Imaging for Windows®

eiStream”

Developer’s Guide

Imaging for Windows®

Developer’s Guide

Copyright © 1998 - 2003 eiStream Technologies, Inc.
715-C008

eiStream”

eiStream WMS, Inc., 296 Concord Road « Billerica, MA 01821 U.S.A.
www.eiStream.com

Disclaimer of Warranties and Limitation of Liabilities

Nothing contained herein modifies or alters in any way the standard terms and conditions of the
purchase, lease, or license agreement by which the product was acquired, nor increases in any way the
liability of the supplier of the software, its affiliates or suppliers (“the Supplier”). In no event shall the
Supplier be liable for incidental or consequential damages in connection with or arising from the use of
the product, the accompanying manual, or any related materials.

Software Notice

All software must be licensed to customers in accordance with the terms and conditions of any approved
and authorized license. No title or ownership of the software is transferred, and any use of the software
beyond the terms of the aforesaid license, without written authorization of the publisher, is prohibited.

Restricted Rights Legend

The Licensed Product and accompanying documentation are Commercial Computer Software and
documentation as defined under Federal Acquisition Regulations and agency supplements to them. Use,
duplication or disclosure by the U.S. Government is subject to the restrictions of these licensing terms
and conditions as prescribed in DFAR 227.7202-3(a) and DFAR 227.7202-4 or, as applicable, the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19. Manufacturer is eiStream
WMS Inc., 296 Concord Road, Billerica, MA 01821, USA.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the USA and in other countries.
Other product names mentioned in this guide may be trademarks or registered trademarks of their respective companies.

Contents

Developer’'s Guide

About This Guide

Purpose xiv
Prerequisites xiv
Related Information xiv

Support xv

1 About Imaging

Introducing Imaging for Windows 2
Imaging Components 2

Imaging Application 2

Imaging Preview 3

Imaging Flow 3

Development Tools and Methods 4

What Imaging Lets YouDo 5
Command-line Invocation 5
OLE 5
Embedded Image Files 5
Linked Image Files 6
Automation 6
ActiveX Controls 7

Which to Use: Command-line Interface, OLE, Automation, or
ActiveX Controls? 8

Command-line Interface 8

OLE 8

Automation 9

ActiveX Controls 10

| Contents

Sample Code 10

Automation Demonstration Project 11
ActiveX Demonstration Projects 11
ActiveX Sample Applications 11

What Imaging Lets Your Users Do 13

What Is Document Imaging? 14

Business Document Imaging 14

Personal Document Imaging 15
Compiling and Distributing Your Image-Enabled
Application 16
Compiling Software with Imaging for Windows 16
Compiling Software with an Operating System Component

Use of LZW Compression 17

Documentation Conventions 18

2 Adding Imaging Using Automation

iv

Overview 20

The Object Hierarchy 20
Application Object 21
ImageFile Object 21

Page Object 21

PageRange Object 22

Automation Server and Embedded Server Modes
Automation Server Mode 22

Embedded Server Mode 23

Examples 23

As an Automation Server Application 23
As an Embedded Server Application 26

Demonstration Project 28
View Modes 28

One Page 29
Thumbnail 30
Page and Thumbnails 31

16

22

Contents

Example 32
The Automation From Excel Project 32

Opening the Spreadsheet File 34

Opening and Displaying the Image File 34
Obtaining the Page Count 39

Rotating an Image Page 40

Setting the One Page View Mode 41

Setting the Thumbnail View Mode 41

Setting the Page and Thumbnails View Mode 42
Closing the Image File and the Imaging
Application 42

3 Automation Lexicon

Overview 44

Application Object 44

Application Object Properties 44
ActiveDocument Property 45
AnnotationPaletteVisible Property 46
Application Property 46
AppState Property 46
DisplayScaleAlgorithm Property 46
Edit Property 47
FullName Property 47
Height Property 48
ImagePalette Property 48
ImageView Property 48
ImagingToolBarVisible Property 49
Left Property 49
Name Property 50
Parent Property 50
Path Property 50
ScannerlsAvailable Property 50
ScanToolBarVisible Property 50
ScrollBarsVisible Property 51
StatusBarVisible Property 51
ToolBarVisible Property 51
Top Property 52
TopWindow Property 52

| Contents

Visible Property 52
WebToolBarVisible Property 53
Width Property 53
Zoom Property 53

Application Object Methods 54

CreatelmageViewerObject Method 54
FitTo Method 54
Help Method 55
Quit Method 55

ImageFile Object 56
ImageFile Object Properties 56

ActivePage Property 56
Application Property 57
FileType Property 57
Name Property 57
OCRLaunchApplication Property 58
OCROutputFile Property 58
OCROutputType Property 58
PageCount Property 58
Parent Property 59
Saved Property 59

ImageFile Object Methods 59
AppendExistingPages Method 60
Close Method 61
CreateContactSheet Method 61
FindOlIServerDoc Method 62
Help Method 62
InsertExistingPages Method 62
New Method 63
Ocr Method 64
Open Method 64
Pages Method 65
Print Method 66
RotateAll Method 66
Save Method 66
SaveAs Method 67
SaveCopyAs Method 68
Update Method 68

Contents

Page Object 69

Page Object Properties 69
Application Property 69
Compressioninfo Property 69
CompressionType Property 70
Height Property 71
ImageResolutionX Property 71
ImageResolutionY Property 72
Name Property 72
PageType Property 72
Parent Property 73
ScrollPositionX Property 73
ScrollPositionY Property 73
Width Property 73

Page Object Methods 74

Delete Method 74

Flip Method 74

Help Method 74

Ocr Method 74

Print Method 75
RotateLeft Method 75
RotateRight Method 75
Scroll Method 75

PageRange Object 76
PageRange Object Properties 76

Application Property 76
Count Property 76
EndPage Property 76
Parent Property 77
StartPage Property 77
PageRange Object Methods 77

Delete Method 77
Ocr Method 78
Print Method 78

vii

| Contents

4 Adding Imaging Using ActiveX Controls

Loading the Controls 80
Visual Basic 82

Visual C++ 82

Access 83

Obtaining Help 84
Visual Basic 84

Object Browser 85

Toolbox 85

Form Window 86

Properties Window 86

Code Window 86
Visual C++ 87

Components and Controls Gallery Dialog Box 87
Properties Window 87
Access 88

Object Browser 88
Properties Window 88
Module Window 89

Demonstration Projects 90
Displaying an Image and Applying Fit-To Options 90

Fit-To Options Defined 90

Example 91

FitTo Options Project 92
Converting an Image 94

Image Conversion Defined 94

Example 95

Example 96

Example 98

Example 99

Example 99

Convert Image Project 100
Copying An Image 105

Clipboard Functions Defined 105

Clipboard Copy and Cut 105

Clipboard Paste 105

viii

Contents

Image Selection 106
Annotation Selection 106
Example 107
Copy Image Project 107
Printing An Image 110
Image Printing Defined 110
Example 110
Print Image Project 111
Scanning an Image Using a Template 117
Template Scanning Defined 117
Example 118
Template Scan Project 120
Managing an Image File Using Thumbnails 128
Thumbnails Defined 128
Example 128
Thumbnail Sorter Project 129
Subtracting the Value of X 141
Unloading a Multipage Image File 143
Multipage Image Files Defined 143
Page-Related Properties and Methods 145
Image Admin 145
Image Edit 145
Image Scan 146
Image Thumbnail 146
Example 147
Unload Project 148

5 Developing Client/Server Applications

Imaging Server Concepts 154

File Type Support 155

Standard Dialog Boxes 155

Image Files and Server Documents 156
Interacting with Imaging 1.x Servers 156

Image File Volume 156
Document Volume 156
Interacting with WMS Imaging and Workflow Servers 156

ix

| Contents

Imaging 1.x Server Programming Considerations 157
Logging Onto the Server 157
Setting Imaging 1.x Server Options 158

The following sections explain each server option setting and
related property in detail. 161
File Location for Document Pages
(FileStgLoc1x Property) 161
Force Lower-Case File Names
(ForceLowerCase1x Property) 162
Link Files On Reference
(ForceFileLinking1x Property) 162
Delete Files With Pages
(ForceFileDeletion1x Property) 164
Browsing for Volumes or Image Files and Server Documents 165
Browsing for Volumes 165
Browsing for Files and Documents 166
Querying for Imaging 1.x Documents 169

Saving 1.x Image Files and Documents 170

WMS Server Programming Considerations 173
Logging Onto the Server 173
Querying WMS Imaging Documents 174

Demonstration Project 176

Zooming an Image Defined 176
Zooming an Entire Image Page 176
Zooming a Portion of an Image Page 177
Example 177

Annotations Defined 178
Image Annotation Tool Button Control 180
Image Edit Control 181
Example 187

The Image Server Project 187
Setting Server Options 189
Browsing for Imaging 1.x File and/or
Document Volumes 190
Opening 1.x Files and Documents 192
Querying 1.x Document Manager Databases 194
Zooming an Image 211

Contents

Invoking the Standard Annotation
Tool Palette 213

A Imaging ActiveX Sample Applications

Overview 216
Requirements 216

Sample Applications 217
Image Editor Samples 217
Sample Application 217
Image Editor 218
Function Specific Samples 218
Image Print 219
Image Properties 219
Image Scan 220
Image Thumbnails 220
Imaging Flow Samples 221
Flow Program 221
Flow Variables 221

B Imaging ActiveX Tips and Tricks

Tips and Tricks 224

Miscellaneous Programming Tips 224
Image File Management Tips 227
Annotation Tips 230

Optical Character Recognition Tips 232

xi

About This Guide

This guide explains imaging concepts and provides information
about using the Imaging ActiveX controls to implement imaging
features in your applications.

In this Chapter

PUIPOSE . Xiv
PrereqUISIEESoooiiiiiiee e Xiv

Related INfOrmationeeeeeeeeeee e Xiv

| About This Guide

Purpose

Prerequisites

The Developer’s Guide describes the features of eiStream Imaging
for Windows® and provides software developers and MIS
professionals with the information they need to produce and
support image-enabled applications.

This guide is a technical resource that supplements the on-line
help and documentation included with the Imaging for Windows
product.

To use this product, you should be familiar with the Microsoft®”
Windows environment. If you are using a printer, a scanner, or a
TWAIN-compliant device, you should also know how to connect
and operate it.

If you plan to access documents residing on WMS Imaging Server
(1.x) or a WMS Imaging and Workflow (WMS) server, you
should be familiar with navigating document databases in those
environments.

Related Information

Xiv

For instructions on how to use the Imaging ActiveX controls,
access the on-line help system for the controls from your
development environment.

For updated product information and general information about
Imaging for Windows, visit our Web site at:

www.eiStream.com

Proceed to WMS | Kofile or eiStream WMS. Under products,
select eiStream Imaging for Windows.

http://www.eiStream.com/sonora

About This Guide |

Support

Should you have questions regarding Imaging for Windows, or
problems with your system after installation, consult your customer
support representative.

For technical support, visit our Web site at:
www.eiStream.com

Proceed to WMS | Kofile or eiStream WMS. Under products,
select eiStream Imaging for Windows, and then click the Support
link.

The Support area includes technical bulletins, current
documentation, and other relevant information. To request a
patch, send an e-mail to Technical Support.

XV

1

About Imaging

This chapter describes the Imaging for Windows® product and suggests
ways in which the product features can be used in business and personal
document imaging.

In This Chapter

Introducing Imaging for Windowsccccooiiviiiiiiiiiiiiccice 2
What Imaging Lets YOU DOoioiiiiiiiiiiiiee e 5
What Imaging Lets Your Users DOcoooveiiiiiiiiieieieeee 13
What Is Document IMaging?cccoooviiiiiieiii e 14

Compiling and Distributing Your Image-Enabled Application........ 16
Use of LZW Compression

Documentation Conventions

| Chapter 1

Introducing Imaging for Windows

This section describes the
Imaging for Windows
product.

Imaging for Windows is a multi-faceted product allowing users to
transform paper documents and faxes into electronic documents for
viewing, annotating, editing, converting, printing, and sharing.

Today, eiStream is offering the latest version of Imaging for Windows.
This product is an upgrade to the component included in various
Microsoft operating systems and an upgrade to Imaging for Windows
Professional Edition and Imaging for Windows Standard Edition. The
latest version supports multi-byte character sets and runs on multiple
Microsoft operating systems — Windows 2000, Windows XP, Windows
98, and Windows NT.

Imaging Components

The components of Imaging for Windows are described in this section.
Imaging Application

The Imaging application is the main component of Imaging for
Windows. It enables users to scan, view, annotate, manipulate, and store
faxes, paper documents, and electronic images.

[Z} Hq.tif - Imaging =(0]x]
File Edit ‘“iew Page Zoom Tools Annotation Help

] = = = e N e o = =T s
2l slzle] ot 25| mlel £#5%E G0 =] D
4-|->||

eiStreati

ConcordRoad — = — — o - —

Entrance to
Concord Foad

[/ Exit 27
Cancord

iStream
TS

Directions to
eiStream WS, Inc
256 Concard Road
Eillerica, WA 01521
&3 a7R 313,700

From: Burlingtan, MA

1) Take Route 3 North

2) Take Exit 27 Concord Road
3) Take left at end of ramp onto Concord Road
4) Take second left into Concord Road Corporate =
Center 0.7 miles) =l

PR ENECIERICIEE =
ForHelp, press F1 0% |1 of 3 pages selected - page 1 shown

About Imaging

Imaging Preview

Imaging Preview is a lean version of the Imaging application. It lets users
view image files quickly and, if necessary, load them into the Imaging
application for editing.

Imaging Flow

Imaging Flow enables users to automatically capture, process, and output
image files. An intelligent and editable procedure — called a flow —
defines and controls the work Imaging Flow performs.

3‘ Untitled - Imaging Flow =1
File Edit Yiew Capture Process Output Help

TR
& Blel [+ 2 B(E# =l#lsl=z
Capture Fram Process Cutput To
- igi Mail Recipient

Convert File ﬁ

Folder

& |se this flow's scan setings

Original document A

Imaging
Color Aricle Settings... |

Fages containing text with color pictures

¥ Use automatic document feeder

 Display TwalN user intarface

IV Promptfor more pages

4

Flow tools included within each flow perform specific functions. They
can:
* Capture images from:

— Scanners.

— MAPI-compliant in-boxes.

— Local and network folders.

| Chapter 1

* Process images by:
— Converting them from one file type to another.
— Applying compression.
— Enhancing their appearance.
— Permitting their review.
— Converting them to text.
— Deleting specified pages.
— Entering information about an image document while the flow is
processing.
— Running a custom process.
* Output images by:
— Posting them to Exchange folders.
— Saving them to local or network folders.
— Saving them to WMS Imaging or Imaging (1.x) servers
— Printing them.
— Sending them to others via e-mail.

— Running a custom process.

Development Tools and Methods

Imaging for Windows includes a rich set of development tools and
methods that let you — the software developer — add Imaging functions
to your applications.

To add Imaging functions, you must be using a development
environment that supports OLE, Automation, and ActiveX controls;
such as:

* Microsoft Visual Basic

* Microsoft Visual C++

* Microsoft Office (Visual Basic for Applications)

About Imaging

What Imaging Lets You Do

This section describes what
Imaging for Windows lets
developers do.

Imaging for Windows includes several development tools and methods
that let you add Imaging functions to your 32-bit applications. The
development tools and methods include:

* Command-line invocation
= OLE

* Automation

= ActiveX controls

The following sections describe them, help you determine which one to
use, and briefly describe the code samples contained on the media on
which your software was distributed.

Command-line Invocation

OLE

You can invoke the Imaging application using its command line. Because
the command line can accept a fully qualified image file name, you can
use standard Shell functions within your application to invoke the
Imaging application with an image on display.

‘Within your call to the Shell function, include the path and file name of
the Imaging application along with the path and file name of the image
file you want it to display. (Refer to the example on page 8.)

You can use standard OLE functions to embed and link image files in
your application and other applications, such as Microsoft Word, Excel,
Access, and SQL Server.

For example, you can use Visual Basic’s OLE Container control to easily
embed or link image files in your application.

Your application is the container, while the Imaging application is the
server. Users can edit and open embedded or linked image files, as
described in the following sections.

Embedded Image Files

When you embed an image file in your application, the application stores
the image data within it.

When end users edit an embedded image file, it becomes “in-place
activated,” causing your application to display a subset of the Imaging
application menus. The menus provide access to Imaging functions that

| Chapter 1

Automation

let users edit the activated image file “in-place;” that is, within your
application.

When end users open an embedded image file, the Imaging application
appears with the embedded image displayed within it. Changes users
make to the image in the Imaging application also appear on the linked
image in your application. If desired, users can save a copy of the image
to another file by clicking SaveAs on the File menu.

Linked Image Files

‘When you link an image in your application, the image data remains
external to your application. Your application stores only a reference to
the image file.

When end users edit or open a linked image file, the Imaging
application appears with the image file displayed, which enables them to
perform the full range of Imaging functions on the displayed image file.

In-place activation is not available because the linked image file may also
be available to other containers (referential integrity).

As in the case of embedded image files, changes users make to the image
in the Imaging application also appear on the linked image in your
application.

You can use Automation to image-enable your application.

Automation is a more powerful way to image-enable your application. It
enables you to control the Imaging application programmatically from
your application and provide your users with the capabilities contained
within the Imaging application.

Note: You can also use Automation to control the Imaging application
from other Automation-capable applications, such as Microsoft
Word and Excel.

However, you cannot use Automation to control the Imaging
Preview and Imaging Flow applications.

The Imaging application implements Automation as a full object model,
similar to the Automation model of Microsoft Word and Excel.

The object hierarchy starts with the Application object, continues with
an ImageFile object and one or more Page objects, and then concludes

About Imaging

ActiveX Controls

with a Page Range object. Each object has its own set of properties and
methods.

Note: Chapter 2 of this guide explains Imaging’s implementation of
Automation. Chapter 3 describes the properties and methods of
each object.

You can use ActiveX controls to image-enable your application.

Using ActiveX controls is another powerful way to include Imaging
functions within your application. Imaging for Windows provides the
following ActiveX controls:

Image Admin control — The Image Admin control manages
administrative functions, such as: creating, opening, saving, and printing
image files; appending, inserting, and deleting image pages; and entering
Summary property information.

Image Annotation Tool Button control — The Image Annotation
Tool Button control lets you create customized annotation tool bars for
use within your application. The control links with the Image Edit
control to provide annotation drawing and management functions to
your end users.

Image Edit control — The Image Edit control manages all image
display and annotation functions. Its huge array of properties, methods,
and events provide Imaging functions, such as: displaying, annotating,
and editing images; rotating, flipping, and zooming images; applying
compression to images; and copying, cutting, and pasting images to and

from the Clipboard.

Image OCR control — The Image OCR control manages the
recognition and recomposition of image files. It lets users convert images
into editable text documents. Output formats include Microsoft Word/
Rich Text Format (RTF), Corel® WordPerfect, Hypertext Markup
Language (HTML), and text.

Image Scan control — The Image Scan control manages the scanning
of documents using TWAIN-compliant image acquisition devices.
TWAIN (Technology Without An Interesting Name) is an industry-
standard interface between image-enabled applications and image
acquisition devices.

| Chapter 1

Image Thumbnail control — The Image Thumbnail control displays
and manages thumbnail renditions of individual image pages.

Note: Chapters 4 and 5 of this guide explain how to get started with
the Imaging ActiveX controls and walk you through several
sample programs.

Which to Use: Command-line Interface, OLE, Automation, or

ActiveX Controls?

The following sections describe the major differences in using the
command-line interface, OLE, Automation, or ActiveX controls to
image-enable an application.

Command-line Interface

Command-line invocation is the most simple but least powertul way to
implement Imaging functions in your application.

You can invoke the Imaging application using standard Shell functions,
by including the executable file name of the Imaging application and the
fully qualified file name of a supported image file.

For example, if you are developing under Imaging, you can use the
following statement to invoke the Imaging application and display an
image file:

Shel | ("c:\ Program Fi | es\ | magi ng\ | magi ng. exe
c:\Quote.tif", 1)

Employing the command-line interface does not make the Imaging
application a full-fledged component of your application. The
command-line interface does not give you the opportunity to manipulate
the application or the image after it is displayed.

OLE

OLE lets you add a subset of Imaging functions to your application. It is
useful when you want to add Imaging functions with an absolute
minimum of coding.

Using a container control such as that provided by Visual Basic, you can
add image files as insertable objects within your application at design
time. Image files may be embedded or linked.

As an alternative, you can use the container control to create a
placeholder in your application for image files that will be added at run

About Imaging

time. Set the appropriate properties or provide end users with drag-and-
drop capability so they can select image files for display at run time.

Users can edit embedded images within your application and linked
images within the Imaging application.

OLE does not make the Imaging application a full-fledged component of
your application. OLE does not give you the opportunity to manipulate
the application or the image after it is displayed.

Automation

Automation lets you add Imaging functions to your application by
making the Imaging application a full-fledged component of your
application.

Automation is useful when you want images to be displayed in a window
that is separate from your application and when you want to control the
Imaging application from your application.

Your application can control the state of the Imaging application as well
as manipulate the displayed image. But, unlike using the Imaging
ActiveX controls, your application cannot respond to events that occur
when users perform Imaging operations.

Depending on the degree of control you want to exert, automating the
Imaging application from your application can be accomplished with a
minimal or substantial amount of coding.

Example
Imaging Flow, a component of Imaging for Windows, demonstrates a

good example of Automation.

The Review flow tool invokes the Imaging application to permit users to
review image files as they are being processed by the current flow.

At flow design time, the author can set Review tool options that
manipulate the Imaging application as well as the image it displays. These
options include:

* Whether to view image pages, thumbnails, or both.

* The size and position of the Imaging application window.

* The zoom setting to apply to images.

* Whether to open image files as read only.

* Whether to scale black-and-white images to gray.

| Chapter 1

Sample Code

10

ActiveX Controls

The Imaging ActiveX controls let you add Imaging functions to your
application by making the functions an integral part your application.

The controls are useful when you want to display images within a
window in your application and when you want to manipulate all
Imaging functions from within your application.

While the ActiveX controls add overhead to your application, they give
you the power to determine the range of Imaging functions to be
provided. And, unlike Automation, the ActiveX controls support
extender as well as intrinsic events, which enable your application to
respond to events that occur when users perform Imaging operations.

Depending on the Imaging functions you want to provide, image-
enabling your application with ActiveX controls can require more coding
when compared to Automation.

Example

The demonstration projects in Chapters 4 and 5 of this guide are
excellent examples of using the Imaging ActiveX controls to image-
enable applications.

Sample code that was designed to help you add Imaging functions to
your applications is included on the media on which your Imaging for
Windows software was distributed, and also on the eiStream Web site.

Before you can use the sample code, you need to:
* Set up Imaging for Windows on your development system, if
necessary.

* Set up Microsoft Excel and be familiar with Visual Basic for
Applications (for the Automation demonstration project).

* Set up and be familiar with Visual Basic (for the ActiveX
demonstration projects and the ActiveX sample applications).

Note: When you set up Visual Basic 6.0 or greater, you must perform a
Typical installation. If you don't, the sample code may not
function correctly.

About Imaging

The following sections briefly describe the sample code.

Automation Demonstration Project

The Automation demonstration project shows you how to use
Automation in Excel to:

* Invoke the Imaging application.

* Display an image.

* Select the view mode.

* Rotate the image.

* Obtain the number of pages in the image file.

Chapter 2 of this guide walks you through the Automation project.

ActiveX Demonstration Projects

The ActiveX demonstration projects are small Visual Basic applications
that show you how to:

* Display an image and apply fit-to options.

* Convert an image.

* Copy an image.

* Print an image.

* Scan images using a template.

* Reorganize an image file using thumbnails.

* Unload a multipage image file.

= Access an interact with Imaging 1.x and WMS Imaging servers.

Chapters 4 and 5 of this guide walk you through each demonstration
project.

ActiveX Sample Applications

The ActiveX sample applications are relatively large Visual Basic projects
that show you how the Imaging ActiveX controls may be used to create
comprehensive and useful image-enabled applications.

‘While walking you through each sample application is beyond the scope
of this guide, you should run each application and analyze its code to
determine whether you can use the code directly in your application or
as a guide to writing your own, related code.

11

| Chapter 1

12

The code in each sample project is highly organized, heavily
commented, and written using Hungarian notation. The sample
applications show you how to:

* Create an application that is similar to the standard Imaging
application.

* Develop an application that prepares separator pages for scanning
several multipage documents in the Imaging Flow application.

* Perform template scanning.

* Use the Image Thumbnail control to create folder-based contact
sheets.

* Print a selected portion of an image.
* Use General and Page properties to analyze image files in folders.

Appendix A describes each sample application in greater detail.

About Imaging

What Imaging Lets Your Users Do

Imaging for Windows lets your users access and control paper-based

information directly on their PCs. With it, users can view, manipulate,

annotate, print, file, and share documents they used to manage as

cumbersome paper files.

The following types of business documents are ideal subjects for image
processing:

Business cards

Letters

Legal documents
Handwritten meeting notes
Memoranda

Newsclips

Technical drawings

The following types of personal documents are also ideal subjects for
image processing:

Childrens’ drawings
Hobby-related documents
Household bills

Legal documents

Letters from friends

Magazine and newspaper articles
Medical and insurance records
Receipts

Tax forms

Depending on how you design and code your application, you can

enable your users to:

Scan images.

Retrieve and display images.

Annotate, edit, and manipulate images.

Convert, copy, and OCR images.

Append, insert, and replace image pages.

Display and manage thumbnail representations.

Set the Summary properties of images for easier retrieval.

Print, save, and send images.

13

| Chapter 1

What Is Document Imaging?

14

Imaging for Windows technology brings Imaging functions to many
business and personal users — particularly where Imaging for Windows
is on virtually every desktop running Windows 98, Windows NT 4.0,
and Windows 2000.

The following sections describe the concepts of business and personal
document imaging.

Business Document Imaging

Business document imaging is a technology that converts paper
documents into an electronic form, where they can be automated using
standard computer technology.

Most business information is in the form of paper documents. Industry
analysts report that about 94 percent of business information is on paper
and that 2.7 billion new sheets of paper are filed into folders every single
day.

Paper has obvious advantages, such as portability, ease of use, and low
cost. However, paper also has serious drawbacks. At any given time,
between three and five percent of a company's files are lost or misplaced.
With the average cost of recreating a document at around $180, the cost
of losing important business documents can be an expensive one indeed.

Perhaps paper’s most serious drawback is that paper-based information is
not as readily accessible as computer-based data. A manual business
process, not an automated one, uses paper best. To make matters worse,
paper-based documents and their respective data usually reside separate
from related paper-based documents and their data.

Obtaining information readily or providing “the right information to the
right person at the right time” is difficult and costly with the paper-
based, manual business process. So, while paper is the major information
base of a business, it remains outside of the business information system
because it is not easily and reliably accessible.

Computer-based information, on the other hand, is always readily and
reliably accessible. Business document imaging is the process of turning
paper-based information into computer-based information.

By using a computer to capture paper documents as electronic images,
you can apply all the benefits and power of database, e-mail, networking,
fax, and storage technology to what was once manually processed
information.

About Imaging

Personal Document Imaging

As is the case with business document imaging, personal document
imaging is the process of turning paper-based information into
computer-based information.

Like business information, most personal information is in the form of
paper documents. From personal correspondence with companies to tax
forms to hobby-related documents and childrens’ drawings, the
information in our personal lives is very much paper-centric.

Paper-based personal documents are also subject to permanent loss and
temporary misplacement. They’re also not as readily accessible as
computer-based documents.

By using a computer to capture personal paper-based documents as
electronic images, you can store letters, tax forms, and receipts in an
organized manner that makes finding them easier. You can preserve
college records, hobby-related documents, and childrens’” drawings for
many years — not to mention share them with family and friends by
sending them over the Internet.

15

| Chapter 1

Compiling and Distributing Your Image-Enabled

Application

You need to make sure that you compile your image-enabled application
with the appropriate version of Imaging for Windows.

You also need to make sure that your end users acquire and set up the
appropriate version of Imaging for Windows prior to installing your
software.

The version of Imaging for Windows you need when compiling your
application — and the version your end users need to install — largely
depends on the features you have included in your software.

Compiling Software with Imaging for Windows

If you used a control, property, method, event, or parameter provided
exclusively by a newer version of Imaging for Windows, you must
compile your application with that newer version of Imaging for
Windows.

In addition, you must make sure that your end users purchase and set up
that version of Imaging for Windows to run your software successtully.

Your users can obtain Imaging for Windows from the eiStream Web site,
at:

http://ww. ei stream com

Compiling Software with an Operating System Component

16

If you did not use a control, property, method, event, or parameter
provided exclusively by a version of Imaging for Windows — and you
want your application to be used by Imaging for Windows 98, Windows
NT, or Windows 2000 users — you must compile your application with
the appropriate version of Imaging for Windows (98, NT, or 2000).

If you compile your software with an operating system version of
Imaging for Windows, the Imaging for Windows functionality in your
application is only licensed to run on the specific operating system. The
functionality may not be compatible on other operating systems and
Imaging for Windows is non-transferable.

The Imaging for Windows 98, Windows NT, and Windows 2000
controls are free; as such, there are no royalties or licensing fees required.
Your end users must simply set up the appropriate version of Imaging for
‘Windows as a prerequisite to using your program (if they haven’t
already).

About Imaging

Note: Do not distribute the Imaging OCX files with your application,
because doing so will not install Imaging for Windows correctly.
Instead, have your users set up the entire Imaging for Windows
application to ensure that all of the required software is installed
and registered properly.

= Imaging for Windows 2000 ships as a component of
Windows 2000.

= Imaging for Windows NT 4.0 ships as a component of
Windows NT Workstation 4.0.

= Imaging for Windows 98 ships as a component of Windows
98..

Use of LZW Compression

Imaging for Windows uses LZW, a compression/decompression
technology that is covered by U.S. Patent 4,558,302 (plus its foreign
counterparts, issued or pending). All patents are held by Unisys
Corporation.

eiStream WMS, Incs Imaging for Windows software does not permit
you to use LZW compression or decompression capabilities from any
version of Imaging for Windows for development purposes, or to use or
derive the LZW capabilities from an eiStream third-party application or
other derivative software.

Contact Unisys for licensing information at:

‘Welch Patent Licensing Department
Unisys Corporation, Mail Stop E8-114
Unisys Way

Blue Bell, PA 19424,

Via the Internet, send E-mail to LZW_INFO@UNISYS.COM. Via

facsimile, send inquiries to Welch Patent Licensing Department at
215-986-3090.

17

| Chapter 1

Documentation Conventions

This guide uses the following conventions.

Conventions Description
Image, Display, Words in bold with initial capitalization
PasteCompleted indicate names of properties, methods, and
events.
bj ect, argli st In the syntax section, words in lowercase

italics indicate placeholders for
information you must provide.

[expressionlist] | In the syntax section, items appearing
inside square brackets are optional.

{True | Fal se} In the syntax section, braces and a vertical
bar indicate a mandatory choice between
two or more items.

Dim x As IFontDisp This font is used for code examples.

d This character indicates that a line of code
was too long to fit on one line in the
Example window.

You should keep the code on one line in your program, or use the line
continuation character provided by your programming environment.
Refer to the documentation that came with your programming
environment for more information on the line continuation character
and its proper placement in your code.

Note that the U character does not necessarily indicate the proper place
for a line continuation character in your code.

18

2

Adding Imaging Using Automation

This chapter explains how to use Automation to image-enable your
applications. It begins by describing the object hierarchy of the Imaging
application and continues by describing how the Imaging application can
function as an Automation server application or an Embedded server
application. The chapter concludes by walking you through a sample
project to help you get started.

In This Chapter

OVBIVIBW ..., 20
The Object HIerarchyccccoooiiiiiii e 20
Automation Server and Embedded Server Modes......................... 22

Demonstration Projectc.eeiiiieiiiieieee e 28

| Chapter 2

Overview

(0

Components are software
modules that can be “plugged
into” applications from other
vendors. They provide end
users with a specific set of
additional functions and
capabilities.

Imaging for Windows features a rich Automation interface that provides
programmatic access to the internal services of the Imaging application.

Using Automation, you can provide your users with the image display
and manipulation functions that are contained within the Imaging
application. You, in effect, make the Imaging application a fully
functional, tested, and trusted component of your application.

Note: The Imaging Preview and Imaging Flow applications cannot be
automated.

In addition to automating the Imaging application from your programs,
you can also automate it from other Automation-capable programs, such
as Microsoft® Word and Excel.

The remainder of this chapter:

* Outlines the Object Hierarchy of the Imaging application.

* Describes how the Imaging application can function as an
Automation server application or an Embedded server application.

* Provides an example of automating the Imaging application from
Microsoft Excel.

The Object Hierarchy

20

The object model of the Imaging application includes:
* One top-level object, called the Application object;
* One document object, called the ImageFile object; and

* Two objects that support the ImageFile object, called
the Page object and the PageRange object.

Application Object |

*A ImageFile Object ‘
—»{ Page Object ‘

—>‘ PageRange Object |

Adding Imaging Using Automation

Application Object

ImageFile Object

Page Object

The first time you start the Imaging application, it adds the Application
object to the Windows® registry. Imaging Automation exposes only the
Application object for creation. Other programmable objects can be
created by referencing the Application object.

Each object in the hierarchy has its own set of properties and methods.
Refer to Chapter 3 for a description of the properties and methods of
each object.

Use the Application object to create an instance of the Imaging appli-
cation and to control it. The Application object controls every other
object you create as well as the environment of the application; such as
the application’s size and position.

The ImageFile object represents an image document file. Use it to
specify the name of an image file and to provide basic filing functions
such as open, save, close, print, insert, update, and append. Use it also to
provide image manipulation functions such as rotate, create contact sheet,
and perform OCR.

Each Page object represents an image document page. Use it to
manipulate the individual pages of an image file and to provide functions
such as delete, flip, print, rotate, scroll, and perform OCR.

21

| Chapter 2

PageRange Object

The PageRange object represents a range of consecutive pages within an
ImageFile object — starting at the StartPage property and ending at the
EndPage property. Use it to manipulate a range of pages and to provide
page manipulation functions such as delete, print, and perform OCR.

Note: Automation is not aware of the actions performed by users
within the Imaging application. The objects known to
Automation remain in the state they were in when last affected
programmatically.

In other words, if users change a displayed object, Automation
does not update that object within its Application object. For
example, if users change the active page, Automation does not
update the ActivePage property.

However, properties and methods are available that let you
determine if a change has occurred. At your option, you can use
them to update the corresponding objects known to
Automation.

Automation Server and Embedded Server Modes

The Imaging application can function as an:

* Automation server application, or an
You can use the AppState
property of the Application
object to determine whether The following sections describe each mode and include examples.
the Imaging application is
running as an Automation
server or an Embedded server.

* Embedded server application.

Automation Server Mode

In every version of Imaging for Windows, the Imaging application can
function as a stand-alone Automation server application.

When automated in this mode, the Imaging application is directed to
display and manipulate an image file that is external to your application;
such as a file resident on a local or network drive. Your program uses the
properties and methods of the Imaging Automation objects to control
the Imaging application and to display and manipulate the image.

The demonstration project, described later in this chapter, is an excellent
example of using the Imaging application as an Automation server
application.

22

Adding Imaging Using Automation

Embedded Server Mode

Examples

Imaging for Windows has several Imaging Automation properties and
methods to manipulate an embedded image document object.

When automated in this mode, the Imaging application is directed to
manipulate an image document object that has been embedded into your
program using, for example, the OLE Container control of Visual Basic.

Depending on how you code your application, you can manipulate the
embedded image document in-place or within the Imaging application
window (refer to the next section for examples).

Note: Remember that the Automation interface allows the in-place
activation of embedded objects only. It does not permit the in-
place activation of linked objects.

This section contains examples that show you how to automate the
Imaging application as a stand-alone Automation server application and
as an Embedded server application.

Note: The example that demonstrates automating the Imaging
application as an Automation server application is more
extensive because:
= The principles behind automating the Imaging application

are similar no matter which mode is used.
= Use of the Imaging application as an Automation server
application is more prevalent.

As an Automation Server Application

This example shows you how to use Visual Basic to automate the
Imaging application as an Automation server application. (Refer to the
code snippet at the end of this section.)

Automating the Imaging application involves a series of programming
steps that begin with the creation of Application and Image File objects
and continue with the application control and image manipulation
functions you want to perform.

23

| Chapter 2

(0

After you create an object, you
can access the properties and
methods of the object using
the object variable.

(0

A PageRange object represents
a range of consecutive pages
within an ImagefFile object.

24

To create the Application and Image File Objects

1 Declare the object variables that will contain references to the
Application and Image File objects.

2 Use the Set statement and the CreateObject function of Visual
Basic to create and return a reference to the Application object.

3 Use the Set statement of Visual Basic and the
CreateImageViewerObject method of the Application object to
create and return a reference to the ImageFile object.

With the Application and ImageFile objects instantiated, you can
now manipulate the Imaging application as well as any image the
application displays.

To manipulate the Imaging Application

1 Set the TopWindow property of the Application object to True to
have the Imaging application window remain on top of all other
applications that may be running.

2 Invoke the Open method of the ImageFile object to open and
display an image file. In your call to the Open method, pass the
following parameters:

ImageFile — The path and file name of the image file to display

IncludeAnnotation (optional) — True or False: whether to
display annotations that may be present in the image file

Page (optional) — The number of the image page to display

DisplayUIFlag (optional) — True or False: whether to display the
Open dialog box, which lets end users select the file they want to
display

Now that an image is open and on display, you can manipulate it.
The following paragraphs provide some examples.

— Invoke the RotateLeft method of the Page object to rotate page 1
of the image file 90 degrees to the left. Keep in mind that there is
one Page object for each image page in the file.

— Use the Height property of the Page object to assign the height of
page 1 to the local variable | ngPageHei ght .

— Invoke the Print method of the PageRange object to print pages 1
and 2 on the default printer.

— Set the ActivePage property of the ImageFile object to 2 to
display page 2 of the image file.

Adding Imaging Using Automation

To Close the Image File and Exit the Application

1 Invoke the Close method of the ImageFile object to close the image
file.

2 Invoke the Quit method of the Application object to exit the
application.

3 Set the object variables to Nothing to free system resources.

'Declare variables
Dim objApp As Object
Dim objImg As Object
Dim vntPrtRange As Variant
Dim TngPageHeight As Long

'Create the Application object (Standard VB call)
Set objApp = CreateObject("Imaging.Application")

'Create the ImageFile object
Set objImg = objApp.CreatelmageViewerObject(1)

'Set the application's TopWindow property to TRUE (stay on top)
objApp.TopWindow = True

'Call the ImageFile object Open Method to display page 1 of myimage.tif
objImg.0Open "c:\images\myimage.tif", True, 1, False

'Create and rotate one Page object
objImg.Pages(1l).Rotateleft

'Return the height of the image from the Page object
TngPageHeight = objImg.Pages(1l).Height

'Create a PageRange object and print pages 1 and 2
vntPrtRange = objImg.Pages(1,2).Print

'Display page 2 of the image
objImg.ActivePage = 2

"Close ImageFile object and quit the application
objImg.Close
objApp.Quit

'Release system resources
Set objApp = Nothing
Set objImg = Nothing

25

| Chapter 2

26

Methods Not Available in Automation Server Mode

You cannot use the following methods when the Imaging application is
functioning as an Automation server application:

* SaveCopyAs method of the ImageFile object
* Update method of the ImageFile object

As an Embedded Server Application

The following sections demonstrate how to automate the Imaging
application as an Embedded server application. The examples assume you
are embedding an image document object into a Visual Basic application
using the OLE Container control.

Example 1

In this example, the Imaging application displays the embedded image
document in a separate window for editing.

Set objApp = CreateObject("Imaging.Application")

Set objImg = objApp.CreatelmageViewerObject(1)
oleImg.CreateEmbed("", "Imaging.Document")
olelImg.DoVerb vbOLEQOpen

objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Example 2

In this example, the Imaging application is in-place active and displays a
subset of its menus within your application. The menus provide access to
functions that let users edit the image document object “in-place” —
that is, within your application.

Set objApp = CreateObject("Imaging.Application")
oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEShow

Set objImg = objApp.CreatelmageViewerObject(1)
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Adding Imaging Using Automation

Example 3

In this example, the Imaging application displays the embedded image
document in an instance of the Imaging application that is already
running.

oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen

Set objApp = CreateObject("Imaging.Application")
Set objImg = objApp.CreatelmageViewerObject(1)

Properties and Methods Not Available in Embedded Server
Mode

You cannot use the following properties and methods when the Imaging
application is functioning as an Embedded server application:

= Edit property of the Application object

* Height and Width properties of the Application object

* ImageView property of the Application object (if the application is
in-place active)

* Left property of the Application object

* Top property of the Application object

* Close method of the ImageFile object

* FindOIServerDoc method of the ImageFile object
* New method of the ImageFile object

* Open method of the ImageFile object

* Quit method of the Application object (if the application is in-place
active)

* SaveAs method of the ImageFile object

27

| Chapter 2

Demonstration Project

This section demonstrates
how to automate the
Imaging application from
Microsoft Excel.

While a wide-ranging dis-
cussion of every Imaging
function is beyond the scope
of this chapter, the infor-
mation presented here is
sufficient to get started.

The demonstration project
was developed using
Microsoft Visual Basic for
Applications and Excel.

Even if you are not going to
automate the Imaging
application, you'll find the
section in this chapter on
View Modes useful.

View Modes

(0

Developers using the Imaging
ActiveX controls can use

the Image Edit and Image
Thumbnail controls to simulate
the View Mode behavior des-
cribed in this section. Refer to
the ActiveX controls Help for
more information.

28

To help you use Automation to image-enable your applications, a
demonstration project — called Automation From Excel — shows you
how to:

* Invoke the Imaging application and open an image.
* Obtain the page count.

* Rotate an image page.

* Set the desired view mode.

* Close the image and the application.
Note: Chapter 3 of this guide describes the properties and methods of
each Imaging Automation object.

Before walking through the demonstration project, read the following
section, which describes the view modes of the Imaging application.
Chapter 4 of this guide describes the concepts of image display, page
counts, multipage image files, and image rotation.

The Imaging application has three view modes that enable users to view
and work with image files. Each view mode has its own set of advantages
and capabilities.

The ImageView property of the Application object enables you to
invoke — most likely in response to user input — any one of the three
view modes. You should consider making view mode selection available
to your users when automating the Imaging application.

The following sections describe the view modes.

Adding Imaging Using Automation

One Page

The One Page view mode lets users display image files one page at a
time. It lets users display image pages in the entire window while
maintaining complete access to the menus, toolbars, and functions of
the application.

£ Chapterl tif - Imaging I =] 3
File Edit “iew Page Zoom Tools Annotation Help

D8] & &=|e] 2|« &la|n]s BB ks
2| 2|22 ofr @)% @0 =] [] E

||

=]
Introducing Imaging for Windows

This chapaer discuses basic imaging comoeprs and deseribes the

funcesanms salible weth Imaging for Wisdows

In this Chapter

Basic imaging Cancepts 2

Imaging for Windows &
PRSEINS ST EIRY I E =i EYE:)
For Help. press F1 |53.50% |Pagelof4 4

29

| Chapter 2

Thumbnail

The Thumbnail view mode lets users display image files as a series of
thumbnail images — one for each image page. It lets users:

* View multiple image pages simultaneously.
* Rearrange pages using drag and drop.
* Delete pages.

* Drag and drop pages to and from other applications that support drag
and drop functionality.

Keep in mind that some Imaging functions — like annotation and
zoom — are not available in this mode because they are not appropriate
for use on such small images.

El Chapterl tif - Imaging

30

Adding Imaging Using Automation

Page and Thumbnails

The Page and Thumbnails view mode is a combination of the first two
view modes. It enables users to display image files one page at a time and
as series of thumbnail images — one for each image page in the file.

This view mode lets users perform Imaging tasks that are available to

both the One Page view mode and the Thumbnail view mode.

E] Chapterl tif - Imaging =] B3
File Edit %iew FPage Zoom Tools Annotation Help

D& & 2= ol &lat] 7|88 [peex
B 222 ofr &5 @ s 2 mE
4-|->|

=l

Introducing Imaging for Windows

I

N E RN E LR E R E = |
For Help, press F1 [39.28% |1 of 4 pages selected

31

| Chapter 2

Example

Users of Excel may want to display and manipulate an image file
referenced within a spreadsheet.

Scenario

In her role as a product manager for a major computer company, Eileen
regularly uses Microsoft Excel to create product configurations of PCs
sold on contract to government agencies.

After she completes a configuration spreadsheet, she typically submits it
to review via e-mail. In the past, several reviewers have requested that she
also include a scanned copy of the contract.

At a recent employee meeting, Eileen asked you if there was any way her
reviewers could display a scanned contract from Excel. Knowing that
Imaging for Windows is on every desktop in the company, you told her
that you could automate the Imaging application from Excel to give her
reviewers quick access to a scanned contract, or any other image file for
that matter.

All Eileen needs to do is:
1 Scan the contract using Imaging for Windows.
2 Import your code module into her Excel spreadsheet.

3 Enter the path and file name of the scanned contract in Cell A1 of the
spreadsheet.

4 Send both the image file and the spreadsheet file to her reviewers.

The Automation From Excel Project

The file names for the
Automation From Excel project
are Aut oFr onExcel . bas,

| magi ngAut omat i on. x| s,
and Facc. tif.

32

As stated previously, the Automation From Excel project demonstrates:

Invoking the Imaging application and opening an image from Excel.
Obtaining the page count.

* Rotating an image page.

* Setting the desired view mode.

* Closing the image and the application.

The project consists of the following files:

AutoFromExcel.bas — A Visual Basic for Applications (VBA) code
module that contains macros that automate the Imaging application.

ImagingAutomation.xls — A sample spreadsheet that contains the
AutoFromExcel.bas code module.

Adding Imaging Using Automation

Facc.tif — A sample TIFF image file that simulates the title page of a
government contract.

The AutoFromExcel.bas code module contains the following macros:
f_Initialize App() — Initializes the Imaging application.

s_DispImg() — Displays the image file.

s_FindServerDoc() — Locates an image document residing on a server.

s_GetPagecount() — Obtains the number of pages in the image file
and displays it in a worksheet cell.

s_RotateImg() — Rotates the image 90 degrees to the left.

s_ViewSingle() — Places the Imaging application in the One Page
view mode.

s_ViewThumbnails() — Places the Imaging application in the
Thumbnail view mode.

s_ViewThumbAndSingle() — Places the Imaging application in the
Page and Thumbnails view mode.

s_CloseImg() — Closes the image file and exits the Imaging
application.

The AutoFromExcel.bas code module uses the following Automation
methods to provide the Imaging functions:

Open method (ImageFile object) — Opens the image file in the
Imaging application.

CreateImageViewerObject method (Application object) — Creates
and returns an ImageFile object.

RotateLeft method (Page object) — Rotates the image 90 degrees
counterclockwise.

Close method (ImageFile object) — Closes the ImageFile object.

Quit method (Application object) — Exits the application.

33

| Chapter 2

Opening the Spreadsheet File

Start Excel and then open the | magi ngAut omat i on. x| s file. The
sample spreadsheet appears.

™ Microsoft Excel - ImagingAutomation.xls
”’i‘: File Edit View I[nsert Format Tools Data Window Help ;lﬁl_l
o= BRI oo A% z AL IR D |
A1 J = | D Automation\FACC tif
A B | C 'D| E | F |2
1 |DAAutomationtH 3
Ext.

2 |Model Number Comp No. Description Qity |Price | Price

3 |SWDX-233 SWDX Workstation 233MHZ MMX

4 Dx-F-233 233MHz Systerm Unit 1 $1,239 $1,239

5 Dx-98KE Windows98 Keyboard 1 $59 $&9

G Dx-HF37 37-M HF Radio Adapter 1 $999 $999

7 Dx-EDO-32 | 32MB EDO Memory 40 $139 0 $556

g Dx-4-VIDED 4AME Video DRAM 1 $59 $&9

9 DH-MOM-15 15" Maonitor 1 $299 $299

10 DX-IDE-4GE 4 3GE IDE drive 20 %179 $358 L
11 DX-IDE-CD | IDE CD-ROM 1 $69 $69

12 DX-MOUSE Mouse 1 $39 $39

13 D¥-RCS-37 |HF Controller Software 1 $299 $299

14 | Total $4,036 =
|44 [» [, Sheet1 { Sheet? f Sheetd / |4] | ¥
Ready | | iy’

Opening and Displaying the Image File

Give focus to Cell A1, which contains the path and file name of the

sample TIFF image file.

34

Adding Imaging Using Automation

On the Tools menu, point to Macro and then click Macros. The
Macro dialog box appears.

. Microsoft Excel - ImagingAutomation.xls !EIB
“‘F: File Edit View Insert Format Tools Data Window Help _|E|i|
DEE ey iRt o -~ | a® = sslzlindad @ |

o1
Macro Mame: | F |T
1 DAL Is_DispImg 3 |
Closel - .
AL e — N |
3 | SWDO [s_GetPagecount
5_RotateImg
g s_ViewSingle Step Into | $1 ;gg
s_MiewThumbandSingle
B s_WiewThumbnails Edit | $999
7 $556
8 S R
g $299
- Delete
10 - 4' $358
11 Macros in: All Open Workbooks j Options. .. $69
12 Description £39
13 $299
14 | Total $4,036 |z
[4[4[» [pI], Sheet SheetZ 7 Sheet3 / KN | n
Ready [I e

Click the s_DispImg macro and then click Run.

When the macro runs, code in the Gener al Decl ar ati ons area of
the code module defines the object variables that contain references to
the Application and Image File objects.

Dim objApp As Object
Dim objImg As Object

35

| Chapter 2

36

Then, the s_DispImg() subroutine executes its code.

The s_DispImg() subroutine obtains the path and file name of the

image file to open from the active cell of the spreadsheet. Then it assigns

the path and file name to the st r Current Fi | e local variable.

Sub s_DispImg()

Dim strCurrentFile As String
Dim strCurrentImageName As String

'Get file name to display from spread sheet
strCurrentFile = ActiveCell.Value

'"If the Application object not created, create it.
If objApp Is Nothing Then
If f_InitializeApp() = False Then 'Continue if successful
Exit Sub
End If
End If

'Make the Imaging application on-top.
objApp.TopWindow = True

On Error Resume Next "If no file is open.
'Get the name of the open Image file.
strCurrentImageName = objImg.Name

On Error GoTo O 'Reset error handler

If strCurrentimageName <> "" Then
"Always close existing image file before opening a new one.
objImg.Close

End If

On Error GoTo OpenlmageMethodError
'Open the Image file in the ActiveCell
objImg.0Open strCurrentFile

Exit Sub
OpenImageMethodError:
sMsg = "Error => " & Str$(Err.Number) & " " & Err.Description

MsgBox (sMsg)
'Close the Imaging application
s_Closelmg

End Sub

Adding Imaging Using Automation |

Next, the subroutine checks to see if an instance of the Imaging
application exists. If it does not, it invokes the f Initialize App()
function.

The f_InitializeApp() function uses the Set statement and the
CreateObject function of Visual Basic to create and return a reference
to the Application object. Then it uses the Set statement of Visual Basic
and the CreateImageViewerObject method of the Application object
to create and return a reference to the ImageFile object.

Function f_InitializeApp() As Boolean

Set objApp = Nothing

Set objImg = Nothing

On Error GoTo oldname

Attempt to create app object using current name
If this fails try the older name

Set objApp = CreateObject("Imaging.Application")

GoTo viewer

oldname: On Error GoTo 0O
Set objApp = CreateObject("WangImage.Application")
viewer: On Error GoTo 0
Set objImg = objApp.CreatelmageViewerObject(1l)
f_InitializeApp = True

End Function

With the Application and ImageFile objects now fully instantiated,
control returns to the s_DispImg() subroutine.

The _DispImg() subroutine sets the TopWindow property of the
Application object to True to have the Imaging application window
remain on top of all other applications that may be running.

Then it checks to see if an image file is already displayed by examining
the value of the Name property of the ImageFile object. If the Name
property is not blank, the subroutine invokes the Close method of the
ImageFile object to close the displayed image file.

37

| Chapter 2

Next, the subroutine invokes the Open method of the ImageFile object,
passing to it the path and file name of the image to display (from
strCurrent Fil e). The Open method opens the image file in the
Imaging application window.

™ Microsoft Excel - ImagingAutomation.xls

”ﬁxlziln Fdit View Thesrt Farmat Tonle Data Window Heln Ilql XI
£ FACC.tif - Imaging _ O] x|

File Edit %iew FPage Zoom Tools Annotation Help
D@l & sl o &lal 8|5 [m5%]

[ooln| @] B o w| &5 @ | @] [s

swdx solutions incorporated

Federal Aviation and
Communication Contract

[-]]
For Help. press F1 |25 50% |Page 1 of 1 A
13 DX-RCS-37 HF Controller Software 1 %299 $299
14 | Total $4,036 =
|44 [» [, Sheet1 { Sheet? f Sheetd / |4] | ¥
Ready [[4

Now that the image is open and on display, you can use some of the
other macros to manipulate it and the Imaging application.

38

Adding Imaging Using Automation

Obtaining the Page Count

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_GetPagecount macro and then click Run. The
s_GetPagecount() subroutine executes its code.

The subroutine obtains the page count from the PageCount property of
the ImageFile object and assigns it to the | ngPageCount local variable.
Then it invokes the Cells function of Excel to display the page count
(from | ngPageCount) in the cell adjacent to the active cell on the
spreadsheet.

Sub s_GetPagecount()

End Sub

Dim TngPageCount As Long

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")
Exit Sub

End If

'Get the page count.
IngPageCount = objImg.PageCount

'Put the page count in the adjacent column.
Cells(ActiveCell.Row, ActiveCell.Column + 1) = TngPageCount

39

| Chapter 2

40

Rotating an Image Page

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_RotateImg macro and then click Run. The
s_RotateImg() subroutine executes its code.

The subroutine obtains the page number of the currently displayed image
page from the ActivePage property of the ImageFile object, and assigns
it to the | ngAct i vepage local variable. Then it invokes the
RotateLeft method of the Page object to rotate the displayed image
page 90 degrees to the left.

Sub s_RotatelImg()
Dim IngActivepage As Long
If objImg Is Nothing Then
MsgBox ("Please open an image file first")
Exit Sub
End If

IngActivepage = objImg.ActivePage
objImg.Pages(IngActivePage).Rotateleft

End Sub

Adding Imaging Using Automation

Setting the One Page View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewSingle macro and then click Run. The
s_ViewSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 0, which places the Imaging application
in the One Page view mode.

Sub s_ViewSingle()

If objImg Is Nothi
MsgBox ("Ple
Exit Sub
End If

'Place the Imagi
objApp.ImageView

End Sub

ng Then
ase Open an Image file first")

ng application in One Page view mode.
=0

Setting the Thumbnail View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewThumbnails macro and then click Run. The
s_ViewThumbnails() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 1, which places the Imaging application
in the Thumbnail view mode.

Sub s_ViewThumbnails()

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")
Exit Sub

End If

'Place the Imaging application in Thumbnail view mode.
objApp.ImageView = 1

End Sub

41

| Chapter 2

42

Setting the Page and Thumbnails View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewThumbAndSingle macro and then click Run. The
s_ViewThumbAndSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 2, which places the Imaging application
in the Page and Thumbnails view mode.

Sub s_ViewThumbAndSingle()

End

If objImg Is Nothing Then
MsgBox ("Please Open an Image file first")

Exit Sub

End If

'Place the Imaging application in Page and Thumbnails view mode.

objApp.ImageView

Sub

-2

Closing the Image File and the Imaging
Application

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_CloseImg macro and then click Run. The s_CloseImg()
subroutine executes its code.

The subroutine invokes the Close method of the ImageFile object to
close the currently displayed image file. Then it invokes the Quit
method of the Application object to close the Imaging application.
Finally, it sets the object variables to Nothing to free system resources.

Sub

End

s_CloseImg()

On Error Resume Next

objImg.Close

objApp.Quit

'Close open image
'Quit Automation application

Set objImg = Nothing 'Destroy Image object

Set objApp = Nothing 'Destroy Application object
On Error GoTo O 'Reset Error handler

Sub

3

Automation Lexicon

This chapter describes the properties and methods of each Imaging for

Windows® Automation object.

In This Chapter

OVBIVIBW ...t 44
Application OBJeCt ..ot 44
ImageFile OBJECt ... oo 56
PagE ODJECT . .ot 69

PageRange ObJeCtc..oiiiiiiiieec e 76

| Chapter 3

Overview

This chapter describes the Automation enables you to control the Imaging application program-
properties and methods of

each object in the Imaging
application object hierarchy.

matically from within your application. Using it, you can provide your
end users with all of the capabilities of the Imaging application.

Each object has its own set of properties and methods. The remainder of
this chapter describes each one.

Note: Refer to Chapter 2 of this guide for more information about
using Automation to image-enable your applications.

Application Object

The Application object is a top-level object that controls every other
object you create. The Application object also allows you to set the
environment. For example, you can control the size and position of the
Imaging application window and the visibility of scroll bars, the status
bar, and the toolbar.

Application Object Properties

The following table lists the Application object properties. Note
that the properties that affect the displayed image (for example,
DisplayScaleAlgorithm, ImagePalette, and Zoom) affect every
image displayed in the Application object.

Application Object Properties

Property Description

ActiveDocument Returns the active ImageFile object.

AnnotationPaletteVisible | Sets or returns the visibility of the application's annotation

palette.
Application Returns the Application object.
AppState Returns the state of the image viewer application.
DisplayScaleAlgorithm Sets or returns the scaling algorithm used for displaying images.
Edit Sets or returns the application’s ability to edit the displayed
object.
FullName Returns the file specification for the Application object.
Height Sets or returns the distance between the top and bottom edge

of the application window.

ImagePalette Sets or returns the image palette used for image display.

44

Automation Lexicon

Application Object Properties (cont.)

Property

Description

ImageView

Sets or returns the present image view.

ImagingToolBarVisible

Sets or returns the visibility of the application’s scan toolbar.
Not available in all releases.

Left Sets or returns the distance between the left edge of the physi-
cal screen and the main application window.

Name Returns the name of the Application object.

Parent Returns the Application object.

Path Returns the path specification for this application’s executable
file.

ScannerIsAvailable Sets or returns the state of the scanner.

ScanToolBarVisible Sets or returns the visibility of the application’s imaging
toolbar.

ScrollBarsVisible Sets or returns the visibility of the application’s scroll bars.

StatusBarVisible Sets or returns the visibility of the application’s status bar.

ToolBarVisible Sets or returns the visibility of the application’s toolbar.

Top Sets or returns the distance between the top edge of the physi-
cal screen and application’s window.

TopWindow Sets or returns the application’s top window flag.

Visible Returns the visibility of the application.

WebToolBarVisible Sets or returns the visibility of the web toolbar.

Width Sets or returns the distance between the left and right edges of
the application’s window.

Zoom Sets or returns the zoom factor for image display.

ActiveDocument Property

Description Returns the active ImageFile object in the Application object. This is a read-only property.

Usage Appl i cati onObj ect. Acti veDocunent

Data Type Object.

Example

'This exanpl e returns the | mageFil e object

Dimlnmg as Object
Set Img = App. Acti veDocunent

in the application.

45

| Chapter 3

AnnotationPaletteVisible Property

Description Sets or returns the visibility of the annotation palette. This is a read/write property.
Usage Appl i cati onCbj ect. Annot ati onPal etteVisible = [{True| Fal se}]
Data Type Integer (Boolean).

Remarks The AnnotationPaletteVisible property settings are:

Setting Description
True (Default) The annotation palette is visible.
False The annotation palette is not visible.

Application Property

Description Returns the Application object. This is a read-only property.
Usage Appl i cationCbj ect. Application

Data Type Object.

Example 'This exanpl e returns the Application object.
Di m Parent As (ObjectSet Parent = App. Application

AppState Property

Description Returns the state of the Application object. The state indicates whether the application is
running as an embedded or automation server. This is a read-only property.

Usage Appl i cati onCbj ect. AppSt at e
Data Type Short.
Remarks The AppState property settings are:

Setting Description

1 The application is running as an embedded server.

2 The application is running as an automation server.

DisplayScaleAlgorithm Property

Description Sets or returns the scaling algorithm used for displaying images. This is a read/write
property.

Usage Appl i cati onObj ect. Di spl ayScal eAl gorithm [=val ue]

Data Type Short.

46

Automation Lexicon

Remarks

The DisplayScaleAlgorithm value can be specified before or after an image is displayed. The
property settings are:

Setting Description

0 (Default) Normal decimation.

1 Gray4 — 4-bit gray scale (16 shades of gray).

2 Gray8 — 8-bit gray scale (256 shades of gray).

3 Stamp — Represents the image as a thumbnail.

4 Optimize — Changes the display scale algorithm based on the image type of

the displayed image. Black and white images are scaled to gray. Palettized
4- and 8-bit, RGB, and BGR images remain color.

Note: This property must be set prior to opening the ImageFile object. For this property to
take effect after an image is open, you must reopen the image.

Edit Property

Description Sets or returns the Application object’s ability to edit the displayed object. You should set

Usage
Data Type

Remarks

the Edit property prior to opening each ImageFile object. This is a read/write property.
ApplicationObject.Edit = [{True| Fal se}]
Integer (Boolean).

The Edit property settings are:

Setting Description
True (Default) Image editing is available.
False The displayed object cannot be changed.

Note: You must set the Edit property prior to opening the ImageFile object. You can only
set the Edit property once in the current session.

FullName Property

Description Returns the file specification for the Application object, including the path. This is a read-

Usage
Data Type

only property.
Appl i cati onObj ect . Ful | Nane

String.

47

| Chapter 3

Height Property

Description Sets or returns the distance, in pixels, between the top and bottom edge of the Application
object’s window. This is a read/write property.

Usage Appl i cati onCbj ect. Hei ght [=val ue]
Data Type Long.

Remarks This property must be set prior to opening the ImageFile object. It only takes effect if the
Width, Top, and Left properties are also set. If you set the Height property to less than
the minimum allowable window size, the value is ignored. The minimum setting is usually

27.

The Height property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

ImagePalette Property

Description Sets or returns the image palette used to display an image. This is a read/write property.

Note: The ImagePalette property must be set prior to opening the ImageFile object. For
this property to take effect after an image is open, you must reopen the image.

Usage Appl i cationObj ect. | nagePal ette [=val ue]
Data Type Short.

Remarks The ImagePalette property settings are:

Setting Description

0 (Default) Custom

1 Common

2 Gray8 — 8-bit grayscale (256 shades of gray)
3 R GB24 — 24-bit (millions of colors)

4 Black and white

ImageView Property
Description Sets or returns the present image view. This is a read/write property.

Usage Appl i cationObj ect. | nageVi ew [=val ue]

Data Type Short.

48

Automation Lexicon

Remarks

See Also

The ImageView property settings are:

Setting Description

0 (Default) One page view
1 Thumbnails view
2 Page and Thumbnails view

The ImageView property and the ImageFileObject.ActivePage property have the
following relationships:

View Relationship
One Page (Default) The active page is displayed.
Thumbnails The active page appears in thumbnail view.

Page and Thumbnails The active page is the page that is displayed.

ImageFileObject.ActivePage property.

ImagingToolBarVisible Property

Description Sets or returns the visibility of this Application object’s imaging toolbar. This is a read/write

Usage
Data Type

Remarks

property.
Appl i cati onObj ect . | magi ngTool Bar Vi si bl e = [{True| Fal se}]
Integer (Boolean).

The ImagingToolBarVisible property settings are:

Setting Description
True (Default) The imaging toolbar is visible.

False The imaging toolbar is not visible.

Left Property

Description Sets or returns the distance, in pixels, between the left edge of the physical screen and the

Usage
Data Type

Remarks

Application object’s window. This is a read/write property.
Appl i cationObject. Left [=val ue]
Long.

The Left property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Top properties are also set.

The Left property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

49

| Chapter 3

Name Property
Description Returns the name of this Application object. This is a read-only property.

Usage Appl i cati onCbj ect. Name
Data Type String.

Parent Property

Description Returns the parent of the Application object. This is a read-only property.
Usage Appl i cati onObj ect. Parent

Data Type Object.

Path Property

Description Returns the path specification for the Application object’s executable file. This is a read-
only property.

Usage Appl i cati onObj ect. Pat h
Data Type String.

ScannerisAvailable Property

Description Sets or returns the availablity of the scanner. This is a read/write property.
Usage Appl i cati onCbj ect. Scanner | sAvail abl e = [{True| Fal se}]
Data Type Integer (Boolean).

Remarks The ScannerIsAvailable property settings are:

Setting Description

True (Default) The scanner is available. If no scanner is attached to the system, this
property setting is False.

False The scanner is unavailable.

ScanToolBarVisible Property

Description Sets or returns the visibility of this Application object’s scan toolbar. This is a read/write
property.
Usage Appl i cati onObj ect. ScanTool Bar Vi si bl e = [{True| Fal se}]

Data Type Integer (Boolean).

50

Automation Lexicon

Remarks The ScanToolBarVisible property settings are:

Setting Description

True The scan toolbar is visible.

False (Default) The scan toolbar is not visible.

ScrollBarsVisible Property

Description Sets or returns the visibility of the Application object’s scroll bars. This is a read/write
property.

Usage ApplicationObject. ScrollBarsVisible = [{True| Fal se}]

Data Type Integer (Boolean).

Remarks The ScrollBarsVisible property settings are:

Setting Description
True (Default) The scroll bars are visible.

False The scroll bars are not visible.

Note: The ScrollBarsVisible property must be set prior to opening the ImageFile object.
For this property to take effect after an image is open, you must reopen the image.

StatusBarVisible Property

Data Type Sets or returns the visibility of this Application object’s status bar. This is a read/write
property.

Usage ApplicationObject. StatusBarVisible = [{True| Fal se}]

Data Type Integer (Boolean).

Remarks The StatusBarVisible property settings are:

Setting Description

True (Default) The status bar is visible.

False The status bar is not visible.

ToolBarVisible Property

Data Type Sets or returns the visibility of this Application object’s standard toolbar. Read/write
property.
Usage Appl i cati onObj ect. Tool BarVisible = [{True| Fal se}]

Data Type Integer (Boolean).

51

| Chapter 3

Remarks The ToolBarVisible property settings are:

Setting Description
True (Default) The toolbar is visible.

False The toolbar is not visible.

Top Property

Description Sets or returns the distance, in pixels, between the top edge of the physical screen and main
application window. This is a read/write property.

Usage Appl i cati onCbj ect. Top
Data Type Long.

Remarks The Top property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Left properties are also set.

The Top property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

TopWindow Property

Description Sets or returns this Application object’s top window flag. This is a read/write property.
Usage Appl i cationQbj ect. TopW ndow = [{True| Fal se}]

Data Type Integer (Boolean).

Remarks The TopWindow property settings are:

Setting Description

True The application is a stay-on-top window.
False (Default) The application is not a stay-on-top window.
Example ' Thi s exanpl e makes the application wi ndow a stay-on-top w ndow.

App. TopW ndow = True

Visible Property
Description Returns the visibility of the Application object. This is a read-only property.

Usage Appl i cati onObj ect. Visible
Data Type Integer (Boolean).

52

Automation Lexicon

Remarks The Visible property settings are:

Setting Description
True The application is visible.

False (Default) The application is not visible.

WebToolBarVisible Property

Description Sets or returns the visibility of this Application object’s web toolbar. This is a read/write
property.

Usage Appl i cati onObj ect. WebTool BarVi sible = [{True| Fal se}]

Data Type Integer (Boolean).

Remarks The WebToolBarVisible property settings are:

Setting Description

True The web toolbar is visible.

False (Default) The web toolbar is not visible.

Width Property

Description Sets or returns the distance, in pixels, between the left and right edges of the Application
object's window. This is a read/write property.

Usage Appl i cationObj ect. Wdth [=val ue]
Data Type Long.

Remarks The Width property must be set prior to opening the ImageFile object. This property only
takes effect if the Top, Left, and Height properties are also set. If you set the Width
property to less than the minimum allowable window size, the value is ignored. The
minimum setting is usually 112.

The Width property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

Zoom Property

Data Type Sets or returns the zoom factor used for displaying images. This is a read/write property.
Usage Appl i cati onObj ect. Zoom [=val ue]

Data Type Float.

Remarks The zoom factor is a percent value.

Example ' This exanpl e sets the zoom factor to 100%
App. Zoom = 100

53

| Chapter 3

' This exanpl e returns the current zoom factor.
X = App. Zoom

Application Object Methods

The following table lists the Application object methods.
Application Object Methods

Method Description

CreateImageViewerObject | Creates an Imaging object of the specified class.

FitTo Displays the image at the specified zoom option.
Help Displays online Help.
Quit Exits this application and closes all open objects.

CreatelmageViewerObject Method

Description Creates and returns an ImageFile object. The ImageFile object is empty, with no image file
associated with it. Use the object's Open or New method to associate a specific image file.

Usage Appl i cati onObj ect . Creat el nageVi ewer Obj ect ([Obj ect C ass])
Data Type Object.
Remarks This method only supports the ImageFile object, for which the setting is 1.

Example "This exanpl e creates an | nmageFile object.
Dmlnmg as oject
Set I nmg = App. Creat el nageVi ewer Obj ect (1)

FitTo Method

Description Displays the current image at the specified zoom option. This method updates the
Application object’s Zoom property with the actual zoom factor.

This method affects each view as follows:

View Display
One Page The page is zoomed.
Thumbnails No effect — The Application property is changed and aftects

other views when they are used.

Page & Thumbnails The page is zoomed — No effect on thumbnails.
Usage ApplicationCbject.FitTo (ZoonmOpti on)
Data Type Short.

54

Automation Lexicon

Remarks ZoomOption settings are:

Setting Description
1 Best fit

2 Fit to width
3 Fit to height
4 Actual size

Help Method

Description Displays the Imaging online Help table of contents.
Usage Appl i cationObj ect. Hel p

Quit Method

Description Closes all open objects and exits the application. The Application object is no longer active
or available.

Usage Appl i cationObject. Quit

55

| Chapter 3

ImageFile Object

An ImageFile object represents an image file. An ImageFile object can have

* One Page object, representing the currently displayed page of the ImageFile object.

* One or more PageRange objects, each representing different and possibly overlapping
page ranges.
ImageFile Object Properties

The following table lists the ImageFile object properties.
ImageFile Object Properties

Property Description
ActivePage Sets or returns the ImageFile object’s current page number.
Application Returns the Application object.
FileType Returns the ImageFile object’s file type.
Name Returns the name of the active image file.

OCRLaunchApplication || yunches an application with an output file after OCR*®
processing is complete.

OCROutputFile Sets or returns the output file for OCR processing.

OCROutputType Sets or returns the output file format for OCR processing.

PageCount Returns the number of pages in the ImageFile object.

Parent Returns the parent of the ImageFile object.

Saved Returns a flag indicating whether or not the file has ever
been saved.

a. TextBridge[l OCR technology by ScanSoft.

ActivePage Property
Description Sets or returns the ImageFile object’s active page number. This is a read/write property.

Setting the ActivePage property to a page number causes that page to become active,
which updates the display if the Application object is visible. Refer to the Application
object’s ImageView property for more information about the relationships between the
active page and different views of the page.

Page selection and navigation by the end-user have no effect on the ActivePage property.
The active page is always the active page according to automation.

Note: |If you set the ActivePage property to a page number beyond those contained in
the document, an error is returned.

56

Automation Lexicon

Usage I mageFi | eCbj ect . Acti vePage [=val ue]
Data Type Long.
Remarks The number is the page number value.

See Also ApplicationObject.ImageView property.

Application Property

Description Returns the Application object. This is a read-only property.
Usage I mageFi | eObj ect. Application

Data Type Object.

Example 'This exanpl e returns the Application object.
Di m Parent As (Obj ect
Set Parent = Ing. Application

FileType Property

Description Returns the file type of this ImageFile object. This is a read-only property.
Usage I mageFi | eQoj ect. Fi | eType

Data Type Short.

Remarks The FileType property settings are:

Setting Description

Unknown
TIFF

Not supported
BMP

PCX

DCX
JPG-JFIF

XIF

GIF

WIFF

O X NN N U N, O

Name Property

Description Returns a string that contains the name of the active image file. This is a read-only
property.

Usage | mageFi | eCbj ect . Nane

57

| Chapter 3

Data Type String.

OCRLaunchApplication Property

Description Launches the Application object with an output file after OCR processing is complete.
This is a read/write property.

Usage I mageFi | eCbj ect . OCRLaunchAppl i cation = [{True| Fal se}]
Data Type Integer (Boolean).
Remarks The OCRLaunchApplication property settings are:

Setting Description
True (Default) Launch the application.

False Do not launch the application.

OCROutputFile Property

Description Sets or returns the output file name. If blank, the SaveAs dialog box is displayed. This is a
read/write property.

Usage I mageFi | eCbj ect. OCRQut put Fil e = [Fi | eNane]
Data Type String.

OCROutputType Property

Description Sets or returns the output file type. This is a read/write property.

[Type]

Usage | mageFi | eQbj ect . OCRQut put Type
Data Type Long.
Remarks The OCROutputType property results are:

Setting Description

0 Word for Windows/RTF
1 WordPerfect

2 HTML

3 Text

PageCount Property

Description Returns the number of pages in this ImageFile object. This is a read-only property.
Usage I mageFi | e(bj ect . PageCount

Data Type Long.

58

Automation Lexicon

Parent Property
Description Returns the parent of the ImageFile object. This is a read-only property.
Usage I mageFi | eCbj ect . Par ent
Data Type Object.
Example 'This exanpl e returns the parent of the |InmageFile object.
Di m App As Obj ect
App = | ng. Parent
Saved Property
Description Returns the saved state of the ImageFile object. Read-only property.
Usage I mgeFi | e(hj ect . Saved
Data Type Integer (Boolean).

Remarks The Saved property settings are:

Setting Description

True The ImageFile object has been saved and has not changed since it was last saved.
False The imageFile object has never been saved and has changed since it was created;

or, it has been saved but has changed since it was last saved.

Example "This exanple returns the saved state of the file.
bl sSaved = | ng. Saved

ImageFile Object Methods

The following table lists the ImageFile object methods.
ImageFile Object Methods

Method Description
AppendExistingPages Appends existing pages to the end of the ImageFile object.
Close Closes the ImageFile object.

CreateContactSheet Saves a contact sheet rendition of the ImageFile object.

FindOIServerDoc Finds Imaging 1.x documents and WMS Imaging documents.
Not available when the application is running as an embedded
server.

Help Displays online Help.

InsertExistingPages Inserts existing pages in the ImageFile object.

New Creates a new blank ImageFile object. Not available when the

application is running as an embedded server.

59

| Chapter 3

ImageFile Object Methods (cont.)

Method Description
Ocr OCRs opened Image File.
Open Opens the ImageFile object. Not available when the application is
running as an embedded server.
Pages Returns a Page or PageRange object for the ImageFile object.
Print Prints the ImageFile object.
RotateAll Rotates all ImageFile object pages.
Save Saves changes to the ImageFile object.
SaveAs Saves the ImageFile object under another name.
SaveCopyAs Saves a copy of the ImageFile object. The application must be

running as an embedded server.

Update Updates the ImageFile object embedded within the container
application with the current data from the server application.
The application must be running as an embedded server.

AppendExistingPages Method

Description Appends specified page(s) to the end of the current ImageFile object. If the page(s) being
appended come from an image file of a type different than the active image file, the pages
are converted before being appended. After appending page(s), all PageRange objects are
invalid. You can optionally display a dialog box that allows the end-user to select a file from
which to append page(s).

Usage I mageFi | eQhj ect . AppendExi stingPages [| mageFil e], [Page],
[Count], [Di spl ayUl Fl ag]

Arguments The AppendExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file from which pages will be appended (source
image file).

Page Long The page from which to start appending pages (in the
source image file).

Count Long The number of pages to append.

DisplayUlIFlag Flag True — Displays a dialog box that allows the end-user to

select an image file to append.

False (Default) — Does not display a dialog box.

If you specify True and the selected file is a multi-page file,
the user is prompted to select the pages to append.

60

Automation Lexicon

Example ' Thi s exanpl e appends the first page fromthe file, BWTIF.
I mg. AppendExi stingPages "c:\bw. tif", 1

' This exanpl e appends a file selected froma dialog box to the
"currently displayed image file. After the user selects a file
'to append, the application pronpts the user to specify the
'starting page nunber and the nunber of pages to append from
"the selected file.

I mgl. AppendExi stingPages "", 0, 0, True

' Thi s exanpl e appends pages to an Inaging Server 1.x file.
I ngFi | eCbj . AppendExi sti ngPages
O "lmage://ngall\ SYS:\tmp\ 3PAGES. tif", 1, 3

' Thi s exanpl e appends pages to an |nmagi ng Server 1.x docunent.
I ngFi | eObj . AppendExi st i ngPages
O "Inage://PATRI OTS\ CABI NET\ DRAVER\ FOLDER\ doc1", 3, 2

' Thi s exanpl e appends pages to a WMS | magi ng Server
' docunent .
I mgFi | eQbj . AppendExi stingPages "I nmagex://sixpage", 1, 6

Close Method

Description Closes the ImageFile object. Closing an ImageFile object deletes it; all Page and PageRange
objects associated with it are also deleted. The Application object no longer has an
ImageFile object associated with it.

Usage I mageFi | eQbj ect. G ose [SaveChangeFl ag]
Data Type Integer (Boolean).

Remarks The Close method SaveChangeFlag argument has the following settings:

Setting Description

True Changes are saved when the image file closes.

False (Default) Changes are not saved when the image file closes.

CreateContactSheet Method

Description Saves a contact sheet rendition of the ImageFile object. This method is unavailable when
the Application is running as an embedded server.

Usage I mageFi | e(oj ect . Creat eCont act Sheet (I nageFil e,
[I'ncl udeAnnot ati ons], [OpenAfterSave])

Data Type String.

61

| Chapter 3

Arguments The CreateContactSheet method has the following parameters:

Parameter Data Type Description

ImageFile String The image file object.

IncludeAnnotations Integer Option to include annotations on the image stamps.
OpenAfterSave Integer Option to open the contact sheet file after it has

been created.

FindOIServerDoc Method

Description Finds 1.x documents or WMS Imaging documents. This method displays an Imaging
server document Find dialog box, from which the user may search for 1.x documents or
WMS Imaging documents. After the user selects a document and chooses the Open
button, the Find dialog box is closed and returns the selected document name, with a path,
to the user. A null string is returned if the user chooses Cancel in the Find dialog box. The
user may use the returned document name string as input for the Image Object Open
method.

Data Type String.
Usage I mageFi | eQbj ect . Fi ndO Ser ver Doc

Help Method
Description Displays the Imaging online Help table of contents.

Usage I mageFi | eObj ect. Hel p

InsertExistingPages Method
Description Inserts page(s) into the ImageFile object.

Page(s) to be inserted must come from an existing file. If the pages being inserted come
from an image file of a type different than the active image file, the pages are converted
before being inserted. After inserting page(s), all PageRange objects are invalid. You can
optionally cause a dialog box to open for the end-user to select a file from which to insert

page(s).
Usage I mageFi | eObj ect . I nsert Exi stingPages (I nageFile, |mgePage,
Count, Page, DisplayUl Fl ag)

Arguments The InsertExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file from which page(s) are to be inserted (the
source image file).

ImagePage Long The page before which the new page(s) are to be inserted.

62

Automation Lexicon

Parameter Data Type Description

Count Long The number of pages to insert.

Page Long The page in the source image file from which to start
inserting pages.

DisplayUlIFlag Flag True — Displays a dialog box that allows the end-user to
select a source image file.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page file,
the user will be prompted to select the pages to append.

Example "This exanple inserts pages 4 and 5 fromthe file BWTIF
' before page 1.
I mg. I nsert Exi stingPages "c:\bw. tif", 1, 2, 4

"This exanple inserts page(s) into the current file at the
‘current page. (A dialog box pronpts the user for the inmage
"file to be selected for insertion. Another dial og box
"pronmpts for a page range.) Page, count, and pagenumnber
"argunents are required but ignored when dialogflag is True.
I mg. I nsert Exi stingPages "", 1, 1, 2, True
'This exanple inserts pages in an I maging Server 1.x file.
O I'nmgFil eCbj. I nsertExi stingPages
"I mage:// ngall\ SYS:\ t mp\ 3PAGES. tif", 2, 3, 1

"This exanpl e inserts pages in an |maging Server 1.x document.
I mgFi | eCbj . | nsert Exi sti ngPages
O0"1 mage: / / PATRI OTS\ CABI NET\ DRAVER\ FOLDER\ doc1", 2, 3, 1

" This exanpl e inserts pages in an WVS | nagi ng Server docunent.
I mgFi | eObj . I nsert Exi stingPages "I nagex://sixpage", 1, 2, 5

New Method

Description Displays a dialog box that allows the end-user to create a new ImageFile object that
contains one blank page.

Note: This method is not available when application is running as an embedded server.

Creating a new ImageFile object causes the new object to become active. If the active
ImageFile object is unsaved, the end-user is prompted to save it before the new object is
created.

No image file is associated with the object until you save it. The file type of the new object
is the same as the file type of the active object.

Usage I mageFi | eCbj ect. New ([Di spl ayUl Fl ag])

63

| Chapter 3

Remarks The New method has the following parameter:

Parameter Data Type Description

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to create a new image file.
False (Default) — Does not display a dialog box.

Example ' Thi s exanpl e creates a new i mage obj ect.
'Create the inage object
Dim App, Ing As Object
Set App = Createbject ("I nagi ng. Application")
Set I ng = App. Creat el nageVi ewer Obj ect (1)
"Call the image object New Met hod
I mg. New

Ocr Method
Description OCRs all image file pages.
Usage I mgeFi | e(oj ect. Ccr

Remarks The Image file must be open. The Ocr method uses the OcrOutputFile and
OcrOutputFileType properties.

Example 'This exanpl e perfornms an OCR on an i mage object.
Dim App, Img As Object
Set App = CreateObject ("I naging. Application")
Set I mg = App. Creat el nageVi ewer Obj ect (1)

I mg. Open "d:\pcx.tif"
I mg. Cecr

Open Method

Description Opens an image file in the parent application window. This associates an image file with the
ImageFile object. If a file is currently open, it should be closed before a new file is opened.
(See the Close Method).

Note: This method is unavailable when the application is running as an embedded server.

The Imaging application has the focus after an Open. You can reset the focus
programmatically after an Open, if desired.

Usage I mageFi | e(bj ect. Open(| nageFil e, [I ncl udeAnnot ati on], [Page] ,
[Di spl ayUl Fl ag])

64

Automation Lexicon

Remarks The Open method has the following parameters:

Parameter Data Type Description

ImageFile String Name string of the ImageFile object to open.

IncludeAnnotation Flag True (Default)— The image has annotations that are
displayed.
False — The image has annotations that are not
displayed.

Page Long Page number in the image file to display. This parame-

ter must be a constant, or use the ActivePage property
to specify the page that you want displayed when you
open the file.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to select a file to open.
False (Default) — Does not display a dialog box.

Example ' Thi s exanpl e opens an inmage file nanmed 5page.tif:
I mg. Open "C:\inages\5page. tif"

' This exanpl e opens the same file to page 4 with annotations
' di spl ayed:
I mg. Open "C:\inmages\5page.tif", TRUE, 4

' Thi s exanpl e opens a di al og box so the user can select a
‘file to open:
I mg. Cpen "",,, TRUE

' Thi s exanpl e opens an Inmaging Server 1.x file.
I mg. Open "I nmage://ngall\ SYS:\tmp\ 3PAGES. tif", TRUE, 1

" This exanpl e opens an | magi ng Server 1.x docunent.
I mg. Open "I nage:// PATRI OTS\ CABI NET\ DRAVWER\ FOLDER\ doc1"

' Thi s exanpl e opens an WVS | nagi ng docunent .
I mg. Open" | nagex: // si xpage"

See Also ApplicationObject.Edit.

Pages Method

Description Returns the Page or PageRange object for the ImageFile object.
Usage I mgeFi | e(oj ect . Pages(St art Page, EndPage)

Data Type Long.

Remarks If you specify one page number, this method returns a Page object. If you specify two page
numbers, this method returns a PageRange object. To return a range of pages, specify the

65

| Chapter 3

starting page number and ending page number. The first page number can be a variable,
but the second page number must be a constant.

The Pages method uses these parameters:

Parameter Data Type Description

StartPage Long The starting page of the page range to be returned.
EndPage Long The ending page of the page range to be returned.
Example ' Thi s exanpl e returns a Page object and a PageRange object.

Di m Page As bj ect

Di m PageRange As (bj ect

Set Page = |ng. Pages(1)

Set PageRange = | ng. Pages(1, 3)

Print Method

Description Prints the image file associated with the ImageFile object. You can optionally display a
dialog box to allow the end-user to select the print options.

Usage I mageFi | eQbject.Print ([DisplayU Flag])
Remarks The Print method DisplayUIFlag argument has the following settings:

Setting Description

True Displays a dialog box that allows the end-user to select print file options.
False (Default) No dialog box is displayed.
Example "This exanple prints the specified i mage file.

X = Ing. Print

RotateAll Method

Description Rotates all ImageFile object pages. Pages are rotated clockwise in 90 degree increments.

Usage I mageFi | e(hj ect. Rot at eAl |
Example 'This exanple rotates all pages of the currently displayed inage.
I mg. Rot at eAl |

Save Method

Description Saves changes to the ImageFile object. If no image file is associated with the ImageFile
object, the SaveAs method is executed instead of the Save method.

Usage I mageFi | e(bj ect. Save

66

Automation Lexicon

SaveAs Method

Description Saves the ImageFile object as another ImageFile object. Copies its image file and renames it.

This method allows you to specify the new object's image parameters. If specified, the file
can be converted from one type to another. The current image file is closed without being
saved and the Save As object becomes the active image file. You can optionally display a
dialog box that allows the end-user to name the file for the first time or select a file to
overwrite.

Usage I mageFi | e(hj ect. SaveAs (I mageFile, [FileType], [Di splayU Fl ag])
Data Type String.

Remarks The SaveAs method has the following parameters:

Parameter Data Type Description
ImageFile String The destination’s ImageFile object name string.
FileType Short The file type that you want to save the image as. This

number must be a constant. It must be present in the
command if the dialog flag option is used, even though its
value is ignored when the DisplayUTIFlag is set to True.

DisplayUlFlag Flag True — Displays a dialog box that allows the end-user to
enter or select a filename and options for saving the file.
False (Default) — Does not display a dialog box.

The SaveAs method FileType argument settings are:

Setting Description
TIFF
Not supported
BMP
Example ' This exanple saves a file in TIF format.
I mg. SaveAs "picturel. tif", 1

' Thi s exanpl e opens a Save As di al og box so that the end-user can
"name the file for the first time or overwite an existing file:
I mg. SaveAs "", 0, True

67

| Chapter 3

SaveCopyAs Method

Description Saves a copy of the ImageFile object as another ImageFile object. You may specify the
FileType of the destination file. The FileType can be TIFF or BMP.

This method allows you to specify the new object’s image parameters. If specified, the file
can be converted from one type to another. The current image file remains the active image
file. This method can only be used after launching the embedded server application in a
separate window.

Usage I mageFi | e(oj ect. SaveCopyAs (I nmageFile, FileType, D splayU Flag)
Data Type String.

Remarks The SaveCopyAs method has the following parameters:

Parameter Data Type Description
ImageFile String The destination’s ImageFile object name string.
FileType Short The image file type that you want to save the image as.

This number must be a constant. It must be present in the
command if the dialog flag option is used, even though its
value is ignored when the DisplayUIFlag is set to True.

DisplayUlFlag Flag True — Displays a dialog box that allows the end-user to
enter or select a filename and options for saving the file.
False (Default) — Does not display a dialog box.

Update Method

Description Updates the ImageFile object embedded within the container application with the current
data from the server application.

This method can only be used after launching the embedded server application in a separate
window.

Usage I mageFi | e(oj ect . Updat e

68

Automation Lexicon

Page Object

A Page object represents a single page in an ImageFile object. Page objects can only be

accessed by using the Pages method of the parent ImageFile object.

Page Object Properties

The following table lists the Page object properties.

Page Object Properties

Property Description
Application Returns the Application object.
CompressionInfo Returns the page’s compression information.
CompressionType Returns the page’s compression type.

Height Returns the page’s height.

ImageResolutionX Sets or returns the page’s horizontal resolution.
ImageResolutionY Sets or the returns page’s vertical resolution.
Name Returns the page number of this page.

PageType Returns the page’s image type.

Parent Returns the parent of the Page object.
ScrollPositionX Sets or returns this page’s horizontal scroll position.
ScrollPositionY Sets or returns this page’s vertical scroll position.
Width Returns the page’s width.

Application Property

Description Returns the Application object. This is a read-only property.

Usage PageObj ect . Appl i cation
Data Type Object.
Example ' This exanpl e returns the Application object.

Compressioninfo Property

Dimlnmg As ObjectDimParent As Object Set

Parent =

O 1 ng. Pages(1). Application

Description Returns this page’s compression information. This is a read-only property.

Usage
Data Type

PageObj ect . Conpr essi onl nf 0]

Long.

69

| Chapter 3

Remarks The CompressionInfo property settings are:

Setting Description
0 No compression options set. Only applicable to uncompressed image files.
1 EOL (Include/expect End Of Line). Each line is terminated with an end-of-

line bit. Not used for JPEG compression.

Packed Lines (Byte align new lines). Not used for JPEG compression.

Prefixed EOL (Include/expect prefixed End Of Line). Each strip of data is pre-
fixed by a standard end-of-line bit sequence. Not used for JPEG compression.

8 Compressed LTR (Compressed bit order, left to right). The bit order for the
compressed data is the most significant bit to the least significant bit. Not used
for JPEG compression.

16 Expanded LTR (Expanded bit order, left to right). The bit order for the
expanded data is the most significant bit to the least significant bit. Not used for
JPEG compression.

32 Negate (Invert black and white on expansion). Indicates the setting of the Pho-
tometric Interpretation field of a TIFF file. Not used for JPEG compression.

64 Low Resolution/High Quality JPEG compression only).

128 Low Resolution/Medium Quality (JPEG compression only).

256 Low Resolution/Low Quality (JPEG compression only).

512 Medium Resolution/High Quality (JPEG compression only).

1024 Medium Resolution/Medium Quality (JPEG compression only).
2048 Medium Resolution/Low Quality (JPEG compression only).
4098 High Resolution/High Quality (JPEG compression only).

8196 High Resolution/Medium Quality (JPEG compression only).
16392 High Resolution/Low Quality (JPEG compression only).

Remarks Image files that do not have a compression type of JPEG will have a value between 1 and
63. This value is a combination of the values of 1 to 32. For JPEG files, the value is from 64
to 16384, and is only one of these values.

Example 'This exanpl e returns the page's conpression information.
x = I mg. Pages(1). Conpressionlnfo

CompressionType Property
Description Returns this page’s compression type. This is a read-only property.

Usage Pagenj ect . Conpr essi onType[=val ue]
Data Type Short.

70

Automation Lexicon

Remarks

Example

The CompressionType property settings are:

Setting Description

Unknown

No Compression

Group 3 1D FAX

Group 3 Modified Huffman
PackBits

Group 4 2D FAX

JPEG

Reserved

Group 3 2D FAX

LZW

O X NN N U N, O

' This exanpl e returns this page's conpression type.
x = | ny. Pages(1). Conpressi onType

Height Property

Description Returns this page’s height in pixels. This is a read-only property.

Usage
Data Type

Example

Pagebj ect . Hei ght
Long.

' This exanpl e returns this page's height in pixels.
x = I ng. Pages(1) . Hei ght

ImageResolutionX Property

Description Sets or returns this page’s horizontal resolution, in dots-per-inch. An error occurs when a

Usage
Data Type

Example

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.
Pagebj ect . | mageResol uti onX [= val ue]
Long.

' This exanpl e sets this page's horizontal resolution.
I mg. Pages(1). | mageResol uti onX = 200

'This exanple returns this page's horizontal resol ution.
XRes = | ng. Pages(1).|mgeResol uti onX

71

| Chapter 3

ImageResolutionY Property

Description Sets or returns this page’s vertical resolution, in dots-per-inch. An error occurs when a
value less than 20 or greater than 1200 dpi is specified. This is a read/write property.

Usage Pagebj ect . | mageResol uti onY [= val ue]
Data Type Long.

Example "This exanpl e sets this page's vertical resolution.
I ng. Pages(1). | mageResol utionY = 200

'This exanple returns this page's vertical resolution.
YRes = | ng. Pages(1).|mgeResol uti onY

Name Property

Description Returns the page number of the page in the ImageFile object. This is a read-only property.
Usage PageObj ect . Nane

Data Type Long.

Example ' Thi s exanpl e returns the page nunber of the page in the
"I mageFi | e obj ect.
x = I ng. Pages(1). Nane

PageType Property

Description Returns the page’s image type. This is a read-only property.
Usage PageQbj ect . PageType

Data Type Short.

Remarks The PageType property settings are:

Setting Description

Black and White
Gray 4

Gray 8
Palettized 4
Palettized 8
RGB 24

N U1 B~ N -

Example ' This exanpl e returns the page's image type.
x = | ny. Pages(1). PageType

72

Automation Lexicon

Parent Property

Description Returns the parent of the Page object. This is a read-only property.
Usage Pagebj ect . Par ent

Data Type Object.

Example 'This exanpl e returns the parent of the Page object.
X = I ng. Pages(1). Parent

ScrollPositionX Property

Description Sets or returns this page’s horizontal scroll position, in pixels. This is a read/write property.
Usage PageObj ect . Scrol | Posi ti onX [=val ue]

Data Type Long.

Example 'This exanpl e sets this page's horizontal scroll position.
I mg. Pages(1). Scrol |l PositionX = 200

'This exanple returns this page's horizontal scroll position.
xpos = | ng. Pages(1).Scroll PositionX

ScrollPositionY Property

Description Sets or returns this page’s vertical scroll position, in pixels. This is a read/write property.
Usage Pagebj ect. Scrol | Posi tionY [=val ue]

Data Type Long.

Example 'This exanpl e sets this page's vertical scroll position.
I mg. Pages(1). Scrol | PositionY = 200

' This exanple returns this page's vertical scroll position.
ypos = I ny. Pages(1). Scroll PositionY

Width Property

Description Returns this page’s width, in pixels. This is a read-only property.
Usage PageObj ect. Wdt h

Data Type Long.

Example "This exanple returns this page's width in pixels.
x = I ng. Pages(1).Wdth

73

| Chapter 3

Page Object Methods

The following table lists the Page object methods.
Page Object Methods

Method Description
Delete Deletes the page.
Flip Rotates the page 180 degrees.
Help Displays online Help.
Ocr OCRs Image Page.
Print Prints the page.
RotateLeft Rotates the page counterclockwise 90 degrees.
RotateRight Rotates the page clockwise 90 degrees.
Scroll Scrolls the page.

Delete Method

Description Deletes the specified page from the active object. After deleting a page, the next page is
displayed (if one exists). Otherwise, the previous page is displayed.

Usage PageObj ect . Del et e

Example ' Thi s exanpl e del etes the specified page.
I mg. Pages(1).Del ete

Flip Method

Description Rotates the specified page 180 degrees. This change becomes permanent when the image
file is saved.

Usage PageObj ect. Flip
Example "This exanple flips the page.
I ng. Pages(1).Flip

Help Method

Description Displays the Imaging online Help table of contents.

Usage Pagenj ect . Hel p

Ocr Method
Description OCRs the image page.
Usage PageObj ect . Ccr

74

Automation Lexicon

Print Method
Description Prints the page.
Usage PageObj ect . Pri nt

Example 'This exanple prints the page.
X = Ing. Pages(1).Print

RotateLeft Method

Description Rotates the page 90 degrees counterclockwise. This change becomes permanent when the
image file is saved.

Usage PageObj ect . Rot at eLeft

Example 'This exanple rotates the page 90 degrees to the left.
I mg. Pages(1). Rot ateLeft

RotateRight Method

Description Rotates the page 90 degrees clockwise. This change becomes permanent when the image
file is saved.

Usage Pagehj ect . Rot at eRi ght

Example '"This exanpl e rotates the page 90 degrees to the right.
I mg. Pages(1). Rot at eRi ght

Scroll Method
Description Scrolls the page.

Usage PageObj ect. Scrol | Direction, Scrol | Arount

Remarks The Scroll method uses the following parameters:

Parameter Data Type Description

Direction Integer Direction in which to scroll the image:
0 — (Default) Scrolls down
1 — Scrolls up
2 — Scrolls right
3 — Scrolls Left

ScrollAmount Long Number of pixels to scroll the image

Example 'This exanple scrolls the page down 200 pi xel s.
I mg. Pages(1).Scroll 0 200

75

| Chapter 3

PageRange Object

A PageRange object represents a range of consecutive pages in an ImageFile object. A page
range is a set of pages starting at the StartPage property and ending at the EndPage
property. PageRange objects can only be accessed by using the Pages method of the parent
ImageFile object.

PageRange Object Properties
The following table lists the PageRange object properties.
PageRange Object Properties

Property Description
Application Returns the Application object.
Count Returns the number of pages in this range.
EndPage Returns or sets the page number of the last page in the range.
Parent Returns the parent of the PageRange object.
StartPage Returns or sets the page number of the first page in the range.

Application Property

Description Returns the Application object. This is a read-only property.
Usage PageRangeQnj ect . Appl i cation

Description Object.

Count Property

Description Returns the number of pages in this range. This is a read-only property.
Usage PageRangenj ect . Count

Data Type Long.

EndPage Property
Description Returns or sets the page number of the last page in the range. This is a read/write property.

Usage PageRange(bj ect . EndPage [=val ue]
Data Type Long.

Remarks This property setting is the number of the last page. The value of EndPage must be greater
than or equal to the value of StartPage.

76

Automation Lexicon

Parent Property

Description
Usage
Data Type

Example

Returns the parent of the PageRange object. This is a read-only property.
PageRangebj ect . Par ent
Object.

'This exanpl e returns the parent of the PageRange object.
X = I ng. Pages(1, 7). Parent

StartPage Property

Description

Usage
Data Type

Remarks

Returns or sets the page number of the first page in the range. This is a read/write
property.

PageRange(hj ect . St art Page [=val ue]

Long.

This property setting is the number of the first page. The value of StartPage must be less
than or equal to the value of EndPage.

PageRange Object Methods

The following table lists the PageRange object methods.
PageRange Object Methods

Method Description
Delete Deletes the page range.
Ocr OCRs the page range.
Print Prints the page range.

The Delete, Ocr, and Print methods of the PageRange object use the following
parameters:

Parameter Data Type Description
StartPage Long First page to be deleted.
NumPages Long Number of pages to be deleted, including the StartPage.

Delete Method

Description

Usage

Example

Removes pages from the ImageFile object. After deleting a PageRange object, all page
ranges are invalid.

PageRangehj ect . Del et e()

' Thi s exanpl e del etes the pages 1 through 3.
I mg. Pages(1, 3).Delete

77

| Chapter 3

Ocr Method

Description OCRs the page range.

Usage PageRange(bj ect . Ccr ()

Example ' Thi s exanpl e OCRs pages 2 through 6.
X = I nmg. Pages(2, 6). Ccr

Print Method

Description Prints the page range.
Usage PageRange(hj ect. Print()

Example ' This exanple prints pages 1 through 5.
x = I ng. Pages(1,5). Print

78

4

Adding Imaging Using ActiveX Controls

This chapter demonstrates how to use the Imaging ActiveX controls to
image-enable your applications.

It begins by explaining how to load the Imaging ActiveX controls into
your development environment. Then it explains how to access the
on-line help for the controls. It concludes by walking you through some
sample applications to help you get started.

In This Chapter

Loading the CoNntrolsccccooviiiiiii e 80
ObtainiNng Help ..o 84
Demonstration ProjectS.........ooiviiiiiiiiiie e 90

| Chapter 4

Loading the Controls

This section explains how to Before you can use the Imaging ActiveX controls, you must load them

load the Imaging ActiveX into your development environment.
controls into three devel-

opment environments: Loading the controls consists of the following basic
Microsoft Visual Basic, tasks:

Visual C++, and Access.

* Selecting each Imaging ActiveX control from a list of registered
ActiveX controls on your system.

Inserting each Imaging ActiveX control icon into the controls
toolbox of your development environment.

The following list shows how the Imaging ActiveX controls appear
on your system:

— Image Admin Control

— Image Edit Control

— Image OCR Control

— Image Scan Control

— Image Thumbnail Control

— Image Server Access Object

80

Adding Imaging Using ActiveX Controls |

The following table lists the icons that represent each Imaging ActiveX
control in the controls toolbox of your development environment.

Imaging ActiveX Toolbox Icons

Icon Name Notes

Image Admin Available with all versions
of Imaging.

Image Annotation A member of the Image
W Tool Button Edit control.

Image Edit Available with all versions
& of Imaging.

Image OCR Available with some
versions of Imaging.

Image Scan Available with all versions
= of Imaging.

Image Thumbnail Available with all versions
pan of Imaging.

81

| Chapter 4

Visual Basic

(0

A control is selected when a

check mark appears next to it.

Visual C++

82

To add the Imaging ActiveX controls to Visual Basic
1 Start Visual Basic and create a new project.

2 On the Project menu, click Components.
3 On the Components dialog box, click the Controls tab.

4 Select the Imaging ActiveX controls from the controls listed. (Refer
to “Loading the Controls” earlier in this chapter to see a list of
Imaging ActiveX controls.)

5 Click OK. Visual Basic adds the controls to your project and the
control icons to your toolbox.

6 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

To add the Imaging ActiveX controls to Visual C++
1 Start Visual C++ and create a new project.

2 On the Project menu, point to Add to Project, and click
Components and Controls. The Component and Controls
Gallery dialog box appears.

3 In the Look In list box, click SharedIDE and then Gallery.

4 Below the Look In list box, double-click Registered ActiveX
Controls. A list of registered ActiveX controls appears.

5 For each Imaging ActiveX control:

a Click the desired control among the list of registered controls and
then click Insert. (Refer to “Loading the Controls” earlier in this
chapter to see a list of Imaging ActiveX controls.)

b On the Confirm Classes dialog box, click OK. Visual C++ adds
the control to your project and its icon to the Controls toolbox,
which is visible when you edit a dialog box in Resource View.

6 When you have finished adding the Imaging ActiveX controls, click
Close on the Components and Controls Gallery dialog box.

7 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

Note: |If you are using Microsoft Foundation Classes (MFC), be sure to
call AfxEnableControlContainer within | ni t | nst ance.

Adding Imaging Using ActiveX Controls |

Access

(0 o

If you selected the OLE
Controls check box in the
Setup program when you
installed Microsoft Access, the
Imaging ActiveX controls are
available automatically.

To add the Imaging ActiveX controls to Access
1 Start Access and create a new database.

2 On the Tools menu, click ActiveX Controls.

3 If the ActiveX Controls dialog box lists all of the Imaging ActiveX
controls as available, click Close and proceed to Step 4.

For each control the dialog box does nof list as available:
a Click Register.

b On the Add ActiveX Control dialog box, navigate to your
| magi ng folder.

c Click the file name of the control not listed as available. Then
click Open to register the control.

The following table lists the file names of each Imaging ActiveX

control.
Imaging ActiveX Control File Names
Click This File To Register This Control
imgadmin.ocx Image Admin
imgedit.ocx Image Annotation Tool Button
imgedit.ocx Image Edit
1IMgocr.ocx Image OCR
imgscan.ocx Image Scan
imgthumb.ocx Image Thumbnail

d When you finish registering the controls, click Close to exit the
ActiveX Controls dialog box.

4 Enter Form or Report design view.
5 On the View menu:

a If necessary, click Toolbox to display the Controls toolbox.
b Point to Toolbars and click Customize.

6 On the Customize dialog box, click the Commands tab.

83

| Chapter 4

Obtaining Help
This section explains how to
access the on-line help

system of the Imaging
ActiveX controls.

Visual Basic

84

7 In the Categories list box:
a Click ActiveX Controls.

b From the Commands list box, drag each Imaging ActiveX
control and drop it onto the Controls toolbox.

¢ When you finish dragging and dropping the Imaging ActiveX
controls onto the toolbox, click Close.

8 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

How you access the Imaging ActiveX Controls on-line help system
differs within each of the following programming environments:

* Visual Basic
* Visual C++
= Access

The following sections describe how to access help in each environment.

Note: Several methods in the Imaging ActiveX controls present dialog
boxes to the end user. Each dialog box provides its own context-
sensitive help, which the user can invoke by clicking the ques-
tion mark at the top of the dialog box and then the desired
control.

There are many ways to access the Imaging ActiveX Controls on-line
help in Visual Basic. You can access help from the:

* Object Browser

* Toolbox

* Form window

* Properties window
* Code window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current project. (Refer to “Loading the
Controls” for instructions.)

Adding Imaging Using ActiveX Controls |

Object Browser
To access Imaging ActiveX help from the Object Browser

1 On the View menu, click Object Browser. The Object Browser
appears.

2 In the Project/Library list box, click the library name of the desired
Imaging ActiveX control.

The following table lists the library and class names of each Imaging
ActiveX control.

Imaging ActiveX Control Library and Class Names

Library Name Class Name Imaging Control
AdminLibCtl ImgAdmin Image Admin
ImgeditLibCtl ImgAnnTool Image Annotation Tool

Button
ImgeditLibCtl ImgEdit Image Edit
IMGOCRLib Imgocr Image OCR
ScanLibCtl ImgScan Image Scan
ThumbnailLibCtl ImgThumbnail Image Thumbnail

3 In the Classes list box, click the class name of the control. (Refer to
the preceding table for a list of class names.)

4 In the Members list box, click the desired property, method, or
event, and then press F1. The help topic for the selected member
appears.

Note: If the member you select is an extender property, method, or
event, Visual Basic’s on-line help appears.

Toolbox
To access Imaging ActiveX help from the Toolbox

* Click the desired Imaging ActiveX control in the toolbox, and then
press F1. The overview topic for the selected control appears.

From the overview topic, you can navigate to other topics that
describe the properties, methods, and events of the selected control.

85

| Chapter 4

Form Window

To access Imaging ActiveX help from the Form window
1 Draw at least one Imaging ActiveX control on a form.

2 Select the Imaging ActiveX control on the form.

3 Press F1. The overview topic for the selected control appears.

From the overview topic, you can navigate to other topics that
describe the properties, methods, and events of the selected control.

Properties Window
To access Imaging ActiveX help from the Properties window
1 Select an Imaging ActiveX control that has been drawn on a form.

Then, on the View menu, click Properties Window. The
Properties window appears.

2 Click the desired property in the Properties window and then press
F1. The help topic for the selected property appears.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, Visual Basic’s
on-line help appears.

Code Window

To access Imaging ActiveX help from the Code window

1 Make sure that at least one Imaging ActiveX control has been drawn
on a form.
2 Invoke the Code window.

3 Within your code, select the Imaging property, method, or event for
which you want help. Then press F1. The help topic for the selected

property, method, or event appears I.

Note: |[f the property, method, or event you select is an extender
property, method, or event, Visual Basic’s on-line help appears.

86

Adding Imaging Using ActiveX Controls |

Visual C++

There are two ways to access the Imaging ActiveX Controls on-line help
in Visual C++. You can access help from the:

* Components and Controls Gallery dialog box

* Properties window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current project. (Refer to “Loading the
Controls” for instructions.)

Components and Controls Gallery Dialog Box

Properties Window

To access Imaging ActiveX help from the Components and
Controls Gallery dialog box

1 On the Project menu, point to Add To Project and click
Components and Controls. The Components and Controls
Gallery dialog box appears.

2 Click the desired Imaging ActiveX control below the Lookin box,
and then click More Info. The overview topic for the selected
control appears.

From the overview topic, you can navigate to other topics that describe
the properties, methods, and events of the selected control.

To access Imaging ActiveX help from the Properties window
1 Select an Imaging ActiveX control that has been drawn on a form.
2 On the View menu, click Properties.
3 Click the desired property in the Properties window, and then press

F1. The help topic for the selected property appears.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, the contents

window for the Imaging ActiveX help system appears.

87

| Chapter 4

Access

Object Browser

Properties Window

88

There are three ways to access the Imaging ActiveX Controls on-line
help in Access. You can access help from the:

* Object Browser

* Properties window

* Module window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current database. (Refer to “Loading
the Controls” for instructions.)

To access Imaging ActiveX help from the Object Browser
1 Make sure the Module window is currently on display.

2 On the View menu, click Object Browser. The Object Browser
appears.

3 In the Project/Library list box, select the library of the desired
Imaging ActiveX control. (Refer to “Visual Basic” earlier in this
section to see a list of library and class names for each Imaging
ActiveX control.)

4 In the Classes list box, click the class name of the desired control.
(Refer to the aforementioned list.)

5 In the Members list box, click the desired property, method, or
event, and then press F1. The help topic for the selected member
appears.

Note: |If the member you select is an extender property, method, or
event, Visual Basic's on-line help appears — provided Visual
Basic is installed on your system. Access does not provide help
for extender properties, methods, or events in the Object
Browser.

To access Imaging ActiveX help from the Properties window
1 Select an Imaging ActiveX control that has been drawn on a form.

2 On the View menu, click Properties.

3 On the Properties window, click the Other tab or the All tab.

Adding Imaging Using ActiveX Controls |

4 Click the desired property in the Properties window and then press
F1. The help topic for the selected property appears.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, Access’ on-line
help appears.

Module Window

To access Imaging ActiveX help from the Module window

1 Make sure that at least one Imaging ActiveX control has been drawn
on a form.
2 Invoke the Module window.

3 Select the Imaging property, method, or event within your code for
which you want help. And then press F1. The help topic for the
selected property, method, or event appears 1.

Note: |If the property, method, or event you select is an extender
property, method, or event, Visual Basic’s on-line help appears
— provided Visual Basic is installed on your system.

89

| Chapter 4

Demonstration Projects

This section demonstrates To help you use the Imaging ActiveX controls, seven demonstration

how to add a variety of projects show you how to:
Imaging functions to your

applications. * Display an image and apply fit-to options.
A wide-ranging discussion of " Convert an image.
every Imaging function is * Copy an image.
beyond the scope of this
chapter; however it does
discuss many of the popular * Scan images using a template.
ones.

* Print an image.

* Manage an image file using thumbnails.

All demonstration projects * Unload a multipage image file.
were developed using

Microsoft Visual Basic. Note: The ActiveX Controls on-line help system identifies the

properties, methods, events, parameters, and constants that are
available in each version of Imaging for Windows.

Displaying an Image and Applying Fit-To Options
The FitTo Options demonstration project shows how to display an image
at various fit-to settings. Before walking through the demonstration
project, read the following section, which explains the concept of fitting
an image and describes the various fit-to options.

Fit-To Options Defined
Fit-to options govern the way an Image Edit control displays images.

The FitTo method of the Image Edit control lets you select — usually in
response to user input — the scaling factor, or fit-to option, applied to
images when they're displayed.

Most image application developers make fit-to functions available to their
end users. These functions let users scale the image so it can be seen
more clearly, which is particularly important when users read scanned
documents or faxes.

90

Adding Imaging Using ActiveX Controls |

(0

You can provide your users
with even more control over a
displayed image by using the
Zoom property of the Image
Edit control in addition to the
FitTo method.

You can provide the following fit-to options to your end users:

Best Fit — Scales the image so it appears in the entire Image Edit
control. The full height or the full width of the image appears in the
control, depending on which results in the least unused space.

Fit To Width — Scales the image so it matches the width of the Image
Edit control.

Fit To Height — Scales the image so it matches the height of the Image
Edit control.

Inch To Inch — Scales image pages so images of the same dimensions
appear the same size on the monitor.

Pixel To Pixel — Scales image pages so image pixels map to screen
pixels. A 200 DPI image would appear twice as large as a 100 DPI image
even when these images have the same dimensions.

Example

Users of your application may want control over the display of image
documents to make them easy to read.

Scenario

Assume Eileen receives several scanned business documents in her role as
product manager for a major computer company. Because she receives
these documents from others via e-mail, she has no control over how
they are scanned, but she really needs to be able to read them.

Because you included all of Image Edit’s fit-to options in your
application, Eileen can select the one that produces the best display
quality— enabling her to view the image documents clearly and read
them easily.

91

| Chapter 4

FitTo Options Project

The FitTo Options project demonstrates displaying an image at a variety
of fit-to options.

The file name for the FitTo
Options project is

Fi tTo. vbp.

rs

Friduy Movembes 15, 1996
Roberi Smith

IXT East Main Stroet
Wesst Speings, WA 1R

SPECIAL (WFER 20 PERCENT OFF!

Diear Bob,

T wand 4o thank you persomally for visiting cor hooth at the 3¢h annual Pew England
Frosthite show. All of es at Thermal Dynamics have the skills and lasswlalge W mes
el oo Brosthine prosection seeds

I bope vou had a chance o ook m the many insovanive froarhing protection product o
display & cer booth, | bes srany can b applied wo directly meet your needs today. The
henefits ane clear: increased combort and reduced medical bills,

Whesher il is @ compless head v toe personal frosshite protection kit, or jest & pair of
warsn ghoves, you will find our knowledgeable stafl ready and able to belp you.

As a special for stoppisg by our booth at the show, Thermal Drmamics will give you 20
persord off om any parchase of frosibite proieciion gear theough Febroary 1557,

S by and sex for yoursell how Thermal Dymamics can keep you warm. asd frosthine -
S Shie i

—FitTa Option
 BestFit & FitTowidth € FitToHeight © Inch To lnch

The project consists of one form and the following controls:
* One Image Admin control

* One Image Edit control

* Four Option Button controls in a control array

* One Frame control

* One Command Button control

It uses the following methods in the Image Edit control to provide the
display and fit-to functions:

Display — Displays the image file specified in the Image property of
the Image Edit control.

FitTo — Scales the image relative to the Image Edit control.

92

Adding Imaging Using ActiveX Controls |

Displaying and Fitting an Image
Start the FitTo Options project. The For m Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to display.

After you select the image file, the For m Acti vat e() event procedure
invokes the FitTo method of the Image Edit control with a parameter
value of BEST_FI T (literal 0). This action sets the initial fit-to setting of
the Image Edit control to the Best Fit option.

The procedure then sets the Value property of the corresponding
Option Button control to True, to indicate that Best Fit is the initial
fit-to mode.

Next, the Form Act i vat e() event procedure invokes the Display
method of the Image Edit control to display the image file at the initial
fit-to setting.

Private Sub Form_Activate()
'"Initialize to a FitTo option of Best Fit
ImgEditl.FitTo BEST_FIT
optFitTo(0).Value = True

'Display the selected image file
ImgEditl.Display

End Sub

To change the FitTo setting, click the desired option button in

the FitTo Setting frame on the FitTo Options window. The

opt Fi t To_d i ck() event procedure fires and executes the appro-
priate code in its Sel ect Case statement.

Each Case expression corresponds to the Index value of the FitTo
option buttons in the frame. Further, each Case expression invokes the
FitTo method of the Image Edit control, passing to it the appropriate
parameter values:

FitTo parameter — Determines the FitTo option applied:
— Case 0 invokes BEST_FI T (literal 0).
— Case 1 invokes FI T_TO W DTH (literal 1).
— Case 2 invokes FI T_TO HEI GHT (literal 2).
— Case 3 invokes | NCH_TO_I NCH (literal 3).

93

| Chapter 4

(0

You can control whether
scrollbars appear in the Image
Edit control by setting the
ScrollBars property to the
appropriate value.

Repaint parameter — Determines whether the image is refreshed
immediately. All Case expressions invoke the FitTo method with a
Repaint setting of Tr ue.

As you try the various FitTo options, notice the impact on the displayed
image and how the scrollbars appear and disappear as needed.

Case 0

Case 1

Case 2

Case 3

End Select

End Sub

Private Sub optFitTo_Click(Index As Integer)
Select Case Index

'Best Fit
ImgEditl.FitTo BEST_FIT, True

"Fit To Width
ImgEditl.FitTo FIT_TO_WIDTH, True

'Fit To Height
ImgEditl.FitTo FIT_TO_HEIGHT, True

"Inch To Inch (Actual Size)
ImgEditl.FitTo INCH_TO_INCH, True

Converting an Image

This demonstration project shows how to add image conversion
functions to your image-enabled applications. Before walking through
the demonstration project, read the following sections, which explain the
concept of image conversion.

Image Conversion Defined

94

Converting an image involves changing one or more of the following
attributes:

= File type

* Color type

* Compression type

* Resolution

= Size

There are many reasons why your end users would want to convert an
image. The following sections explain some of them.

Adding Imaging Using ActiveX Controls |

File Type

The Imaging ActiveX controls provide three read/write file types. Your
users will want to use the file type that best satisfies their requirements.

TIFF — Supports all color types and many compression types. Its image
files can contain multiple pages and can store Summary property
information and image annotation data separate from the actual image
data.

BMP — Supports all color types. While its image files can contain only a
single image page that cannot be compressed, they are readable by
anyone with Windows on the PC.

JPG-JFIF — Supports 256 Shades of Gray and True Color. This image
file contains a single image page that is JPEG compressed.

Example

Users of your application may want to change the file type to take
advantage of the new file type’s special features.

Scenario

Assume Krystina sends Tom two BMP image files of an automobile that
was involved in an accident recently. Because the two BMP files are
separate and quite large, Tom converts each one to the TIFF file format
to take advantage of its special features. Once in the TIFF format, Tom
can:

* Combine the two files into one multipage TIFF image file.
* Apply compression to save disk space.

* Annotate the images without making the annotations a permanent
part of the image.

* Add Summary property information to the image file.

Color Type

The color type — also known as the page type or data type — specifies
the number of colors images can have. Your users will want to use, or
convert images to, the color type that best satisfies their color and storage
requirements.

The factor that determines the color content of images is the number of
data bits that compose each picture element (pixel). The formula for

determining the color content of image documents is 2 "™Per of bits T
more color an image contains, the greater the number of data bits in each

pixel.

95

| Chapter 4

96

Aesthetics aside, the most important consideration when selecting the
color type is file size. The greater the number of data bits per pixel, the
greater the memory and storage requirements.

The following color types are available:

Black and White — One bit makes up each pixel. Images can therefore
have only two colors: black and white.

16 Shades of Gray — Four bits make up each pixel. Images can
therefore have a maximum of 16 shades of gray.

256 Shades of Gray — Eight bits make up each pixel. Images can
therefore have a maximum of 256 shades of gray.

16 Colors — Four bits make up each pixel. Images can therefore have a
maximum of 16 colors.

256 Colors — Eight bits make up each pixel. Images can therefore have
a maximum of 256 colors.

True Color — Twenty-four bits make up each pixel. Images can
therefore have a maximum of 16,777,216 colors.

Example

Users of your application may want to change a color type to save disk
space.

Scenario

Assume Tom scans a text-only insurance document in True Color and
then sends the image to Krystina so she can view it. When Krystina
receives the image, she notices that its file size is a little large for a text-
based image. Realizing that color is not a requirement for this type of
image, she converts its color type to Black and White. File size drops
27%, and the document is completely readable.

Compression Type

When saved to disk, images can require a large amount of storage space.
Compression is a technique that reduces this large disk space
requirement. The more compression applied when saving images, the
lower the disk space requirement. Your users will want to use, or convert
images to, the compression type that best satisfies their storage
requirements.

Adding Imaging Using ActiveX Controls |

JPEG is a lossy compression
type, which means that some
data is altered and lost during
compression. Usually, data
alteration and loss are not
significant. Lossy compression
types often offer higher
compression ratios than do
lossless types, like LZW.

The following compression types are available.

CCITT Group 3 (1d) Fax — Should be used to compress black-and-
white TIFF images when users anticipate sending them as faxes over
unreliable data links.

CCITT Group 3 (1d) Modified Huffman — Should be used to
compress black-and-white TIFF images when users anticipate sending
them as faxes over unreliable data links, and they require increased
compression over that provided by Group 3 (1d) Fax.

CCITT Group 4 (2d) Fax — Should be used to compress black-and-
white TIFF images when users anticipate saving them to disk or sending
them as faxes over reliable data links, such as ISDN, X.25, or e-mail.

Note: With CCITT compression types, users can set the Reversed Bit
Order compression option, which signifies that the compressed
data codes begin at the left, most significant bit (MSB) of each
byte and are ordered from MSB to the least significant bit (LSB).
Users should employ this option when they need to exchange
images with someone whose image software cannot handle
non-reversed image documents.

JPEG — Can be used to compress TIFF images with a color type of 256
Shades of Gray or True Color. Should be used when users want to
significantly reduce the storage requirement, and they don’t mind if the
image is altered by the compression process.

When users select this compression type, they can also specify JPEG
compression options, which comprise all combinations of high, medium,
or low Resolution and high, medium, or low Quality. The higher the
Resolution and Quality settings, the greater the image quality, but the
greater the disk space requirement.

For example, an image compressed with the High Resolution/High
Quality option has the highest image quality and the highest disk space
requirement. Conversely, an image compressed with the Low
Resolution/Low Quality option has the lowest image quality and the
lowest disk space requirement.

LZW — Can be used to compress TIFF image documents of any color
type, except black-and-white. Should be used when users do not want
the image to be altered by the compression process.

PackBits — Can be used to compress black-and-white TIFF image
documents for any purpose.

Uncompressed — No compression options are set.

97

| Chapter 4

98

Example

Users of your application may want to change the compression type to
save disk space.

Scenario

In an earlier scenario, Krystina sent Tom two True Color bitmap (BMP)
image files of an automobile that was involved in a recent accident. Tom
converted each BMP file to the TIFF file format and saved both of the
images in a single TIFF image file. The resulting uncompressed file was
quite large at 21 megabytes (MB); so, Tom elected to compress the file
using the JPEG compression type with the following compression
options:

* JPEG Compression: Medium
* JPEG Resolution: Medium
The resulting image file was reduced to just under 2 MB.

Resolution

Resolution determines the display quality of an image. Typically
expressed as horizontal and vertical dots per inch (dpi), resolution
describes the density of the dots that make up the image. The higher the
resolution — or dots per inch — the better the display quality.

An important consideration when setting the resolution is file size. The
greater the dots per inch, the greater the memory and storage
requirements. For example, the file size of an image with a resolution of
200 x 200 dpi is four times greater than the file size of the same image at
100 x 100 dpi.

Another important consideration when setting the resolution is how the
images are to be used:

Displayed on the screen — For images that are displayed on the
screen, resolution need not be any greater than the display resolution of
the monitor, typically 75 x 75 dpi to 100 x 100 dpi.

Faxed — For images that are faxed, resolution should conform to the
international fax standard of 200 x 200 dpi.

Converted to text or printed — For images that are printed,
resolution should be set to 300 x 300 dpi.

Your users want to use, or convert images to, the resolution that best
satisfies their aesthetic, storage, and usage requirements.

Adding Imaging Using ActiveX Controls |

Size

Example

Users of your application may want to change the resolution of an image
to save disk space.

Scenario

Assume Tom received a complimentary letter from a customer that he
wants to post on the company’s intranet page for all to see. Tom knows
that he can use your application to scan the letter and convert it to
HTML using the OCR functions you have provided.

Because you stated in your documentation that the OCR engine
processes images with optimum efficiency when their resolution is 300 x
300 dpi, Tom scans the letter at that resolution.

After performing OCR on the image and uploading its HTML file to
the Web server, Tom realizes that he wants to save the image on his

PC — just in case he needs it later. Knowing that an image with a
resolution of 300 x 300 dpi takes more storage space than one with a
lower resolution, Tom uses the conversion functions in your program to
convert the image to 200 x 200 dpi just prior to saving it.

The size settings determine the dimensions of an image. Your users may
want to change the size of the image and/or the unit of measure
employed to suit their purposes.

Example

Users of your application may want to change the size of an image to
accommodate an annotation.

Scenario

Assume Krystina scans a claim form and then wants to add a rubber
stamp annotation to the bottom of it. The problem is: there’s no room at
the bottom of the image to accommodate the annotation. To make room
for the annotation, Krystina converts the size of the image from 8 1/2 x
11 inches to 8 1/2 x 12 inches, thereby making room for the annotation.

99

| Chapter 4

Convert Image Project

The file name for the Convert
project is Convert . vbp.

The Convert Image project shows how to provide image file type and
page property conversion functions to your users.

The project consists of one form and the following controls:
* One Image Admin control

* One Image Edit control

* Three Command Button controls in a control array

It uses the following Imaging methods to provide the image conversion
functions:

ShowFileDialog (Image Admin) — To enter the path and file name
and select the new file type of the converted image.

SaveAs (Image Edit) — To save the image file with the new file type.

ShowPageProperties (Image Edit) — To change the color type,
compression type, resolution, and/or size of the image page.

Save (Image Edit) — To save the image file after changing its color

type, compression type, resolution, and/or size.

Note: Users can change the color type, compression type, resolution,
and size on a page-by-page basis only.

Changing the File Type

00—

Similar to the Microsoft
Common Dialog box, you can
use the Filter property of the
Image Admin control to
populate the Files of Type list
box with the file types you
desire.

100

Start the Convert Image project. The application begins by displaying an
Open dialog box, which lets you select the image file you want to
convert. After you select the image file, the application displays it.

To change the file type of the displayed image, click the File Type
button. The cndConvert _C i ck() event procedure fires and executes
the code in Case 0 of the Sel ect Case statement.

The procedure invokes the ShowFileDialog method of the Image
Admin control, passing to it the following parameter values:

SaveDl g (literal 1) — To display a Save As dialog box

frmConvert | mage. hWhd — To assign the parent window handle to
the Save As dialog box

The Save As dialog box lets you specify the new path and file name and
the new file type you want for the image. It assigns the new path and file
name to the Image property of the Image Admin control, and it assigns

Adding Imaging Using ActiveX Controls |

the list box index value of the selected file type to the FilterIndex
property of the Image Admin control.

The procedure continues by assigning the content of the Image property
of the Image Admin control to the Image property of the Image Edit
control. And it assigns the new file type — provided by the value of the
FilterIndex property of the Image Admin control — to the

i nt Fi | eType local variable.

Next, the procedure invokes the “SaveAs method of the Image Edit
control, passing to it the new path and file name provided by the Image
property and the new file type provided by i nt Fi | eType.

The SaveAs method saves the image file using the new file name and file

type.

Changing the Color, Compression, Resolution, and Size

If necessary, start the Convert project and open an image file.

To change the color type, compression type, resolution, and/or size of
the displayed image, click the Page button. The cnmdConvert _
dick() event procedure fires and executes the code in Case 1 of the
Sel ect Case statement.

The procedure invokes the ShowPageProperties method of the Image
Edit control, which displays the Page Properties dialog box. As long as
the Fal se parameter is included in the call to ShowPageProperties
method, the dialog box can be used to specify a new color type,
compression type, resolution, and/or size for the image page.

Page Properties 2=

Color | Compression Hesnlutionl Size IEIverIa_l,J File

&' Black and White
1 Shades of Gray
' 286 Shades of Gray
1 1E Colorz

286 Colors

" True Color [24 bit)

101

| Chapter 4

102

Private Sub cmdConvert_CTick(Index As Integer)
Dim intFileType As Integer
Dim iResponse As Integer

Select Case Index
Case 0 'File Type button
'Set the Filter property to include the file types that can be
'written to disk.

ImgAdminl.Filter = "TIFF Image file (*.tif)|*. tif|
Bitmap Image file (*.bmp)|*. bmp|"

'Set the FilterIndex property to the file type of the displayed image
'if it can be written; otherwise to TIFF.
If ImgAdminl.FileType = FileTypeBMP Then
ImgAdminl.FilterIndex = 2
Else
ImgAdminl.FilterIndex =1
End If

'"Invoke ShowFileDialog method.
On Error GoTo CancelPressed_EH
ImgAdminl.ShowFileDialog SaveDlg, frmConvertImage.hWnd

'Set Image property of the Image Edit control to the filename
'returned by theOpen dialog box.
ImgEditl.Image = ImgAdminl.Image

'Set the iFileType variable to the file type returned by the
'Open dialog box.
If ImgAdminl.FilterIndex = 2 Then
iFileType = iFileTypeBMP
Else
iFileType = FileTypeTIFF
End If

"Invoke the SaveAs method using the new file name and file type
ImgEditl.SaveAs ImgEditl.Image, intFileType

End Select
CancelPressed_EH:

End Sub

The ShowPageProperties method returns an integer that indicates
whether the user has pressed the OK or Cancel button on the dialog

Adding Imaging Using ActiveX Controls |

box (the standard vbOK and vbCancel constants are available for use).
The cndConvert _C i ck() event procedure assigns this value to the
i Response local variable.

The procedure evaluates the value of the i Response variable. If users
click the OK button, it saves the altered image using the Save method of
the Image Edit control. If users click the Cancel button, the event
procedure exits without saving the image.

Private Sub cmdConvert_Click(Index As Integer)
Dim intFileType As Integer
Dim iResponse As Integer

Select Case Index

Case 1 'Page button

'Display the ShowPageProperties dialog box to let users convert the

"image

iResponse = ImgEditl.ShowPageProperties(False)

If iResponse = vbOK Then
'User clicked OK on the dialog box so save the converted image
ImgEditl.Save

Elself iResponse = vbCancel Then
'User clicked Cancel on the dialog box so exit without saving
Exit Sub

End If

End Select
CancelPressed_EH:

End Sub

103

| Chapter 4

Copying An Image

The Image Copy demonstration project shows how to add a Clipboard
copy function to your image-enabled applications. Before walking
through the demonstration project, read the following section, which
explains the concept of using the Clipboard with image data.

Clipboard Functions Defined

104

You'’re probably familiar with using the Clipboard to copy, cut, and paste
text data within your development environment or word processor.
Using the Clipboard with image data is similar.

The Imaging ActiveX controls provide several properties, methods, and
events that let you add Clipboard functions to your image-enabled
applications. With them, your users can:

* Copy or cut image and/or annotation data to the Clipboard.

* Paste image or annotation data from the Clipboard onto an image
displayed in the Image Edit control or into any application that
supports the pasting of image data (for example, Microsoft Word,
WordPad, Exchange, or Excel).

Depending on how you code your application, you can let your users
copy or cut an entire image page, a selected portion of an image page, or
selected annotations.

The following sections briefly describe the properties, methods, and
events of the Image Edit control you’ll find useful when adding
Clipboard functions to your applications.

Clipboard Copy and Cut

ClipboardCopy method — Copies image or annotation data to the
Clipboard.

ClipboardCut method — Copies image or annotation data to the
Clipboard and then removes the data from the Image Edit control.

Clipboard Paste

IsClipboardDataAvailable method — Checks to see if image or
annotation data is present in the Clipboard. You can use this method to
see if data is available for pasting.

ClipboardPaste method — Pastes image or annotation data from the
Clipboard onto an image in the Image Edit control.

Adding Imaging Using ActiveX Controls |

CompletePaste method — Completes a Clipboard paste operation,
making the pasted image or annotation data a part of the original image.

PasteCompleted event — Fires when the pasted image or annotation
data is committed to a location on the target image.

PasteClip event — Fires when the pasted image or annotation data is
too large to fit within the confines of the target image.

Image Selection

SelectionRectangle property — Sets whether a selection rectangle is
drawn when an end user clicks the left mouse button and drags the
mouse pointer over a displayed image. Can be used to select a portion of
an image to copy or cut to the Clipboard.

DrawSelectionRect method — Draws a selection rectangle on an
image programmatically.

SelectionRectDrawn event — Fires after a selection rectangle has
been drawn by the end user or by the DrawSelectionRect method.

Note: A selection rectangle can be used to select a portion of an image
with or without annotations; however, it cannot be used to
select annotations alone.

Annotation Selection

AnnotationType property — When set to the Select Annotations
annotation type, lets end users select one or more annotations for
copying or cutting to the Clipboard (or for some other Imaging
purpose).

Draw method — Draws an annotation. Can be used to select
annotations programmatically by drawing a Select Annotations
annotation type.

MarkSelect event — Fires after an end user or the program selects one
or more annotations for copying or cutting to the Clipboard (or for some
other Imaging purpose, such as ZoomToSelection, for example).

Note: The Select Annotations annotation type selects annotations
exclusively. It does not select the underlying image data.

105

| Chapter 4

Copy Image Project

(0

The file name for the Copy
Image project is
| ngcopy. vbp.

106

Example

Users of your application may want to copy an image page to the
Clipboard so they can paste the image into a word processing document.

Scenario

Assume Susan is writing a follow-up letter to her insurance company
about a reimbursement claim she has yet to receive. Before she sent the
original receipt, she scanned it and saved it to disk. Now she wants to
include a copy of the receipt in her follow-up letter.

With the image of the receipt displayed in your application, she copies it
to the Clipboard using the Clipboard functions you provided. Then, in
Word, she pastes the image into her letter.

The Copy Image project demonstrates copying an entire image page to
the Clipboard.

w Image Copy m

—Copied To Clipboard——— -~ Data In Clipboard

Automaobile _,Q___: r
nsurance Automobile

Insurance
Policy

Tha snruat mestng o THE

Laaesans = aeennnumdee e

The project consists of one form and the following controls:

* One Image Admin control
* One Image Edit control
* One Picture Box control

* Two Frame controls

Adding Imaging Using ActiveX Controls |

It uses the following methods in the Image Edit control to provide the
image copy function:

Display — To display the image in the Image Edit control.
ClipboardCopy — To copy the image page to the Clipboard.

Copying the Image Page
Start the Image Copy project. The For m Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to copy.

After you select the image file, the procedure invokes the Display
method to display the image in the Image Edit control (which is inside
the Copied To Clipboard frame).

Next, the procedure invokes the ClipboardCopy method of the Image
Edit control, passing to it the following parameters:

* The Left and Top coordinates of the image relative to the Image Edit
control (0,0).

* The Width and Height of the image in pixels, as provided by the
current values of the ImageScaleWidth and ImageScaleHeight
properties of the Image Edit control.

107

| Chapter 4

108

Finally, the procedure obtains the current image content of the Clipboard
using Visual Basic’s GetData method and displays it in the PictureBox
control (which is inside the Data In Clipboard frame) I.

Private Sub Form_Load()
Dim vntTemp As Variant
Dim TngRPosition As Long
Dim sngLeftChar As Single, sngRightChar As Single

'Check for valid TIFF file.
If ImgAdminl.FileType <> 1 Then
GoTo File_EH
Else
'Use the FitTo method to make the displayed image fit into the width
'of the Image Edit control.
ImgEditl.FitTo FIT_TO_WIDTH

'Display the image.
ImgEditl.Display

'Copy the whole image onto the Clipboard.
ImgEditl.ClipboardCopy 0, 0, ImgEditl.ImageScaleWidth, _
ImgEditl.ImageScaleHeight

'Get the image data from the the Clipboard and display it in
"the PictureBox control to make show it was copied.
picIlmage = Clipboard.GetData()

End If

Exit Sub

File_EH:

MsgBox "Quitting the program now. Please select a TIFF file to use the _
program."

'Quit the program

End

End Sub

Adding Imaging Using ActiveX Controls |

Printing An Image

The Print Image demonstration project shows how to add image
printing to your image-enabled applications. Before walking through the
demonstration project, read the following section, which explains the
concept of printing an image file.

Image Printing Defined

Printing an image file is very similar to printing a word processing
document.

You can use the ShowPrintDialog method of the Image Admin control
to present a Print dialog box to the end user. With it — and the Print
Options dialog box that can be invoked from it — the end user can
select:

* The printer to use.

* The pages to print.

* The number of copies to print, and whether to collate.
* The output format to use.

* The page orientation to use.

* Whether to print annotations.

The PrintImage method of the Image Edit control performs the actual
print operation. Its parameters let you set the start page, end page, output
format, annotation print preference, and printer to use.

Example

Users of your application may want to print an image file on a particular
printer — and have complete control over the process of doing so.

Scenario

Assume Geoft is using your application to view an image of a technical
drawing. As he views it, he annotates it with his comments.

After entering his last comment, Geoff realizes that he is supposed to
meet Susan for lunch in just 15 minutes. He would like her to take a look
at the technical drawing too — only he doesn’t want her to see his
annotated comments.

On the File menu of your application, Geoft clicks Print. Then, on the
Print dialog box, he clicks the Options button.

109

| Chapter 4

Print Image Project

The file name for the Print
Image projectis Pri nt . vbp.

110

On the Print Options dialog box, he unchecks the Print displayed
annotations and zones check box and then clicks OK to return to the
Print dialog box.

On the Print dialog box, Geoft selects the printer he wants use and
specifies the page range and number of copies to print. When he clicks
OK, your application prints the drawing without Geoff’s annotations.

The Print Image project demonstrates printing an image file.

T/D

Friday Movemnber 15, 1996

Raobert Smith
127 Enst Main Street
West Springs, MA 01824

SPECIAL OFFER 70 FERCENT OFF!

Diesar Bob,

1wt o thank you permonadly for visiting our booth ot the Sth anous] Mew England
Frosthite show, Allof us an Thermal Dynamnics bavog the skills and knowledge o meet
all waur Frosthite protectson meeds,

1 hope you hind & chise: to ook # the many ismovalive frosibite protection products on
display in our boath. | bet many can be applied 1o directly meet your needs taday. The
benelils are chear, inensased comiort and reduced medical bills.

Whether il is a complele head o toe persanal frosthite prossction ki, or just a pair of
weaamn ploves, you will find our knowledgeable staff ready and ablz i0 help you

EBrint Exit

The project consists of one form and the following controls:
* One Image Admin control

* One Image Edit control

* Two Command button controls in a control array

And it uses the following Imaging methods to provide the print image
function:

ShowPrintDialog (Image Admin) — To display a Print dialog box
to the end user.

PrintImage (Image Edit) — To actually print the image.

Adding Imaging Using ActiveX Controls |

Printing an Image File
Start the Print Image project. The For m Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to print.

After you select the image file, the procedure displays it in the Image Edit
control.

To print the image, click the Print button. The cmdPri nt _Cl i ck()
event procedure fires and executes the code in Case 0 of the Sel ect
Case statement.

The procedure invokes the ShowPrintDialog method of the Image
Admin control, passing to it the handle of the parent window.

Note: Even though passing the handle to the parent window is
optional, for best results a/lways include it when you invoke the
ShowPrintDialog method.

The ShowPrintDialog method displays a Print dialog box, which lets
you specify the print options mentioned earlier.

HF Laseret 45 X -~

111

| Chapter 4

After you click the OK button on the Print dialog box, the Image

o_' Admin control sets several of its print-related properties to values that
You can set the print-related correspond to the selections made on the Print and Print Options
properties to preferred values dialog boxes. (Keep in mind that the Print Image project does not use all
prior to invoking the Print of these properties.)

dialog box. Doing so lets you
preset dialog box fields to

default settings. Print-Related Properties Set By the Print and Print Options

Dialog Boxes

Image Admin Associated Field Value
Property and Property
Set Dialog Box Contains
PrintAnnotations Print displayed True or False —
annotations and | Indicating whether to
zones check box print annotations

on the Print
Options dialog

box
PrintCollate Collate check box | True or False —
on the Print dialog | Indicating whether to
box collate image pages
PrintEndPage Pages to text box | The ending page
on the Print dialog | number in the range
box of pages to print
PrintNumCopies Number of The number of

copies text box on | copies to print
the Print dialog

box
PrintOrientation Print The page
orientation list orientation:
box on the Print 0 — Portrait
Options dialog 1 — Landscape
box 2 — Automatic
PrintOutputFormat Print format list The output format to
box on the Print use:
Options dialog 0 — Pixel to pixel
box 1 — Actual size
2 — Fit to page
3 — Best fit

112

Adding Imaging Using ActiveX Controls |

Print-Related Properties Set By the Print and Print Options

Dialog Boxes (continued)

Image Admin Associated Field Value
Property and Property
Set Dialog Box Contains
PrintRangeOption The following Whether to print:
option buttons on 0 — All pages
the Print dialog 1 — Range of pages
box: 2 — Current page
* All pages 3 — Selection
* Current page
* Selection
* Pages
PrintStartPage Pages from text The start page
box on the Print number in a range of
dialog box pages to print
PrintToFile Print to file check | True or False —

box on the Print
dialog box

Indicating whether to
print to a file

113

| Chapter 4

The procedure continues by evaluating the value of the
PrintRangeOption property. It invokes the PrintImage method of
the Image Edit control with the StartPage and EndPage parameter values
that are appropriate for the PrintRangeOption value selected on the
Print dialog box (as described in the following table).

StartPage and EndPage Parameter Values Passed

PrintRangeOption StartPage EndPage
Constant (Literal) Parameter Parameter
PrintAll (0) The value of the The value of the

PrintStartPage PrintEndPage
property of Image property of Image
Admin control Admin control

PrintRange (1) The value of the The value of the
PrintStartPage PrintEndPage
property of Image property of Image
Admin control Admin control

PrintCurrent (2) The value of the The value of the
Page property of Page property of

Image Edit control | Image Edit control

Each invocation of the PrintImage method also includes the
OutputFormat and Annotation parameter values supplied by the
PrintOutputFormat and PrintAnnotations properties of the Image
Admin control.

Once invoked, the PrintImage method prints the image to the printer
or file specified.

114

Adding Imaging Using ActiveX Controls |

Private Sub cmdPrint_Click(Index As Integer)
Select Case Index
Case 0 'Print
On Error GoTo Print_EH

'Display the Print dialog box.
ImgAdminl.ShowPrintDialog frmPrintImage.hWnd

'User pressed OK continue with print
If ImgAdminl.StatusCode = 0 Then

"Check on which option the user selected then print

"image using the Image Edit control.

I[f ImgAdminl.PrintRangeOption = PrintAll Then
ImgEditl.PrintImage ImgAdminl.PrintStartPage, _
ImgAdminl.PrintEndPage, ImgAdminl.PrintOutputFormat, _
ImgAdminl.PrintAnnotations

End If

If ImgAdminl.PrintRangeOption = PrintRange Then
ImgEditl.PrintImage ImgAdminl.PrintStartPage, _
ImgAdminl.PrintEndPage, ImgAdminl.PrintOutputFormat,
ImgAdminl.PrintAnnotations

End If

If ImgAdminl.PrintRangeOption = PrintCurrent Then
ImgEditl.PrintImage ImgEditl.Page, ImgEditl.Page, _
ImgAdminl.PrintOutputFormat, ImgAdminl.PrintAnnotations

End If

End If

Case 1 "Exit
"End the program
End

End Select

End Sub

115

| Chapter 4

Scanning an Image Using a Template

The Template Scanning demonstration project shows how to add
template scanning to your image-enabled applications. Before walking
through the demonstration project, read the following section, which
explains the concept of template scanning.

Template Scanning Defined

(0

The ScanTo property also has
settings that permit scanning
directly to a file (non-Template
Scanning). When scanning to a
file, consider using the
ShowScanNew and the
ShowScanPage methods of
the Image Scan control to
quickly add scanning functions
to your applications.

116

When the Imaging software operates in the Template Scanning mode, it
saves scanned images to files that are named and incremented
automatically.

Each file name is based on a template, which consists of:

* A path to where the images are saved.

* A file name prefix, which is used to generate the file names.

The end user of the application usually provides the path and prefix.
Responding to input from your end user, you can place the Imaging
software in Template Scanning mode by setting the ScanTo property of
the Image Scan control to the appropriate value. You can then specify the

template by setting the Irmage property of the Image Scan control to the
path and prefix provided.

For example, if the user wants image files to be saved to the
c:\claims\automobile path using file names prefixed with auto, enter the
following string in the Image property of the Image Scan control:

i mgScanl. | mage = “c:\cl ai ns\ aut onobi | e\ aut 0”

Using this template, the Imaging software will save images to files named
auto0001.tif, auto0002.tif, and so on in the c:\claims\automobile folder
(TIFF file format assumed).

The file type as well as the setting of the PageCount and MultiPage
properties of the Image Scan control determines the number of image
files generated and the number of image pages saved per file.

When scanning images using the BMP file type, each image page is
always saved to a separate file. For example:

c:\cl ai ms\ aut onobi | e\ aut 00001. bnp
c:\cl ai ns\ aut onobi | e\ aut 00002. bnp
c:\cl ai ms\ aut onobi | e\ aut 00003. bnp

This occurs because the BMP file type does not support multiple image
pages per file.

Adding Imaging Using ActiveX Controls |

When scanning images using the TIFF file type — which supports
multiple image pages per file — the setting of the PageCount and
MultiPage properties of the Image Scan control determines the number
of image files created and the number of pages in each image file. (Refer
to the following table.)

PageCount and Multipage Property Influence

PageCount MultiPage Number of Pages In
Setting Setting Image Files Image File
0 True 1 All pages
scanned
0 False One file for 1
each page
scanned
X2 True Total number X
of pages
scanned
divided by X
X False X 1

a. Any value greater than 0.

For example, if you set the PageCount property to 5 and the
MultiPage property to True, and then you scan 20 pages, the Imaging
software creates four image files with five pages in each one.

Example

Users of your application may want to use a scanner equipped with an
automatic document feeder (ADF) to automatically scan multiple pages
into one or more image files.

Scenario

Assume Gloria has five 10-page documents she wants to scan using her
ADF-equipped scanner and your application.

She wants each 10-page document to be saved to its own TIFF image file
in the c:\employees path, and she wants the file name of each document
to be prefixed with the word review.

117

| Chapter 4

118

Because you provided a way for users to:

= Specify the desired path,

* Enter the file prefix,

= Select the file type,

* Set the PageCount property, and

* Set the MultiPage property,

Gloria was able to specify that:

* All documents are saved in the ¢:\employees folder.
* Each file name begins with the word review:

* Each document is scanned and saved as TIFE

* Each document contains 10 pages.

* Each image file contains multiple image pages.

When Gloria commences scanning, your application:

1 Sets the ScanTo property of the Image Scan control to 3
(DisplayAndUseFile Template).

Note: A ScanTo property setting of 4 (UseFileTemplateOnly) also
enables template scanning.

2 Creates the template by concatenating the path, a backslash, and the
template prefix and by setting the Image property of the Image
Admin control to the resulting string: ¢:\employees\revi.

3 Sets the FileType property of the Image Admin control to TIFE
4 Sets the PageCount property of the Image Admin control to 10.
5 Sets the MultiPage property of the Image Admin control to Tiue.

6 Scans 50 pages and saves each set of 10 scanned pages to 5 individual
TIFF image files — each one generated and incremented using the
template specified:

c:\enpl oyees\revi 0001.tif
c:\enpl oyees\revi 0002.tif
c:\enpl oyees\revi 0003. tif
c:\enpl oyees\revi 0004.tif
c:\enpl oyees\revi 0005. tif

Adding Imaging Using ActiveX Controls |

Template Scan Project

The Template Scan project demonstrates scanning to a template.

The file name for the Template

Scan project is w, CAAutolnsurance - Template Scan E

Tenpl ate. vbp. File Options Help
Automobile il File Brefic ey
Insurance IR

Poli
oy E— Fages perFile: Im

Start Scan

The project consists of the following forms and modules:
frmFileType — Enables the user to select the desired file type.
frmHelp — Presents a brief help message to the user.

frmMain — Lets the user enter the template prefix, specify the number
of pages per file, commence scanning, and view the first page of the
image file.

frmPaperSize — Enables the user to specify the desired paper size.
frmPath — Enables the user to specify the desired template path.

modMain — Contains global constant definitions and global variable
declarations.

The scanning functions exist in the Main form (frmMain), which
contains the following controls:

* One Image Scan control
* One Image Edit control
* Two text box and label controls

* One Command button control

119

| Chapter 4

120

Three menus

The form uses the following methods of the Image Scan control to

provide the scanning functions:

ShowSelectScanner — To select the scanner to use.

StartScan — To scan images.

Template Scanning

Start the Template Scan project. The Main form appears.

In the File Prefix text box, enter the prefix you want for the template.
Then, in the Pages per File text box, enter the number of pages you
want each image file to contain.

On the File menu:

Click File Type. On the File Type form, click the file type you
want and then click OK. Depending on the option button you
clicked, the cmdOK_C i ck() event of the File Type form
(frmFileType) sets the FileType property of the Image Scan control
— contained on the Main form (frmMain) — to the file type
specified.

Click Path. On the Folder dialog box, specify the template path,
which is where the image files are saved, and then click OK. The
cnmdOK_Cli ck() event of the Path form (frmPath) sets the global
variable, gst r Fol der, to the path specified. (Later, the

cndSt art Scan_d i ck() event of the Main form uses the value of
gstr Fol der to set the Image property of the Image Scan control).

On the Options menu:

Click Paper Size. On the Paper Size dialog box, click the paper
size you expect to scan and then click OK. Depending on the option
button you clicked, the cmdOK_Cl i ck() event of the Paper Size
form (frmPaperSize) sets the global variable, gsngAspect , to the size
specified. It then calls the For m Resi ze() event of the Main form,
which uses the value of gsngAspect, to resize the Main form and
its controls (not shown).

Adding Imaging Using ActiveX Controls |

Private Sub cmdOK_Click()

'Set the File Type property of the Image Scan
‘control on frmMain according to File Type option
"button on this form. In addition, set the Enabled
'property of the label and text box controls accordingly.
If optTiff.Value Then
frmMain!ImgScanl.FileType = TIFF
frmMain!l1blPages.Enabled = True
frmMain!txtPages.Enabled True
Elself optBMP.Value Then
frmMain!ImgScanl.FileType = BMP_Bitmap
frmMain!1blPages.Enabled = False
'Set text box to 1 because BMP is a
'single-page file format
frmMain!txtPages.Text =1
frmMain!txtPages.Enabled = False
End If

Unload Me

End Sub

Private Sub cmdOK_Click()

'Set the global path variable to the path specified
gstrFolder = dirPath.Path

'Set the Caption of the Main form to the path specified
frmMain.Caption = gstrFolder + " - " + gstrCMainCaption

'UnToad the Path form
UnToad Me

End Sub

121

| Chapter 4

122

Private Sub cmdOK_Click()

'Set the global Aspect variable to either
"the size selected using an option button
'or the custom values entered
If optlLetter Then
gsngAspect = 11 / 8.5
Elself optlLegal Then
gsngAspect = 14 / 8.5
Elself optOther Then
If CSng(txtWidth.Text) < 1 Then
txtWidth.Text =1
Beep
End If
If CSng(txtHeight.Text) < 1 Then
txtHeight.Text =1
Beep
End If
msngTmpWidth = CSng(txtWidth.Text)
msngTmpHeight = CSng(txtHeight.Text)
gsngOtherWidth = CSng(txtWidth.Text)
gsngOtherHeight = CSng(txtHeight.Text)
gsngAspect = gsngOtherHeight / gsngOtherWidth
End If

'Hide this form, resize frmMain, and reset the
'Image Edit control to Best Fit
frmPaperSize.Hide

frmMain.Form_Resize

End Sub

Adding Imaging Using ActiveX Controls |

* Click Scan Options to apply compression. The
mmuConpr essi onOpti ons_d i ck() event in the
Main form invokes the ShowScanPreferences method
of the Image Scan control. The method displays a Scan Options
dialog box that lets you specify the compression you want.

Scan Options

Private Sub mnuCompressionOptions_Click()
"Invoke the ShowScanPreferences method which
'displays the Scan Options dialog box
ImgScanl.ShowScanPreferences

End Sub

123

| Chapter 4

124

* Click Select Scanner to select the scanner you want to use. The
muSel ect Scanner _Cl i ck() event in the Main form invokes the
ShowSelectScanner method of the Image Scan control. The
method displays a Select Scanner dialog box that lets you select the

scanner you want.

Select Scanner

2] x]

— WAl scanners

Kodak DC26 Digital Camera

Fulitsu ScanParner 600C

[u}

Cancel

o |

Private Sub mnuSelectScanner_Click()

'Invoke the ShowSelectScanner method which

'displays the Select Scanner dialog box
ImgScanl.ShowSelectScanner

End Sub

* Click Stop Button to have the Imaging software display a Stop

button while scanning.

The musSt opButt on_d i ck() event in the Main form sets the
StopScanBox property to True or False (as appropriate) to either
display, or not display, the Stop button. The Stop button enables you
to abort a scanning operation in progress.

Adding Imaging Using ActiveX Controls |

Private Sub mnuStopButton_Click()

'Set the StopScanBox property in accordance with
'"the Checked status of the mnuStopButton menu

'selection

If mnuStopButton.Checked Then
mnuStopButton.Checked = False
ImgScanl.StopScanBox = False

Else

mnuStopButton.Checked = True
ImgScanl.StopScanBox = True

End If

End Sub

To begin scanning, click the Start Scan button. The
cndSt art Scan_Cl i ck() event procedure in the Main
form fires and executes its code.

The procedure sets several properties of the Image Scan control to
enable template scanning:

DestImageControl — Set to the same value as the ImageControl
property of the Image Edit control to permit image display while
scanning.

Note: Setting the DestimageControl property to the value of the
ImageControl property is essential whenever you want to
display the image being scanned. It may be used for all types of
scanning — not just template scanning.

ScanTo — Set to Di spl ayAndUseFi | eTenpl at e (literal 3) to select
template scanning.

Image — Set to the template, which is a concatenated string containing:

— The path (as specified on the Path form and assigned to the
gst r Fol der global variable),
— A backslash (\), and
— The file name prefi x (as specified in the File Prefix text box).
PageCount — Set to the value entered in the Pages per File text box
to establish the number of pages per file.

MultiPage — Set to Tr ue to permit the scanning of multiple image
pages.

125

| Chapter 4

Next, the procedure invokes the StartScan method of the Image Scan
control, which scans multiple image pages:
* To the appropriate number of image files.

* Using auto-incremented path and file names that begin with the
template specified.

* Containing the number of image pages specified.

Priv

Scan

End

ate Sub cmdStartScan_Click()

On Error GoTo Scan_EH

"Link the Image Scan and Image Edit controls to permit display
'while scanning
ImgScanl.DestImageControl = "ImgEditl"

'Set the ScanTo property to enable template scanning
ImgScanl.ScanTo = DisplayAndUseFileTemplate

'Concatenate the path, backslash, and template prefix. Then assign the
'string to the Image property
ImgScanl.Image = gstrFolder + "\" + txtPrefix.Text

"Assign the Pages per File value to the PageCount property
ImgScanl.PageCount = txtPages

'Set the MultiPage property to enable multipage scanning
ImgScanl.MultiPage = True

'Commence scanning
ImgScanl.StartScan

Exit Sub

_EH:

'Display the error message

1b1Status.Caption = "ERROR - " + Err.Description
Beep

Sub

126

Adding Imaging Using ActiveX Controls |

Managing an Image File Using Thumbnails

The Thumbnail Sorter demonstration project shows how to use the
Image Thumbnail control to reorganize multipage image files. Before
walking through the demonstration project, read the following section,
which explains the basics of working with thumbnails.

Thumbnails Defined

The Image Thumbnail control lets you view each page of an image file
in miniature boxes called thumbnails. There is one thumbnail image for
each page in the file.

Each thumbnail has a caption beneath it that indicates its page position
within the image file and an annotation indicator if one or more
The Image Thumbnail control annotation marks exist on the corresponding image page.

has several properties that

enable you to assign different
fonts, colors, and styles to the
captions, as well as to the image file management functions to your end users. These functions

control itself. enable them to:

In addition to viewing image pages, the Image Thumbnail control — in
conjunction with the Image Admin control — also lets you provide

* Select an image page for display, edit, manipulation, deletion, or some
other Imaging function.

* Reorganize pages within the image file.

* Drag and drop image pages to and from other applications that
support drag-and-drop.

Example

Users of your application may want to view image files as a series of
thumbnail images. They may also want to manage image files using drag
and drop.

Scenario

Assume Chris and his staft regularly review large fax files that contain
mostly blueprint drawings.

Chris is concerned that in the middle of any of these files there might be
a letter, or other piece of important information, that could go
unnoticed when someone is scrolling through the file.

Using your application, Chris and his staff can quickly review each fax
file by looking at its thumbnail images. When they find pages that have
important information, they can drag and drop them into an another
Image Thumbnail control, whose ThunbDr op() event contains code
that routes the image pages to the appropriate personnel.

127

| Chapter 4

Thumbnail Sorter Project

The Thumbnail Sorter project demonstrates using thumbnails to manage
an image file. Specifically, it allows you to:

The file name for the
Thumbnail Sort project is
Thumbnail.vbp.

128

Reorganize images pages within the file.
Drag and drop image pages from Explorer.

Delete image pages from the file by dragging and dropping them into
another Image Thumbnail control.

m. Thumbnail Sorter !EE

Insert Page: |4 Before Page: |1 e e

— Thumbnails

Help

The project consists of one form and the following controls:

One Image Admin control

Two Image Thumbnail controls
Three Command button controls
Two Text Box box controls

Two Label controls

One Frame control

The project uses the following Imaging methods to provide the
thumbnail file management functions:

Adding Imaging Using ActiveX Controls |

DisplayThumbs (Image Thumbnail control) — To display the
pages of an image file as a series of thumbnail images.

Insert (Image Admin control) — To insert one or more selected
pages into the current image file.

InsertThumbs (Image Thumbnail control) — To refresh the Image
Thumbnail control with the inserted pages.

DeletePages (Image Admin control) — To delete one or more
selected pages from the current image file.

DeleteThumbs (Image Thumbnail control) — To refresh the Image
Thumbnail control without the deleted pages.

Note: The Thumbnail Sorter project also uses the Drag (extender)
method, which is provided by the frame that contains the Image
Thumbnail control. When invoked, it begins a drag operation.

Sorting an Image File (Using Specified Page Numbers)

Start the Thumbnail Sorter project. The For m Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to work with. Be sure to select a multipage image file.

After you select the image file, the procedure:

* Sets the Image property of the Image Thumbnail control to the
complete path and file name you selected (as supplied by the Image
property of the Image Admin control).

* Invokes the DisplayThumbs method of the Image Thumbnail
control to display each page of the file as a thumbnail in the Image
Thumbnail control located inside the Thumbnails frame.

= Sets the AutoSelect property of the Image Thumbnail control to
Tr ue to have the control handle all thumbnail selections made using
the mouse.

129

| Chapter 4

The EnableDragDrop
property lets you set the
desired drag-and-drop
behavior.

130

Sets the EnableDragDrop property of the Image Thumbnail
control to a literal value of 15, which is a bit-wise combination of the
settings described in the following table.

Note: The EnableDragDrop property value determines the drag-and-
drop behavior of the Thumbnail Sorter application, which is
described in the sections entitled “Sorting an Image File (Using
Drag and Drop)” and “Deleting Image Pages (Using Drag and

Drop)” .

Combined EnableDragDrop Property Settings

Literal Value

Setting Description

1 Enable drag using left mouse button
2 Enable drag using right mouse button
4 Enable drop into
8 Enable dropping of image files

Result = 15 DropFilesDropDragLeftRight

Gets the number of thumbnail images displayed from the

ThumbCount property of the Image Thumbnail control.

Sets up another Image Thumbnail control to serve as a trash bin by
setting its ThumbWidth and ThumbHeight properties to the
desired di mensi ons, and its Image property to a bi t map of a trash

bin.

Adding Imaging Using ActiveX Controls |

Private
Dim
Dim
Dim
Dim

End

'Display an error message if the image file is not TIFF
If ImgAdminl.FileType <> 1 Then

Else

End Sub

ImgThumbnail.DisplayThumbs

Sub Form_Load()

strPathName As String

strTemp As String

strRightChar As String, strLeftChar As String
intRPosition As Integer

'"Invoke the ShowFileDialog box
ImgAdminl.ShowFileDialog OpenDlg

If

GoTo File_EH

'Set the Image property of the Thumbnail control.
ImgThumbnail.Image = ImgAdminl.Image

'Get the path of the application
strPathName = App.Path

'Display a thumbnail for each image page in the file

'Set AutoSelect to true to enable drag and drop, and
"EnableDragDrop to DropFilesDropDraglLeftRight (literal 15)
ImgThumbnail.AutoSelect = True

ImgThumbnail.EnableDragDrop = 15

'Get the thumbnail page count
mingThumbCount = ImgThumbnail.ThumbCount

'Set up an Image Thumbnail control as a trash bin

'to provide a way to delete pages
ImgThumbnailTrash.ThumbWidth = 50
ImgThumbnailTrash.ThumbHeight = 50
ImgThumbnailTrash.Image = strPathName + "\trashbin.bmp"

In the Insert Page text box, enter the number of the page you want to
insert before another page in the file. Then in the Before Page text box,
enter the number of the page you want the Insert page to appear before.

131

| Chapter 4

132

For example, to insert page 4 before page 2, enter 4 in the Insert Page

text box and 2 in the Before Page text box.

Click the Execute button. The cndExecut e_Cl i ck() event
procedure fires and executes its code.

The procedure performs the following actions:

Gets the complete path and file name of the current image file from
the Image property of the Image Thumbnail control and assigns it to
the st r Nane local variable.

Gets the Insert page number from the Insert Page text box and
assigns it to the | ngl nsert Page local variable.

Gets the Insert Before page from the Before Page text box and
assigns it to the | ngl nsert Bef or ePage local variable.

Invokes the Insert method of the Image Admin control, passing to it
the:

— Path and file name of the current image file (from st r Nane).
— Insert Page number (from | ngl nser t Page).

— Insert Before page number (from | ngl nser t Bef or ePage).
— 1 (which specifies the number of pages to insert).

The Insert method inserts a copy of the Insert page before the Insert
Before page in the current image file.

Note: You must call the Insert method of the Image Admin control

before calling the InsertThumbs method of the Image
Thumbnail control.

Invokes the InsertThumbs method of the Image Thumbnail
control, passing to it the:

— Insert Before page number (from | ngl nser t Bef or ePage).
— 1 (which specifies the number of pages to insert).

The InsertThumbs method refreshes the control. Were you to set a
breakpoint after invoking this method, you'd see fwo copies of the
Insert page in the Image Thumbnail control.

Determines the page number of the unwanted, “leftover” copy of the
image page (from the value of | ngl nsert Page) so it can be deleted
from the file.

If the unwanted page is after the Insert Before page, the procedure
increments | ngl nsert Page by one to delete the correct page.

Adding Imaging Using ActiveX Controls |

Invokes the DeletePages method of the Image Admin control,
passing to it the:

— Number of the page to delete (from | ngl nsert Page).
— 1 (which specifies the number of pages to delete).

The DeletePages method deletes the unwanted, “leftover” copy of
the image page from the file.

Note: You must call the DeletePages method of the Image Admin
control before calling the DeleteThumbs method of the Image
Thumbnail control.

Invokes the DeleteThumbs method of the Image Thumbnail
control, passing to it the:

— Number of the page to delete (from | ngl nsert Page).
— 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
unwanted page.

133

| Chapter 4

Private Sub cmdExecute_Click()
Dim strName As String
Dim TnglnsertPage As Long
Dim TnglnsertBeforePage As Long

'Get the path and file name of the displayed image
strName = ImgThumbnail.Image

'Get the Insert page and the Insert Before page
IngInsertPage = CLng(txtInsertPage.Text)
IngInsertBeforePage = CLng(txtInsertBeforePage.Text)

'Check to see if the Insert page is to be inserted
'before itself. If it is, abort processing.
If TnglnsertPage = InglnsertBeforePage Or InglnsertPage =
InglnsertBeforePage - 1 Then

Exit Sub
End If

'Place the Insert page before the Insert Before page in the current
"image file
ImgAdminl.Insert strName, IngInsertPage, InglnsertBeforePage, 1

'Refresh the Image Thumbnail control to display the reordered
"image file
ImgThumbnail.InsertThumbs IngInsertBeforePage, 1

'Delete the "leftover" page

If strName = ImgThumbnail.Image Then
'If the InsertPage number is greater than the Insert Before
"number, increment the InglnsertPage variable by 1 to set
"the appropriate page for deletion
If InglnsertPage > InglnsertBeforePage Then

InglnsertPage = InglnsertPage + 1
End If
'Delete the "leftover" page from the image file and the Image
'Thumbnail control
ImgAdminl.DeletePages IngInsertPage, 1
ImgThumbnail.DeleteThumbs TngInsertPage, 1
End If

End Sub

134

Adding Imaging Using ActiveX Controls |

Sorting an Image File (Using Drag and Drop)

If necessary, start the Thumbnail Sorter project and select a multipage

image file.

Point to the thumbnail of an image page you want to insert before

o_". another page in the file. Then hold down the left mouse button. The
You can select multiple MouseDown() event procedure of the Image Thumbnail control fires
thumbnails by holding down and invokes the Drag (extender) method of Visual Basic, which starts the
the Shift or Ctrl keys. Drag operation.

End Sub

Private Sub ImgThumbnail_MouseDown(ByVal Button As Integer, _
ByVal Shift As Integer,
ByVal ThumbNumberAs Long)

'"Invoke the Drag operation
ImgThumbnail.Drag

ByVal X As Single, ByVal Y As Single, _

Note: As an alternative, you can point to an image file in Explorer and

then hold down the left mouse button.

Next, drag the thumbnail (or image file) to the desired position and
release the left mouse button. The ThumbDrop() event procedure of
the Image Thumbnail control fires and performs the following actions:

Gets the complete source path and file name from the
ThumbDropNames property of the Image Thumbnail control for
each image page being inserted and assigns it to the st r Nane local
variable.

If you're dragging and dropping pages within the current image file,
the ThumbDropNames property returns the path and file name of
the displayed image file.

If you’re dragging and dropping pages from Explorer, the Thumb-
DropNames property returns the path and file name of the source
image file.

Gets the Insert page number from the ThumbDropPages property
of the Image Thumbnail control for each image page being inserted,
and assigns it to the | ngl nser t Page local variable.

135

| Chapter 4

136

Invokes the Insert method of the Image Admin control, passing to it
the:

— Path and file name of the current image file (from st r Nane).
— Insert Page number (from | ngl nser t Page).

— Insert Before page number (from the | nsert Bef or e argument of
the ThumbDrop() event).

— 1 (which specifies the number of pages to insert).

The Insert method inserts a copy of the Insert page before the Insert
Before page in the current image file.

Note: You must call the Insert method of the Image Admin control

before calling the InsertThumbs method of the Image
Thumbnail control.

Invokes the InsertThumbs method of the Image Thumbnail
control, passing to it the:

— Insert Before page number (from | nsert Bef or e).
— 1 (which specifies the number of pages to insert).

The InsertThumbs method refreshes the control. As in the previous
section, were you to set a breakpoint after invoking this method,
you'd see two copies of the Insert page in the Image Thumbnail con-
trol.

Determines the page number of the unwanted, “leftover” copy of the
image page (from the value of | ngl nsert Page) so it can be deleted
from the file.

If the unwanted page is after the Insert Before page, the procedure
increments | ngl nsert Page by one to delete the correct page.

Invokes the DeletePages method of the Image Admin control,
passing to it the:

— Number of the page to delete (from | ngl nsert Page).
— 1 (which specifies the number of pages to delete).

The DeletePages method deletes the unwanted, “leftover” copy of
the image page from the file.

Note: You must call the DeletePages method of the Image Admin

control before calling the DeleteThumbs method of the Image
Thumbnail control.

Adding Imaging Using ActiveX Controls |

Invokes the DeleteThumbs method of the Image Thumbnail
control, passing to it the:

— Number of the page to delete (from | ngl nsert Page).
— 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
unwanted page.

137

| Chapter 4

Private Sub ImgThumbnail_ThumbDrop(ByVal InsertBefore As Long, _
ByVal DropCount As Long, ByVal Shift As Integer)

Dim X As Integer

Dim strName As String

Dim TnglnsertPage As Long

'Move all selected pages or insert from Explorer
For X = 0 To DropCount - 1
'Get the path and name of the file containing the Insert page
strName = ImgThumbnail.ThumbDropNames(X)
'Get the Insert page
IngInsertPage = ImgThumbnail.ThumbDropPages(X)

'Check to see if the Insert page is to be inserted
'before itself. If it is, abort processing.
If strName = ImgThumbnail.Image Then

Exit Sub
End If
End If

ImgAdminl.Insert strName, IngInsertPage, InsertBefore, 1

ImgThumbnail.InsertThumbs InsertBefore, 1

'Delete the "leftover" page

If strName = ImgThumbnail.Image Then
'If the InsertPage number is greater than the Insert Before
"number, increment the IngInsertPage variable by 1 to set
"the appropriate page for deletion
If ITnglnsertPage > InsertBefore Then

IngInsertPage = InglnsertPage + 1

End If

'Thumbnail control
ImgAdminl.DeletePages InglnsertPage, 1
ImgThumbnail.DeleteThumbs TngInsertPage, 1
End If
Next X

End Sub

If InglnsertPage = InsertBefore Or InglnsertPage = InsertBefore - 1 Then

'Place the Insert page before the Insert Before page in the image file

'Refresh the Image Thumbnail control to display the reordered image file

'Delete the "leftover" page from the image file and the Image

138

Adding Imaging Using ActiveX Controls |

Deleting Image Pages (Using Drag and Drop)

If necessary, start the Thumbnail Sorter project and select a multipage
image file.

Point to the thumbnail of an image page you want to delete. Then hold

O—' down the left mouse button. The MouseDown() event procedure of the
You can select multiple Image Thumbnail control fires and invokes the Drag (extender) method
thumbnails by holding down of Visual Basic, which starts the Drag operation.

the Shift or Ctrl keys.

End Sub

Private Sub ImgThumbnail_MouseDown(ByVal Button As Integer,
ByVal Shift As Integer,
ByVal ThumbNumber As Long)

'"Invoke the Drag operation
ImgThumbnail.Drag

ByVal X As Single, ByVal Y As Single, _

Next, drag the thumbnail to the Image Thumbnail control resembling a
trash bin and release the left mouse button. The ThumbDrop() event
procedure of the Image Thumbnail (trash bin) control fires and performs
the following actions for each selected page in the For...Next loop:

Note: The DropCount argument of the ThumbDrop() event provides

the array-maximum value. Subtracting 1 from DropCount is
required because the For...Next loop is 0-relative.

Gets the complete path and file name from the ThumbDropNames
property of the Image Thumbnail control for each image page being
deleted and assigns it to the st r Nane local variable.

Gets the Delete page number from the ThumbDropPages property
of the Image Thumbnail control for each image page being deleted
and assigns it to the | ngDel et ePage local variable.

Makes sure that only pages from the current image file are deleted by
comparing the value returned by the Image property of the source
Image Thumbnail control to the value returned by the
ThumbDropNames property of the destination Image Thumbnail
(trash bin) control (from st r Nanme). If the path and file name values
don’t match, the event procedure is exited.

This action prevents using the Thumbnail Sorter to delete image files
from Windows Explorer.

139

| Chapter 4

140

* Invokes the DeletePages method of the Image Admin control,
passing to it the:

— Number of the page to delete (from | ngDel et ePage- X).
— 1 (which specifies the number of pages to delete).
The DeletePages method deletes the image page from the file.

Note: You must call the DeletePages method of the Image Admin
control before calling the DeleteThumbs method of the Image
Thumbnail control.

* Invokes the DeleteThumbs method of the source Image Thumbnail
control, passing to it the:

— Number of the page to delete (from | ngDel et ePage- X).
— 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
deleted page.

Subtracting the Value of X

When calling the DeletePages and DeleteThumbs methods, the
procedure subtracts the value of counter X from the page number to
ensure that the proper page is deleted from the file and the control. The
necessity of this action becomes apparent when you have selected more
than one page for deletion.

For example, assume you delete pages two and three from a five-page file.

The first-page-to-delete value passed to both methods is 2
[(ngDeletePage = 2) minus (X = 0)]. The DeletePages method deletes
page 2 from the file and the DeleteThumbs method refreshes the
control without the deleted page.

The second-page-to-delete value passed to both methods is also 2
[(ngDeletePage = 3) minus (X = 1)]. Subtracting 1 from the
IngDeletePage value of 3 compensates for the page that was previously
deleted.

Adding Imaging Using ActiveX Controls |

Private Sub ImgThumbnailTrash_ThumbDrop(ByVal InsertBefore As Long, _

End Sub

ByVal DropCount As Long, ByVal Shift As Integer)
Dim X As Integer

Dim strName As String

Dim TngDeletePage As Long

'Delete the selected pages
For X = 0 To DropCount - 1
'Get the path and name of the file containing the Delete page
strName = ImgThumbnailTrash.ThumbDropNames(X)
'Get the Delete page
IngDeletePage = ImgThumbnailTrash.ThumbDropPages(X)

'"If page dropped from Explorer, exit the procedure

If strName <> ImgThumbnail.Image Then
Exit Sub

Else
'Delete the selected page from the image file and
'"the source Image Thumbnail control
ImgAdminl.DeletePages TngDeletePage - X, 1
ImgThumbnail.DeleteThumbs 1ngDeletePage - X, 1

End If

Next X

141

| Chapter 4

Unloading a Multipage Image File

The Unload demonstration project shows how to save the individual
pages of a multipage image file as a series of single-page files; in effect,
extracting — or unloading — the pages of a multipage image file. Before
walking through the demonstration project, read the following sections,
which explain the concept of multipage image files and describe the
properties and methods that enable you to add page management and
manipulation functions to your applications.

Multipage Image Files Defined

142

Some image file types, such as BMP, can contain only one image page
per file.

al

Image.BMP

Adding Imaging Using ActiveX Controls |

Other file types, such as TIFE can contain several image pages per file.

/

\

T

Image.TIF

Text

Photo

Chart

The following table describes the multipage support provided by the file
types that the Imaging software can read and read/write.

Multipage Support By File Type

File Supports Multiple Read/Write
Type Pages? Status
BMP No Read/Write
DCX Yes Read Only

GIF No Read Only

JPG-JFIF No Read/Write
PCX No Read Only
TIFF Yes Read/Write
WIFF Yes Read Only

XIF Yes Read Only

143

| Chapter 4

Page-Related Properties and Methods

The Imaging ActiveX controls have several properties and methods that
enable you to work with multipage image files — either to create them
or perform some sort of Imaging action on their individual pages.

Note: Because each thumbnail image represents an image page, the
Image Thumbnail control — in conjunction with the Image
Admin control — is particularly useful for working with image
pages. (Refer to “Managing an Image File Using Thumbnails” to
see a sample application.)

The following list briefly describes the properties and methods you’ll find
useful when working with multipage image documents.

Image Admin

PageCount property — Returns the number of pages in an image file.

PageNumber property — Returns or sets a page number in an image
file.

PageType property — Returns the page type — also known as the
color type or data type — of a specified page.

Append method — Adds one or more pages to an image file.
DeletePages method — Deletes a range of pages from an image file.

Replace method — Replaces one or more pages in an image file.

Image Edit

Page property — Returns or sets the page number of an image file
where an imaging action was or will be performed.

PageCount property — Returns the number of pages in the displayed
image file.

PageType property — Returns the page type of the image specified in
the Image property and the page specified in the Page property of the

Image Edit control.

ConvertPageType method — Converts a displayed image page to a
specific page type.

SavePage method — Saves the displayed image page to the path and
file name specified.

144

Adding Imaging Using ActiveX Controls |

ShowPageProperties method — Displays the Page Properties
dialog box, which enables users to view or modify the properties of the
displayed image page (color, compression, resolution, and size).

Image Scan

MultiPage property — Determines whether multiple image pages will
be scanned to an image file.

Page property — Returns or sets the starting page for a scanning
session.

PageCount property — Returns or sets the number of pages scanned
per image file. Works in conjunction with the MultiPage property to
determine how many pages are scanned to how many files. (Refer to the
“PageCount and Multipage Property Influence” table earlier in this
chapter for more information.)

PageOption property — Returns or sets whether a page will be
appended, inserted, or overwritten during a scanning session.

ShowScanPage method — Displays the Scan Page dialog box, which
lets users scan a page into an image file.

Image Thumbnail

FirstSelectedThumb property — Returns the page number of the
first selected thumbnail.

LastSelectedThumb property — Returns the page number of the last
selected thumbnail.

SelectedThumbCount property — Returns the number of
thumbnails currently selected.

ThumbCount property — Returns the total number of pages in the
current image file.

ThumbDropNames property — Returns the file name(s) of image
pages dropped on the Thumbnail control.

ThumbDropPages property — Returns a list of pages for the file
name(s) dropped on the Thumbnail control.

ThumbSelected property — Returns or sets the selection status of a
specified thumbnail.

DeleteThumbs method — Refreshes the Thumbnail control without
the image pages that have been deleted from an image file.

145

| Chapter 4

146

GetManualThumbPage method — Returns the page within the
image file corresponding to the thumbnail array subscript.

InsertThumbs method — Refreshes the Thumbnail control with the
image pages that have been inserted into the current image file.

Example

Users of your application may want to unload a multipage image file
when the individual pages have no logical relationship to each other or
when the individual pages need to be routed to different people.

Scenario

As described in an earlier scenario, Chris regularly reviews large
multipage fax files as part of his job.

Sometimes Chris encounters pages that contain memos, letters, or forms
that are of interest to different people but have no relationship with the
remainder of the file.

Using your application, Chris can quickly unload these pages and save
them to disk as individual image files — or send them to the appropriate
people via e-mail if you have included e-mail support in your
application.

Adding Imaging Using ActiveX Controls |

Unload Project

The Unload project demonstrates unloading the pages of a multipage
image file and saving them to disk as a series of single-page image files.

The file name for the Unload
project is Unl oad. vbp.

wm, Unload Multipage File - C:\Autolnsurance\Faxes_tif !EIE

C:hAutalnsurance,FaxPag? tif R
ChAutalnsurance FaxPag 3 tif s
ChAutalnsurance FaxPagd tif
ChAutalnsurance FaxPagh tif

i etk

Unload | Exit |

The project consists of one form and the following controls:
* One Image Admin control

* One Image Edit control

* Two Command button controls

* One list box control

And it uses the following methods of the Image Admin control to
provide the unload functions:

Append — To create the individual image files.
Delete — To remove existing image files.

Verifylmage — To see if an image file already exists.

Unloading an Image File

Start the Unload project. The Form Acti vat e() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to unload. Be sure to select a multipage image file.

After you select the image file, the Unload form appears.

147

| Chapter 4

148

To unload the image file, click the Unload button. The
cnmdUnl oad_d i ck() event procedure fires and executes its code.

The procedure begins by setting two local string variables to the path and
file name of the multipage image file you selected (the source file). The
st r Sour ceFi | e variable will retain the path and file name throughout
the procedure. The st r Pref i X variable will be gradually parsed until it
contains only the first three letters of the source image file name —
becoming a prefix of the destination file names.

The procedure continues by obtaining the number of image pages in the
source file from the PageCount property of the Image Edit control,
assigning it to the i nt PageCount local variable. It also obtains the
current path, assigning it to the st r Cur r ent Pat h local variable. It is
into this path that the individual destination file names will be written.

Next, the procedure parses the st r Pref i x variable until it consists of a
three-character prefix:

= First, it gets rid of the path information.

" Second, it gets rid of all of the remaining characters — including the
file extension, which is assigned to the st r Ext variable for later use.

Before building the individual (Unloaded) file names, the procedure
appends a slash to the current path variable, st r Curr ent Pat h.

‘With all of these preliminaries out of the way, the procedure is now ready
to build the Unloaded file names.

A For...Next statement executes for each page in the image file —
starting at 1 and continuing until it exceeds the maximum number of
pages in the image file (from i nt PageCount).

For each iteration of the For...Next loop, the procedure concatenates the
following six items to build an Unloaded path and file name, which it
assigns to the st r Unl oadedFi | eNane local variable (the examples
assume a source path and file name of ¢: \ | mages\ Faxes. tif):

1 Current path and slash (from str Current Pat h) .

Example: c: \ | mages\

2 Three-character prefix (from strPrefix).
Example: c: \ | mages\ Fax

3 “Pag” (a hard-coded preface to the page number).
Example: c: \ | mages\ FaxPag.

4 Current page number (from st r PageNum which is the counter
value converted to a string) .

Adding Imaging Using ActiveX Controls |

(0

The procedure invokes the
Verifylmage method with a
parameter value of 0 (Verify
Existence). Other parameter
values let you check an image
file's read/write attributes.

Example: c: \ | mages\ FaxPag1l

5 “.” (the dot before the file extension).
Example: c: \ | mages\ FaxPag1l.

6 File extension (from st r Ext) .
Example: c: \ | mages\ FaxPagl. ti f

Now that the complete path and file name exist for the unloaded page,
the procedure assigns the Unloaded path and file name (from

st rUnl oadedFi | eNane) to the Image property of the Image Admin
control.

Next, the procedure invokes the VerifyImage method of the Image
Admin control to see if the Unloaded file already exists in the current
path. If it does, the procedure invokes the Delete method of the Image
Admin control to remove it.

The procedure invokes the Append method of the Image Admin
control to add the source page to the unloaded file, creating it
automatically.

Finally, the procedure adds the path and file name of the first Unloaded
image to the list box control and executes the next iteration in the
For...Next loop (the second Unloaded image).

149

| Chapter 4

150

Private Sub cmdUnload_Click()
Dim intPageCount As Integer, intPageNumber As Integer
Dim intSlashPos As Integer, intDotPos As Integer
Dim intVerifyExistence As Integer
Dim strPrefix As String, strCurrentPath As String
Dim strSourceFile As String, strUnloadedFileName As String
Dim strExt As String, strPageNum As String

'Get the path and file name of the source file
strSourceFile = ImgEditl.Image
strPrefix = ImgEditl.Image

'Get the number of pages in the source file
intPageCount = ImgEditl.PageCount

'Get the current path
strCurrentPath = CurDir

"Establish an appropriate prefix for the Unloaded file names
intSlashPos =7
'First, eliminate the characters to the left of the slashes
Do While intSlashPos <> 0
intSlashPos = InStr(l, strPrefix, "\", 1)
strPrefix = Right(strPrefix, Len(strPrefix) - intSlashPos)

Loop
'Second, eliminate the characters to the right of the dot
intDotPos = InStr(l, strPrefix, ".", 1)

strExt = Right(strPrefix, Len(strPrefix) - intDotPos)
If intDotPos > 4 Then
strPrefix = Left(strPrefix, 3)
Else
strPrefix = Left(strPrefix, intDotPos - 1)
End If

"Append a slash to the current path specification

intSTashPos = InStr(l, strCurrentPath, "\", 1)

If intSTashPos <> Len(strCurrentPath) Then
strCurrentPath = strCurrentPath + "\"

End If

(Continued next page)

Adding Imaging Using ActiveX Controls |

'Build and populate one image file for each of the pages in the source image
'file
For intPageNumber = 1 To intPageCount

'Get the current page number

strPageNum = Str$(intPageNumber)

'Build the Unloaded path and file name

strUnloadedFileName = strCurrentPath + strPrefix + "Pag" + strPageNum + _
"." + strExt

"Assign the Unloaded path and file name to the Image property

ImgAdminl.Image = strUnloadedFileName

intVerifyExistence = 0

'If the Unloaded file exists, delete it

If ImgAdminl.VerifylImage(intVerifyExistence) = True Then
ImgAdminl.Delete strUnloadedFileName

End If

'"Populate the Unloaded image file
ImgAdminl.Append strSourceFile, intPageNumber, 1

"Add the new image path and file name to the Tist box control
IstFiles.AddItem strUnloadedFileName

Next intPageNumber

End Sub

151

| Chapter 4

152

|

Developing Client/Server Applications

This chapter explains how to use the Imaging ActiveX controls to
develop applications that can access and interact with WMS Imaging
Server (1.x) and WMS Imaging and Workflow (WMS) servers.

It also explains how to add zoom and annotation functions to your

applications. Even if you are not going to include Imaging server access
in your applications, you’ll find the sections on these functions useful.

In This Chapter

IMaging Server CONCEPLSviiiiiiieiiii et 154
Imaging 1.x Server Programming Considerations 157
WMS Server Programming Considerations...........cccccocceeeveeennne. 173

Demonstration ProjeCtccveiiiieiiiie e 176

| Chapter 5

Imaging Server Concepts

This section explains the Using the Imaging ActiveX controls, you can develop applications that

basic conzes\};ﬂosf Ilmag.mg 1.x can access and interact with both WMS Imaging Server (1.x) and WMS

:Z:x:: :Ecess. maging Imaging and Workflow (WMS) servers. Using the controls, you can
enable your users to:

* Read and display image files and server documents from Imaging 1.x
servers.

" Write image files and documents to Imaging 1.x servers.

* Read and display documents from WMS Imaging servers.

= Save 1.x image files and server documents and WMS Imaging
documents to local and network drives.

Note: To use the Imaging ActiveX controls with Imaging and Workflow
servers, you and your users must install and configure Imaging
Server Access when installing Imaging for Windows.

Before getting into the specifics, read the following sections that:

= List the file types supported by each Imaging server.

* Describe the standard, server-related dialog boxes available with the
Imaging ActiveX controls.

* Explain the difference between image files and server documents.

* Describe how your program can interact with each Imaging server.

Note: Because a wide-ranging discussion of each Imaging server is
beyond the scope of this chapter, you should also review the
documentation that came with the server you and your users
use.

154

Developing Client/Server Applications |

File Type Support

1.x and WMS servers support the file types described in the following

table.
Imaging Server File Types
Server File Types Supported
Imaging 1.x | TIFF 6.0
BMP

DCX (read only)

GIF (read only)

JPG-JFIF

PCX (read only)

WIFF (read only)

XIF (read only)

WMS
Imaging 6.0

TIFF 6.0 with WMS Imaging

Standard Dialog Boxes

Several methods in the Image Admin control display server-related dialog

boxes to your end users. These dialog boxes enable your users to:

Log onto the desired server — either Imaging 1.x or WMS Imaging.
Set Imaging 1.x server options.
Browse for Imaging 1.x file and document volumes.

Browse the Imaging 1.x file and document volumes for files and
documents to open.

Query Imaging 1.x document volumes by document name, location,
creation date, modification date, or keywords to locate documents to
open.

Query WMS Imaging and Workflow servers by document name or
field values to locate documents to open.

Save 1.x image files, 1.x documents, and WMS Imaging documents
to an Imaging 1.x file volume, an Imaging 1.x document volume, or
a local or network drive, respectively.

155

| Chapter 5

Image Files and Server Documents

An Image file is simply a binary file that contains one or more images. You
Or your users can use operating system commands to save, organize, copy,
rename, delete, and otherwise operate on files of this type.

A Server document is a collection of related images, logically organized as
pages within the document. The Imaging software stores the actual
images as image files; a server document simply contains references — or
pointers — to the location and name of each associated image page.

Interacting with Imaging 1.x Servers

‘When interacting with Imaging 1.x servers, your program can read
images from — and write images to — image file or document volumes.

Image File Volume

Otherwise known as a file repository, a file volume is the location where
the actual image files are stored.

Your program can process image files in the file repository directly, using
a file specification. File specifications consist of a server name, volume
name, one or more directory names (optional), and a file name in the
following format:

Image: //server/file volune:/directory/filenanme.tif

Document Volume

Formerly known as a document manager database, a document volume is
where server documents are stored. A document volume does not
contain the actual image files, only references to the files in the file
repository.

Server documents are stored using a familiar hierarchy. Documents are
stored within a Folder; Folders are stored within a Drawer; and Drawers
are stored within a Cabinet; using the following format:

I mage: // server/doc vol unme: \ cabi net\ drawer\f ol der\doc

Interacting with WMS Imaging and Workflow Servers

156

When interacting with WMS Imaging and Workflow servers, your
program can read documents from those servers.

Users cannot edit these documents unless they save them on their local
or network drives first or on an Imaging 1.x server if one is available to
them.

Developing Client/Server Applications |

WMS Imaging and Workflow servers store documents using a flat syntax
that consists of a prefix and document name; for example,
I magex: //cl ai m234.

Imaging 1.x Server Programming Considerations

This section describes the
Imaging 1.x functions
provided by the Imaging
ActiveX controls.

Several properties and methods in the Imaging ActiveX controls let you
provide Imaging 1.x server access functions to your end users.
Specifically, they permit your users to:

* Log onto the server.

* Set server options.

* Browse for Imaging 1.x file and document volumes.

* Browse the Imaging 1.x file and document volumes for files and
documents to open.

* Query Imaging 1.x document volumes by document name, location,
creation date, modification date, or keywords to locate documents to
opern.

= Save 1.x image files and server documents to Imaging 1.x file or
document volumes or to local or network drives.

The following sections describe each function in detail by pointing out
the properties and methods you can use.

Logging Onto the Server

Before users can interact with an Imaging 1.x server, they must log onto
it. The Image Admin control provides a LoginToServer method that
lets you programmatically log your users onto an Imaging 1.x server.

Note: The LoginToServer method does not support non-unified
logins — it is intended to be used in UNIX environments.

In your call to the LoginToServer method, you can optionally display
the standard Server Login dialog box, which permits users to enter
their user name and password and then click OK to log onto the server.

157

| Chapter 5

(0

The Image Admin control also
provides a LogOffServer
method that lets you program-
matically log your users off an
Imaging 1.x server.

Server Login m

Flease enter your username
and password.

Username : Ieswantun

Password : I"""“'"“'"“'"““‘"

Ok | Cancel

The Username text box can accommodate up to 20 alphanumeric

characters; the Password text box can contain up to 36 alphanumeric
characters.

You can also bypass the dialog box and simply pass the user name and
password as parameters to the LoginToServer method, most likely in
response to a user completing and closing a logon dialog box of your
own design.

If a user 1s not logged on and attempts to access the server, the Imaging
software displays the standard Server Login dialog box automatically —
thereby prompting the user to log onto the server.

Setting Imaging 1.x Server Options

158

Setting server options is a task that users should perform after they install
your program and whenever necessary thereafter.

You, or your users, should specify:

* The path to the 1.x file repository, where your program stores new or
copied image files that comprise server documents.

* Whether to force lower-case path and file names.

* Whether to link server documents to the original image files or to
copies of the original files.

* Whether to delete image files that were linked to deleted server
document pages.

The Image Admin control provides a Show1xServerOptDIlg method
that lets you display the standard Imaging Server Options dialog box
to your end users. The dialog box lets them set server options.

Developing Client/Server Applications |

Imaging Server Options

2] x]

File location for document pages: IImage:NENTERPRISE\images:

¥ Force lower-case file names

¥ Link files an reference

¥ Delete files with pages

¥ Update list of server wolumes automatically

™ Hide Server File “Yolumes

Update Mow |

Browse... |

Cancel

When users click OK on the Imaging Server Options dialog box, the
Image Adman control sets several of its server-related properties to values
that correspond to the selections made on the dialog box. The following

table lists the properties set.

Imaging 1.x Server-Related Properties Set By the Server

Options Dialog Box

file names check
box

Image Admin Associated Field Value
Property on Dialog Box P’°'°e'.'ty
Set Contains
FileStgLoclx File location for The path to the file
document pages | repository, where
text box your program stores
new or copied image
files that comprise
SErver documents.
ForceLowerCaselx Force lower-case | True or False —

Indicating whether
paths and file
names are con-
verted to lower case
before being passed
to the Imaging 1.x
server.

159

| Chapter 5

160

Imaging 1.x Server-Related Properties Set By the Server
Options Dialog Box (continued)

pages check box

Image Admin Associated Field Value
Property on Dialog Box P’°'°e'.'ty
Set Contains
ForceFileLinkinglx Link files on True or False —
reference check Indicating whether
box pages being added
to an Imaging 1.x
document from an
existing 1.x image
file are linked
(True) or copied
(False).
ForceFileDeletion1x Delete files with True or False —

Indicating whether
the file referenced
by an Imaging 1x
server document
page is deleted
when the docu-
ment page is

deleted.

If desired, you can set these properties in advance to present default

dialog box settings to your users.

You can also bypass the standard dialog box and set these properties
within your code — most likely in response to a user completing and

closing a server options dialog box of your own design.

Developing Client/Server Applications |

Note: Update List of Server Volumes
There are no properties or methods associated with the Update
list of server volumes automatically check box or the
Update Now button on the Server Options dialog box. Both
invoke a facility that updates the list of server volumes in the
current domain. Users can access this list by clicking the Browse
button on the dialog box. They use the list to locate and enter
the desired file location for document pages.

Hide Server File Volumes

Likewise, there are no properties or methods associated with the
Hide server volume files check box. This check box specifies
whether Imaging 1.x server file volumes are displayed or hidden
on the Open dialog box, which you can display by invoking the
ShowtFileDialog method of the Image Admin control.

Hiding server file volumes is useful when users only want to
browse server document volumes.

Invoke the Show1xServerOptDIg method if you want to pro-
vide the Update List of Server Volumes function and the
Hide Server File Volumes function to your end users.

The following sections explain each server option setting and related

property in detail.

File Location for Document Pages
(FileStgLoc1x Property)

‘When your program saves a server document page, it may have to create a
file that contains the actual image. Such files must reside somewhere on
an Imaging 1.x server and only your users know exactly where that
should be. As a result, you need to let your users enter the location where
your program stores these files.

The FileStgLoclx property of the Image Admin control contains the
location where your program stores the new image files. You can set this
property yourself in response to user input or you can have users set it via
the Imaging Server Options dialog box.

Depending on how you code your program, the following methods use
this location to save images: the SaveAs and SavePage methods of the
Image Edit control; the SaveAs method of the Image Thumbnail
control; and the Append, Replace, and Insert methods of the Image

161

| Chapter 5

162

Admin control. Each of these methods creates a new image file with a
unique file name in the following situations:

* When a page from a local or redirected file is being inserted,
appended, or saved to an Imaging 1.x document.

* When the ForceFileLinkinglx property is set to False and a page
from an Imaging 1.x image file or document is being inserted,
appended, replaced, or saved in another Imaging 1.x document.

Force Lower-Case File Names
(ForceLowerCase1x Property)

Older Imaging 1.x 16-bit clients have traditionally converted path and
file names to lower-case when communicating with the Imaging 1.x file
system.

To maintain backward compatibility with the 16-bit clients and to ensure
that Imaging for Windows clients can access Imaging 1.x file repositories
created by the 16-bit clients, Imaging for Windows includes a facility
that performs this conversion.

The ForceLowerCaselx property of the Image Admin control
determines whether your program converts path and file names to lower-
case when communicating with the Imaging 1.x file system. You can set
this property yourself in response to user input or you can have users set
it via the Imaging Server Options dialog box.

When the ForceLowerCaselx property is set to True, case conversion
occurs. When set to False, no case conversion occurs.

Note: You or your users should set the ForceLowerCase1x property
to False unless you or they have specific compatibility problems
with older document volumes (document manager databases).

Link Files On Reference
(ForceFileLinking1x Property)

As stated earlier, an Imaging 1.x document is basically a list of references
to the files that contain the actual images.

Certain operations, such as that performed by the Append method of
the Image Admin control, allow your program to add pages to an
Imaging 1.x document.

Developing Client/Server Applications |

There are two different ways to add such a page:

* Linking the document directly to the actual image file, as long as the
file resides in a 1.x file volume (link on reference).

* Copying the page to another image file and then linking the
document to the copied image file (copy on reference).

The ForceFileLinkingl1x property of the Image Admin control
determines how pages being added to an Imaging 1.x document are
referenced. You can set this property yourself in response to user input or
you can have users set it via the Imaging Server Options dialog box.

Then to add pages to an Imaging 1.x document, use one of the
following: the Append, Replace, or Insert method of the Image
Admin control; the SaveAs or SavePages method of the Image Edit
control; or the SaveAs method of the Image Thumbnail control.

When you do, the value of the ForceFileLinking1x property and where
the source image file resides determine the behavior of the Imaging
software, as follows:

* When the ForceFileLinkinglx property is set to True and the
source image file resides on an Imaging 1.x server, the Imaging
software links the document to the source image file where the file
resides on the server.

* When the ForceFileLinkingl1x property is set to False and the
source image file resides on an Imaging 1.x server, the Imaging
software copies the image file to the location specified within the
FileStgLoc1x property. Then it links the document to the copied
file.

* Regardless of the setting of the ForceFileLinking1x property, when
the source image file resides outside of an Imaging 1.x server (for
example, on a local or redirected drive), the Imaging software copies
the image file to the location specified within the FileStgLoclx
property. Then it links the document to the copied file.

* When the SaveAs or SavePage method is used to save changes to an
existing 1.x document page, the Imaging software replaces the
original file page regardless of the setting of the ForceFileLinking1x
property (unless the original file is write-protected).

163

| Chapter 5

164

Delete Files With Pages
(ForceFileDeletion1x Property)

When users delete a page from an Imaging 1.x document, they may also
want to delete the linked image file.

The ForceFileDeletion1x property of the Image Admin control
determines whether the Imaging software deletes the file referenced by a
deleted Imaging 1x server document page. You can set this property
yourself in response to user input or you can have users set it via the
Imaging Server Options dialog box. The Delete or DeletePages
method of the Image Admin control performs the actual deletion.

‘When set to True, the Imaging software deletes the source file linked to
an Imaging 1.x document when a user deletes the corresponding
document page.

When set to False, the Imaging software does not delete the linked
source file when a user deletes the corresponding document page.

Referential Integrity Behavior

The Imaging software ignores the True setting of the ForceFile
Linking1x property when two or more pages of a server document are
linked to the same image file and not all of these pages have been deleted
from the document. The Imaging software does not delete the linked
image file because one or more pages in the document are still linked to
the file.

Example

Assume a server document named G ai s contains 5 pages and that
pages 1 and 4 in the document are linked to the aut ocl ai ns. ti f
image file.

Assume you delete page 1 of O ai ns.

Even though the ForceFileDeletionlx property is set to True, the
Imaging software does not delete aut ocl ai ms. ti f . Why? Because the
file contains the image that is still linked to page 4 of the C ai s
document.

Note: Keep in mind that the referential integrity behavior of the
ForceFileDeletion1x property provides protection against
inadvertently deleting image files that are referenced within the
same document only. It provides no protection against deleting
image files that are referenced within two or more documents.

Developing Client/Server Applications |

Browsing for Volumes or Image Files and Server Documents
The Image Admin control provides two ways to browse Imaging 1.x
servers. Using them, you can let your users:
* Browse the server for image file or server document volumes, or

* Browse the server for image files and/or server documents.

Browsing for Volumes

The Browselx method of the Image Admin control displays a dialog
box that lets your users browse the Imaging 1.x server for the file and/or
document volumes they want.

Use this method whenever you want users to select a desired volume for
a particular purpose in your program. A good example of using this
method exists on the Server Options dialog box, which is described in
the previous section. After users click the Browse button, they can use
the Browse 1.x dialog box to navigate to and then select the location
where they want new image files to be stored.

Browse Imaging 1.x Server m

Selectthe desired path

1 patriots\images: ﬂ
1 patriotsinew_images:
1 patriotsintl_images:
patriotsint_db:
1 patriotsint_images:
1 patriotsint_images16:
1 patriotsyodvoll:
patriotspat_dh:
&l JPHCAB
JFHDORAWER
3 JFPHFOLDER

&) GACAE
QADRAW =
3 GAFCOLD
FER mmteimte i tmmt A1 j

(0] | Cancel |

165

| Chapter 5

(0

Keep in mind that the Get
VolumeType method of the
Image Admin control lets you
determine whether a specified
Imaging 1.x volume is a file

volume or a document volume.

166

In your call to the Browselx method, you can specify:

= Whether to browse:

File volumes — By passing the Br owseFi | es constant or a literal
value of 0.

Document volumes — By passing the Br owseDocunent s
constant or a literal value of 1.

Both file and document volumes — By passing the
Br owseBot h constant or a literal value of 2.

* A string that becomes the title bar caption of the dialog box (for
example, “Browse Imaging 1.x Server” in the preceding figure).

* Another string that instructs the user to browse the server (for
example, “Select the desired path” in the preceding figure).

* The handle to the parent window (optional).

After users make their selection and click OK, the Imaging software
writes the path selected to the BrowselxReturnedPath property of the
Image Admin control.

The Imaging software also writes the type of volume selected to the
BrowselxReturnedPathType property, which can contain one of the
following integer values:

0 — To indicate that users selected a file volume.

1 — To indicate that users selected a document volume.

Browsing for Files and Documents

As you know from Chapter 4, the ShowFileDialog method of the
Image Admin control displays an Open dialog box that lets users browse
for and then select (open) the image file they want to display.

When you install Imaging 1.x Server Access, the Imaging software alters
the Open dialog box slightly by adding a Look for list box that lets users
select for browsing and display:

Desktop Files — The image files stored on local or network drives.

Developing Client/Server Applications |

The Look for list box also
contains a WMS Imaging
Documents selection. When
clicked, a message appears
instructing users to click the
Find button to perform a
query.

1.x Files and Documents — The image files or server documents
stored on Imaging 1.x servers.

Invoke the ShowFileDialog method, therefore, whenever you want
users to browse for and then select an Imaging 1.x file or server
document they want to display.

When users select 1.x Files and Documents from the Look for list box,
they can use the Look in list box to browse the file and document
volumes in the current domain, as illustrated in the following figure2

Loak for: |1 x Files and Documents ﬂ
Look in: CICLAMS FOLDER BN=N=EE
(patriats\new_images: -~

INS_CABIMET
ENAUTO_DRAWER
CACLAMS_FOLDER
(Opatriaots\nt imaoes:
(dpatriots\nt imaces16:
Cdpatriotsint] imaoes:
(dpatriats\odvall:
Elpatiots\pat db:
Enatriotsitest dhl:

Harme:

Datriots\tms docs: &7

Open [Breview Image

&
]
m

[T Open as read-only

I/—\II Serverimage Files ﬂ

Cancal

i

Eind...

167

| Chapter 5

Once users select the desired directory or folder, the area below the
Look in box lists the files or documents contained within it, as illustrated
in the following figure.

Open E

Loak far: |1 x Files and Documents j

Lockin: | (CICLAIMS FOLDER: ~1 B o [=

I CLAIMR34

BICLAIMR35

BICLAIMR236

Name: |CLAIME34 ‘ e | P

=
ra
m

I/—\II server Image Files ﬂ Cancel |
[T Open as read-only
Find... |

When users select the desired file or document and then click Open, the
Imaging software writes the path and name of the file or document to
the Image property of the Image Admin control.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the DisplayThumbs method of
the Image Thumbnail control to display the image file or document.

Refer to Chapter 4 for more information about displaying images and
thumbnails as well as for more information about the ShowFileDialog
method.

168

Developing Client/Server Applications |

Querying for Imaging 1.x Documents

N Find: Image Document 7] x|

Show: |1.x Documents LI

Mamed: ICIaim* ;I i)

Look in: |patric:ts\nt_db: ;I Browse... |

The ShowFindDialog method of the Image Admin control displays a
dialog box that enables users to query Imaging 1.x document volumes
for the documents they want.

Find Mo

MNew Search

i

Feachy

| Ll

Clicking the Find button on
the Open dialog box
(described in the previous
section) also displays the Find

Image Document dialog box.

Prior to your call to the ShowFindDialog method, you can set the
Init1xFindDir property of the Image Admin control to the name of the
document volume you want to initially display in the Look in list box (as
a default). If desired, you can also include a cabinet; cabinet and drawer;
or cabinet, drawer, and folder.

In your call to the ShowFindDialog method, you can specity the
handle to the parent window. Doing so sets the state of the dialog box to
application-modal; not doing so sets the state of the dialog box to modeless.

Note: Refer to the Imaging for Windows Getting Started Guide for

instructions on how to use the Find Image Document dialog
box to find Imaging 1.x documents.

169

| Chapter 5

(0

The ImgQuery and
ImgQueryEnd methods of the
Image Admin control enable
you to query a 1.x document
volume programmatically. The
“Demonstration Project”
section of this chapter
describes and demonstrates
these methods.

After users make their selection and click Open, the Imaging software
writes the path and name of the document to the Image property of the
Image Admin control.

Note: The Imaging software does not alter the value of the
Init1xFindDir property.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the Display Thumbs method of
the Image Thumbnail control to display the Imaging 1.x document.

Refer to Chapter 4 for more information about displaying images and
thumbnails and for more information about the ShowFindDialog
method.

Saving 1.x Image Files and Documents

170

As you know, the ShowFileDialog method of the Image Admin control
also displays a dialog box that lets users enter the path and name for the
image files they want to save.

‘When you install Imaging 1.x Server Access, the Imaging software alters
the SaveAs dialog box slightly by adding a Look for list box that lets
users select for saving:

Desktop Files — Image files on their PCs.

1.x Files and Documents — Image files or server documents on
Imaging 1.x servers.

Developing Client/Server Applications |

When users select 1.x Files and Documents, they can use the Look in
list box to browse file and document volumes in the current domain, as
illustrated in the following figure.

Loaok far: |1.x Files and Documents j

Savein [JCLAMS FOLDER BE=N=0E
[:latriuts\new_images: -
i nt_dkb;

E NS CABINET
ERAUTO_DRAWER:
[ACLAIMS_FOLDER
(O patriotsnt_images:
(patriots\nt_images1:
(Opatriotsint]_images:

[(dpatriotslodvall:

B patriots, pat_dh:

patriotsitest_dhl: —

EElpatriots\tms docs: i
Mame: Save |
Save as type: I LI el |

171

| Chapter 5

Once users select the desired directory or folder, the area below the
Look in box lists the files or documents contained within it, as illustrated
in the following figure.

Look for: |1.x Files and Documents j

Savein. | CICLAMS FOLDER B ==
Bl CLAIM234

B CLAIMZ35

B CLAIM236

Mame: |CLAIM23?

Save as type: I LI Cancel |

When users select or enter the name of the file or document and then
click Save, the Imaging software writes the path and name of the file or
document to the Image property of the Image Admin control.

Use the Image property and the SaveAs or SavePage method of the
Image Edit control to save the image file or server document.

172

Developing Client/Server Applications |

WMS Server Programming Considerations

This section describes the Several properties and methods in the Imaging ActiveX controls let you
WMS Imaging and Workflow provide WMS Imaging and Workflow server access functions to your

server functions that are d Specificallv. th it tor
provided by the Imaging end users. Specifically, they permit your users to:

ActiveX controls. * Log onto the server.

* Query WMS Imaging and Workflow servers by document name as
well as by Class and Index field values.

The following sections describe each function in detail by pointing out
the properties and methods you can use.

Logging Onto the Server

Before users can interact with a WMS Imaging and Workflow server,

O—" they must log onto it. The Image Admin control provides a

The Domain property is LoginToServer method that lets you programmatically log your users

initialized to either an empty onto the WMS Imaging and Workflow server specified in the Domain
string or the name of the WMS property.

Imaging and Workflow server

last accessed. In your call to the LoginToServer method, you can optionally display

the standard Server Login dialog box, which permits users to enter
their user name, password, and desired domain and then click OK to log
onto the server.

Server Login m

Y'ou must log in to access the document database.

Usemame: |eswantu3n

Password:

I

Domain: |1?2.25.1?.204

Cancel

The Username, Password, and Domain text boxes can contain up to
80 alphanumeric characters.

173

| Chapter 5

The Image Admin control also
provides a LogOffServer
method that lets you program-
matically log your users off an
WMS Imaging and Workflow
server.

You can also bypass the dialog box and simply pass the user name and
password as parameters to the LoginToServer method, most likely in
response to a user completing and closing a logon dialog box of your
own design.

If a user is not logged on and attempts to access the server, the Imaging
software displays the standard Server Login dialog box automatically —
thereby prompting the user to log onto the server.

Note: |[f the unified logon facility is enabled on the WMS Imaging and
Workflow server being accessed, there is no need to explicitly
call the LoginToServer method. Each user will be logged on
automatically using the Windows user name and password.

Querying WMS Imaging Documents

The ShowFindDialog method of the Image Admin control displays a
dialog box that enables users to query a WMS Imaging and Workflow
server for the documents they want.

N Find: Image Document

Show: I “Wh3 Imaging Documents LI

MName & Location |Fie|d |

Hamed: ICIaim234

Find Mo I

IMew Search

i

& Search Domain only HEen

" Search Damain and Archive

Ready

4

(0

If users attempt to access WMS
Imaging documents via the
Open dialog box, the Imaging
software prompts them to click
the Find button to access the
Find Image Document dialog
box.

174

In your call to the ShowFindDialog method, you can specity the
handle to the parent window. Doing so sets the state of the dialog box to
application-modal; not doing so sets the state of the dialog box to modeless.

Note: Refer to the Imaging for Windows Getting Started Guide for
instructions on how to use the Find Image Document dialog
box to find WMS Imaging documents.

Developing Client/Server Applications |

(0

The ImgQuery and
ImgQueryEnd methods of the
Image Admin control enable
you to query a WMS Imaging
and Workflow server
programmatically. The
“Demonstration Project”
section of this chapter
describes and demonstrates
these methods.

After users make their selection and click Open, the Imaging software
writes the path and name of the document to the Image property of the
Image Admin control.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the DisplayThumbs method of
the Image Thumbnail control to display the WMS Imaging document.

Refer to Chapter 4 for more information about displaying images and
thumbnails and for more information about the ShowFindDialog
method.

175

| Chapter 5

Demonstration Project

This section demonstrates
how to add Imaging 1.x
server access functions to
your image-enabled
applications.

While a wide-ranging
discussion of Imaging server
access functions is beyond
the scope of this chapter, the
information presented here
is sufficient to get started.

The demonstration project
was developed using
Microsoft Visual Basic.

Even if you are not going to
include Imaging Server
Access in your applications,
you will find the sections on
adding zoom and
annotation functions useful.

To help you use the Imaging ActiveX controls to interact with Imaging
1.x servers, a demonstration project — called Image Server — shows you
how to:

* Set server options.
* Browse for Imaging 1.x file and document volumes.

* Browse Imaging 1.x file and document volumes for files and
documents to open.

* Query Imaging 1.x document volumes to locate documents to open.
* Zoom an image.
* Invoke the standard annotation tool palette.

= Show and hide annotations.

Note: The Imaging ActiveX Controls on-line help system identifies the
properties, methods, events, parameters, and constants that are
available in Imaging for Windows.

Before walking through the demonstration project, read the following
sections, which explain the concepts of zooming an image and of
working with annotations. Chapter 4 of this guide explains the concepts
of displaying an image in the Image Edit control and of multipage image
files.

Zooming an Image Defined

(0

You can provide your users
with even more control over a
displayed image by using the
FitTo method of the Image
Edit control in addition to the
Zoom property. (Refer to
Chapter 4 for more
information.)

176

Zoom options affect the way images appear in an Image Edit control.
You can zoom an entire image page or just a portion of an image page.

Zooming an Entire Image Page

The Zoom property of the Image Edit control lets you set — usually in
response to user input — the zoom factor that is applied to image pages
when they're displayed or refreshed.

After you set the Zoom property, invoke the Display method or
Refresh method of the Image Edit control (as appropriate) to display
the image at the new zoom factor.

Most image application developers make zoom functions available to
their end users. These functions let users maximize or minimize the
image page so it can be seen more clearly, which is particularly important
when users will be reading scanned documents or faxes.

Developing Client/Server Applications |

Zooming a Portion of an Image Page

The SelectionRectangle property and the ZoomToSelection method
of the Image Edit control let you provide your users with a zoom-to-
selection function. The zoom-to-selection function enables them to
zoom a selected portion of an image page rather than the entire image
page.

After you set the SelectionRectangle property to True, users can draw
a selection rectangle on the portion of an image page they want to zoom.

Then — usually in response to users clicking a menu item — you invoke
the ZoomToSelection method.

The ZoomToSelection method scales the selected portion of the image
so it fits into the current size of the Image Edit control. Then it updates
the Zoom property with the zoom factor it applied.

Example

Users of your application may want control over the display of image
documents to make them easy to read.

Scenario

As described in Chapter 4, Eileen receives several scanned business
documents in her role as product manager for a major computer
company.

Because the documents contain important information, she really needs
to be able to read them, which is why you included all of Image Edit’s
fit-to options in the first version of your application.

But now you realize that users like Eileen need even more control over
how image files or documents are displayed. So, in the second version of
your application, you include a wide range of zoom options in addition
to the fit-to options provided earlier. Users can now select the fit-to or
zoom option that produces the best display quality.

177

| Chapter 5

Annotations Defined

The Image Edit and Image Annotation Tool Button controls provide
several ways to add annotation functions to your image-enabled
applications. Using them you can:

* Create an annotation tool palette of your own design.

* Invoke a single method that displays a fully-functional, standard
annotation tool palette to your users.

* Implement custom annotations programmatically.
The method you choose depends on the annotation requirements of

your users.

Annotations are digitized versions of the marks or items commonly
applied to paper-based documents; for example, highlighting, rubber
stamps, lines, and post-it notes. People typically use annotations to
emphasize important portions of documents or to add their comments to
documents being circulated for review.

Digital annotations go well beyond the capabilities of paper-based
annotations. With digital annotations, users can:

* Add, move, and delete annotations at will.
* Modify their attributes — such as color, size, text, and visibility.

* Use them to add hypertext links to other pages in the same file, to
other files, and to pages on the World Wide Web.

The following table lists the annotation types that are available with the
Imaging ActiveX controls.

Imaging for Windows Annotation Types

Annotation Type | Description

Attach-a-Note Enters text into a background rectangle on an
image.
Auto Polygon Covers a portion of the image with a polygon

that can be stretched to the desired size and
shape. An auto polygon is text-aware, so if
text is detected during creation, the text
boundaries will be used to set the polygon
boundaries. Because an Auto Polygon
annotation starts with only two points, it is
easy to create.

178

Developing Client/Server Applications |

Imaging for Windows Annotation Types (continued)

Annotation Type

Description

Filled Polygon Covers a portion of an image with a polygon
that can be stretched to the desired size and
shape.

Filled Rectangle Covers a portion of an imageHighlights text

when drawn using the transparent line style.

Freehand Line

Draws a freehand line on a section of text or
a portion of an image for emphasis.

Hollow Polygon

Places a polygon around an area of an image
for emphasis. The polygon can be stretched
to the desired size and shape.

Hollow Rectangle Places a border around areas of an image for
emphasis.

Hyperlink Enters a hypertext link directly on an image;
invokes the Link To dialog box to permit end
users to specify the desired link.

Image Embedded Embeds an actual copy of another image in

an image file.

Image Reference

Includes another image in an image file by
reference (that is, it links to an external file
that contains the image).

Initials Places system-generated data onto the image
including the initials of the user who is
logged on, the date, and the time.

OCR Zone Draws an OCR Text or Picture zone on an

image.

Select Annotations

Selects annotation marks for deleting, modi-
fying, moving, or resizing.

Straight Line

Underlines text, demarcates a section of a
page, or draws callout linesHighlights text
when drawn using the transparent line style.

Text

Enters text directly on an image.

179

| Chapter 5

(0 o

When using a Filled Rectangle
annotation to redact images,
make sure that your users
select the opaque fill style and
that they burn-in the anno-
tation to cover the image
permanently.

180

Imaging for Windows Annotation Types (continued)

Annotation Type | Description

Text From File Enters text from a file on an image.

Text Stamp Places a text stamp directly on an image.

Users can save annotations separately from the image data within TIFF
image files only.

Users can also merge annotations with the image data in a process known
as burning-in. To save annotations to any file type other than TIFE the
annotations must be burned-in.

Image Annotation Tool Button Control

The Image Annotation Tool Button control lets you create a custom
annotation tool bar or palette. Each control is actually a button that
invokes an annotation type when your end user clicks it.

Your custom annotation tool bar or palette can contain buttons that
provide:

* Discrete annotation types; for example, a Freehand Line annotation
type and a Rubber Stamp annotation type.

* The same annotation type with different annotation styles; for
example, two buttons that each invoke an Attach-a-Note annotation
— one with a yellow background and black text, the other with
a red background and white text.

* A combination of both.

The Image Edit control shares several properties and one method with
the Image Annotation Tool Button control. Together they let you
manage annotation functions when creating a tool bar or palette of your
own design. Refer to the next section for more information.

Developing Client/Server Applications |

Image Edit Control

The Image Edit control has a fully-functional, standard annotation
tool palette as well as several properties, methods, and events that let
you provide a wide range of annotation functions to your end users.

Standard Annotation Tool Palette

You can invoke the ShowAnnotationToolPalette method to display
the standard annotation tool palette to your users. The following
illustration lists the annotation types the tool palette provides.

| Annob. 2|
Select Annotations and Zones IE 2.| | Freehand Line
Highlighter =[~[| Straight Line
Hollow Rectangle = =I|mm| | Filled Rectangle

Hollow Polygon |« || Filled Polygon

Auto Polygon #a | abl| | Text
Hyperlink ablf | [Attach-a-Note
Text From File g#| &| [Rubber Stamp

Initials &

Once displayed, users can right-click a button on the tool palette to set
an annotation’s properties. Then they can left-click the button to draw
the annotation.

Note: The Highlighter annotation is actually a Filled Rectangle
annotation with its transparent property selected and its
background color property set to yellow.

Programmatic Annotations

The Image Edit control also has an array of properties, methods, and
events that enable you to add annotation functions to your applications
programmatically. The properties, methods, and events also let you and
your users edit and manage existing annotations whether they were
drawn programmatically, drawn using the Image Annotation Tool Button
control, or drawn using the standard annotation tool palette.

The remainder of this section briefly describes the properties, methods,
and events of the Image Edit and Image Annotation Tool Button controls
you’ll find useful when adding annotation functions to your applications.

181

| Chapter 5

182

Properties, Methods, and Events of Both the Image Edit
Control and the Image Annotation Tool Button Control
AnnotationBackColor property — Returns or sets the background
color of an Attach-a-Note annotation.

AnnotationFillColor property — Returns or sets the color used to fill
a Filled Rectangle, Filled Polygon, or Auto Polygon annotation.

AnnotationFillStyle property — Returns or sets the pattern used to
fill Image Embedded, Image Reference, and Filled Polygon, Auto
Polygon, or Filled Rectangle annotations.

AnnotationFont property — Returns or sets font object properties for
all text-related annotation types.

AnnotationFontColor property — Returns or sets the font color for
all text-related annotation types.

AnnotationImage property — Returns or sets the fully-qualified file
name of the image file used in Image Embedded and Image Reference
annotations.

AnnotationLineColor property — Returns or sets the line color for
Straight Line, Freehand Line, and Hollow Polygon, and Hollow
Rectangle annotations.

AnnotationLineStyle property — Returns or sets the line style for
Straight Line, Freehand Line, Hollow Polygon, and Hollow Rectangle
annotations.

AnnotationLineWidth property — Returns or sets the line width for
Straight Line, Freehand Line, Hollow Polygon, and Hollow Rectangle
annotations.

AnnotationStampText property — Returns or sets the stamp text to
be placed on an image by the Text Stamp annotation type. The stamp
text can consist of text, text macros (like the current date and time), or a
combination of both.

AnnotationTextFile property — Returns or sets the fully-qualified
file name of the text file to be placed on an image by the Text From File
annotation type.

AnnotationType property — Returns or sets the type of annotation
to draw.

Draw method — Draws the annotation.

Developing Client/Server Applications |

Use the BurnlnAnnotations
method with care because
once annotations are burned-
in, they cannot be removed or
modified as annotation data.

The EditSelected
AnnotationText method is
very useful. It enables users to
modify text annotations. You
should consider using it
whether users draw
annotations from the
standard annotation tool
palette, a tool palette of your
own design, or from functions
you provide programmatically.

For non-text annotations, use
the ShowAttribs

Dialog method. It enables
users to modify non-text
annotations.

Remaining Properties, Methods, and Events of the Image Edit
Control

AnnotationGroupCount property — Returns the number of
annotation groups that are on an image page.

AnnotationOcrType property — Returns or sets the type of OCR
zone to be drawn on an image page.

OcrZoneVisibility property — Determines the visibility of OCR
zones on the image page.

AddAnnotationGroup method — Adds a new annotation group to
an image page.

BurnInAnnotations method — Burns annotations onto an image
page, permanently incorporating them into the image.

DeleteAnnotationGroup method — Deletes an annotation group
and its associated annotations, and then redisplays the image.

DeleteSelectedAnnotations method — Deletes selected annotations
from an image page.

EditSelected AnnotationText method — Displays a dialog box that
lets end users modify Text, Attach-a-Note, and Hyperlink annotations.

ExecuteTextEditCommand method — Executes commands on the
Text Edit dialog box when the Image Edit control is operating in the
Text Edit mode (which is invoked using the EditSelected
AnnotationText method).

EditingTextAnnotation event — Fires immediately after the Image
Edit control enters or exits the Text Edit mode.

GetAnnotationGroup method — Returns the name of the
annotation group based on the index specified.

GetAnnotationMarkCount method — Returns the number of
annotation marks on an image page or in an annotation group.

GetCurrentAnnotationGroup method — Returns the name of the
annotation group to which subsequent annotations will belong.

GetRubberStamplItem method — Returns the item number of the
currently selected rubber stamp according to its position on the Rubber
Stamp Properties dialog box and in the shortcut menu of the
standard annotation tool palette.

183

| Chapter 5

184

SetRubberStamplItem method — Sets the item number for a rubber
stamp annotation according to its position on the Rubber Stamp
Properties dialog box and in the shortcut menu of the standard
annotation tool palette. It also activates the Rubber Stamp annotation

type.

GetRubberStampMenultems method — Returns the menu items of
the Rubber Stamp tool on the standard annotation tool palette.

ShowRubberStampDialog method — Shows the Rubber Stamp
Properties dialog box, which permits end users to create, delete, and
edit rubber stamp annotation properties.

GetSelectedAnnotationBackColor method — Returns the
background color of a selected Attach-a-Note annotation.

SetSelectedAnnotationBackColor method — Sets the background
color of a selected Attach-a-Note annotation.

GetSelected AnnotationFillColor method — Returns the color used
to fill a selected Filled Rectangle annotation.

SetSelected AnnotationFillColor method — Sets the color used to
fill a selected Auto Polygon, Filled Polygon, or Filled Rectangle
annotation.

GetSelectedAnnotationFillStyle method — Returns the style used
to fill selected Image Embedded, Image Reference, Auto Polygon, Filled
Polygon, and Filled Rectangle annotations.

SetSelected AnnotationFillStyle method — Sets the style used to fill
selected Image Embedded, Image Reference, Auto Polygon, Filled
Polygon, and Filled Rectangle annotations.

GetSelectedAnnotationFont method — Returns font object
properties for selected text-related annotation types.

SetSelectedAnnotationFont method — Sets font object properties
for selected text-related annotation types.

GetSelected AnnotationFontColor method — Returns the font
color used in selected text-related annotation types.

SetSelectedAnnotationFontColor method — Sets the font color to
use in selected text-related annotation types.

GetSelected Annotationlmage method — Returns the fully-
qualified file name of the image being used in selected Image Embedded
and Image Reference annotations.

Developing Client/Server Applications |

GetSelectedAnnotationLineColor method — Returns the line
color used in selected Straight Line, Freehand Line, Hollow Polygon,
and Hollow Rectangle annotations.

SetSelectedAnnotationLineColor method — Sets the line color to
use in selected Straight Line, Freechand Line, Hollow Polygon, and
Hollow Rectangle annotations.

GetSelectedAnnotationLineStyle method — Returns the line style
used in selected Straight Line, Freehand Line, Hollow Polygon, and
Hollow Rectangle annotations.

SetSelectedAnnotationLineStyle method — Sets the line style to use
in selected Straight Line, Frechand Line, Hollow Polygon, and Hollow
Rectangle annotations.

GetSelectedAnnotationLineWidth method — Returns the line
width (in pixels) used in selected Straight Line, Freehand Line, Hollow
Polygon, and Hollow Rectangle annotations.

SetSelectedAnnotationLineWidth method — Sets the line width to
use in selected Straight Line, Freehand Line, Hollow Polygon, and
Hollow Rectangle annotations.

GetSelected AnnotationOcrType method — Returns the OCR type
of a selected OCR zone annotation.

SetSelectedAnnotationOcrType method — Changes the OCR type
of a selected OCR Zone annotation.

HideAnnotationGroup method — Hides the specified annotation
group.

ShowAnnotationGroup method — Shows the specified annotation
group.

HideAnnotationToolPalette method — Hides the standard
annotation tool palette.

ToolPaletteHidden event — Fires immediately after the standard
annotation tool palette is hidden.

ShowAnnotationToolPalette method — Shows the standard
annotation tool palette.

SelectTool method — Selects an annotation tool from the standard
annotation tool palette.

ToolSelected event — Fires immediately after the user selects a tool
from the standard annotation tool palette.

185

| Chapter 5

The ShowAttribsDialog
method is very useful. It
enables users to edit existing
non-text annotations. You
should consider using it
whether users draw
annotations from the
standard annotation tool
palette, a tool palette of your
own design, or from functions
you provide programmatically.

For text annotations, use the
EditSelectedAnnotationText
method. It enables users to
modify text annotations.

186

LoadAnnotations method — Loads annotations from a data file and
places them on the specified page(s) of the displayed image file.

SaveAnnotations method — Saves annotations from the specified
page(s) of the displayed image file to a data file.

RemoveAllOCRMarks method — Removes OCR zones from all
image pages in the displayed image document.

SelectAnnotationGroup method — Selects all annotation marks
within a specific annotation group on an image page.

SelectFirstOcrZone method — Selects the first OCR zone on the
displayed image page.

SelectNextOcrZone method — Selects the next OCR zone on the
displayed image page.

SetCurrentAnnotationGroup method — Sets the annotation group

to which subsequent annotations will belong.

ShowAttribsDialog method — Shows an annotation attributes dialog
box, which lets end users change the properties of a selected annotation
mark.

HyperlinkGoToDoc event — Fires when users click a Hyperlink
annotation that is linked to a page in an external image file.

HyperlinkGoToPage event — Fires when users click a Hyperlink
annotation that is linked to a page within the current image file.

MarkEnd event — Fires immediately after the user or the program
completes the drawing of an annotation mark.

MarkMove event — Fires immediately after the user or the program
moves or resizes an annotation mark.

MarkSelect event — Fires immediately after the user or the program
selects an annotation mark.

ToolTip event — Fires immediately after a tool tip is displayed on the
standard annotation tool palette.

Developing Client/Server Applications |

Example

Users of your application may want to annotate image files with
important comments. They may also want to link image pages to related
Web pages.

Scenario

Kim manages a QA (quality assurance) group in a software company that
produces applications for engineer-to-order manufacturing firms around
the world. Some of the development and testing of the applications is
performed in the United States, the remainder is performed in Ireland.

As part of their jobs, Kim and her staff regularly distribute and peer-
review scanned specification and test plan documents. Because the QA
group is spread across two continents, each analyst relies on e-mail
exclusively to exchange the image documents.

Because you included e-mail and image annotation functions in your
program, Kim and her staff can use it to retrieve, annotate, and send the
image documents. Analysts use its text-related annotation types to enter
their review comments directly on the documents. And they use its
Hyperlink annotation type to link their comments to related reference
pages on the company’s intranet site.

The Image Server Project

(0 o

The file name for the Image
Server project is
I ngServr. vbp.

As stated previously, the Image Server project demonstrates:

* Setting server options.
* Browsing for Imaging 1.x file and document volumes.

* Browsing Imaging 1.x file and document volumes for files and
documents to open.

* Querying Imaging 1.x document volumes for documents to open.
* Zooming an image.

* Invoking the standard annotation tool palette.

* Showing and hiding annotations.

The project consists of the following forms and modules:

frmMain — Lets users open image files that reside on their PCs or
image files and server documents that reside on Imaging 1.x servers. It

also lets users browse Imaging 1.x servers for file or document volumes,
as well as zoom and annotate the image files or documents they open.

187

| Chapter 5

188

frm1xCDFD — Enables users to query an Imaging 1.x document
volume for documents by location, using the following hierarchy:
Cabi net\ Dr awer \ Fol der\ Docunent

frm1xQuery — Enables users to query an Imaging 1.x document
volume for documents by name, creation date, modification date, or
keyword.

The project uses the following Imaging controls:
* One Image Admin control
* One Image Edit control

It uses the following methods of the Image Admin control to provide
setup, open, browse, and query functions:

Show1xServerOptDlg method — To display the Imaging Server
Options dialog box, which lets users set Imaging 1.x server options.

ShowFileDialog method — To display the Open dialog box, which
lets users select the image files or server documents they want to open.

Browselx method — To display the Browse 1.x dialog box, which
lets users browse the Imaging 1.x server for server file and/or document
volumes.

CreateDirectory method — To create a cabinet, drawer, and/or
folder.

ConvertDate method — To convert conventional (Gregorian) dates to
Julian dates when using the ImgQuery method to query 1.x document
volumes.

ImgQuery method — To query Imaging 1.x document volumes.

ImgQueryEnd method — To complete a query and free associated
resources.

And it uses the following methods in the Image Edit control to provide
the image display and annotation functions:

Display method — To display the image file or server document
specified in the Image property of the Image Edit control.

Refresh method — To redisplay the current image in the Image Edit
control.

ShowAnnotationToolPalette method — To show the standard
annotation tool palette.

HideAnnotationToolPalette method — To hide the standard
annotation tool palette.

Developing Client/Server Applications |

ShowAnnotationGroup method — To show annotations.

HideAnnotationGroup method — To hide annotations.

Setting Server Options

Start the Image Server project. On the Server menu, click Imaging
Server Options.

The muServerltem dick() event procedure of frmMain executes
the appropriate code in its Sel ect Case statement (as shown in the
following code snippet). Each Case expression corresponds to the Index
value of an option on the Server menu.

In this case, the procedure invokes the Show1xServerOptDlg method
of the Image Admin control, which displays the Imaging Server
Options dialog box described in the “Setting Imaging 1.x Server
Options” section of this chapter.

Make the appropriate entries on the Imaging Server Options dialog
box and then click OK.

Private Sub mnuServerItem_Click(Index As Integer)
Dim strPath As String
Dim strPathType As String
On Error Resume Next
Select Case Index

Case 0 'Access Imaging Server Options dialog box

ImgAdminl.ShowlxServerOptDlg

189

| Chapter 5

(0

When the user clicks Cancel, a
“Cancel is pressed” error
condition occurs. The
mnuServerltem_Click() event
shows you how to handle it.

190

Browsing for Imaging 1.x File and/or
Document Volumes

To browse an Imaging 1.x server, on the Server menu, click:
Browse 1.x Files — To browse for file volumes.
Browse 1.x Documents — To browse for document volumes.

Browse 1.x Files and Documents — To browse for both file and
document volumes.

The muServer | tem i ck() event procedure of frmMain (shown in
the following code snippet) executes the appropriate code in the Case
2, 3, 4 statement — depending on the Index value of the Server menu
option clicked. For each Index value, the procedure invokes the Browse
1.x method of the Image Admin control with the appropriate parameter
values:

BrowselxScope parameter — Determines the volume type to
browse:

— Index = 2 passes the BrowseFi | es constant (literal 0).

— Index = 3 passes the Br owseDocunent s constant (literal 1).

— Index = 4 passes the Br owseBot h constant (literal 2).
Title parameter — Determines the text that appears in the title bar of
the Browse1.x dialog box:

— Index = 2 passes “Browse 1.x File Vol unes”.

— Index = 3 passes “Browse 1.x Docunent Vol umes”.

— Index = 4 passes “Browse 1.x File and Docunent
Vol unes”.

Caption parameter — Determines the prompt that appears in the title
bar of the Browse 1.x dialog box. Each invocation of the Browse1l.x
method passes “Sel ect the Desired Path”.

hParentWnd parameter — Assigns a parent window handle to the
Browse 1.x dialog box. Each invocation of the Browsel.x method
passes f r mvai n. hWhd, which is the handle to the main form.

The Browselx method displays the Browse 1.x dialog box described in
the “Browsing for Volumes” section of this chapter.

Browse the file and/or document volumes. Then make your selection
and click OK. The Imaging software writes the path selected to the
BrowselxReturnedPath property of the Image Admin control and the
type of path selected to the BrowselxReturnedType property.

Developing Client/Server Applications |

Private Sub mnuServerItem_Click(Index As Integer)
Dim strPath As String
Dim strPathType As String

On Error Resume Next
Select Case Index

Case 0 '"Access Imaging Server Options dialog box
ImgAdminl.ShowlxServerOptDlg

Case 2, 3, 4 'Browse 1.x File, Document, or File and Document Volumes
If Index = 2 Then
ImgAdminl.Browselx BrowseFiles, "Browse 1.x File Volumes", _
"Select the Desired Path"™, frmMain.hWnd
Elself Index = 3 Then
ImgAdminl.Browselx BrowseDocuments, _
"Browse 1.x Document Volumes", _
"Select the Desired Path"™, frmMain.hWnd
Else
ImgAdminl.Browselx BrowseBoth, _

"Browse 1.x File and Document Volumes",
"Select the Desired Path"™, frmMain.hWnd

End If

I[f Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
Exit Sub

Elself ImgAdminl.BrowselxReturnedPath = "" Then ‘Not installed.
Exit Sub

Elself ImgAdminl.StatusCode <> 0 Then
MsgBox Err.Description & " (ImgAdmin error " & _
Hex(ImgAdminl.StatusCode) & ")", vbCritical
Exit Sub
End If

strPath = ImgAdminl.BrowselxReturnedPath
strPathType = ImgAdminl.BrowselxReturnedType

End Select

End Sub

191

| Chapter 5

00—

When the user clicks Cancel, a
“Cancel is pressed” error
condition occurs. The
mnuFileOpen_Click() event
shows you how to handle it.

192

Opening 1.x Files and Documents

To simply browse for and then open an Imaging 1.x image file or
document for display, on the File menu, click Open.

The muFi | eOpen_C i ck() event procedure of frmMain executes its
code (as shown in the following code snippet). Specifically, it invokes the
ShowFileDialog method of the Image Admin control with the
following parameter values:

DialogOption parameter — Passes the OpenDl g constant (literal 0) to
display the Open dialog box.

hParentWnd parameter — Passes the handle to the main window
(f r mMVRi n. hwad).

The ShowFileDialog method displays the standard Open dialog box
described in the “Browsing for Files and Documents” section earlier in
this chapter.

Browse and then make your image file or server document selection,
then click OK. The Imaging software writes the path and file (or
document) selected to the Image property of the Image Admin control.

Next, the cndFi | eOpen_Cl i ck() event procedure invokes the public
subroutine, Per f or i | eQpen(| ngAdmi nl. | mage) , which opens
and displays the image file or server document selected.

Developing Client/Server Applications |

Private Sub mnuFileOpen_Click()

On Error Resume Next

' Set Flags to 0, and then show the Open dialog box.
ImgAdminl.Flags = 0
ImgAdminl.ShowFileDialog OpenD1g, frmMain.hWnd

" If the Cancel button was pressed, exit the subroutine.
' If a different error occurred, display a message box and
' exit the subroutine.

If Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
Exit Sub
Elself ImgAdminl.StatusCode <> 0 Then
MsgBox Err.Description & " (ImgAdmin error " & _
Hex(ImgAdminl.StatusCode) & ")", vbCritical
Exit Sub
End If

Call PerformFileOpen(ImgAdminl.Image)

End Sub

193

| Chapter 5

O

Refer to the on-line help for
more information about the
ImgQuery method of the
Image Admin control.

194

Querying 1.x Document Manager Databases

Note: This portion of the Image Server project refers to document
volumes as document manager databases or document
managers.

Document volumes were referred to as document manager
databases in earlier versions of the Imaging 1.x software.

To query an Imaging 1.x database, on the Server menu, click:

1.x Query by Cabinet\Drawer\Folder\Document — To query 1.x
document manager databases by Cabinet, Drawer, Folder, and
Document.

1.x Query — To query 1.x document manager databases by document
name, date, or keyword.

The following sections discuss each type of query.

Performing a 1.x Query by Cabinet\Drawer\Folder\Document

After you make your menu selection, the 1.x Cabinet\Drawer\
Folder\Document window (frm1.xCDFD) loads without being
shown. Its For m_Load() event procedure (shown in the following code
snippet) invokes the ImgQueryEnd method of the Image Admin
control to clear any previous Imaging queries and to free associated
system resources.

Next, the procedure invokes the ImgQuery method to initiate a new
query, passing to it the following parameters:

vScope parameter — Constant DMWCOLUVES (literal 1), which sets the
method so it performs a query for Imaging 1.x document manager
databases.

szQueryTerms parameter — A blank string, which makes the
method return the available Imaging 1.x databases.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query. You
can extract the results of a query by using a For Each. . . Next
statement in the following format:

For Each Variantltem In objResults
" Your code that processes each Variantltem
Next Variantltem

The query finds the available Imaging 1.x databases. Then the
Form Load() event procedure loads them from the obj Resul t s

Developing Client/Server Applications |

object variable into the Document Manager combo box
(cboDocManager).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method. Both actions free system
resources associated with the query.

The procedure wraps up its work by:

* Showing the 1.x Cabinet\Drawer\Folder\Document window.
* Displaying the number of document manager databases found.

* Giving focus to the Document Manager combo box.

1.x Cabinet\Drawer\Folderi\Document

-

195

| Chapter 5

196

Private Sub Form_Load()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

' Perform an ImgQuery for all Document Manager databases.
ImgAdminl.ImgQueryEnd
ImgAdminl.ImgQuery "DMVOLUMES"™, "", objResults

" If an error occurred, display a message box and exit.
If ImgAdminl.StatusCode <> 0 Then
MsgBox Err.Description & " (ImgAdmin error " & _
Hex(ImgAdminl.StatusCode) & ")", vbCritical
Exit Sub

' Store the results in the cboDocManager combo box.
For Each vntItem In objResults
If vntitem <> "" Then
cboDocManager.AddItem vntItem
End If
Next vntlitem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

' Display the number of Document Managers found.
If cboDocManager.ListCount = 1 Then
strSinglePlural = " Document Manager:"
Else
strSinglePlural = " Document Managers:"
End If
1b1DocumentManager.Caption = cboDocManager.ListCount & strSinglePlural

' Show the form, set focus to cboDocManager.

Me.Show
cboDocManager.SetFocus

End Sub

Developing Client/Server Applications |

Once you select a document
manager database, you can
create a new cabinet, drawer,
and/or folder by entering the
names in the respective combo
boxes and clicking the Create
button.

The cmdCreate_Click() event
procedure concatenates a
string containing your entries
and invokes the Create
Directory method of the
Image Admin control to create
the cabinet, drawer, and/or
folder you specified (code not
shown).

On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired document manager database in the Document Managers
combo box. The choDocManager _C i ck() event procedure fires and
executes its code (as shown in the following code snippet).

The basic task of this event procedure is to query the selected document
manager database for all of its cabinets and to load them in the Cabinets
combo box. To accomplish this task, it saves the path to the document
manager you selected in the nmst r DocManager module variable and
then invokes the ImgQuery method with the following parameters:

vScope parameter — The result of M d(nst r DocManager, 9),
which sets the method so it performs a query on the selected document
manager.

Note: Using the Mid function with a St art value of 9 is required
because the nmst r DocManager variable contains the path to
the document manager in the following format:
| mage: / / server/ dat abase
... and the ImgQuery method is only interested in the
server/ dat abase: part. Accordingly, the Mid function elim-
inates the | mage: // part and returns a variant (string) value of
“server/ dat abase: ".

szQueryTerms parameter — The string “findcabinets”, which is
contained in the mst r Quer y module variable. This parameter value
makes the method return the cabinets in the referenced database.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds the cabinets in the selected database and returns them
via the collection object in the following format:

I mage: / / server/ dat abase: \ cabi net

Because we're only interested in cabinet names, the procedure invokes
the public function Get EndSt ri ng() , which returns just the cabinet
names. The cboDocManager _Cl i ck() event procedure then loads the
cabinet names into the Cabinets combo box (cboCabi net).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of cabinets
found and giving focus to the Cabinets combo box.

197

| Chapter 5

Private Sub cboDocManager_Click()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

mstrDocManager = cboDocManager.Text

' Perform an ImgQuery for Cabinet names, load them in the
' cboCabinet combo box.
mstrQuery = "findcabinets"
ImgAdminl.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults
For Each vntItem In objResults

If vntitem <> "" Then

cboCabinet.AddItem GetEndString(vntItem, "\")

End If

Next vntlitem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

If cboCabinet.ListCount = 1 Then

strSinglePlural = " Cabinet:"
Else

strSinglePlural = " Cabinets:"
End If

1b1Cabinet.Caption = cbhoCabinet.ListCount & strSinglePlural

choCabinet.SetFocus

End Sub

198

Developing Client/Server Applications |

Make sure that the Enable
Drawers check box has a
check mark next to it. If it does
not, the cboCabinet_Click()
procedure performs a query for
folders.

On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired cabinet in the Cabinets combo box. The

cboCabi net _C i ck() event procedure fires and executes its code (as
shown in the following code snippet).

The basic task of this event procedure is to query the selected database
and cabinet for all of its drawers and to load them in the Drawers combo
box. To accomplish this task, it saves the path to the document manager
and cabinet you selected in the nst r DocManager and st r Cabi net
module variables respectively. Then it invokes the ImgQuery method
with the following parameters:

vScope parameter — The result of M d(nst r DocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string
"finddrawers cabi net=" & nstr Cabi net, which is contained in
the st r Quer y module variable. This parameter value makes the
method return the drawers in the referenced database and cabinet.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds the drawers in the selected database and returns them via
the collection object in the following format:

I mage: / / dat abase: \ cabi net\ dr awer

Because we're only interested in drawer names, the procedure invokes the
public function Get EndSt ri ng() , which returns just the drawer names.
The cboCabi net _C i ck() event procedure then loads the drawer
names into the Drawers combo box (cboDr awer).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of drawers
found and giving focus to the Drawers combo box.

199

| Chapter 5

200

Private Sub cboCabinet_Click()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

mstrDocManager = cboDocManager.Text
mstrCabinet = cboCabinet.Text
Perform an ImgQuery, and store the Drawer or Folder names
in the appropriate combo box.
If chkEnableDrawers.Value = Checked Then
mstrQuery = "finddrawers cabinet=" & mstrCabinet
ImgAdminl.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults
For Each vntItem In objResults
If vntitem <> "" Then
cboDrawer.AddItem GetEndString(vntItem, "\")
End If
Next vntlItem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

End Sub

Developing Client/Server Applications |

On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired drawer in the Drawers combo box. The cboDr awer _C i ck()
event procedure fires and executes its code (as shown in the following
code snippet).

The basic task of this event procedure is to query the selected database,
cabinet, and drawer for all of its folders and to load them in the Folders
combo box. To accomplish this task, it saves the path to the document
manager, cabinet, and drawer you selected in the st r DocManager,
nstr Cabi net, and st r Dr awer module variables respectively. Then it
invokes the ImgQuery method with the following parameters:

vScope parameter — The result of M d(nst r DocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string

"findfol ders cabinet=" & mstrCabinet & ":drawer=" &
nmst r Dr awer , which is contained in the nst r Quer y module variable.
This parameter value makes the method return the folders in the
referenced database, cabinet, and drawer.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds the folders in the selected database and returns them via
the collection object in the following format:

| mage: / / dat abase: \ cabi net\ drawer\ f ol der

Because we’re only interested in folder names, the procedure invokes the
public function Get EndSt ri ng() , which returns just the folder names.
The cboDr awer _Cl i ck() event procedure then loads the folder names
into the Folders combo box (cboFol der).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of folders
found and giving focus to the Folders combo box.

201

| Chapter 5

202

Private Sub cboDrawer_Click()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

mstrDocManager = cboDocManager.Text

mstrCabinet = cboCabinet.Text

mstrDrawer = cboDrawer.Text

Perform an ImgQuery, and store the Folder names in the

choFolder combo box.

mstrQuery = "findfolders cabinet=" & mstrCabinet & ";drawer=" & mstrDrawer
ImgAdminl.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

For Each vntItem In objResults
If vntitem <> "" Then
cboFolder.AddItem GetEndString(vntItem, "\")
End If
Next vntlitem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

Display the number of Folders found.

If cboFolder.ListCount = 1 Then

strSinglePlural = " Folder:"
Else

strSinglePlural = " Folders:"
End If

1b1Folder.Caption = cboFolder.ListCount & strSinglePlural

' Set the focus to cboFolder.

choFolder.SetFocus

End Sub

Developing Client/Server Applications |

On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired folder in the Folders combo box. The cboFol der _d i ck()
event procedure fires and executes its code (as shown in the following
code snippet).

The basic task of this event procedure is to query the selected database,
cabinet, drawer, and folder for all of its documents and to load them in
the Documents combo box. To accomplish this task, it saves the path to
the document manager, cabinet, drawer, and folder you selected in the
nst r DocManager, nst r Cabi net, nstr Drawer, and nst r Fol der
module variables respectively. Then it invokes the ImgQuery method
with the following parameters:

vScope parameter — The result of M d(nst r DocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string " f i nddocs
cabinet =" & nstrCabinet & " drawer =" & nstrDrawer
& " folder =" & nstrFol der, which is contained in the

nst r Quer y module variable. This parameter value makes the method
return the documents in the referenced database, cabinet, drawer, and
folder.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds the documents in the selected database and returns them
via the collection object in the following format:

I mage: / / dat abase: \ cabi net\ drawer\ f ol der\ docunent

Because we're only interested in document names, the procedure invokes
the public function Get EndSt ri ng() , which returns just the document
names. The cboFol der _Cl i ck() event procedure then loads the
document names into the Documents combo box (cbhoDocunent).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of
documents found and giving focus to the Documents combo box.

203

| Chapter 5

Private Sub cboFolder_Click()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

mstrDocManager = cboDocManager.Text

mstrCabinet = cboCabinet.Text

mstrDrawer = cboDrawer.Text

mstrFolder = cboFolder.Text

Perform an ImgQuery, and store the Document names in the
cboDocument combo box.

mstrQuery = "finddocs cabinet = " & mstrCabinet & " drawer ="
& mstrDrawer & " folder = " & mstrFolder
ImgAdminl.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

For Each vntItem In objResults
If vntitem <> "" Then
cboDocument.AddItem GetEndString(vntItem, "\")
End If
Next vntItem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

Display the number of Documents found.

If cboDocument.ListCount = 1 Then

strSinglePlural = " Document:"
Else

strSinglePlural = " Documents:"
End If

1b1Document.Caption = cboDocument.ListCount & strSinglePlural

Set the focus to cboDocument.

cboDocument.SetFocus

End Sub

204

Developing Client/Server Applications |

On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired document in the Document combo box and then click the
Open button. The cndQpen_d i ck() event procedure invokes the
public subroutine, Per f or nFi | eOpen(st r DocManager CDFD) , which
opens and displays the document selected.

Performing a 1.x Query by Name, Date, or Keyword

After you select 1.x Query on the Server menu, the 1.x Query
window (frm1.xQuery) loads without being shown. Its For m_Load()
event procedure (shown in the following code snippet) invokes the
ImgQueryEnd method of the Image Admin control to clear any
previous Imaging queries and to free associated system resources.

Next, the procedure invokes the ImgQuery method, passing to it the
following parameters:

vScope parameter — Constant DMWCOLUVES (literal 1), which sets the
method so it performs a query for Imaging 1.x document manager
databases.

szQueryTerms parameter — A blank string, which makes the
method return the available Imaging 1.x databases.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds all of the available Imaging 1.x databases. The

Form Load() event procedure loads them from the obj Resul t s
object variable into the Document Manager combo box
(choDocManager).

The procedure ends the query by setting obj Resul t s to Nothing and
by invoking the ImgQueryEnd method. Both actions free system
resources associated with the query.

205

| Chapter 5

The procedure wraps up its work by:
* Showing the 1.x Query window.
* Displaying the number of document manager databases found.

* Giving focus to the Document Manager combo box.

I

S (=i =) -l—’ -
-_-:I D.ﬂia |—’ -befDrE |—I _

Firr
e

206

Developing Client/Server Applications |

Private Sub Form_Load()
Dim objResults As Object
Dim strSinglePlural As String
Dim vntItem As Variant

' Perform an ImgQuery for all Document Manager databases.
ImgAdminl.ImgQueryEnd
ImgAdminl.ImgQuery "DMVOLUMES"™, "", objResults

' If an error occurred, display a message box and exit.
If ImgAdminl.StatusCode <> 0 Then
MsgBox Err.Description & " (ImgAdmin error " & _
Hex(ImgAdminl.StatusCode) & ")", vbCritical
Exit Sub

' Store the results in the cboDocManager combo box.
For Each vntItem In objResults
If vntitem <> "" Then
cboDocManager.AddItem vntItem
End If
Next vntlItem

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

' Display the number of Document Managers found.
If cboDocManager.ListCount = 1 Then
strSinglePlural = " Document Manager:"
Else
strSinglePlural = " Document Managers:"
End If
1b1DocumentManager.Caption = cboDocManager.ListCount & strSinglePlural

' Show the form, set focus to cboDocManager.

Me.Show
cboDocManager.SetFocus

End Sub

207

| Chapter 5

00—

When you select the Like
operator, you can use the
asterisk (*) wildcard character
to represent a group of
characters and a question
mark(?) to match any single
character.

O

When building your own
QueryTerms strings, be sure
to include a space between
each element.

208

On the 1.x Query window, click the desired document manager
database in the Document Managers combo box. The
cboDocManager _C i ck() event procedure assigns the document
manager database you selected to the st r DocManager module variable
(code not shown).

In the Find 1.x Document area, click the type of query you want to
perform.

If you clicked the:

Name option button (Query by Document) — Click the desired
boolean operator and then enter the name of the document you are
trying to locate in the adjacent text box.

Date option button (Query by Date) — Click whether to search for
documents that were created or modified, then click the desired boolean
operator (including before, after, and on). Finally, enter the desired date in
the adjacent text box.

Keyword option button (Query by Date) — Click the desired
boolean operator and then enter, in the adjacent text box, the keyword
whose documents you want to search for. Use the date format set in
Regional Settings.

Click the Find button. The cndFi nd_Cl i ck() event procedure fires
and executes its code (as shown in the following code snippet).

The basic task of this event procedure is to find all of the Imaging 1.x
documents that satisfy the parameters you specified and to load them in
the list box control at the bottom of the window.

To accomplish this task, the procedure evaluates the Value property of
each option button on the form. When it finds the option button you
clicked, it builds an appropriate Query Terms string and assigns it to the
nst r Quer y module variable. (The procedure passes the value of this
variable to the ImgQuery method later as the szQuer yTer s
parameter.)

The composition of the Query Terms string depends on the type of
query you are performing. If you are performing a:

Query by Document — The string contains:
* The finddocs docunent qualifier.

* The selected boolean operator from the adjacent combo box.

* The document name entered in the adjacent text box.

Developing Client/Server Applications |

Query by Date — The string contains:

* Thefinddocs created orfinddocs nodified qualifier,
depending on whether you selected created or modified in the adjacent
combo box.

* The selected boolean operator from the next combo box.

* The date returned by the ConvertDate method of the Image Admin
control (which converted the Gregorian date you entered in the
adjacent text box to a Julian date).

Query by Keyword — The string contains:
* Thefinddocs keyword qualifier.

* The selected boolean operator from the adjacent combo box.
* The keyword entered in the adjacent text box.

With the Query Terms string now composed and assigned, the
cndFi nd_d i ck() event procedure invokes the ImgQuery method,
passing to it the following parameters:

vScope parameter — The result of M d(nst r DocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated Query Terms string
from the st r Quer y module variable, which sets the method so it
performs the query you specified.

iDispatch parameter — The object variable, obj Resul t s, which
represents the collection object that contains the results of the query.

The query finds the documents in the selected database and returns them
via the collection object in the following format:

I mage: / / dat abase: \ cabi net\ drawer\ f ol der\ docunent

Then, the cndFi nd_d i ck() event procedure ends the query by
setting obj Resul t s to Nothing and by invoking the ImgQueryEnd
method.

The procedure wraps up its work by displaying the documents in the list
box at the bottom of the window.

209

| Chapter 5

Private Sub cmdFind_Click()
Dim objResults As Object
Dim vntItem As Variant
Dim strConvertedDate As String

1stResults.Clear

If optQuery(0).Value = True Then 'Query by Document
mstrQuery = "finddocs document " & _
cboName.List(cboName.ListIndex) & " " & txtName.Text
Elself optQuery(l).Value = True Then 'Query by Date

strConvertedDate = ImgAdminl.ConvertDate(txtDate.Text)

mstrQuery = "finddocs " & _
cboDateName.List(cboDateName.ListIndex) & " " & _
cboDate.List(cboDate.ListIndex) & " " & strConvertedDate

Elself optQuery(2).Value = True Then 'Query by Keyword
mstrQuery = "finddocs keyword " & _
cboKeyword.List(cboKeyword.ListIndex) & " " & txtKeyword.Text
End If

ImgAdminl.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

For Each vntItem In objResults
If vntitem <> "" Then
TstResults.AddItem vntItem
End If

Set objResults = Nothing
ImgAdminl.ImgQueryEnd

Display the number of documents found.
If 1stResults.ListCount = 0 Then
1b1Results.Caption = SELECT_NONE
Elself 1stResults.ListCount = 1 Then
1b1Results.Caption = SELECT_SINGULAR
Else
1b1Results.Caption = SELECT_PLURALL & 1stResults.ListCount &
SELECT_PLURAL2
End If

End Sub

210

Developing Client/Server Applications |

Select a document and click OK. The cmdOK_Cl i ck() event
procedure invokes the public subroutine, Per f or nFi | eCpen

(1 mgAdmi nl. | mage) , which opens and displays the server document
you selected (code not shown).

Zooming an Image

Open an image file or server document. After the image appears in the
Image Edit control, on the Zoom menu, click the desired zoom factor.

The muZoonFact or I t em O i ck event procedure fires and executes
the appropriate code in its Sel ect Case statement (as shown in the
following code snippet).

Each Case expression corresponds to the Index value of 2 Zoom menu
item. Further, each Case expression sets the Zoom property of the
Image Edit control to an appropriate zoom factor.

With the Zoom property now set, the procedure completes its work by
invoking the Refresh method of the Image Edit control, which
redisplays the image at its new zoom factor.

211

| Chapter 5

Private Sub mnuZoomFactorItem_Click(Index As Integer)
Dim intIndex As Integer

' Uncheck all the zoom menu items.

For intIndex = 0 To b5
mnuZoomFactorItem(intIndex).Checked = False

Next intIndex

Select Case Index
Case 0 '25%
ImgEditl.Zoom = 25
Case 1 '50%
ImgEditl.Zoom = 50
Case 2 '75%
ImgEditl.Zoom = 75
Case 3 '100%
ImgEditl.Zoom = 100
Case 4 '200%
ImgEditl.Zoom = 200
Case 5 '400%
ImgEditl.Zoom = 400
End Select

ImgEditl.Refresh
End Sub

212

Developing Client/Server Applications |

(0 o

If desired, you can include
parameters in your call to the
ShowAnnotationTool
Palette method. The
parameters control:

® Whether users can set
annotation properties.

® Where the tool palette will
appear on the screen.

® The tool tip text the
appears when the mouse
pointer hovers over a

button on the tool palette.

Invoking the Standard Annotation
Tool Palette

Open an image file or server document. After the image appears in the
Image Edit control, on the Annotations menu, click Show
Annotation Toolbar.

The muAnnot ati onlt em d i ck event procedure fires and executes
the appropriate code in its Sel ect Case statement (as shown in the
following code snippet).

Each Case expression corresponds to the Index value of an Annotation
menu item.

As long the corresponding menu item is not checked, the Case 1
expression invokes the ShowAnnotationToolPalette method of the
Image Edit control, which displays the standard annotation tool
palette. (Refer to the”Annotations Defined” section earlier in this
chapter for more information about annotations and the annotation
tool palette.)

If the corresponding menu item is checked, the Case 1 expression
invokes the HideAnnotationToolPalette method, which closes the
annotation tool palette.

Closing or hiding the standard annotation tool palette causes the
ToolPaletteHidden() event of the Image Edit control to fire. Code
within it removes the check mark from the Show Annotation Toolbar
menu item (code not shown).

213

| Chapter 5

214

Private Sub mnuAnnotationItem_Click(Index As Integer)
Select Case Index

Case 0 'Show Annotations

If mnuAnnotationItem(Index).Checked = True Then
mnuAnnotationItem(Index).Checked = False
ImgEditl.HideAnnotationGroup

Else
mnuAnnotationItem(Index).Checked = True
ImgEditl.ShowAnnotationGroup

End If

Case 1 'Show Annotation Toolbar

If mnuAnnotationItem(Index).Checked = True Then
mnuAnnotationItem(Index).Checked = False
ImgEditl.HideAnnotationToolPalette

Else
mnuAnnotationItem(Index).Checked = True
ImgEditl.ShowAnnotationToolPalette

End If

End Select

End Sub

Al

Imaging ActiveX Sample Applications

This appendix describes the Imaging ActiveX sample applications that
are available on the media on which your software was distributed.

In This Appendix

OVEIVIEW ... 216

Sample ApPlicationscoooviiiie e 217

| Appendix A

Overview

This section introduces you The Imaging ActiveX sample applications are relatively large Visual Basic
to thT Imaglllngt.ActlveX projects that demonstrate how to use the Imaging ActiveX controls to
sample applications. build comprehensive and useful, image-enabled applications.

It is beyond the scope of this appendix to walk you through each and
every application. eiStream WMS, Inc. suggests that you run each one
and analyze its code to determine whether you can use it:

* Directly in your applications, or

* Asa guide to writing your own, related code.

Requirements

With the exception of the sample application, to compile and run the
Imaging ActiveX sample applications, you must use:

* Microsoft Visual Basic 6.0.

* Imaging for Windows.

To compile and run the sample application, you must use:
* Microsoft Visual Basic 6.0 with Service Pack 3 or later.

* Imaging for Windows.

216

Imaging ActiveX Sample Applications |

Sample Applications

This section describes the
Imaging ActiveX sample
applications.

The code in each sample application is highly organized, commented,
and written using Hungarian notation. There are eight sample
applications in the following categories:

* Image Editor samples

* Function Specific samples

* Imaging Flow samples

The following sections describe them.

Image Editor Samples

(0 o

The file name for the sample
project is East Sanp. vbp.

This section describes the Image Editor sample applications.

Sample Application

The sample application emulates the look and feel of the Imaging for
‘Windows application. It is a baseline image editor that — due to its
simplicity — is the best one from which to study and learn.

Sample functions include:

Delete Pages — Deletes selected pages from a displayed image
document file. Note that looping through the image pages is performed
from last to first to prevent the renumbering of image pages as they are
deleted. See the code within the muEdi t Acti onltem O i ck event
procedure.

Drag Hand — Emulates the Drag Hand behavior evident in the
Imaging for Windows application. The drag hand enables you to pan an
image page; that is, to scroll the image page horizontally and vertically
without using the scroll bars. See the code within the

| mgEdi t 1_MouseMove event procedure.

Splitter Bar — Emulates the splitter bar behavior evident in the
Imaging for Windows application. Note that the splitter bar
(imgDivider) has a Top value of -20000 and a Height value of 40000 to
prevent the top and bottom of the splitter bar from being visible as you
drag it. See the code within the | ngEdi t 1_Dr agDr op and

I mgThunbnai | 1_Dr agDr op event procedures.

217

| Appendix A

The file name for the Image
Editor project is
I mgEdi tr. vbp.

Image Editor

Image Editor is a more sophisticated application that emulates the look
and feel of the Imaging for Windows application.

After you master the sample application, investigate Image Editor, which
includes toolbars and advanced features, such as:

* Contact sheet creation

* Image enhancement

* Magnification

* Optical Character Recognition (OCR)

* Summary properties (TIFF image document files only)

Function Specific Samples

218

This section describes the Function Specific sample applications.

All Function Specific applications have a common menu template.
Because the menus are common, you can ignore the “standard” code and
concentrate on the unique features of each application. The common
menu selections include:

= File

* “Generic”
* Page

* Zoom

* Annotation
= Tools
The “Generic” menu provides access to functions that are specific to

each application. Its caption changes appropriately within each one.

The Tools menu of the Image Scan and Image Thumbnails sample
applications provides access to an interesting facility called the Event
Tracker.

The Event Tracker lets you track the events fired by any of the Imaging
ActiveX controls.

Imaging ActiveX Sample Applications |

The file name for the Image
Print project is
I mgPrint. vbp.

(0

The file name for the Image
Properties project is
| ngPr op. vbp.

The tracker consists of two functions:

Track [control name] Events — Lets you select the Imaging ActiveX
control events you want to track.

Show Event Log — Lists the selected Imaging ActiveX control events
as they fire. You can view the events and their associated parameter values
within a dialog box or in a hard-copy report.

Image Print

Image Print shows you how to print image document files from the
standard Print dialog box, as well as programmatically from a custom
Print Settings dialog box (frmSettings).

The application has two functions that the Imaging for Windows
application doesn't have:

Page with Header — Prints an image with a header at the top. The
header is created by programmatically generating an annotation and then
shifting the image down so that it begins below the header. You can find
the code that performs this task in the Gener at eHeader Wor kFi | e
procedure of frmMain.

Displayed Portion — When you zoom in on an image in the display
window, this function prints only the portion of the image that is
displayed. You can find the code that performs this task in the

CGener at eDi spl ayedPorti onWr kFi | e procedure of frmMain.

You can select the Page with Header and Displayed Portion
functions from the Area to Print frame on the Print Settings dialog
box. They are functional only when you invoke printing via the Print
via Program Control option on the Print menu.

Image Properties

Image Properties shows you how to display and print the general,
summary, and page property values of image files.

It uses the standard dialog boxes provided by the controls, as well as a few
custom dialog boxes, to display the property values.

You can display and print the properties of:

= A single image file.
= All of the image files contained within a single folder.

= All of the image files contained within a folder and all of its
subfolders.

219

| Appendix A

The file name for the Image

Scan project is | ngScan. vbp.

(0

The file name for the Image
Thumbnails project is
I mgThunb. vbp.

220

In addition to the general, summary, and page property values, the
application displays additional information, such as the:

* Total number of bytes the files consume.
* Minimum/maximum file size.

* Average (mean) file size.

* Total number of pages.

* Smallest and largest page size.

* Total number of annotations by type and group.

Image Scan

Image Scan demonstrates a variety of scanning functions.

In addition to using the standard scanning dialog boxes provided by the
controls, Image Scan also shows you how to get and set scanner
capabilities programmatically using a series of custom dialog boxes.

The application also demonstrates how to scan double-sided originals on
a simplex scanner and how to collate the pages into the correct order.
This feature makes a simplex scanner function like a duplex scanner.

Image Thumbnails

Image Thumbnails shows you how to manage and manipulate the
individual thumbnail images within an Image Thumbnail control.

Specifically, the application shows you how to:
* Display thumbnails.

* Drag and drop thumbnails.

* Change thumbnail format and size.

In addition to displaying as thumbnail images the pages of a single image
file, the program can also display as thumbnail images the first page of
every image file within a specified folder.

Imaging ActiveX Sample Applications |

Imaging Flow Samples

The file name for the Flow
Program project is
FI owPgm vbp.

(0 o

The file name for the Flow
Variables project is
FI owvar . vbp.

This section describes the sample applications designed to work with
Imaging Flow.

Flow Program

The Flow Program demonstrates how a third-party program can be
invoked from within a flow and how it may be used to control — or
affect — the current flow.

The program has two operating modes:

Separator Page mode — Locates separator pages so it can assemble
scanned pages into discreet, single- or multi-page image document files.

Form Number mode — Reads form numbers by performing zoned
OCR on images. And then uses the OCR results to name the image
document files.

If you invoke the program with command line arguments from the
process version of the Run Program tool, it functions in the background.
Two command line arguments are available; the one you pass selects the
operating mode of the program:

/ separ at or page — Places the program in Separator Page mode.
/ for munber — Places the program in Form Number mode.

If you invoke the program without command line arguments, it assumes
that you want to change its settings. Accordingly, it provides a user
interface for doing so.

Note: The OCR function within Flow Program is an excellent example
of using OCR text zones to perform targeted OCR processing.
Refer to the Imaging Flow on-line help system for more informa-
tion on the Run Program flow tool (Process version).

Flow Variables

The Flow Variables program also demonstrates how a third-party
program can be invoked from within a flow. The program shows you
how to monitor and set flow variables.

This program is designed as a diagnostic tool only; however, you may get
some interesting ideas from analyzing it.

Refer to the “Flow Variables Reference” within Imaging Flow’s on-line
help system to learn more about flow variables.

221

Imaging ActiveX Tips and Tricks

This appendix describes some tips and tricks you might find useful when
working with the Imaging ActiveX controls.

In This Appendix

TIPS AN THCKS .o 224

| Appendix B

Tips and Tricks

This section provides some Use the tips and tricks in this section as guidelines when you use the
tips and tricks for using the Imaging ActiveX controls to image-enable your applications. Refer to
Imaging ActiveX controls.

the remainder of this guide for more information about the controls.

Miscellaneous Programming Tips

How to use functions of the ActiveX sample
applications

With the exception of sample program, the ActiveX sample applications
contained on the media on which your software was distributed are
designed for programmers and users running eiStream Imaging for
Windows.

If you and your users are running older versions of Imaging for
‘Windows, some of the features in the sample applications may not work
with some operating systems.

To do so, perform the following steps:

1 Use a text editor to view the . f r mfiles within each sample
application distributed with your software.

2 Ensure that the functions you use in your applications are supported
by the vsrsion of Imaging that your users are running.

Note: When setting a property, invoking a method, or responding to
an event, if you encounter results you consider unusual,
consider changing the parameter(s) you are using.

Specify tenths of degrees when calling rotation
methods

The RotateAll, RotateLeft, and RotateRight methods of the Image
Edit control permit you to specify the degree of image rotation to apply.
When you do so, keep in mind that you must specify the rotation
amount in fenths of degrees.

For example, to rotate an image page 45 degrees to the right, specify 450
when you invoke the RotateRight method.

Use the DisplayScaleAlgorithm property to scale black-and-
white image pages to gray

eiStream WMS, Inc. recommends that you set the
DisplayScaleAlgorithm property of the Image Edit control to
wi Scal eOpt i mi ze (literal 4) when you want to make black-and-white

224

Imaging ActiveX Tips and Tricks |

images appear in gray scale. Color images continue to appear in color
using this setting.

Catch errors properly when working with the
ShowFileDialog method

‘When invoked, the ShowFileDialog method of the Image Admin
control displays an Open or Save As dialog box to your end users.
When users click the Cancel button on one of these dialog boxes, a
“Cancel button is pressed” error condition occurs. Other Image Admin
error conditions can also occur as the procedure containing the
ShowFileDialog method continues its processing.

It is important to understand the difference between catching the
“Cancel button is pressed” error condition and any other Image Admin
error condition that may occur.

When users click the Cancel button on the Open or Save As dialog
box, the Number property of Visual Basic’s Err object contains the
literal value for the “Cancel button is pressed” error condition. The
Description property of the Err object contains any other Image
Admin error condition that may have occurred.

The following code snippet from the sample application demonstrates
the recommended way of handling ShowFileDialog and Image Admin
error conditions:

" If the Cancel button was pressed, exit the subroutine.

' If a different error occurred, declare a message box and

' exit the subroutine.

If Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
Exit Sub

Elself ImgAdminl.StatusCode <> 0 Then
MsgBox Err.Description & " (ImgAdmin error " & _

Hex(ImgAdminl.StatusCode) & ")", vbCritical

Exit Sub

End If

225

| Appendix B

226

Always pass the parent window handle when invoking
the ShowPrintDialog method

Even though passing the handle to the parent window is optional, for
best results always include it when you invoke the ShowPrintDialog
method of the Image Admin control. The ShowPrintDialog method
displays a Print dialog box, which enables users to print image files.

Retain generated file names when template scanning

As you know from Chapter 4, you can assign a template to the Image
property of the Image Admin control to perform template scanning. The
Imaging software uses the template you assign to automatically generate
the file names for each document it scans.

Unfortunately, if you need to know the name of each generated file, you
cannot use the Image property to return the file names when template
scanning.

However, you can use the following alternative procedure to refain each
file name while template scanning. Perform the following steps:

1 Use the GetUniqueName method of the Image Admin control to
generate a unique file name.

2 Assign the generated file name to the Image property of the Image
Scan control, which is a prerequisite for scanning.

3 Assign the generated file name to a local or module variable so you
can retain it for your use.

4 Invoke scanning manually.

Refer to Chapter 4 for more information about scanning.

Clear a selection rectangle

To clear a selection rectangle, use the DrawSelectionRect method of
the Image Edit control to draw a small, one-pixel selection rectangle on
the Image Edit control.

The resulting selection rectangle is too small to be seen and clears the
original one from the display.

Prevent flicker when using the Image Edit and Image
Thumbnail controls simultaneously

To prevent flicker when using the Image Edit and Image Thumbnail
controls simultaneously in your program, set the ImagePalette property
of the Image Edit control to the appropriate setting.

Imaging ActiveX Tips and Tricks |

The setting you use depends on the page type of the image being
displayed in the Image Edit control, as follows:

When the page type of the displayed image is RGB (24-bit)
— Set the ImagePalette property to the RGB24 palette by entering a
constant value of Wi Pal et t eRGB24 or a literal value of 3.

When the page type of the displayed image is not RGB — Set the
ImagePalette property to the Common palette by entering a constant
value of wi Pal et t eConmmon or a literal value of 1.

Image File Management Tips

Provide file type and page property options to your
users

When saved to disk, image files can require a large amount of storage
space.

The size of an image file depends on several factors; among these are its:
* File type.

* Color type (also known as its page type or data type).

* Resolution.

* Compression.

Giving your users the capability of changing these factors enables them

to control file size and appearance.

The table on the following page lists the results of varying these factors
on a one-page newsletter. The newsletter consists of:

* An image that occupies approximately one-quarter of the page.

* Three columns of text that fill the remainder of the page.

Use the table as a guideline when providing file type and page property
options to your end users. You may want to include a table like it in your
documentation.

227

| Appendix B

Results of Varying Image File Type and Page Property Options

JPEG — Medium

File Color Compression Resolution | Resolution | Resolution
Type Type Applied 100 x 100 200 x 200 300 x 300

BMP | Black & White Not available 114 KB 448 KB 1.0 MB
Pallettized 8-bit Not available 898 KB 3.5 MB 7.9 MB

BGR 24-bit Not available 2.6 MB 10.5 MB 23.6 MB
TIFF | Black & White None 112 KB 449 KB 1.0 MB
Group3 (1d) 68 KB 134 KB 226 KB
Group3 Mod. Huffman |67 KB 132 KB 223 KB
Group4 (2d) 68 KB 92 KB 115 KB
PackBits 59 KB 193 KB 389 KB
Gray Scale 4-bit | None 449 KB 1.8 MB 3.9 MB
LZwW 132 KB 261 KB 579 KB
Gray Scale 8-bit | None 898 KB 3.5MB 7.9 MB
LZW 585 KB 1.5 MB 2.5 MB
JPEG — Medium' 128 KB 367 KB 703 KB
Pallettized 8-bit None 899 KB 3.5MB 7.9 MB
LZW 137 KB 367 KB 670 KB

RGB 24-bit None 2.6 MB 10.5 MB 23.6 MB
LZwW 897 KB 2.2 MB 3.9 MB
144 KB 448 KB 907 KB

228

1By adjusting JPEG resolution and quality compression options, you can

increase or decrease the file size by 20 to 30%. In our newsletter example, the
JPEG compression option applied was medium resolution and medium quality.
The image file would be larger if we applied high resolution and high quality

and smaller if we applied low resolution and low quality.

Imaging ActiveX Tips and Tricks |

Several properties and methods within the Imaging ActiveX controls
permit you to manage image file type and page property options.

Pay particular attention to the SaveAs, SavePage, and
ShowPageProperties methods of the Image Edit control because
they provide the quickest and easiest ways to provide file type and page
property options to your users.

Note: If you make the LZW compression type available to your users,
you may need to negotiate a license with Unisys Corporation,
depending on the country in which your product is released.

Use the Append method to assemble several image
files into one multipage TIFF image file

You can use the Append method of the Image Admin control to copy
image pages from one image file to another.

The following Visual Basic statements copy the first two pages of the
source. tif file to the destination.tif file:

I mgAdm nl. I mage = "c:\images\destination.tif"
I rgAdmi nl. Append "c:\inages\source.tif", 1, 2

The copied pages become the last two pages of the desti nation. tif
file.

Always clear a displayed image page before deleting it

You must clear an image page from the Image Edit control before you
delete it. Failure to do so results in a run-time error.

The following code snippet from the sample program demonstrates the
recommended way of deleting an image page:

' Delete: Loop through the image pages, deleting
' those pages which have been selected.
For intCounter = ImgThumbnaill.ThumbCount To 1 Step -1
If ImgThumbnaill.ThumbSelected(intCounter) = True Then
IngDeletedPageNo = intCounter
ImgEditl.ClearDisplay
ImgAdminl.DeletePages IngDeletedPageNo, 1
ImgThumbnaill.DeleteThumbs TngDeletedPageNo, 1
End If
Next intCounter

229

| Appendix B

Annotation Tips

230

Use caution when copying selected image data to the
Clipboard

When copying the image data within a selection rectangle to the
Clipboard, do not pass the parameters received from the
SelectionRectDrawn event to the ClipboardCopy method. If you do,
the ClipboardCopy method may not copy the expected image area.

Although the SelectionRectDrawn event and the ClipboardCopy
method both use Left, Top, Width, and Height parameters, they each
work with different base locations. The SelectionRectDrawn event
uses the image pixel position relative to the upper-left corner of the
Image Edit control, while the ClipboardCopy property uses the
absolute image pixel position.

When you want to copy the data in a selection rectangle, invoke the
ClipboardCopy method with its Left, Top, Width, and Height
parameters empty.

Let your users modify the properties of a drawn
annotation

After drawing an annotation, your users may want to change its
properties. For example, they may want to change a line color from red
to blue.

To provide this capability, invoke the ShowAttribsDialog method of
the Image Edit control. It displays an annotation attributes dialog box
that lets your end users change the properties (attributes) of a selected
annotation.

For text annotations, invoke the EditSelected AnnotationText method
of the Image Edit control. It enables end users to modify the text.

Guidelines for making annotations permanent

You can use the BurnInAnnotations method of the Image Edit control
to make annotations a permanent part of the image. When you or your
users burn-in annotations, keep the following points in mind:

* Once annotations are burned-in, they cannot be removed or
modified as annotations. They can, however, be edited or manipulated
just like image data — clearing as well as copying and cutting to the

Clipboard is available.

* BurnInAnnotations works only on the currently displayed image
page. If you or your users want to burn-in the annotations of an

Imaging ActiveX Tips and Tricks |

entire image file, you must apply the BurnInAnnotations method
to each individual page.

* Annotation data can be saved separately from the image data only
when you or your users save image files in the TIFF file format. For
all other file formats, the annotations must be burned-in prior to
saving.

How to retain annotations when users navigate
multipage image files

When users draw annotations on a page in a multipage image file and
then navigate to another page in the file, the Imaging software does not
automatically retain the annotations drawn. When users return to the
“annotated” image page, the annotations are no longer there.

To retain annotations under these circumstances, create a temporary
image file and use it as a work file. When users draw annotations on a
page, invoke the Save method of the Image Edit control to save the
entire image file to the work file. This action forces the Imaging software
to retain the annotations because they have been saved to a file.

Then, when users close the image file or exit your application, prompt
them to indicate whether they want to save any changes.

If users respond with Yes — Copy the work file to the original image
file and then delete the work file.

If users respond with No — Simply delete the work file.

When printing annotations

Keep in mind that some printers may not print annotations correctly
— especially Image Embedded and Image Reference annotations.

The reason for this behavior is that printer drivers function differently,
making it impossible to print annotations consistently on all printers.
The solution to this problem is to have your users:

1 Burn the annotations onto the image page.

2 Save the image file.
3 Print the image file.

If users do not want to permanently alter an image, have them save the
image to a temporary file before performing the preceding steps.

231

| Appendix B

Optical Character Recognition Tips

Working with Interactive Training

Keep the following points in mind when working with Interactive
Training:

‘When you assign a training file to the TrainingFile property of the
Image OCR control, make sure that the training file actually exists. If
it does not, training does not occur.

Interactive Training is not available when performing OCR to the

Clipboard.

If you or your users perform Interactive Training on a skewed image,
the yellow highlights that indicate each questionable word may not
appear directly over the appropriate word. You or your users should
invoke the AutoDeskew or ManualDeSkew method of the Image
Edit control to straighten a skewed image and then save the image
prior to performing Interactive Training.

Performing OCR

Keep the following points in mind when performing OCR processing:

232

Do not attempt to OCR a severely skewed image. You or your users
should invoke the AutoDeskew or ManualDeSkew method of the
Image Edit control and then save the file prior to performing OCR.
You or your users must save the image file because the OCR engine
reads from the file and not from the display buffer.

Communicate to your users that OCR processing occurs more
efficiently when there is less blank space on an image. For example, if
users want to OCR a 3x5-inch card, you should tell them to scan the
card as a 3x5-inch image instead of, for example, a letter-size image.
In addition to saving disk space, scanning a 3x5-inch card as a 3x5-
inch image makes OCR processing occur more efficiently because
the OCR engine traverses less blank space as it looks for characters to
convert.

The OCR engine performs its processing on a black-and-white
image. If your users are receiving poor OCR results from a page that
looks good, provide a way for them to turn off scale-to-gray. With
scale-to-gray turned off, users see what the OCR engine is actually
analyzing and may come to the realization that rescanning or
enhancing the image is necessary.

The Imaging software can perform OCR processing in three ways.

Providing your users with the appropriate OCR functions may
improve OCR results:

Imaging ActiveX Tips and Tricks |

When users want to OCR a small area of text — Set the
CopyToClipboard property of the Image OCR control to True.
Then have your users draw a selection rectangle and invoke OCR.
The OCR engine recognizes only the area your users indicate rather
than the entire page.

When users want to OCR most of the page — Set the
CopyToClipboard property of the Image OCR control to False.
Then set the AnnotationType property of the Image Edit control
towi Ccr Regi on (literal 13) and the AnnotationOcrType
property to wi Ocr TypeText (literal 0). Have your users draw
OCR text zones over the areas of the page they want to recognize
and invoke OCR. Again, the OCR engine recognizes only those
areas your users indicate.

If users want to include graphics in the OCR results, set the
AnnotationOcrType property to wi Ccr TypePi ct ur e (literal 1).
Then have your users draw OCR picture zones over the graphics
they want to include.

To OCR the entire page — Set the CopyToClipboard property
of the Image OCR control to False and invoke OCR. Performing
OCR on the entire page is the default.

Keep in mind that setting the OutputFile property of the Image
OCR control to blank does not invoke the Save As dialog box. To
have the Imaging software prompt the user to specify where the
OCR results should be saved, simply omit the OutputFile property
from your code.

233

. - . . ¢ V/\/
715-C008 = www.eiStream.com = Copyright © 1998 - 2003 eiStream Technologies, Inc. = 8/03 elstreamm

	Title
	Contents
	About This Guide
	Purpose
	Prerequisites
	Related Information
	Support

	Chapter 1 - About Imaging
	Introducing Imaging for Windows
	Imaging Components

	What Imaging Lets You Do
	Command-line Invocation
	OLE
	Automation
	ActiveX Controls
	Which to Use: Command-line Interface, OLE, Automation, or ActiveX Controls?
	Sample Code

	What Imaging Lets Your Users Do
	What Is Document Imaging?
	Compiling and Distributing Your Image-Enabled Application
	Compiling Software with Imaging for Windows
	Compiling Software with an Operating System Component

	Use of LZW Compression
	Documentation Conventions

	Chapter 2 - Adding Imaging Using Automation
	Overview
	The Object Hierarchy
	Application Object
	ImageFile Object
	Page Object
	PageRange Object

	Automation Server and Embedded Server Modes
	Automation Server Mode
	Embedded Server Mode
	Examples

	Demonstration Project
	View Modes
	Example
	The Automation From Excel Project

	Chapter 3 - Automation Lexicon
	Overview
	Application Object
	Application Object Properties
	Application Object Methods

	ImageFile Object
	ImageFile Object Properties
	ImageFile Object Methods

	Page Object
	Page Object Properties
	Page Object Methods

	PageRange Object
	PageRange Object Properties
	PageRange Object Methods

	Chapter 4 - Adding Imaging Using ActiveX Controls
	Loading the Controls
	Visual Basic
	Visual C++
	Access

	Obtaining Help
	Visual Basic
	Visual C++
	Access

	Demonstration Projects
	Displaying an Image and Applying Fit-To Options
	Converting an Image
	Copying An Image
	Printing An Image
	Scanning an Image Using a Template
	Managing an Image File Using Thumbnails
	Unloading a Multipage Image File

	Chapter 5 - Developing Client/Server Applications
	Imaging Server Concepts
	File Type Support
	Standard Dialog Boxes
	Image Files and Server Documents
	Interacting with Imaging 1.x Servers
	Interacting with WMS Imaging and Workflow Servers

	Imaging 1.x Server Programming Considerations
	Logging Onto the Server
	Setting Imaging 1.x Server Options
	Browsing for Volumes or Image Files and Server Documents
	Querying for Imaging 1.x Documents
	Saving 1.x Image Files and Documents

	WMS Server Programming Considerations
	Logging Onto the Server

	Demonstration Project
	Zooming an Image Defined
	Annotations Defined
	The Image Server Project

	Appendix A - Imaging ActiveX Sample Applications
	Overview
	Sample Applications
	Image Editor Samples
	Function Specific Samples
	Imaging Flow Samples

	Appendix B - Imaging ActiveX Tips and Tricks
	Tips and Tricks

