), we are all going to say,  “ WOW! What a cool 
idea! ”  and  “ Why didn’t I think of that? ”  Good grief, I LOVE electronics!    
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 TABLE 8-1          Choosing an FPGA  

   1.  Already deal with a specifi c vendor or product family? Any compelling 
reasons to change? 

   2.  Which technology to use? 

   3.  ASIC equivalent gates or FPGA system gates? 

   4.  I/O pin requirements? 

   5.  I/O interface technology? 

   6.  Acceptable packaging options? 

   7.  Need special options such as gigabit transceivers or embedded functions 
like adders, multipliers, MACs, RAMS? 

   8.  Need embedded processor cores? If so, hard or soft? 

   9.  IP requirements? 

   10.  Which speed grade? 

    INSTANT SUMMARY 

    Table 8-1    shows the general approach for choosing an FPGA device.     
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 SRAM-based devices  ,   14  

 security issues  ,   15     
 Property, defi nition of  ,   176   
 Property specifi cation language (PSL)  ,   178  , 
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 Pure C/C �  �   -based fl ows  ,   120 – 3   
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 Quantizers  ,   134   
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 Resource sharing  ,   67 – 8  ,   104 – 5   
 Resynthesis  ,   169   
 Retiming  ,   168   
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 SCAN chain insertion  ,   69   
 Schematic-based design fl ows  ,   76  

 back-end tools  ,   81   
 CAE and CAD tools  ,   81   
 fl at vs. hierarchical schematics  ,   86 – 8   
 schematic-driven FPGA design fl ows  ,   88   
 simple (early) schematic-driven ASIC fl ow  , 

  81 – 3   
 simple (early) schematic-driven FPGA 
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 Schematic-driven FPGA design fl ows  ,   88   
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 with FPGA, as slave  ,   57 – 8    
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 Simple (early) HDL-based ASIC fl ow  ,   91 – 2   
 Simple (early) HDL-based FPGA fl ow  ,   92 – 3   
 Simple (early) schematic-driven ASIC fl ow  , 

  81 – 2   
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 post-place-and-route simulation  ,   86   
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 delay modeling  ,   160 – 3   
 event-driven logic simulators  ,   156 – 8   
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 mixed-language simulation  ,   159 – 60    
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 Slicing, and dicing  ,   24 – 5   
 Soft core  ,   108   
 Soft IP  ,   40 – 1   
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 Static RAM (SRAM)-based technology  ,   8 – 9   
 Static timing analysis (STA)  ,   86  ,   160  ,   169 – 70   
 Statistical static timing analysis  ,   170 – 1   
 Stimulus  ,   78 – 9  

 see also    Test vectors   
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 physically aware synthesis technology  ,   167   
 replication  ,   168 – 9   
 resynthesis  ,   169   
 retiming  ,   168    

 Synthesis tools  ,   93  ,   94   
 System/algorithmic level:  
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 SystemC  ,   102  ,   112   
 SystemC 1.0  ,   112   
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 SRAM-based technology  ,   8 – 9    
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 statistical static timing analysis  ,   170 – 1    
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 schematic-based design fl ows  ,   76 – 83  
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 CAE and CAD tools  ,   81   
 fl at vs. hierarchical schematics  ,   86 – 8   
 schematic-driven FPGA design fl ows 
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 Transport delay model  ,   162 – 3   
 Tri-state buffers  ,   105 – 6   
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 Unifi ed design language for integrated circuits 

(UDL/I)  ,   100 – 1   
  “ Use-it-or-lose-it ”  considerations  ,   67   
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 Value change dump (VCD) fi le  ,   158  ,   174   
 Vera®  ,   180   
 Verifi cation:  

 environments  ,   173   
 languages  ,   180 – 1   
 simulation results, analyzing  ,   174   
 testbenches creation  ,   173   
 verifi cation IP  ,   171 – 2    

 Verilog  ,   159  ,   179   
 Verilog HDL  ,   96 – 8  

 vs.VHDL  ,   100    
 Very high speed integrated circuit (VHSIC) 

program  ,   98   
 VHDL Initiative toward ASIC Libraries 

(VITAL)  ,   99   
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 Visibility improvement, in design  ,   147 – 8   
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 Wizard application  ,   186   
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 Xilinx  ,   144  ,   191  ,   193   
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