
Imaging for Windows®
Developer’s Guide

Imaging for Windows®

Developer’s Guide
eiStream WMS, Inc., 296 Concord Road ■ Billerica, MA 01821 U.S.A.
www.eiStream.com

Copyright © 1998 - 2003 eiStream Technologies, Inc.
715-C008

Disclaimer of Warranties and Limitation of Liabilities

Nothing contained herein modifies or alters in any way the standard terms and conditions of the
purchase, lease, or license agreement by which the product was acquired, nor increases in any way the
liability of the supplier of the software, its affiliates or suppliers (“the Supplier”). In no event shall the
Supplier be liable for incidental or consequential damages in connection with or arising from the use of
the product, the accompanying manual, or any related materials.

Software Notice
All software must be licensed to customers in accordance with the terms and conditions of any approved
and authorized license. No title or ownership of the software is transferred, and any use of the software
beyond the terms of the aforesaid license, without written authorization of the publisher, is prohibited.

Restricted Rights Legend
The Licensed Product and accompanying documentation are Commercial Computer Software and
documentation as defined under Federal Acquisition Regulations and agency supplements to them. Use,
duplication or disclosure by the U.S. Government is subject to the restrictions of these licensing terms
and conditions as prescribed in DFAR 227.7202-3(a) and DFAR 227.7202-4 or, as applicable, the
Commercial Computer Software Restricted Rights clause at FAR 52.227-19. Manufacturer is eiStream
WMS Inc., 296 Concord Road, Billerica, MA 01821, USA.

Microsoft and Windows are registered trademarks of Microsoft Corporation in the USA and in other countries.
Other product names mentioned in this guide may be trademarks or registered trademarks of their respective companies.

Contents

Developer’s Guide

About This Guide

Purpose xiv

Prerequisites xiv

Related Information xiv

Support xv

1 About Imaging

Introducing Imaging for Windows 2
Imaging Components 2

Imaging Application 2
Imaging Preview 3
Imaging Flow 3
Development Tools and Methods 4

What Imaging Lets You Do 5
Command-line Invocation 5
OLE 5

Embedded Image Files 5
Linked Image Files 6

Automation 6
ActiveX Controls 7
Which to Use: Command-line Interface, OLE, Automation, or
ActiveX Controls? 8

Command-line Interface 8
OLE 8
Automation 9
ActiveX Controls 10

Contents
Sample Code 10
Automation Demonstration Project 11
ActiveX Demonstration Projects 11
ActiveX Sample Applications 11

What Imaging Lets Your Users Do 13

What Is Document Imaging? 14
Business Document Imaging 14
Personal Document Imaging 15

Compiling and Distributing Your Image-Enabled
Application 16

Compiling Software with Imaging for Windows 16
Compiling Software with an Operating System Component 16

Use of LZW Compression 17

Documentation Conventions 18

2 Adding Imaging Using Automation

Overview 20

The Object Hierarchy 20
Application Object 21
ImageFile Object 21
Page Object 21
PageRange Object 22

Automation Server and Embedded Server Modes 22
Automation Server Mode 22
Embedded Server Mode 23
Examples 23

As an Automation Server Application 23
As an Embedded Server Application 26

Demonstration Project 28
View Modes 28

One Page 29
Thumbnail 30
Page and Thumbnails 31
iv

Contents
Example 32
The Automation From Excel Project 32

Opening the Spreadsheet File 34
Opening and Displaying the Image File 34
Obtaining the Page Count 39
Rotating an Image Page 40
Setting the One Page View Mode 41
Setting the Thumbnail View Mode 41
Setting the Page and Thumbnails View Mode 42
Closing the Image File and the Imaging
Application 42

3 Automation Lexicon

Overview 44

Application Object 44
Application Object Properties 44

ActiveDocument Property 45
AnnotationPaletteVisible Property 46
Application Property 46
AppState Property 46
DisplayScaleAlgorithm Property 46
Edit Property 47
FullName Property 47
Height Property 48
ImagePalette Property 48
ImageView Property 48
ImagingToolBarVisible Property 49
Left Property 49
Name Property 50
Parent Property 50
Path Property 50
ScannerIsAvailable Property 50
ScanToolBarVisible Property 50
ScrollBarsVisible Property 51
StatusBarVisible Property 51
ToolBarVisible Property 51
Top Property 52
TopWindow Property 52
v

Contents
Visible Property 52
WebToolBarVisible Property 53
Width Property 53
Zoom Property 53

Application Object Methods 54
CreateImageViewerObject Method 54
FitTo Method 54
Help Method 55
Quit Method 55

ImageFile Object 56
ImageFile Object Properties 56

ActivePage Property 56
Application Property 57
FileType Property 57
Name Property 57
OCRLaunchApplication Property 58
OCROutputFile Property 58
OCROutputType Property 58
PageCount Property 58
Parent Property 59
Saved Property 59

ImageFile Object Methods 59
AppendExistingPages Method 60
Close Method 61
CreateContactSheet Method 61
FindOIServerDoc Method 62
Help Method 62
InsertExistingPages Method 62
New Method 63
Ocr Method 64
Open Method 64
Pages Method 65
Print Method 66
RotateAll Method 66
Save Method 66
SaveAs Method 67
SaveCopyAs Method 68
Update Method 68
vi

Contents
Page Object 69
Page Object Properties 69

Application Property 69
CompressionInfo Property 69
CompressionType Property 70
Height Property 71
ImageResolutionX Property 71
ImageResolutionY Property 72
Name Property 72
PageType Property 72
Parent Property 73
ScrollPositionX Property 73
ScrollPositionY Property 73
Width Property 73

Page Object Methods 74
Delete Method 74
Flip Method 74
Help Method 74
Ocr Method 74
Print Method 75
RotateLeft Method 75
RotateRight Method 75
Scroll Method 75

PageRange Object 76
PageRange Object Properties 76

Application Property 76
Count Property 76
EndPage Property 76
Parent Property 77
StartPage Property 77

PageRange Object Methods 77
Delete Method 77
Ocr Method 78
Print Method 78
vii

Contents
4 Adding Imaging Using ActiveX Controls

Loading the Controls 80
Visual Basic 82
Visual C++ 82
Access 83

Obtaining Help 84
Visual Basic 84

Object Browser 85
Toolbox 85
Form Window 86
Properties Window 86
Code Window 86

Visual C++ 87
Components and Controls Gallery Dialog Box 87
Properties Window 87

Access 88
Object Browser 88
Properties Window 88
Module Window 89

Demonstration Projects 90
Displaying an Image and Applying Fit-To Options 90

Fit-To Options Defined 90
Example 91
FitTo Options Project 92

Converting an Image 94
Image Conversion Defined 94
Example 95
Example 96
Example 98
Example 99
Example 99
Convert Image Project 100

Copying An Image 105
Clipboard Functions Defined 105
Clipboard Copy and Cut 105
Clipboard Paste 105
viii

Contents
Image Selection 106
Annotation Selection 106
Example 107
Copy Image Project 107

Printing An Image 110
Image Printing Defined 110
Example 110
Print Image Project 111

Scanning an Image Using a Template 117
Template Scanning Defined 117
Example 118
Template Scan Project 120

Managing an Image File Using Thumbnails 128
Thumbnails Defined 128
Example 128
Thumbnail Sorter Project 129
Subtracting the Value of X 141

Unloading a Multipage Image File 143
Multipage Image Files Defined 143
Page-Related Properties and Methods 145
Image Admin 145
Image Edit 145
Image Scan 146
Image Thumbnail 146
Example 147
Unload Project 148

5 Developing Client/Server Applications

Imaging Server Concepts 154
File Type Support 155
Standard Dialog Boxes 155
Image Files and Server Documents 156
Interacting with Imaging 1.x Servers 156

Image File Volume 156
Document Volume 156

Interacting with WMS Imaging and Workflow Servers 156
ix

Contents
Imaging 1.x Server Programming Considerations 157
Logging Onto the Server 157
Setting Imaging 1.x Server Options 158

The following sections explain each server option setting and
related property in detail. 161

File Location for Document Pages
(FileStgLoc1x Property) 161

Force Lower-Case File Names
(ForceLowerCase1x Property) 162

Link Files On Reference
(ForceFileLinking1x Property) 162

Delete Files With Pages
(ForceFileDeletion1x Property) 164

Browsing for Volumes or Image Files and Server Documents 165
Browsing for Volumes 165
Browsing for Files and Documents 166

Querying for Imaging 1.x Documents 169
Saving 1.x Image Files and Documents 170

WMS Server Programming Considerations 173
Logging Onto the Server 173

Querying WMS Imaging Documents 174

Demonstration Project 176
Zooming an Image Defined 176

Zooming an Entire Image Page 176
Zooming a Portion of an Image Page 177
Example 177

Annotations Defined 178
Image Annotation Tool Button Control 180
Image Edit Control 181
Example 187

The Image Server Project 187
Setting Server Options 189
Browsing for Imaging 1.x File and/or
Document Volumes 190

 Opening 1.x Files and Documents 192
 Querying 1.x Document Manager Databases 194
Zooming an Image 211
x

Contents
Invoking the Standard Annotation
Tool Palette 213

A Imaging ActiveX Sample Applications

Overview 216
Requirements 216

Sample Applications 217
Image Editor Samples 217

Sample Application 217
Image Editor 218

Function Specific Samples 218
Image Print 219
Image Properties 219
Image Scan 220
Image Thumbnails 220

Imaging Flow Samples 221
Flow Program 221
Flow Variables 221

B Imaging ActiveX Tips and Tricks

Tips and Tricks 224
Miscellaneous Programming Tips 224
Image File Management Tips 227
Annotation Tips 230
Optical Character Recognition Tips 232
xi

About This Guide
This guide explains imaging concepts and provides information
about using the Imaging ActiveX controls to implement imaging
features in your applications.

In this Chapter
Purpose ...xiv

Prerequisites ..xiv

Related Information...xiv

About This Guide
Purpose
The Developer’s Guide describes the features of eiStream Imaging
for Windows® and provides software developers and MIS
professionals with the information they need to produce and
support image-enabled applications.

This guide is a technical resource that supplements the on-line
help and documentation included with the Imaging for Windows
product.

Prerequisites
To use this product, you should be familiar with the Microsoft®
Windows environment. If you are using a printer, a scanner, or a
TWAIN-compliant device, you should also know how to connect
and operate it.

If you plan to access documents residing on WMS Imaging Server
(1.x) or a WMS Imaging and Workflow (WMS) server, you
should be familiar with navigating document databases in those
environments.

Related Information
For instructions on how to use the Imaging ActiveX controls,
access the on-line help system for the controls from your
development environment.

For updated product information and general information about
Imaging for Windows, visit our Web site at:

www.eiStream.com

Proceed to WMS|Kofile or eiStream WMS. Under products,
select eiStream Imaging for Windows.
xiv

http://www.eiStream.com/sonora

About This Guide
Support
Should you have questions regarding Imaging for Windows, or

problems with your system after installation, consult your customer
support representative.

For technical support, visit our Web site at:

www.eiStream.com

Proceed to WMS|Kofile or eiStream WMS. Under products,
select eiStream Imaging for Windows, and then click the Support
link.

The Support area includes technical bulletins, current
documentation, and other relevant information. To request a
patch, send an e-mail to Technical Support.
xv

1

About Imaging

This chapter describes the Imaging for Windows® product and suggests

ways in which the product features can be used in business and personal
document imaging.

In This Chapter
Introducing Imaging for Windows ... 2

What Imaging Lets You Do .. 5

What Imaging Lets Your Users Do.. 13

What Is Document Imaging? ... 14

Compiling and Distributing Your Image-Enabled Application........ 16

Use of LZW Compression... 17

Documentation Conventions ... 18

Chapter 1
Introducing Imaging for Windows
This section describes the
Imaging for Windows
product.

Imaging for Windows is a multi-faceted product allowing users to
transform paper documents and faxes into electronic documents for
viewing, annotating, editing, converting, printing, and sharing.

Today, eiStream is offering the latest version of Imaging for Windows.
This product is an upgrade to the component included in various
Microsoft operating systems and an upgrade to Imaging for Windows
Professional Edition and Imaging for Windows Standard Edition. The
latest version supports multi-byte character sets and runs on multiple
Microsoft operating systems — Windows 2000, Windows XP, Windows
98, and Windows NT.

Imaging Components
The components of Imaging for Windows are described in this section.

Imaging Application

The Imaging application is the main component of Imaging for
Windows. It enables users to scan, view, annotate, manipulate, and store
faxes, paper documents, and electronic images.
2

About Imaging
Imaging Preview

Imaging Preview is a lean version of the Imaging application. It lets users
view image files quickly and, if necessary, load them into the Imaging
application for editing.

Imaging Flow

Imaging Flow enables users to automatically capture, process, and output
image files. An intelligent and editable procedure — called a flow —
defines and controls the work Imaging Flow performs.

Flow tools included within each flow perform specific functions. They
can:

■ Capture images from:

− Scanners.

− MAPI-compliant in-boxes.

− Local and network folders.
3

Chapter 1
■ Process images by:

− Converting them from one file type to another.

− Applying compression.

− Enhancing their appearance.

− Permitting their review.

− Converting them to text.

− Deleting specified pages.

− Entering information about an image document while the flow is
processing.

− Running a custom process.
■ Output images by:

− Posting them to Exchange folders.

− Saving them to local or network folders.

− Saving them to WMS Imaging or Imaging (1.x) servers

− Printing them.

− Sending them to others via e-mail.

− Running a custom process.

Development Tools and Methods

Imaging for Windows includes a rich set of development tools and
methods that let you — the software developer — add Imaging functions
to your applications.

To add Imaging functions, you must be using a development
environment that supports OLE, Automation, and ActiveX controls;
such as:

■ Microsoft Visual Basic
■ Microsoft Visual C++
■ Microsoft Office (Visual Basic for Applications)
4

About Imaging
What Imaging Lets You Do
This section describes what
Imaging for Windows lets
developers do.

Imaging for Windows includes several development tools and methods
that let you add Imaging functions to your 32-bit applications. The
development tools and methods include:

■ Command-line invocation
■ OLE
■ Automation
■ ActiveX controls

The following sections describe them, help you determine which one to
use, and briefly describe the code samples contained on the media on
which your software was distributed.

Command-line Invocation
You can invoke the Imaging application using its command line. Because
the command line can accept a fully qualified image file name, you can
use standard Shell functions within your application to invoke the
Imaging application with an image on display.

Within your call to the Shell function, include the path and file name of
the Imaging application along with the path and file name of the image
file you want it to display. (Refer to the example on page 8.)

OLE
You can use standard OLE functions to embed and link image files in
your application and other applications, such as Microsoft Word, Excel,
Access, and SQL Server.

For example, you can use Visual Basic’s OLE Container control to easily
embed or link image files in your application.

Your application is the container, while the Imaging application is the
server. Users can edit and open embedded or linked image files, as
described in the following sections.

Embedded Image Files

When you embed an image file in your application, the application stores
the image data within it.

When end users edit an embedded image file, it becomes “in-place
activated,” causing your application to display a subset of the Imaging
application menus. The menus provide access to Imaging functions that
5

Chapter 1
let users edit the activated image file “in-place;” that is, within your
application.

When end users open an embedded image file, the Imaging application
appears with the embedded image displayed within it. Changes users
make to the image in the Imaging application also appear on the linked
image in your application. If desired, users can save a copy of the image
to another file by clicking SaveAs on the File menu.

Linked Image Files

When you link an image in your application, the image data remains
external to your application. Your application stores only a reference to
the image file.

When end users edit or open a linked image file, the Imaging
application appears with the image file displayed, which enables them to
perform the full range of Imaging functions on the displayed image file.

In-place activation is not available because the linked image file may also
be available to other containers (referential integrity).

As in the case of embedded image files, changes users make to the image
in the Imaging application also appear on the linked image in your
application.

Automation
You can use Automation to image-enable your application.

Automation is a more powerful way to image-enable your application. It
enables you to control the Imaging application programmatically from
your application and provide your users with the capabilities contained
within the Imaging application.

The Imaging application implements Automation as a full object model,
similar to the Automation model of Microsoft Word and Excel.

The object hierarchy starts with the Application object, continues with
an ImageFile object and one or more Page objects, and then concludes

Note: You can also use Automation to control the Imaging application
from other Automation-capable applications, such as Microsoft
Word and Excel.
However, you cannot use Automation to control the Imaging
Preview and Imaging Flow applications.
6

About Imaging
with a Page Range object. Each object has its own set of properties and
methods.

ActiveX Controls
You can use ActiveX controls to image-enable your application.

Using ActiveX controls is another powerful way to include Imaging
functions within your application. Imaging for Windows provides the
following ActiveX controls:

Image Admin control — The Image Admin control manages
administrative functions, such as: creating, opening, saving, and printing
image files; appending, inserting, and deleting image pages; and entering
Summary property information.

Image Annotation Tool Button control — The Image Annotation
Tool Button control lets you create customized annotation tool bars for
use within your application. The control links with the Image Edit
control to provide annotation drawing and management functions to
your end users.

Image Edit control — The Image Edit control manages all image
display and annotation functions. Its huge array of properties, methods,
and events provide Imaging functions, such as: displaying, annotating,
and editing images; rotating, flipping, and zooming images; applying
compression to images; and copying, cutting, and pasting images to and
from the Clipboard.

Image OCR control — The Image OCR control manages the
recognition and recomposition of image files. It lets users convert images
into editable text documents. Output formats include Microsoft Word/
Rich Text Format (RTF), Corel® WordPerfect, Hypertext Markup
Language (HTML), and text.

Image Scan control — The Image Scan control manages the scanning
of documents using TWAIN-compliant image acquisition devices.
TWAIN (Technology Without An Interesting Name) is an industry-
standard interface between image-enabled applications and image
acquisition devices.

Note: Chapter 2 of this guide explains Imaging’s implementation of
Automation. Chapter 3 describes the properties and methods of
each object.
7

Chapter 1
Image Thumbnail control — The Image Thumbnail control displays
and manages thumbnail renditions of individual image pages.

Which to Use: Command-line Interface, OLE, Automation, or
ActiveX Controls?

The following sections describe the major differences in using the
command-line interface, OLE, Automation, or ActiveX controls to
image-enable an application.

Command-line Interface

Command-line invocation is the most simple but least powerful way to
implement Imaging functions in your application.

You can invoke the Imaging application using standard Shell functions,
by including the executable file name of the Imaging application and the
fully qualified file name of a supported image file.

For example, if you are developing under Imaging, you can use the
following statement to invoke the Imaging application and display an
image file:

Shell("c:\Program Files\Imaging\Imaging.exe
c:\Quote.tif", 1)

Employing the command-line interface does not make the Imaging
application a full-fledged component of your application. The
command-line interface does not give you the opportunity to manipulate
the application or the image after it is displayed.

OLE

OLE lets you add a subset of Imaging functions to your application. It is
useful when you want to add Imaging functions with an absolute
minimum of coding.

Using a container control such as that provided by Visual Basic, you can
add image files as insertable objects within your application at design
time. Image files may be embedded or linked.

As an alternative, you can use the container control to create a
placeholder in your application for image files that will be added at run

Note: Chapters 4 and 5 of this guide explain how to get started with
the Imaging ActiveX controls and walk you through several
sample programs.
8

About Imaging
time. Set the appropriate properties or provide end users with drag-and-
drop capability so they can select image files for display at run time.

Users can edit embedded images within your application and linked
images within the Imaging application.

OLE does not make the Imaging application a full-fledged component of
your application. OLE does not give you the opportunity to manipulate
the application or the image after it is displayed.

Automation

Automation lets you add Imaging functions to your application by
making the Imaging application a full-fledged component of your
application.

Automation is useful when you want images to be displayed in a window
that is separate from your application and when you want to control the
Imaging application from your application.

Your application can control the state of the Imaging application as well
as manipulate the displayed image. But, unlike using the Imaging
ActiveX controls, your application cannot respond to events that occur
when users perform Imaging operations.

Depending on the degree of control you want to exert, automating the
Imaging application from your application can be accomplished with a
minimal or substantial amount of coding.

Example

Imaging Flow, a component of Imaging for Windows, demonstrates a
good example of Automation.

The Review flow tool invokes the Imaging application to permit users to
review image files as they are being processed by the current flow.

At flow design time, the author can set Review tool options that
manipulate the Imaging application as well as the image it displays. These
options include:

■ Whether to view image pages, thumbnails, or both.
■ The size and position of the Imaging application window.
■ The zoom setting to apply to images.
■ Whether to open image files as read only.
■ Whether to scale black-and-white images to gray.
9

Chapter 1
ActiveX Controls

The Imaging ActiveX controls let you add Imaging functions to your
application by making the functions an integral part your application.

The controls are useful when you want to display images within a
window in your application and when you want to manipulate all
Imaging functions from within your application.

While the ActiveX controls add overhead to your application, they give
you the power to determine the range of Imaging functions to be
provided. And, unlike Automation, the ActiveX controls support
extender as well as intrinsic events, which enable your application to
respond to events that occur when users perform Imaging operations.

Depending on the Imaging functions you want to provide, image-
enabling your application with ActiveX controls can require more coding
when compared to Automation.

Example

The demonstration projects in Chapters 4 and 5 of this guide are
excellent examples of using the Imaging ActiveX controls to image-
enable applications.

Sample Code
Sample code that was designed to help you add Imaging functions to
your applications is included on the media on which your Imaging for
Windows software was distributed, and also on the eiStream Web site.

Before you can use the sample code, you need to:

■ Set up Imaging for Windows on your development system, if
necessary.

■ Set up Microsoft Excel and be familiar with Visual Basic for
Applications (for the Automation demonstration project).

■ Set up and be familiar with Visual Basic (for the ActiveX
demonstration projects and the ActiveX sample applications).

Note: When you set up Visual Basic 6.0 or greater, you must perform a
Typical installation. If you don’t, the sample code may not
function correctly.
10

About Imaging
The following sections briefly describe the sample code.

Automation Demonstration Project

The Automation demonstration project shows you how to use
Automation in Excel to:

■ Invoke the Imaging application.
■ Display an image.
■ Select the view mode.
■ Rotate the image.
■ Obtain the number of pages in the image file.

Chapter 2 of this guide walks you through the Automation project.

ActiveX Demonstration Projects

The ActiveX demonstration projects are small Visual Basic applications
that show you how to:

■ Display an image and apply fit-to options.
■ Convert an image.
■ Copy an image.
■ Print an image.
■ Scan images using a template.
■ Reorganize an image file using thumbnails.
■ Unload a multipage image file.
■ Access an interact with Imaging 1.x and WMS Imaging servers.

Chapters 4 and 5 of this guide walk you through each demonstration
project.

ActiveX Sample Applications

The ActiveX sample applications are relatively large Visual Basic projects
that show you how the Imaging ActiveX controls may be used to create
comprehensive and useful image-enabled applications.

While walking you through each sample application is beyond the scope
of this guide, you should run each application and analyze its code to
determine whether you can use the code directly in your application or
as a guide to writing your own, related code.
11

Chapter 1
The code in each sample project is highly organized, heavily
commented, and written using Hungarian notation. The sample
applications show you how to:

■ Create an application that is similar to the standard Imaging
application.

■ Develop an application that prepares separator pages for scanning
several multipage documents in the Imaging Flow application.

■ Perform template scanning.
■ Use the Image Thumbnail control to create folder-based contact

sheets.
■ Print a selected portion of an image.
■ Use General and Page properties to analyze image files in folders.

Appendix A describes each sample application in greater detail.
12

About Imaging
What Imaging Lets Your Users Do
Imaging for Windows lets your users access and control paper-based
information directly on their PCs. With it, users can view, manipulate,
annotate, print, file, and share documents they used to manage as
cumbersome paper files.

The following types of business documents are ideal subjects for image
processing:

■ Business cards
■ Letters
■ Legal documents
■ Handwritten meeting notes
■ Memoranda
■ Newsclips
■ Technical drawings

The following types of personal documents are also ideal subjects for
image processing:

■ Childrens’ drawings
■ Hobby-related documents
■ Household bills
■ Legal documents
■ Letters from friends
■ Magazine and newspaper articles
■ Medical and insurance records
■ Receipts
■ Tax forms

Depending on how you design and code your application, you can
enable your users to:

■ Scan images.
■ Retrieve and display images.
■ Annotate, edit, and manipulate images.
■ Convert, copy, and OCR images.
■ Append, insert, and replace image pages.
■ Display and manage thumbnail representations.
■ Set the Summary properties of images for easier retrieval.
■ Print, save, and send images.
13

Chapter 1
What Is Document Imaging?
Imaging for Windows technology brings Imaging functions to many
business and personal users — particularly where Imaging for Windows
is on virtually every desktop running Windows 98, Windows NT 4.0,
and Windows 2000.

The following sections describe the concepts of business and personal
document imaging.

Business Document Imaging

Business document imaging is a technology that converts paper
documents into an electronic form, where they can be automated using
standard computer technology.

Most business information is in the form of paper documents. Industry
analysts report that about 94 percent of business information is on paper
and that 2.7 billion new sheets of paper are filed into folders every single
day.

Paper has obvious advantages, such as portability, ease of use, and low
cost. However, paper also has serious drawbacks. At any given time,
between three and five percent of a company's files are lost or misplaced.
With the average cost of recreating a document at around $180, the cost
of losing important business documents can be an expensive one indeed.

Perhaps paper’s most serious drawback is that paper-based information is
not as readily accessible as computer-based data. A manual business
process, not an automated one, uses paper best. To make matters worse,
paper-based documents and their respective data usually reside separate
from related paper-based documents and their data.

Obtaining information readily or providing “the right information to the
right person at the right time” is difficult and costly with the paper-
based, manual business process. So, while paper is the major information
base of a business, it remains outside of the business information system
because it is not easily and reliably accessible.

Computer-based information, on the other hand, is always readily and
reliably accessible. Business document imaging is the process of turning
paper-based information into computer-based information.

By using a computer to capture paper documents as electronic images,
you can apply all the benefits and power of database, e-mail, networking,
fax, and storage technology to what was once manually processed
information.
14

About Imaging
Personal Document Imaging

As is the case with business document imaging, personal document
imaging is the process of turning paper-based information into
computer-based information.

Like business information, most personal information is in the form of
paper documents. From personal correspondence with companies to tax
forms to hobby-related documents and childrens’ drawings, the
information in our personal lives is very much paper-centric.

Paper-based personal documents are also subject to permanent loss and
temporary misplacement. They’re also not as readily accessible as
computer-based documents.

By using a computer to capture personal paper-based documents as
electronic images, you can store letters, tax forms, and receipts in an
organized manner that makes finding them easier. You can preserve
college records, hobby-related documents, and childrens’ drawings for
many years — not to mention share them with family and friends by
sending them over the Internet.
15

Chapter 1
Compiling and Distributing Your Image-Enabled
Application

You need to make sure that you compile your image-enabled application
with the appropriate version of Imaging for Windows.

You also need to make sure that your end users acquire and set up the
appropriate version of Imaging for Windows prior to installing your
software.

The version of Imaging for Windows you need when compiling your
application — and the version your end users need to install — largely
depends on the features you have included in your software.

Compiling Software with Imaging for Windows
If you used a control, property, method, event, or parameter provided
exclusively by a newer version of Imaging for Windows, you must
compile your application with that newer version of Imaging for
Windows.

In addition, you must make sure that your end users purchase and set up
that version of Imaging for Windows to run your software successfully.

Your users can obtain Imaging for Windows from the eiStream Web site,
at:

 http://www.eistream.com/

Compiling Software with an Operating System Component
If you did not use a control, property, method, event, or parameter
provided exclusively by a version of Imaging for Windows — and you
want your application to be used by Imaging for Windows 98, Windows
NT, or Windows 2000 users — you must compile your application with
the appropriate version of Imaging for Windows (98, NT, or 2000).

If you compile your software with an operating system version of
Imaging for Windows, the Imaging for Windows functionality in your
application is only licensed to run on the specific operating system. The
functionality may not be compatible on other operating systems and
Imaging for Windows is non-transferable.

The Imaging for Windows 98, Windows NT, and Windows 2000
controls are free; as such, there are no royalties or licensing fees required.
Your end users must simply set up the appropriate version of Imaging for
Windows as a prerequisite to using your program (if they haven’t
already).
16

About Imaging
Use of LZW Compression
Imaging for Windows uses LZW, a compression/decompression
technology that is covered by U.S. Patent 4,558,302 (plus its foreign
counterparts, issued or pending). All patents are held by Unisys
Corporation.

eiStream WMS, Inc.’s Imaging for Windows software does not permit
you to use LZW compression or decompression capabilities from any
version of Imaging for Windows for development purposes, or to use or
derive the LZW capabilities from an eiStream third-party application or
other derivative software.

Contact Unisys for licensing information at:

Welch Patent Licensing Department
Unisys Corporation, Mail Stop E8-114
Unisys Way
Blue Bell, PA 19424.

Via the Internet, send E-mail to LZW_INFO@UNISYS.COM. Via
facsimile, send inquiries to Welch Patent Licensing Department at
215-986-3090.

Note: Do not distribute the Imaging OCX files with your application,
because doing so will not install Imaging for Windows correctly.
Instead, have your users set up the entire Imaging for Windows
application to ensure that all of the required software is installed
and registered properly.
■ Imaging for Windows 2000 ships as a component of

Windows 2000.
■ Imaging for Windows NT 4.0 ships as a component of

Windows NT Workstation 4.0.
■ Imaging for Windows 98 ships as a component of Windows

98..
17

Chapter 1
Documentation Conventions
This guide uses the following conventions.

You should keep the code on one line in your program, or use the line
continuation character provided by your programming environment.
Refer to the documentation that came with your programming
environment for more information on the line continuation character
and its proper placement in your code.

Note that the ➥ character does not necessarily indicate the proper place
for a line continuation character in your code.

Conventions Description

Image, Display,
PasteCompleted

Words in bold with initial capitalization
indicate names of properties, methods, and
events.

Object, arglist In the syntax section, words in lowercase
italics indicate placeholders for
information you must provide.

[expressionlist] In the syntax section, items appearing
inside square brackets are optional.

{True | False} In the syntax section, braces and a vertical
bar indicate a mandatory choice between
two or more items.

Dim x As IFontDisp This font is used for code examples.

➥ This character indicates that a line of code
was too long to fit on one line in the
Example window.
18

2

Adding Imaging Using Automation

This chapter explains how to use Automation to image-enable your

applications. It begins by describing the object hierarchy of the Imaging
application and continues by describing how the Imaging application can
function as an Automation server application or an Embedded server
application. The chapter concludes by walking you through a sample
project to help you get started.

In This Chapter
Overview ... 20

The Object Hierarchy ... 20

Automation Server and Embedded Server Modes......................... 22

Demonstration Project ... 28

Chapter 2
Overview
Imaging for Windows features a rich Automation interface that provides
programmatic access to the internal services of the Imaging application.

Using Automation, you can provide your users with the image display
and manipulation functions that are contained within the Imaging
application. You, in effect, make the Imaging application a fully
functional, tested, and trusted component of your application.

In addition to automating the Imaging application from your programs,
you can also automate it from other Automation-capable programs, such
as Microsoft® Word and Excel.

The remainder of this chapter:

■ Outlines the Object Hierarchy of the Imaging application.
■ Describes how the Imaging application can function as an

Automation server application or an Embedded server application.
■ Provides an example of automating the Imaging application from

Microsoft Excel.

The Object Hierarchy
The object model of the Imaging application includes:

■ One top-level object, called the Application object;
■ One document object, called the ImageFile object; and
■ Two objects that support the ImageFile object, called

the Page object and the PageRange object.

Components are software
modules that can be “plugged
into” applications from other
vendors. They provide end
users with a specific set of
additional functions and
capabilities.

Note: The Imaging Preview and Imaging Flow applications cannot be
automated.

Application Object

ImageFile Object

Page Object

PageRange Object
20

Adding Imaging Using Automation
The first time you start the Imaging application, it adds the Application
object to the Windows® registry. Imaging Automation exposes only the
Application object for creation. Other programmable objects can be
created by referencing the Application object.

Each object in the hierarchy has its own set of properties and methods.
Refer to Chapter 3 for a description of the properties and methods of
each object.

Application Object
Use the Application object to create an instance of the Imaging appli-
cation and to control it. The Application object controls every other
object you create as well as the environment of the application; such as
the application’s size and position.

ImageFile Object
The ImageFile object represents an image document file. Use it to
specify the name of an image file and to provide basic filing functions
such as open, save, close, print, insert, update, and append. Use it also to
provide image manipulation functions such as rotate, create contact sheet,
and perform OCR.

Page Object
Each Page object represents an image document page. Use it to
manipulate the individual pages of an image file and to provide functions
such as delete, flip, print, rotate, scroll, and perform OCR.
21

Chapter 2
PageRange Object
The PageRange object represents a range of consecutive pages within an
ImageFile object — starting at the StartPage property and ending at the
EndPage property. Use it to manipulate a range of pages and to provide
page manipulation functions such as delete, print, and perform OCR.

Automation Server and Embedded Server Modes
The Imaging application can function as an:

■ Automation server application, or an
■ Embedded server application.

The following sections describe each mode and include examples.

Automation Server Mode
In every version of Imaging for Windows, the Imaging application can
function as a stand-alone Automation server application.

When automated in this mode, the Imaging application is directed to
display and manipulate an image file that is external to your application;
such as a file resident on a local or network drive. Your program uses the
properties and methods of the Imaging Automation objects to control
the Imaging application and to display and manipulate the image.

The demonstration project, described later in this chapter, is an excellent
example of using the Imaging application as an Automation server
application.

Note: Automation is not aware of the actions performed by users
within the Imaging application. The objects known to
Automation remain in the state they were in when last affected
programmatically.
In other words, if users change a displayed object, Automation
does not update that object within its Application object. For
example, if users change the active page, Automation does not
update the ActivePage property.
However, properties and methods are available that let you
determine if a change has occurred. At your option, you can use
them to update the corresponding objects known to
Automation.

You can use the AppState
property of the Application
object to determine whether
the Imaging application is
running as an Automation
server or an Embedded server.
22

Adding Imaging Using Automation
Embedded Server Mode
Imaging for Windows has several Imaging Automation properties and
methods to manipulate an embedded image document object.

When automated in this mode, the Imaging application is directed to
manipulate an image document object that has been embedded into your
program using, for example, the OLE Container control of Visual Basic.

Depending on how you code your application, you can manipulate the
embedded image document in-place or within the Imaging application
window (refer to the next section for examples).

Examples
This section contains examples that show you how to automate the
Imaging application as a stand-alone Automation server application and
as an Embedded server application.

As an Automation Server Application

This example shows you how to use Visual Basic to automate the
Imaging application as an Automation server application. (Refer to the
code snippet at the end of this section.)

Automating the Imaging application involves a series of programming
steps that begin with the creation of Application and Image File objects
and continue with the application control and image manipulation
functions you want to perform.

Note: Remember that the Automation interface allows the in-place
activation of embedded objects only. It does not permit the in-
place activation of linked objects.

Note: The example that demonstrates automating the Imaging
application as an Automation server application is more
extensive because:
■ The principles behind automating the Imaging application

are similar no matter which mode is used.
■ Use of the Imaging application as an Automation server

application is more prevalent.
23

Chapter 2
To create the Application and Image File Objects

1 Declare the object variables that will contain references to the
Application and Image File objects.

2 Use the Set statement and the CreateObject function of Visual
Basic to create and return a reference to the Application object.

3 Use the Set statement of Visual Basic and the
CreateImageViewerObject method of the Application object to
create and return a reference to the ImageFile object.

With the Application and ImageFile objects instantiated, you can
now manipulate the Imaging application as well as any image the
application displays.

To manipulate the Imaging Application

1 Set the TopWindow property of the Application object to True to
have the Imaging application window remain on top of all other
applications that may be running.

2 Invoke the Open method of the ImageFile object to open and
display an image file. In your call to the Open method, pass the
following parameters:

ImageFile — The path and file name of the image file to display

IncludeAnnotation (optional) — True or False: whether to
display annotations that may be present in the image file

Page (optional) — The number of the image page to display

DisplayUIFlag (optional) — True or False: whether to display the
Open dialog box, which lets end users select the file they want to
display

Now that an image is open and on display, you can manipulate it.
The following paragraphs provide some examples.

− Invoke the RotateLeft method of the Page object to rotate page 1
of the image file 90 degrees to the left. Keep in mind that there is
one Page object for each image page in the file.

− Use the Height property of the Page object to assign the height of
page 1 to the local variable lngPageHeight.

− Invoke the Print method of the PageRange object to print pages 1
and 2 on the default printer.

− Set the ActivePage property of the ImageFile object to 2 to
display page 2 of the image file.

After you create an object, you
can access the properties and
methods of the object using
the object variable.

A PageRange object represents
a range of consecutive pages
within an ImageFile object.
24

Adding Imaging Using Automation
To Close the Image File and Exit the Application

1 Invoke the Close method of the ImageFile object to close the image
file.

2 Invoke the Quit method of the Application object to exit the
application.

3 Set the object variables to Nothing to free system resources.

'Declare variables
 Dim objApp As Object
 Dim objImg As Object
 Dim vntPrtRange As Variant
 Dim lngPageHeight As Long

'Create the Application object (Standard VB call)
 Set objApp = CreateObject("Imaging.Application")

'Create the ImageFile object
 Set objImg = objApp.CreateImageViewerObject(1)

'Set the application's TopWindow property to TRUE (stay on top)
 objApp.TopWindow = True

'Call the ImageFile object Open Method to display page 1 of myimage.tif
 objImg.Open "c:\images\myimage.tif", True, 1, False

'Create and rotate one Page object
 objImg.Pages(1).RotateLeft

'Return the height of the image from the Page object
 lngPageHeight = objImg.Pages(1).Height

'Create a PageRange object and print pages 1 and 2
 vntPrtRange = objImg.Pages(1,2).Print

'Display page 2 of the image
 objImg.ActivePage = 2

'Close ImageFile object and quit the application
 objImg.Close
 objApp.Quit

'Release system resources
 Set objApp = Nothing
 Set objImg = Nothing
25

Chapter 2
Methods Not Available in Automation Server Mode

You cannot use the following methods when the Imaging application is
functioning as an Automation server application:

■ SaveCopyAs method of the ImageFile object
■ Update method of the ImageFile object

As an Embedded Server Application

The following sections demonstrate how to automate the Imaging
application as an Embedded server application. The examples assume you
are embedding an image document object into a Visual Basic application
using the OLE Container control.

Example 1

In this example, the Imaging application displays the embedded image
document in a separate window for editing.

Example 2

In this example, the Imaging application is in-place active and displays a
subset of its menus within your application. The menus provide access to
functions that let users edit the image document object “in-place” —
that is, within your application.

Set objApp = CreateObject("Imaging.Application")
Set objImg = objApp.CreateImageViewerObject(1)
oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False

Set objApp = CreateObject("Imaging.Application")
oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEShow
Set objImg = objApp.CreateImageViewerObject(1)
objImg.InsertExistingPages "Test.tif", 1, 1, 1, False
26

Adding Imaging Using Automation
Example 3

In this example, the Imaging application displays the embedded image
document in an instance of the Imaging application that is already
running.

Properties and Methods Not Available in Embedded Server
Mode

You cannot use the following properties and methods when the Imaging
application is functioning as an Embedded server application:

■ Edit property of the Application object
■ Height and Width properties of the Application object
■ ImageView property of the Application object (if the application is

in-place active)
■ Left property of the Application object
■ Top property of the Application object
■ Close method of the ImageFile object
■ FindOIServerDoc method of the ImageFile object
■ New method of the ImageFile object
■ Open method of the ImageFile object
■ Quit method of the Application object (if the application is in-place

active)
■ SaveAs method of the ImageFile object

oleImg.CreateEmbed("", "Imaging.Document")
oleImg.DoVerb vbOLEOpen
Set objApp = CreateObject("Imaging.Application")
Set objImg = objApp.CreateImageViewerObject(1)
27

Chapter 2
Demonstration Project
This section demonstrates
how to automate the
Imaging application from
Microsoft Excel.

While a wide-ranging dis-
cussion of every Imaging
function is beyond the scope
of this chapter, the infor-
mation presented here is
sufficient to get started.

The demonstration project
was developed using
Microsoft Visual Basic for
Applications and Excel.

Even if you are not going to
automate the Imaging
application, you’ll find the
section in this chapter on
View Modes useful.

To help you use Automation to image-enable your applications, a
demonstration project — called Automation From Excel — shows you
how to:

■ Invoke the Imaging application and open an image.
■ Obtain the page count.
■ Rotate an image page.
■ Set the desired view mode.
■ Close the image and the application.

Before walking through the demonstration project, read the following
section, which describes the view modes of the Imaging application.
Chapter 4 of this guide describes the concepts of image display, page
counts, multipage image files, and image rotation.

View Modes
The Imaging application has three view modes that enable users to view
and work with image files. Each view mode has its own set of advantages
and capabilities.

The ImageView property of the Application object enables you to
invoke — most likely in response to user input — any one of the three
view modes. You should consider making view mode selection available
to your users when automating the Imaging application.

The following sections describe the view modes.

Note: Chapter 3 of this guide describes the properties and methods of
each Imaging Automation object.

Developers using the Imaging
ActiveX controls can use
the Image Edit and Image
Thumbnail controls to simulate
the View Mode behavior des-
cribed in this section. Refer to
the ActiveX controls Help for
more information.
28

Adding Imaging Using Automation
One Page

The One Page view mode lets users display image files one page at a
time. It lets users display image pages in the entire window while
maintaining complete access to the menus, toolbars, and functions of
the application.
29

Chapter 2
Thumbnail

The Thumbnail view mode lets users display image files as a series of
thumbnail images — one for each image page. It lets users:

■ View multiple image pages simultaneously.
■ Rearrange pages using drag and drop.
■ Delete pages.
■ Drag and drop pages to and from other applications that support drag

and drop functionality.

Keep in mind that some Imaging functions — like annotation and
zoom — are not available in this mode because they are not appropriate
for use on such small images.
30

Adding Imaging Using Automation
Page and Thumbnails

The Page and Thumbnails view mode is a combination of the first two
view modes. It enables users to display image files one page at a time and
as series of thumbnail images — one for each image page in the file.

This view mode lets users perform Imaging tasks that are available to
both the One Page view mode and the Thumbnail view mode.
31

Chapter 2
Example
Users of Excel may want to display and manipulate an image file
referenced within a spreadsheet.

Scenario

In her role as a product manager for a major computer company, Eileen
regularly uses Microsoft Excel to create product configurations of PCs
sold on contract to government agencies.

After she completes a configuration spreadsheet, she typically submits it
to review via e-mail. In the past, several reviewers have requested that she
also include a scanned copy of the contract.

At a recent employee meeting, Eileen asked you if there was any way her
reviewers could display a scanned contract from Excel. Knowing that
Imaging for Windows is on every desktop in the company, you told her
that you could automate the Imaging application from Excel to give her
reviewers quick access to a scanned contract, or any other image file for
that matter.

All Eileen needs to do is:

1 Scan the contract using Imaging for Windows.

2 Import your code module into her Excel spreadsheet.

3 Enter the path and file name of the scanned contract in Cell A1 of the
spreadsheet.

4 Send both the image file and the spreadsheet file to her reviewers.

The Automation From Excel Project
As stated previously, the Automation From Excel project demonstrates:

■ Invoking the Imaging application and opening an image from Excel.
■ Obtaining the page count.
■ Rotating an image page.
■ Setting the desired view mode.
■ Closing the image and the application.

The project consists of the following files:

AutoFromExcel.bas — A Visual Basic for Applications (VBA) code
module that contains macros that automate the Imaging application.

ImagingAutomation.xls — A sample spreadsheet that contains the
AutoFromExcel.bas code module.

The file names for the
Automation From Excel project
are AutoFromExcel.bas,
ImagingAutomation.xls,
and Facc.tif.
32

Adding Imaging Using Automation
Facc.tif — A sample TIFF image file that simulates the title page of a
government contract.

The AutoFromExcel.bas code module contains the following macros:

f_InitializeApp() — Initializes the Imaging application.

s_DispImg() — Displays the image file.

s_FindServerDoc() — Locates an image document residing on a server.

s_GetPagecount() — Obtains the number of pages in the image file
and displays it in a worksheet cell.

s_RotateImg() — Rotates the image 90 degrees to the left.

s_ViewSingle() — Places the Imaging application in the One Page
view mode.

s_ViewThumbnails() — Places the Imaging application in the
Thumbnail view mode.

s_ViewThumbAndSingle() — Places the Imaging application in the
Page and Thumbnails view mode.

s_CloseImg() — Closes the image file and exits the Imaging
application.

The AutoFromExcel.bas code module uses the following Automation
methods to provide the Imaging functions:

Open method (ImageFile object) — Opens the image file in the
Imaging application.

CreateImageViewerObject method (Application object) — Creates
and returns an ImageFile object.

RotateLeft method (Page object) — Rotates the image 90 degrees
counterclockwise.

Close method (ImageFile object) — Closes the ImageFile object.

Quit method (Application object) — Exits the application.
33

Chapter 2
Opening the Spreadsheet File

Start Excel and then open the ImagingAutomation.xls file. The
sample spreadsheet appears.

Opening and Displaying the Image File

Give focus to Cell A1, which contains the path and file name of the
sample TIFF image file.
34

Adding Imaging Using Automation
On the Tools menu, point to Macro and then click Macros. The
Macro dialog box appears.

Click the s_DispImg macro and then click Run.

When the macro runs, code in the General Declarations area of
the code module defines the object variables that contain references to
the Application and Image File objects.

Dim objApp As Object
Dim objImg As Object
35

Chapter 2
Then, the s_DispImg() subroutine executes its code.

The s_DispImg() subroutine obtains the path and file name of the
image file to open from the active cell of the spreadsheet. Then it assigns
the path and file name to the strCurrentFile local variable.

Sub s_DispImg()

 Dim strCurrentFile As String
 Dim strCurrentImageName As String

 'Get file name to display from spread sheet
 strCurrentFile = ActiveCell.Value
 .
 .
 .
 'If the Application object not created, create it.
 If objApp Is Nothing Then
 If f_InitializeApp() = False Then 'Continue if successful
 Exit Sub
 End If
 End If

 'Make the Imaging application on-top.
 objApp.TopWindow = True

 On Error Resume Next 'If no file is open.
 'Get the name of the open Image file.
 strCurrentImageName = objImg.Name

 On Error GoTo 0 'Reset error handler
 If strCurrentImageName <> "" Then
 'Always close existing image file before opening a new one.
 objImg.Close
 End If

 On Error GoTo OpenImageMethodError
 'Open the Image file in the ActiveCell
 objImg.Open strCurrentFile
 Exit Sub

OpenImageMethodError:
 sMsg = "Error => " & Str$(Err.Number) & " " & Err.Description
 MsgBox (sMsg)
 'Close the Imaging application
 s_CloseImg

End Sub
36

Adding Imaging Using Automation
Next, the subroutine checks to see if an instance of the Imaging
application exists. If it does not, it invokes the f_InitializeApp()
function.

The f_InitializeApp() function uses the Set statement and the
CreateObject function of Visual Basic to create and return a reference
to the Application object. Then it uses the Set statement of Visual Basic
and the CreateImageViewerObject method of the Application object
to create and return a reference to the ImageFile object.

With the Application and ImageFile objects now fully instantiated,
control returns to the s_DispImg() subroutine.

The _DispImg() subroutine sets the TopWindow property of the
Application object to True to have the Imaging application window
remain on top of all other applications that may be running.

Then it checks to see if an image file is already displayed by examining
the value of the Name property of the ImageFile object. If the Name
property is not blank, the subroutine invokes the Close method of the
ImageFile object to close the displayed image file.

Function f_InitializeApp() As Boolean

 Set objApp = Nothing
 Set objImg = Nothing
 On Error GoTo oldname
' Attempt to create app object using current name
' If this fails try the older name
 Set objApp = CreateObject("Imaging.Application")
 GoTo viewer
oldname: On Error GoTo 0
 Set objApp = CreateObject("WangImage.Application")
viewer: On Error GoTo 0
 Set objImg = objApp.CreateImageViewerObject(1)
 f_InitializeApp = True

End Function
37

Chapter 2
Next, the subroutine invokes the Open method of the ImageFile object,
passing to it the path and file name of the image to display (from
strCurrentFile). The Open method opens the image file in the
Imaging application window.

Now that the image is open and on display, you can use some of the
other macros to manipulate it and the Imaging application.
38

Adding Imaging Using Automation
Obtaining the Page Count

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_GetPagecount macro and then click Run. The
s_GetPagecount() subroutine executes its code.

The subroutine obtains the page count from the PageCount property of
the ImageFile object and assigns it to the lngPageCount local variable.
Then it invokes the Cells function of Excel to display the page count
(from lngPageCount)in the cell adjacent to the active cell on the
spreadsheet.

Sub s_GetPagecount()

 Dim lngPageCount As Long

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Get the page count.
 lngPageCount = objImg.PageCount

 'Put the page count in the adjacent column.
 Cells(ActiveCell.Row, ActiveCell.Column + 1) = lngPageCount

End Sub
39

Chapter 2
Rotating an Image Page

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_RotateImg macro and then click Run. The
s_RotateImg() subroutine executes its code.

The subroutine obtains the page number of the currently displayed image
page from the ActivePage property of the ImageFile object, and assigns
it to the lngActivepage local variable. Then it invokes the
RotateLeft method of the Page object to rotate the displayed image
page 90 degrees to the left.

Sub s_RotateImg()

 Dim lngActivepage As Long

 If objImg Is Nothing Then
 MsgBox ("Please open an image file first")
 Exit Sub
 End If

 lngActivepage = objImg.ActivePage
 objImg.Pages(lngActivePage).RotateLeft

End Sub
40

Adding Imaging Using Automation
Setting the One Page View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewSingle macro and then click Run. The
s_ViewSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 0, which places the Imaging application
in the One Page view mode.

Setting the Thumbnail View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewThumbnails macro and then click Run. The
s_ViewThumbnails() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 1, which places the Imaging application
in the Thumbnail view mode.

Sub s_ViewSingle()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in One Page view mode.
 objApp.ImageView = 0

End Sub

Sub s_ViewThumbnails()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in Thumbnail view mode.
 objApp.ImageView = 1

End Sub
41

Chapter 2
Setting the Page and Thumbnails View Mode

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_ViewThumbAndSingle macro and then click Run. The
s_ViewThumbAndSingle() subroutine executes its code.

The subroutine invokes the ImageView method of the Application
object with a parameter value of 2, which places the Imaging application
in the Page and Thumbnails view mode.

Closing the Image File and the Imaging
Application

On the Tools menu in Excel, point to Macro and then click Macros.
The Macro dialog box appears.

Click the s_CloseImg macro and then click Run. The s_CloseImg()
subroutine executes its code.

The subroutine invokes the Close method of the ImageFile object to
close the currently displayed image file. Then it invokes the Quit
method of the Application object to close the Imaging application.
Finally, it sets the object variables to Nothing to free system resources.

Sub s_ViewThumbAndSingle()

 If objImg Is Nothing Then
 MsgBox ("Please Open an Image file first")
 Exit Sub
 End If

 'Place the Imaging application in Page and Thumbnails view mode.
 objApp.ImageView = 2

End Sub

Sub s_CloseImg()

 On Error Resume Next
 objImg.Close 'Close open image
 objApp.Quit 'Quit Automation application
 Set objImg = Nothing 'Destroy Image object
 Set objApp = Nothing 'Destroy Application object
 On Error GoTo 0 'Reset Error handler

End Sub
42

3

Automation Lexicon

This chapter describes the properties and methods of each Imaging for

Windows® Automation object.

In This Chapter
Overview ... 44

Application Object ... 44

ImageFile Object .. 56

Page Object ... 69

PageRange Object ... 76

Chapter 3
Overview
This chapter describes the
properties and methods of
each object in the Imaging
application object hierarchy.

Automation enables you to control the Imaging application program-
matically from within your application. Using it, you can provide your
end users with all of the capabilities of the Imaging application.

Each object has its own set of properties and methods. The remainder of
this chapter describes each one.

Application Object
The Application object is a top-level object that controls every other
object you create. The Application object also allows you to set the
environment. For example, you can control the size and position of the
Imaging application window and the visibility of scroll bars, the status
bar, and the toolbar.

Application Object Properties
The following table lists the Application object properties. Note
that the properties that affect the displayed image (for example,
DisplayScaleAlgorithm, ImagePalette, and Zoom) affect every
image displayed in the Application object.

Note: Refer to Chapter 2 of this guide for more information about
using Automation to image-enable your applications.

Application Object Properties

Property Description

ActiveDocument Returns the active ImageFile object.

AnnotationPaletteVisible Sets or returns the visibility of the application's annotation
palette.

Application Returns the Application object.

AppState Returns the state of the image viewer application.

DisplayScaleAlgorithm Sets or returns the scaling algorithm used for displaying images.

Edit Sets or returns the application’s ability to edit the displayed
object.

FullName Returns the file specification for the Application object.

Height Sets or returns the distance between the top and bottom edge
of the application window.

ImagePalette Sets or returns the image palette used for image display.
44

Automation Lexicon
ActiveDocument Property
Description Returns the active ImageFile object in the Application object. This is a read-only property.

Usage ApplicationObject.ActiveDocument

Data Type Object.

Example 'This example returns the ImageFile object in the application.
Dim Img as Object
Set Img = App.ActiveDocument

ImageView Sets or returns the present image view.

ImagingToolBarVisible Sets or returns the visibility of the application’s scan toolbar.
Not available in all releases.

Left Sets or returns the distance between the left edge of the physi-
cal screen and the main application window.

Name Returns the name of the Application object.

Parent Returns the Application object.

Path Returns the path specification for this application’s executable
file.

ScannerIsAvailable Sets or returns the state of the scanner.

ScanToolBarVisible Sets or returns the visibility of the application’s imaging
toolbar.

ScrollBarsVisible Sets or returns the visibility of the application’s scroll bars.

StatusBarVisible Sets or returns the visibility of the application’s status bar.

ToolBarVisible Sets or returns the visibility of the application’s toolbar.

Top Sets or returns the distance between the top edge of the physi-
cal screen and application’s window.

TopWindow Sets or returns the application’s top window flag.

Visible Returns the visibility of the application.

WebToolBarVisible Sets or returns the visibility of the web toolbar.

Width Sets or returns the distance between the left and right edges of
the application’s window.

Zoom Sets or returns the zoom factor for image display.

Application Object Properties (cont.)

Property Description
45

Chapter 3
AnnotationPaletteVisible Property
Description Sets or returns the visibility of the annotation palette. This is a read/write property.

Usage ApplicationObject.AnnotationPaletteVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The AnnotationPaletteVisible property settings are:

Application Property
Description Returns the Application object. This is a read-only property.

Usage ApplicationObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Parent As ObjectSet Parent = App.Application

AppState Property
Description Returns the state of the Application object. The state indicates whether the application is

running as an embedded or automation server. This is a read-only property.

Usage ApplicationObject.AppState

Data Type Short.

Remarks The AppState property settings are:

DisplayScaleAlgorithm Property
Description Sets or returns the scaling algorithm used for displaying images. This is a read/write

property.

Usage ApplicationObject.DisplayScaleAlgorithm [=value]

Data Type Short.

Setting Description

True (Default) The annotation palette is visible.

False The annotation palette is not visible.

Setting Description

1 The application is running as an embedded server.

2 The application is running as an automation server.
46

Automation Lexicon
Remarks The DisplayScaleAlgorithm value can be specified before or after an image is displayed. The
property settings are:

Edit Property
Description Sets or returns the Application object’s ability to edit the displayed object. You should set

the Edit property prior to opening each ImageFile object. This is a read/write property.

Usage ApplicationObject.Edit = [{True|False}]

Data Type Integer (Boolean).

Remarks The Edit property settings are:

FullName Property
Description Returns the file specification for the Application object, including the path. This is a read-

only property.

Usage ApplicationObject.FullName

Data Type String.

Setting Description

0 (Default) Normal decimation.

1 Gray4 — 4-bit gray scale (16 shades of gray).

2 Gray8 — 8-bit gray scale (256 shades of gray).

3 Stamp — Represents the image as a thumbnail.

4 Optimize — Changes the display scale algorithm based on the image type of
the displayed image. Black and white images are scaled to gray. Palettized
4- and 8-bit, RGB, and BGR images remain color.

Note: This property must be set prior to opening the ImageFile object. For this property to
take effect after an image is open, you must reopen the image.

Setting Description

True (Default) Image editing is available.

False The displayed object cannot be changed.

Note: You must set the Edit property prior to opening the ImageFile object. You can only
set the Edit property once in the current session.
47

Chapter 3
Height Property
Description Sets or returns the distance, in pixels, between the top and bottom edge of the Application

object’s window. This is a read/write property.

Usage ApplicationObject.Height [=value]

Data Type Long.

Remarks This property must be set prior to opening the ImageFile object. It only takes effect if the
Width, Top, and Left properties are also set. If you set the Height property to less than
the minimum allowable window size, the value is ignored. The minimum setting is usually
27.

The Height property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

ImagePalette Property
Description Sets or returns the image palette used to display an image. This is a read/write property.

Usage ApplicationObject.ImagePalette [=value]

Data Type Short.

Remarks The ImagePalette property settings are:

ImageView Property
Description Sets or returns the present image view. This is a read/write property.

Usage ApplicationObject.ImageView [=value]

Data Type Short.

Note: The ImagePalette property must be set prior to opening the ImageFile object. For
this property to take effect after an image is open, you must reopen the image.

Setting Description

0 (Default) Custom

1 Common

2 Gray8 — 8-bit grayscale (256 shades of gray)

3 RGB24 — 24-bit (millions of colors)

4 Black and white
48

Automation Lexicon
Remarks The ImageView property settings are:

The ImageView property and the ImageFileObject.ActivePage property have the
following relationships:

See Also ImageFileObject.ActivePage property.

ImagingToolBarVisible Property
Description Sets or returns the visibility of this Application object’s imaging toolbar. This is a read/write

property.

Usage ApplicationObject.ImagingToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ImagingToolBarVisible property settings are:

Left Property
Description Sets or returns the distance, in pixels, between the left edge of the physical screen and the

Application object’s window. This is a read/write property.

Usage ApplicationObject.Left [=value]

Data Type Long.

Remarks The Left property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Top properties are also set.

The Left property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

Setting Description

0 (Default) One page view

1 Thumbnails view

2 Page and Thumbnails view

View Relationship

One Page (Default) The active page is displayed.

Thumbnails The active page appears in thumbnail view.

Page and Thumbnails The active page is the page that is displayed.

Setting Description

True (Default) The imaging toolbar is visible.

False The imaging toolbar is not visible.
49

Chapter 3
Name Property
Description Returns the name of this Application object. This is a read-only property.

Usage ApplicationObject.Name

Data Type String.

Parent Property
Description Returns the parent of the Application object. This is a read-only property.

Usage ApplicationObject.Parent

Data Type Object.

Path Property
Description Returns the path specification for the Application object’s executable file. This is a read-

only property.

Usage ApplicationObject.Path

Data Type String.

ScannerIsAvailable Property
Description Sets or returns the availablity of the scanner. This is a read/write property.

Usage ApplicationObject.ScannerIsAvailable = [{True|False}]

Data Type Integer (Boolean).

Remarks The ScannerIsAvailable property settings are:

ScanToolBarVisible Property
Description Sets or returns the visibility of this Application object’s scan toolbar. This is a read/write

property.

Usage ApplicationObject.ScanToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Setting Description

True (Default) The scanner is available. If no scanner is attached to the system, this
property setting is False.

False The scanner is unavailable.
50

Automation Lexicon
Remarks The ScanToolBarVisible property settings are:

ScrollBarsVisible Property
Description Sets or returns the visibility of the Application object’s scroll bars. This is a read/write

property.

Usage ApplicationObject.ScrollBarsVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The ScrollBarsVisible property settings are:

StatusBarVisible Property
Data Type Sets or returns the visibility of this Application object’s status bar. This is a read/write

property.

Usage ApplicationObject.StatusBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The StatusBarVisible property settings are:

ToolBarVisible Property
Data Type Sets or returns the visibility of this Application object’s standard toolbar. Read/write

property.

Usage ApplicationObject.ToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Setting Description

True The scan toolbar is visible.

False (Default) The scan toolbar is not visible.

Setting Description

True (Default) The scroll bars are visible.

False The scroll bars are not visible.

Note: The ScrollBarsVisible property must be set prior to opening the ImageFile object.
For this property to take effect after an image is open, you must reopen the image.

Setting Description

True (Default) The status bar is visible.

False The status bar is not visible.
51

Chapter 3
Remarks The ToolBarVisible property settings are:

Top Property
Description Sets or returns the distance, in pixels, between the top edge of the physical screen and main

application window. This is a read/write property.

Usage ApplicationObject.Top

Data Type Long.

Remarks The Top property must be set prior to opening the ImageFile object. This property only
takes effect if the Height, Width, and Left properties are also set.

The Top property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

TopWindow Property
Description Sets or returns this Application object’s top window flag. This is a read/write property.

Usage ApplicationObject.TopWindow = [{True|False}]

Data Type Integer (Boolean).

Remarks The TopWindow property settings are:

Example 'This example makes the application window a stay-on-top window.
App.TopWindow = True

Visible Property
Description Returns the visibility of the Application object. This is a read-only property.

Usage ApplicationObject.Visible

Data Type Integer (Boolean).

Setting Description

True (Default) The toolbar is visible.

False The toolbar is not visible.

Setting Description

True The application is a stay-on-top window.

False (Default) The application is not a stay-on-top window.
52

Automation Lexicon
Remarks The Visible property settings are:

WebToolBarVisible Property
Description Sets or returns the visibility of this Application object’s web toolbar. This is a read/write

property.

Usage ApplicationObject.WebToolBarVisible = [{True|False}]

Data Type Integer (Boolean).

Remarks The WebToolBarVisible property settings are:

Width Property
Description Sets or returns the distance, in pixels, between the left and right edges of the Application

object's window. This is a read/write property.

Usage ApplicationObject.Width [=value]

Data Type Long.

Remarks The Width property must be set prior to opening the ImageFile object. This property only
takes effect if the Top, Left, and Height properties are also set. If you set the Width
property to less than the minimum allowable window size, the value is ignored. The
minimum setting is usually 112.

The Width property only returns the value that you set programmatically prior to opening
the window. It does not return changes made to the window after it has been opened.

Zoom Property
Data Type Sets or returns the zoom factor used for displaying images. This is a read/write property.

Usage ApplicationObject.Zoom [=value]

Data Type Float.

Remarks The zoom factor is a percent value.

Example 'This example sets the zoom factor to 100%.
App.Zoom = 100

Setting Description

True The application is visible.

False (Default) The application is not visible.

Setting Description

True The web toolbar is visible.

False (Default) The web toolbar is not visible.
53

Chapter 3
'This example returns the current zoom factor.
x = App.Zoom

Application Object Methods
The following table lists the Application object methods.

CreateImageViewerObject Method
Description Creates and returns an ImageFile object. The ImageFile object is empty, with no image file

associated with it. Use the object's Open or New method to associate a specific image file.

Usage ApplicationObject.CreateImageViewerObject([ObjectClass])

Data Type Object.

Remarks This method only supports the ImageFile object, for which the setting is 1.

Example 'This example creates an ImageFile object.
Dim Img as Object
Set Img = App.CreateImageViewerObject(1)

FitTo Method
Description Displays the current image at the specified zoom option. This method updates the

Application object’s Zoom property with the actual zoom factor.

This method affects each view as follows:

Usage ApplicationObject.FitTo (ZoomOption)

Data Type Short.

Application Object Methods

Method Description

CreateImageViewerObject Creates an Imaging object of the specified class.

FitTo Displays the image at the specified zoom option.

Help Displays online Help.

Quit Exits this application and closes all open objects.

View Display

One Page The page is zoomed.

Thumbnails No effect — The Application property is changed and affects
other views when they are used.

Page & Thumbnails The page is zoomed — No effect on thumbnails.
54

Automation Lexicon
Remarks ZoomOption settings are:

Help Method
Description Displays the Imaging online Help table of contents.

Usage ApplicationObject.Help

Quit Method
Description Closes all open objects and exits the application. The Application object is no longer active

or available.

Usage ApplicationObject.Quit

Setting Description

1 Best fit

2 Fit to width

3 Fit to height

4 Actual size
55

Chapter 3
ImageFile Object
An ImageFile object represents an image file. An ImageFile object can have

■ One Page object, representing the currently displayed page of the ImageFile object.
■ One or more PageRange objects, each representing different and possibly overlapping

page ranges.

ImageFile Object Properties
The following table lists the ImageFile object properties.

ActivePage Property
Description Sets or returns the ImageFile object’s active page number. This is a read/write property.

Setting the ActivePage property to a page number causes that page to become active,
which updates the display if the Application object is visible. Refer to the Application
object’s ImageView property for more information about the relationships between the
active page and different views of the page.

Page selection and navigation by the end-user have no effect on the ActivePage property.
The active page is always the active page according to automation.

ImageFile Object Properties

Property Description

ActivePage Sets or returns the ImageFile object’s current page number.

Application Returns the Application object.

FileType Returns the ImageFile object’s file type.

Name Returns the name of the active image file.

OCRLaunchApplication Launches an application with an output file after OCRa
processing is complete.

a. TextBridge OCR technology by ScanSoft.

OCROutputFile Sets or returns the output file for OCR processing.

OCROutputType Sets or returns the output file format for OCR processing.

PageCount Returns the number of pages in the ImageFile object.

Parent Returns the parent of the ImageFile object.

Saved Returns a flag indicating whether or not the file has ever
been saved.

Note: If you set the ActivePage property to a page number beyond those contained in
the document, an error is returned.
56

Automation Lexicon
Usage ImageFileObject.ActivePage [=value]

Data Type Long.

Remarks The number is the page number value.

See Also ApplicationObject.ImageView property.

Application Property
Description Returns the Application object. This is a read-only property.

Usage ImageFileObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Parent As Object
Set Parent = Img.Application

FileType Property
Description Returns the file type of this ImageFile object. This is a read-only property.

Usage ImageFileObject.FileType

Data Type Short.

Remarks The FileType property settings are:

Name Property
Description Returns a string that contains the name of the active image file. This is a read-only

property.

Usage ImageFileObject.Name

Setting Description

0 Unknown

1 TIFF

2 Not supported

3 BMP

4 PCX

5 DCX

6 JPG-JFIF

7 XIF

8 GIF

9 WIFF
57

Chapter 3
Data Type String.

OCRLaunchApplication Property
Description Launches the Application object with an output file after OCR processing is complete.

This is a read/write property.

Usage ImageFileObject.OCRLaunchApplication = [{True|False}]

Data Type Integer (Boolean).

Remarks The OCRLaunchApplication property settings are:

OCROutputFile Property
Description Sets or returns the output file name. If blank, the SaveAs dialog box is displayed. This is a

read/write property.

Usage ImageFileObject.OCROutputFile = [FileName]

Data Type String.

OCROutputType Property
Description Sets or returns the output file type. This is a read/write property.

Usage ImageFileObject.OCROutputType = [Type]

Data Type Long.

Remarks The OCROutputType property results are:

PageCount Property
Description Returns the number of pages in this ImageFile object. This is a read-only property.

Usage ImageFileObject.PageCount

Data Type Long.

Setting Description

True (Default) Launch the application.

False Do not launch the application.

Setting Description

0 Word for Windows/RTF

1 WordPerfect

2 HTML

3 Text
58

Automation Lexicon
Parent Property
Description Returns the parent of the ImageFile object. This is a read-only property.

Usage ImageFileObject.Parent

Data Type Object.

Example 'This example returns the parent of the ImageFile object.
Dim App As Object
App = Img.Parent

Saved Property
Description Returns the saved state of the ImageFile object. Read-only property.

Usage ImageFileObject.Saved

Data Type Integer (Boolean).

Remarks The Saved property settings are:

Example 'This example returns the saved state of the file.
bIsSaved = Img.Saved

ImageFile Object Methods
The following table lists the ImageFile object methods.

Setting Description

True The ImageFile object has been saved and has not changed since it was last saved.

False The imageFile object has never been saved and has changed since it was created;
or, it has been saved but has changed since it was last saved.

ImageFile Object Methods

Method Description

AppendExistingPages Appends existing pages to the end of the ImageFile object.

Close Closes the ImageFile object.

CreateContactSheet Saves a contact sheet rendition of the ImageFile object.

FindOIServerDoc Finds Imaging 1.x documents and WMS Imaging documents.
Not available when the application is running as an embedded
server.

Help Displays online Help.

InsertExistingPages Inserts existing pages in the ImageFile object.

New Creates a new blank ImageFile object. Not available when the
application is running as an embedded server.
59

Chapter 3
AppendExistingPages Method
Description Appends specified page(s) to the end of the current ImageFile object. If the page(s) being

appended come from an image file of a type different than the active image file, the pages
are converted before being appended. After appending page(s), all PageRange objects are
invalid. You can optionally display a dialog box that allows the end-user to select a file from
which to append page(s).

Usage ImageFileObject.AppendExistingPages [ImageFile],[Page],

 [Count],[DisplayUIFlag]

Arguments The AppendExistingPages method has the following parameters:

Ocr OCRs opened Image File.

Open Opens the ImageFile object. Not available when the application is
running as an embedded server.

Pages Returns a Page or PageRange object for the ImageFile object.

Print Prints the ImageFile object.

RotateAll Rotates all ImageFile object pages.

Save Saves changes to the ImageFile object.

SaveAs Saves the ImageFile object under another name.

SaveCopyAs Saves a copy of the ImageFile object. The application must be
running as an embedded server.

Update Updates the ImageFile object embedded within the container
application with the current data from the server application.
The application must be running as an embedded server.

Parameter Data Type Description

ImageFile String The image file from which pages will be appended (source
image file).

Page Long The page from which to start appending pages (in the
source image file).

Count Long The number of pages to append.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user to
select an image file to append.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page file,
the user is prompted to select the pages to append.

ImageFile Object Methods (cont.)

Method Description
60

Automation Lexicon
Example 'This example appends the first page from the file, BW.TIF.
Img.AppendExistingPages "c:\bw.tif", 1

'This example appends a file selected from a dialog box to the
'currently displayed image file. After the user selects a file
'to append, the application prompts the user to specify the
'starting page number and the number of pages to append from
'the selected file.
Img1.AppendExistingPages "", 0, 0, True

'This example appends pages to an Imaging Server 1.x file.
ImgFileObj.AppendExistingPages
 ➥ "Image://nqa11\SYS:\tmp\3PAGES.tif", 1, 3

'This example appends pages to an Imaging Server 1.x document.
ImgFileObj.AppendExistingPages
 ➥ "Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1", 3, 2

'This example appends pages to a WMS Imaging Server
'document.
ImgFileObj.AppendExistingPages "Imagex://sixpage", 1, 6

Close Method
Description Closes the ImageFile object. Closing an ImageFile object deletes it; all Page and PageRange

objects associated with it are also deleted. The Application object no longer has an
ImageFile object associated with it.

Usage ImageFileObject.Close [SaveChangeFlag]

Data Type Integer (Boolean).

Remarks The Close method SaveChangeFlag argument has the following settings:

CreateContactSheet Method
Description Saves a contact sheet rendition of the ImageFile object. This method is unavailable when

the Application is running as an embedded server.

Usage ImageFileObject.CreateContactSheet (ImageFile,

 [IncludeAnnotations], [OpenAfterSave])

Data Type String.

Setting Description

True Changes are saved when the image file closes.

False (Default) Changes are not saved when the image file closes.
61

Chapter 3
Arguments The CreateContactSheet method has the following parameters:

FindOIServerDoc Method
Description Finds 1.x documents or WMS Imaging documents. This method displays an Imaging

server document Find dialog box, from which the user may search for 1.x documents or
WMS Imaging documents. After the user selects a document and chooses the Open
button, the Find dialog box is closed and returns the selected document name, with a path,
to the user. A null string is returned if the user chooses Cancel in the Find dialog box. The
user may use the returned document name string as input for the Image Object Open
method.

Data Type String.

Usage ImageFileObject.FindOIServerDoc

Help Method
Description Displays the Imaging online Help table of contents.

Usage ImageFileObject.Help

InsertExistingPages Method
Description Inserts page(s) into the ImageFile object.

Page(s) to be inserted must come from an existing file. If the pages being inserted come
from an image file of a type different than the active image file, the pages are converted
before being inserted. After inserting page(s), all PageRange objects are invalid. You can
optionally cause a dialog box to open for the end-user to select a file from which to insert
page(s).

Usage ImageFileObject.InsertExistingPages (ImageFile, ImagePage,

 Count, Page, DisplayUIFlag)

Arguments The InsertExistingPages method has the following parameters:

Parameter Data Type Description

ImageFile String The image file object.

IncludeAnnotations Integer Option to include annotations on the image stamps.

OpenAfterSave Integer Option to open the contact sheet file after it has
been created.

Parameter Data Type Description

ImageFile String The image file from which page(s) are to be inserted (the
source image file).

ImagePage Long The page before which the new page(s) are to be inserted.
62

Automation Lexicon
Example 'This example inserts pages 4 and 5 from the file BW.TIF
'before page 1.
Img.InsertExistingPages "c:\bw.tif", 1, 2, 4

'This example inserts page(s) into the current file at the
'current page. (A dialog box prompts the user for the image
'file to be selected for insertion. Another dialog box
'prompts for a page range.) Page, count, and pagenumber
'arguments are required but ignored when dialogflag is True.
Img.InsertExistingPages "", 1, 1, 2, True

'This example inserts pages in an Imaging Server 1.x file.
 ➥ ImgFileObj.InsertExistingPages
 "Image://nqa11\SYS:\tmp\3PAGES.tif", 2, 3, 1

'This example inserts pages in an Imaging Server 1.x document.
ImgFileObj.InsertExistingPages
 ➥ "Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1", 2, 3, 1

'This example inserts pages in an WMS Imaging Server document.
ImgFileObj.InsertExistingPages "Imagex://sixpage", 1, 2, 5

New Method
Description Displays a dialog box that allows the end-user to create a new ImageFile object that

contains one blank page.

Creating a new ImageFile object causes the new object to become active. If the active
ImageFile object is unsaved, the end-user is prompted to save it before the new object is
created.

No image file is associated with the object until you save it. The file type of the new object
is the same as the file type of the active object.

Usage ImageFileObject.New ([DisplayUIFlag])

Count Long The number of pages to insert.

Page Long The page in the source image file from which to start
inserting pages.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user to
select a source image file.
False (Default) — Does not display a dialog box.
If you specify True and the selected file is a multi-page file,
the user will be prompted to select the pages to append.

Note: This method is not available when application is running as an embedded server.

Parameter Data Type Description
63

Chapter 3
Remarks The New method has the following parameter:

Example 'This example creates a new image object.
'Create the image object
Dim App, Img As Object
Set App = CreateObject("Imaging.Application")
Set Img = App.CreateImageViewerObject(1)
'Call the image object New Method
Img.New

Ocr Method
Description OCRs all image file pages.

Usage ImageFileObject.Ocr

Remarks The Image file must be open. The Ocr method uses the OcrOutputFile and
OcrOutputFileType properties.

Example 'This example performs an OCR on an image object.
Dim App, Img As Object
Set App = CreateObject("Imaging.Application")
Set Img = App.CreateImageViewerObject(1)
Img.Open "d:\pcx.tif"
Img.Ocr

Open Method
Description Opens an image file in the parent application window. This associates an image file with the

ImageFile object. If a file is currently open, it should be closed before a new file is opened.
(See the Close Method).

The Imaging application has the focus after an Open. You can reset the focus
programmatically after an Open, if desired.

Usage ImageFileObject.Open(ImageFile,[IncludeAnnotation],[Page],

 [DisplayUIFlag])

Parameter Data Type Description

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to create a new image file.
False (Default) — Does not display a dialog box.

Note: This method is unavailable when the application is running as an embedded server.
64

Automation Lexicon
Remarks The Open method has the following parameters:

Example 'This example opens an image file named 5page.tif:
Img.Open "C:\images\5page.tif"

'This example opens the same file to page 4 with annotations
'displayed:
Img.Open "C:\images\5page.tif",TRUE,4

'This example opens a dialog box so the user can select a
'file to open:
Img.Open "",,,TRUE

'This example opens an Imaging Server 1.x file.
Img.Open "Image://nqa11\SYS:\tmp\3PAGES.tif", TRUE, 1

'This example opens an Imaging Server 1.x document.
Img.Open "Image://PATRIOTS\CABINET\DRAWER\FOLDER\doc1"

'This example opens an WMS Imaging document.
Img.Open"Imagex://sixpage"

See Also ApplicationObject.Edit.

Pages Method
Description Returns the Page or PageRange object for the ImageFile object.

Usage ImageFileObject.Pages(StartPage, EndPage)

Data Type Long.

Remarks If you specify one page number, this method returns a Page object. If you specify two page
numbers, this method returns a PageRange object. To return a range of pages, specify the

Parameter Data Type Description

ImageFile String Name string of the ImageFile object to open.

IncludeAnnotation Flag True (Default)— The image has annotations that are
displayed.
False — The image has annotations that are not
displayed.

Page Long Page number in the image file to display. This parame-
ter must be a constant, or use the ActivePage property
to specify the page that you want displayed when you
open the file.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user
to select a file to open.
False (Default) — Does not display a dialog box.
65

Chapter 3
starting page number and ending page number. The first page number can be a variable,
but the second page number must be a constant.

The Pages method uses these parameters:

Example 'This example returns a Page object and a PageRange object.
Dim Page As Object
Dim PageRange As Object
Set Page = Img.Pages(1)
Set PageRange = Img.Pages(1,3)

Print Method
Description Prints the image file associated with the ImageFile object. You can optionally display a

dialog box to allow the end-user to select the print options.

Usage ImageFileObject.Print ([DisplayUIFlag])

Remarks The Print method DisplayUIFlag argument has the following settings:

Example 'This example prints the specified image file.
x = Img.Print

RotateAll Method
Description Rotates all ImageFile object pages. Pages are rotated clockwise in 90 degree increments.

Usage ImageFileObject.RotateAll

Example 'This example rotates all pages of the currently displayed image.
Img.RotateAll

Save Method
Description Saves changes to the ImageFile object. If no image file is associated with the ImageFile

object, the SaveAs method is executed instead of the Save method.

Usage ImageFileObject.Save

Parameter Data Type Description

StartPage Long The starting page of the page range to be returned.

EndPage Long The ending page of the page range to be returned.

Setting Description

True Displays a dialog box that allows the end-user to select print file options.

False (Default) No dialog box is displayed.
66

Automation Lexicon
SaveAs Method
Description Saves the ImageFile object as another ImageFile object. Copies its image file and renames it.

This method allows you to specify the new object's image parameters. If specified, the file
can be converted from one type to another. The current image file is closed without being
saved and the Save As object becomes the active image file. You can optionally display a
dialog box that allows the end-user to name the file for the first time or select a file to
overwrite.

Usage ImageFileObject.SaveAs (ImageFile, [FileType], [DisplayUIFlag])

Data Type String.

Remarks The SaveAs method has the following parameters:

The SaveAs method FileType argument settings are:

Example 'This example saves a file in TIF format.
Img.SaveAs "picture1.tif", 1

'This example opens a Save As dialog box so that the end-user can
'name the file for the first time or overwrite an existing file:
Img.SaveAs "", 0, True

Parameter Data Type Description

ImageFile String The destination’s ImageFile object name string.

FileType Short The file type that you want to save the image as. This
number must be a constant. It must be present in the
command if the dialog flag option is used, even though its
value is ignored when the DisplayUIFlag is set to True.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user to
enter or select a filename and options for saving the file.
False (Default) — Does not display a dialog box.

Setting Description

1 TIFF

2 Not supported

3 BMP
67

Chapter 3
SaveCopyAs Method
Description Saves a copy of the ImageFile object as another ImageFile object. You may specify the

FileType of the destination file. The FileType can be TIFF or BMP.

This method allows you to specify the new object’s image parameters. If specified, the file
can be converted from one type to another. The current image file remains the active image
file. This method can only be used after launching the embedded server application in a
separate window.

Usage ImageFileObject.SaveCopyAs (ImageFile, FileType, DisplayUIFlag)

Data Type String.

Remarks The SaveCopyAs method has the following parameters:

Update Method
Description Updates the ImageFile object embedded within the container application with the current

data from the server application.

This method can only be used after launching the embedded server application in a separate
window.

Usage ImageFileObject.Update

Parameter Data Type Description

ImageFile String The destination’s ImageFile object name string.

FileType Short The image file type that you want to save the image as.
This number must be a constant. It must be present in the
command if the dialog flag option is used, even though its
value is ignored when the DisplayUIFlag is set to True.

DisplayUIFlag Flag True — Displays a dialog box that allows the end-user to
enter or select a filename and options for saving the file.
False (Default) — Does not display a dialog box.
68

Automation Lexicon
Page Object
A Page object represents a single page in an ImageFile object. Page objects can only be
accessed by using the Pages method of the parent ImageFile object.

Page Object Properties
The following table lists the Page object properties.

Application Property
Description Returns the Application object. This is a read-only property.

Usage PageObject.Application

Data Type Object.

Example 'This example returns the Application object.
Dim Img As ObjectDim Parent As ObjectSet Parent =
 ➥ Img.Pages(1).Application

CompressionInfo Property
Description Returns this page’s compression information. This is a read-only property.

Usage PageObject.CompressionInfo]

Data Type Long.

Page Object Properties

Property Description

Application Returns the Application object.

CompressionInfo Returns the page’s compression information.

CompressionType Returns the page’s compression type.

Height Returns the page’s height.

ImageResolutionX Sets or returns the page’s horizontal resolution.

ImageResolutionY Sets or the returns page’s vertical resolution.

Name Returns the page number of this page.

PageType Returns the page’s image type.

Parent Returns the parent of the Page object.

ScrollPositionX Sets or returns this page’s horizontal scroll position.

ScrollPositionY Sets or returns this page’s vertical scroll position.

Width Returns the page’s width.
69

Chapter 3
Remarks The CompressionInfo property settings are:

Remarks Image files that do not have a compression type of JPEG will have a value between 1 and
63. This value is a combination of the values of 1 to 32. For JPEG files, the value is from 64
to 16384, and is only one of these values.

Example 'This example returns the page's compression information.
x = Img.Pages(1).CompressionInfo

CompressionType Property
Description Returns this page’s compression type. This is a read-only property.

Usage PageObject.CompressionType[=value]

Data Type Short.

Setting Description

0 No compression options set. Only applicable to uncompressed image files.

1 EOL (Include/expect End Of Line). Each line is terminated with an end-of-
line bit. Not used for JPEG compression.

2 Packed Lines (Byte align new lines). Not used for JPEG compression.

4 Prefixed EOL (Include/expect prefixed End Of Line). Each strip of data is pre-
fixed by a standard end-of-line bit sequence. Not used for JPEG compression.

8 Compressed LTR (Compressed bit order, left to right). The bit order for the
compressed data is the most significant bit to the least significant bit. Not used
for JPEG compression.

16 Expanded LTR (Expanded bit order, left to right). The bit order for the
expanded data is the most significant bit to the least significant bit. Not used for
JPEG compression.

32 Negate (Invert black and white on expansion). Indicates the setting of the Pho-
tometric Interpretation field of a TIFF file. Not used for JPEG compression.

64 Low Resolution/High Quality (JPEG compression only).

128 Low Resolution/Medium Quality (JPEG compression only).

256 Low Resolution/Low Quality (JPEG compression only).

512 Medium Resolution/High Quality (JPEG compression only).

1024 Medium Resolution/Medium Quality (JPEG compression only).

2048 Medium Resolution/Low Quality (JPEG compression only).

4098 High Resolution/High Quality (JPEG compression only).

8196 High Resolution/Medium Quality (JPEG compression only).

16392 High Resolution/Low Quality (JPEG compression only).
70

Automation Lexicon
Remarks The CompressionType property settings are:

Example 'This example returns this page's compression type.
x = Img.Pages(1).CompressionType

Height Property
Description Returns this page’s height in pixels. This is a read-only property.

Usage PageObject.Height

Data Type Long.

Example 'This example returns this page's height in pixels.
x = Img.Pages(1).Height

ImageResolutionX Property
Description Sets or returns this page’s horizontal resolution, in dots-per-inch. An error occurs when a

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.

Usage PageObject.ImageResolutionX [= value]

Data Type Long.

Example 'This example sets this page's horizontal resolution.
Img.Pages(1).ImageResolutionX = 200

'This example returns this page's horizontal resolution.
XRes = Img.Pages(1).ImageResolutionX

Setting Description

0 Unknown

1 No Compression

2 Group 3 1D FAX

3 Group 3 Modified Huffman

4 PackBits

5 Group 4 2D FAX

6 JPEG

7 Reserved

8 Group 3 2D FAX

9 LZW
71

Chapter 3
ImageResolutionY Property
Description Sets or returns this page’s vertical resolution, in dots-per-inch. An error occurs when a

value less than 20 or greater than 1200 dpi is specified. This is a read/write property.

Usage PageObject.ImageResolutionY [= value]

Data Type Long.

Example 'This example sets this page's vertical resolution.
Img.Pages(1).ImageResolutionY = 200

'This example returns this page's vertical resolution.
YRes = Img.Pages(1).ImageResolutionY

Name Property
Description Returns the page number of the page in the ImageFile object. This is a read-only property.

Usage PageObject.Name

Data Type Long.

Example 'This example returns the page number of the page in the
'ImageFile object.
x = Img.Pages(1).Name

PageType Property
Description Returns the page’s image type. This is a read-only property.

Usage PageObject.PageType

Data Type Short.

Remarks The PageType property settings are:

Example 'This example returns the page's image type.
x = Img.Pages(1).PageType

Setting Description

1 Black and White

2 Gray 4

3 Gray 8

4 Palettized 4

5 Palettized 8

6 RGB 24
72

Automation Lexicon
Parent Property
Description Returns the parent of the Page object. This is a read-only property.

Usage PageObject.Parent

Data Type Object.

Example 'This example returns the parent of the Page object.
x = Img.Pages(1).Parent

ScrollPositionX Property
Description Sets or returns this page’s horizontal scroll position, in pixels. This is a read/write property.

Usage PageObject.ScrollPositionX [=value]

Data Type Long.

Example 'This example sets this page's horizontal scroll position.
Img.Pages(1).ScrollPositionX = 200

'This example returns this page's horizontal scroll position.
xpos = Img.Pages(1).ScrollPositionX

ScrollPositionY Property
Description Sets or returns this page’s vertical scroll position, in pixels. This is a read/write property.

Usage PageObject.ScrollPositionY [=value]

Data Type Long.

Example 'This example sets this page's vertical scroll position.
Img.Pages(1).ScrollPositionY = 200

'This example returns this page's vertical scroll position.
ypos = Img.Pages(1).ScrollPositionY

Width Property
Description Returns this page’s width, in pixels. This is a read-only property.

Usage PageObject.Width

Data Type Long.

Example 'This example returns this page's width in pixels.
x = Img.Pages(1).Width
73

Chapter 3
Page Object Methods
The following table lists the Page object methods.

Delete Method
Description Deletes the specified page from the active object. After deleting a page, the next page is

displayed (if one exists). Otherwise, the previous page is displayed.

Usage PageObject.Delete

Example 'This example deletes the specified page.
Img.Pages(1).Delete

Flip Method
Description Rotates the specified page 180 degrees. This change becomes permanent when the image

file is saved.

Usage PageObject.Flip

Example 'This example flips the page.
Img.Pages(1).Flip

Help Method
Description Displays the Imaging online Help table of contents.

Usage PageObject.Help

Ocr Method
Description OCRs the image page.

Usage PageObject.Ocr

Page Object Methods

Method Description

Delete Deletes the page.

Flip Rotates the page 180 degrees.

Help Displays online Help.

Ocr OCRs Image Page.

Print Prints the page.

RotateLeft Rotates the page counterclockwise 90 degrees.

RotateRight Rotates the page clockwise 90 degrees.

Scroll Scrolls the page.
74

Automation Lexicon
Print Method
Description Prints the page.

Usage PageObject.Print

Example 'This example prints the page.
x = Img.Pages(1).Print

RotateLeft Method
Description Rotates the page 90 degrees counterclockwise. This change becomes permanent when the

image file is saved.

Usage PageObject.RotateLeft

Example 'This example rotates the page 90 degrees to the left.
Img.Pages(1).RotateLeft

RotateRight Method
Description Rotates the page 90 degrees clockwise. This change becomes permanent when the image

file is saved.

Usage PageObject.RotateRight

Example 'This example rotates the page 90 degrees to the right.
Img.Pages(1).RotateRight

Scroll Method
Description Scrolls the page.

Usage PageObject.Scroll Direction,ScrollAmount

Remarks The Scroll method uses the following parameters:

Example 'This example scrolls the page down 200 pixels.
Img.Pages(1).Scroll 0 200

Parameter Data Type Description

Direction Integer Direction in which to scroll the image:
0 — (Default) Scrolls down
1 — Scrolls up
2 — Scrolls right
3 — Scrolls Left

ScrollAmount Long Number of pixels to scroll the image
75

Chapter 3
PageRange Object
A PageRange object represents a range of consecutive pages in an ImageFile object. A page
range is a set of pages starting at the StartPage property and ending at the EndPage
property. PageRange objects can only be accessed by using the Pages method of the parent
ImageFile object.

PageRange Object Properties
The following table lists the PageRange object properties.

Application Property
Description Returns the Application object. This is a read-only property.

Usage PageRangeObject.Application

Description Object.

Count Property
Description Returns the number of pages in this range. This is a read-only property.

Usage PageRangeObject.Count

Data Type Long.

EndPage Property
Description Returns or sets the page number of the last page in the range. This is a read/write property.

Usage PageRangeObject.EndPage [=value]

Data Type Long.

Remarks This property setting is the number of the last page. The value of EndPage must be greater
than or equal to the value of StartPage.

PageRange Object Properties

Property Description

Application Returns the Application object.

Count Returns the number of pages in this range.

EndPage Returns or sets the page number of the last page in the range.

Parent Returns the parent of the PageRange object.

StartPage Returns or sets the page number of the first page in the range.
76

Automation Lexicon
Parent Property
Description Returns the parent of the PageRange object. This is a read-only property.

Usage PageRangeObject.Parent

Data Type Object.

Example 'This example returns the parent of the PageRange object.
x = Img.Pages(1,7).Parent

StartPage Property
Description Returns or sets the page number of the first page in the range. This is a read/write

property.

Usage PageRangeObject.StartPage [=value]

Data Type Long.

Remarks This property setting is the number of the first page. The value of StartPage must be less
than or equal to the value of EndPage.

PageRange Object Methods
The following table lists the PageRange object methods.

The Delete, Ocr, and Print methods of the PageRange object use the following
parameters:

Delete Method
Description Removes pages from the ImageFile object. After deleting a PageRange object, all page

ranges are invalid.

Usage PageRangeObject.Delete()

Example 'This example deletes the pages 1 through 3.
Img.Pages(1,3).Delete

PageRange Object Methods

Method Description

Delete Deletes the page range.

Ocr OCRs the page range.

Print Prints the page range.

Parameter Data Type Description

StartPage Long First page to be deleted.

NumPages Long Number of pages to be deleted, including the StartPage.
77

Chapter 3
Ocr Method
Description OCRs the page range.

Usage PageRangeObject.Ocr()

Example 'This example OCRs pages 2 through 6.
x = Img.Pages(2,6).Ocr

Print Method
Description Prints the page range.

Usage PageRangeObject.Print()

Example 'This example prints pages 1 through 5.
x = Img.Pages(1,5).Print
78

4

Adding Imaging Using ActiveX Controls

This chapter demonstrates how to use the Imaging ActiveX controls to

image-enable your applications.

It begins by explaining how to load the Imaging ActiveX controls into
your development environment. Then it explains how to access the
on-line help for the controls. It concludes by walking you through some
sample applications to help you get started.

In This Chapter
Loading the Controls ... 80

Obtaining Help .. 84

Demonstration Projects.. 90

Chapter 4
Loading the Controls
This section explains how to
load the Imaging ActiveX
controls into three devel-
opment environments:
Microsoft Visual Basic,
Visual C++, and Access.

Before you can use the Imaging ActiveX controls, you must load them
into your development environment.

Loading the controls consists of the following basic
tasks:

■ Selecting each Imaging ActiveX control from a list of registered
ActiveX controls on your system.

■ Inserting each Imaging ActiveX control icon into the controls
toolbox of your development environment.

The following list shows how the Imaging ActiveX controls appear
on your system:

− Image Admin Control

− Image Edit Control

− Image OCR Control

− Image Scan Control

− Image Thumbnail Control

− Image Server Access Object
80

Adding Imaging Using ActiveX Controls
The following table lists the icons that represent each Imaging ActiveX
control in the controls toolbox of your development environment.

Imaging ActiveX Toolbox Icons

Icon Name Notes

Image Admin Available with all versions
of Imaging.

Image Annotation
Tool Button

A member of the Image
Edit control.

Image Edit Available with all versions
of Imaging.

Image OCR Available with some
versions of Imaging.

Image Scan Available with all versions
of Imaging.

Image Thumbnail Available with all versions
of Imaging.
81

Chapter 4
Visual Basic
To add the Imaging ActiveX controls to Visual Basic

1 Start Visual Basic and create a new project.

2 On the Project menu, click Components.

3 On the Components dialog box, click the Controls tab.

4 Select the Imaging ActiveX controls from the controls listed. (Refer
to “Loading the Controls” earlier in this chapter to see a list of
Imaging ActiveX controls.)

5 Click OK. Visual Basic adds the controls to your project and the
control icons to your toolbox.

6 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

Visual C++
To add the Imaging ActiveX controls to Visual C++

1 Start Visual C++ and create a new project.

2 On the Project menu, point to Add to Project, and click
Components and Controls. The Component and Controls
Gallery dialog box appears.

3 In the Look In list box, click SharedIDE and then Gallery.

4 Below the Look In list box, double-click Registered ActiveX
Controls. A list of registered ActiveX controls appears.

5 For each Imaging ActiveX control:

a Click the desired control among the list of registered controls and
then click Insert. (Refer to “Loading the Controls” earlier in this
chapter to see a list of Imaging ActiveX controls.)

b On the Confirm Classes dialog box, click OK. Visual C++ adds
the control to your project and its icon to the Controls toolbox,
which is visible when you edit a dialog box in Resource View.

6 When you have finished adding the Imaging ActiveX controls, click
Close on the Components and Controls Gallery dialog box.

7 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

A control is selected when a
check mark appears next to it.

Note: If you are using Microsoft Foundation Classes (MFC), be sure to
call AfxEnableControlContainer within InitInstance.
82

Adding Imaging Using ActiveX Controls
Access
To add the Imaging ActiveX controls to Access

1 Start Access and create a new database.

2 On the Tools menu, click ActiveX Controls.

3 If the ActiveX Controls dialog box lists all of the Imaging ActiveX
controls as available, click Close and proceed to Step 4.

For each control the dialog box does not list as available:

a Click Register.

b On the Add ActiveX Control dialog box, navigate to your
Imaging folder.

c Click the file name of the control not listed as available. Then
click Open to register the control.

The following table lists the file names of each Imaging ActiveX
control.

d When you finish registering the controls, click Close to exit the
ActiveX Controls dialog box.

4 Enter Form or Report design view.

5 On the View menu:

a If necessary, click Toolbox to display the Controls toolbox.

b Point to Toolbars and click Customize.

6 On the Customize dialog box, click the Commands tab.

If you selected the OLE
Controls check box in the
Setup program when you
installed Microsoft Access, the
Imaging ActiveX controls are
available automatically.

Imaging ActiveX Control File Names

Click This File To Register This Control

imgadmin.ocx Image Admin

imgedit.ocx Image Annotation Tool Button

imgedit.ocx Image Edit

imgocr.ocx Image OCR

imgscan.ocx Image Scan

imgthumb.ocx Image Thumbnail
83

Chapter 4
7 In the Categories list box:

a Click ActiveX Controls.

b From the Commands list box, drag each Imaging ActiveX
control and drop it onto the Controls toolbox.

c When you finish dragging and dropping the Imaging ActiveX
controls onto the toolbox, click Close.

8 Work with the Imaging ActiveX controls as you would any other
type of ActiveX control.

Obtaining Help
This section explains how to
access the on-line help
system of the Imaging
ActiveX controls.

How you access the Imaging ActiveX Controls on-line help system
differs within each of the following programming environments:

■ Visual Basic
■ Visual C++
■ Access

The following sections describe how to access help in each environment.

Visual Basic
There are many ways to access the Imaging ActiveX Controls on-line
help in Visual Basic. You can access help from the:

■ Object Browser
■ Toolbox
■ Form window
■ Properties window
■ Code window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current project. (Refer to “Loading the
Controls” for instructions.)

Note: Several methods in the Imaging ActiveX controls present dialog
boxes to the end user. Each dialog box provides its own context-
sensitive help, which the user can invoke by clicking the ques-
tion mark at the top of the dialog box and then the desired
control.
84

Adding Imaging Using ActiveX Controls
Object Browser
To access Imaging ActiveX help from the Object Browser

1 On the View menu, click Object Browser. The Object Browser
appears.

2 In the Project/Library list box, click the library name of the desired
Imaging ActiveX control.

The following table lists the library and class names of each Imaging
ActiveX control.

3 In the Classes list box, click the class name of the control. (Refer to
the preceding table for a list of class names.)

4 In the Members list box, click the desired property, method, or
event, and then press F1. The help topic for the selected member
appears.

Toolbox
To access Imaging ActiveX help from the Toolbox

■ Click the desired Imaging ActiveX control in the toolbox, and then
press F1. The overview topic for the selected control appears.

From the overview topic, you can navigate to other topics that
describe the properties, methods, and events of the selected control.

Imaging ActiveX Control Library and Class Names

Library Name Class Name Imaging Control

AdminLibCtl ImgAdmin Image Admin

ImgeditLibCtl ImgAnnTool Image Annotation Tool
Button

ImgeditLibCtl ImgEdit Image Edit

IMGOCRLib Imgocr Image OCR

ScanLibCtl ImgScan Image Scan

ThumbnailLibCtl ImgThumbnail Image Thumbnail

Note: If the member you select is an extender property, method, or
event, Visual Basic’s on-line help appears.
85

Chapter 4
Form Window
To access Imaging ActiveX help from the Form window

1 Draw at least one Imaging ActiveX control on a form.

2 Select the Imaging ActiveX control on the form.

3 Press F1. The overview topic for the selected control appears.

From the overview topic, you can navigate to other topics that
describe the properties, methods, and events of the selected control.

Properties Window
To access Imaging ActiveX help from the Properties window

1 Select an Imaging ActiveX control that has been drawn on a form.
Then, on the View menu, click Properties Window. The
Properties window appears.

2 Click the desired property in the Properties window and then press
F1. The help topic for the selected property appears.

Code Window
To access Imaging ActiveX help from the Code window

1 Make sure that at least one Imaging ActiveX control has been drawn
on a form.

2 Invoke the Code window.

3 Within your code, select the Imaging property, method, or event for
which you want help. Then press F1. The help topic for the selected
property, method, or event appears I.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, Visual Basic’s
on-line help appears.

Note: If the property, method, or event you select is an extender
property, method, or event, Visual Basic’s on-line help appears.
86

Adding Imaging Using ActiveX Controls
Visual C++
There are two ways to access the Imaging ActiveX Controls on-line help
in Visual C++. You can access help from the:

■ Components and Controls Gallery dialog box
■ Properties window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current project. (Refer to “Loading the
Controls” for instructions.)

Components and Controls Gallery Dialog Box
To access Imaging ActiveX help from the Components and
Controls Gallery dialog box

1 On the Project menu, point to Add To Project and click
Components and Controls. The Components and Controls
Gallery dialog box appears.

2 Click the desired Imaging ActiveX control below the Lookin box,
and then click More Info. The overview topic for the selected
control appears.

From the overview topic, you can navigate to other topics that describe
the properties, methods, and events of the selected control.

Properties Window
To access Imaging ActiveX help from the Properties window

1 Select an Imaging ActiveX control that has been drawn on a form.

2 On the View menu, click Properties.

3 Click the desired property in the Properties window, and then press
F1. The help topic for the selected property appears.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, the contents
window for the Imaging ActiveX help system appears.
87

Chapter 4
Access
There are three ways to access the Imaging ActiveX Controls on-line
help in Access. You can access help from the:

■ Object Browser
■ Properties window
■ Module window

Before attempting to access help, make sure that the Imaging ActiveX
controls have been added to your current database. (Refer to “Loading
the Controls” for instructions.)

Object Browser
To access Imaging ActiveX help from the Object Browser

1 Make sure the Module window is currently on display.

2 On the View menu, click Object Browser. The Object Browser
appears.

3 In the Project/Library list box, select the library of the desired
Imaging ActiveX control. (Refer to “Visual Basic” earlier in this
section to see a list of library and class names for each Imaging
ActiveX control.)

4 In the Classes list box, click the class name of the desired control.
(Refer to the aforementioned list.)

5 In the Members list box, click the desired property, method, or
event, and then press F1. The help topic for the selected member
appears.

Properties Window
To access Imaging ActiveX help from the Properties window

1 Select an Imaging ActiveX control that has been drawn on a form.

2 On the View menu, click Properties.

3 On the Properties window, click the Other tab or the All tab.

Note: If the member you select is an extender property, method, or
event, Visual Basic’s on-line help appears — provided Visual
Basic is installed on your system. Access does not provide help
for extender properties, methods, or events in the Object
Browser.
88

Adding Imaging Using ActiveX Controls
4 Click the desired property in the Properties window and then press
F1. The help topic for the selected property appears.

Module Window
To access Imaging ActiveX help from the Module window

1 Make sure that at least one Imaging ActiveX control has been drawn
on a form.

2 Invoke the Module window.

3 Select the Imaging property, method, or event within your code for
which you want help. And then press F1. The help topic for the
selected property, method, or event appears I.

Note: Keep in mind that only the design-time properties appear in the
Properties window.
If the property you select is an extender property, Access’ on-line
help appears.

Note: If the property, method, or event you select is an extender
property, method, or event, Visual Basic’s on-line help appears
— provided Visual Basic is installed on your system.
89

Chapter 4
Demonstration Projects
This section demonstrates
how to add a variety of
Imaging functions to your
applications.

A wide-ranging discussion of
every Imaging function is
beyond the scope of this
chapter; however it does
discuss many of the popular
ones.

All demonstration projects
were developed using
Microsoft Visual Basic.

To help you use the Imaging ActiveX controls, seven demonstration
projects show you how to:

■ Display an image and apply fit-to options.
■ Convert an image.
■ Copy an image.
■ Print an image.
■ Scan images using a template.
■ Manage an image file using thumbnails.
■ Unload a multipage image file.

Displaying an Image and Applying Fit-To Options
The FitTo Options demonstration project shows how to display an image
at various fit-to settings. Before walking through the demonstration
project, read the following section, which explains the concept of fitting
an image and describes the various fit-to options.

Fit-To Options Defined
Fit-to options govern the way an Image Edit control displays images.

The FitTo method of the Image Edit control lets you select — usually in
response to user input — the scaling factor, or fit-to option, applied to
images when they're displayed.

Most image application developers make fit-to functions available to their
end users. These functions let users scale the image so it can be seen
more clearly, which is particularly important when users read scanned
documents or faxes.

Note: The ActiveX Controls on-line help system identifies the
properties, methods, events, parameters, and constants that are
available in each version of Imaging for Windows.
90

Adding Imaging Using ActiveX Controls
You can provide the following fit-to options to your end users:

Best Fit — Scales the image so it appears in the entire Image Edit
control. The full height or the full width of the image appears in the
control, depending on which results in the least unused space.

Fit To Width — Scales the image so it matches the width of the Image
Edit control.

Fit To Height — Scales the image so it matches the height of the Image
Edit control.

Inch To Inch — Scales image pages so images of the same dimensions
appear the same size on the monitor.

Pixel To Pixel — Scales image pages so image pixels map to screen
pixels. A 200 DPI image would appear twice as large as a 100 DPI image
even when these images have the same dimensions.

Example

Users of your application may want control over the display of image
documents to make them easy to read.

Scenario

Assume Eileen receives several scanned business documents in her role as
product manager for a major computer company. Because she receives
these documents from others via e-mail, she has no control over how
they are scanned, but she really needs to be able to read them.

Because you included all of Image Edit’s fit-to options in your
application, Eileen can select the one that produces the best display
quality— enabling her to view the image documents clearly and read
them easily.

You can provide your users
with even more control over a
displayed image by using the
Zoom property of the Image
Edit control in addition to the
FitTo method.
91

Chapter 4
FitTo Options Project
The FitTo Options project demonstrates displaying an image at a variety
of fit-to options.

The project consists of one form and the following controls:

■ One Image Admin control
■ One Image Edit control
■ Four Option Button controls in a control array
■ One Frame control
■ One Command Button control

It uses the following methods in the Image Edit control to provide the
display and fit-to functions:

Display — Displays the image file specified in the Image property of
the Image Edit control.

FitTo — Scales the image relative to the Image Edit control.

The file name for the FitTo
Options project is
FitTo.vbp.
92

Adding Imaging Using ActiveX Controls
Displaying and Fitting an Image
Start the FitTo Options project. The Form_Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to display.

After you select the image file, the Form_Activate() event procedure
invokes the FitTo method of the Image Edit control with a parameter
value of BEST_FIT (literal 0). This action sets the initial fit-to setting of
the Image Edit control to the Best Fit option.

The procedure then sets the Value property of the corresponding
Option Button control to True, to indicate that Best Fit is the initial
fit-to mode.

Next, the Form_Activate() event procedure invokes the Display
method of the Image Edit control to display the image file at the initial
fit-to setting.

To change the FitTo setting, click the desired option button in
the FitTo Setting frame on the FitTo Options window. The
optFitTo_Click() event procedure fires and executes the appro-
priate code in its Select Case statement.

Each Case expression corresponds to the Index value of the FitTo
option buttons in the frame. Further, each Case expression invokes the
FitTo method of the Image Edit control, passing to it the appropriate
parameter values:

FitTo parameter — Determines the FitTo option applied:

− Case 0 invokes BEST_FIT (literal 0).

− Case 1 invokes FIT_TO_WIDTH (literal 1).

− Case 2 invokes FIT_TO_HEIGHT (literal 2).

− Case 3 invokes INCH_TO_INCH (literal 3).

Private Sub Form_Activate()

 'Initialize to a FitTo option of Best Fit
 ImgEdit1.FitTo BEST_FIT
 optFitTo(0).Value = True

 'Display the selected image file
 ImgEdit1.Display

End Sub
93

Chapter 4
Repaint parameter — Determines whether the image is refreshed
immediately. All Case expressions invoke the FitTo method with a
Repaint setting of True.

As you try the various FitTo options, notice the impact on the displayed
image and how the scrollbars appear and disappear as needed.

Converting an Image
This demonstration project shows how to add image conversion
functions to your image-enabled applications. Before walking through
the demonstration project, read the following sections, which explain the
concept of image conversion.

Image Conversion Defined
Converting an image involves changing one or more of the following
attributes:

■ File type
■ Color type
■ Compression type
■ Resolution
■ Size

There are many reasons why your end users would want to convert an
image. The following sections explain some of them.

You can control whether
scrollbars appear in the Image
Edit control by setting the
ScrollBars property to the
appropriate value.

Private Sub optFitTo_Click(Index As Integer)

 Select Case Index

 Case 0 'Best Fit
 ImgEdit1.FitTo BEST_FIT, True

 Case 1 'Fit To Width
 ImgEdit1.FitTo FIT_TO_WIDTH, True

 Case 2 'Fit To Height
 ImgEdit1.FitTo FIT_TO_HEIGHT, True

 Case 3 'Inch To Inch (Actual Size)
 ImgEdit1.FitTo INCH_TO_INCH, True

 End Select

End Sub
94

Adding Imaging Using ActiveX Controls
File Type
The Imaging ActiveX controls provide three read/write file types. Your
users will want to use the file type that best satisfies their requirements.

TIFF — Supports all color types and many compression types. Its image
files can contain multiple pages and can store Summary property
information and image annotation data separate from the actual image
data.

BMP — Supports all color types. While its image files can contain only a
single image page that cannot be compressed, they are readable by
anyone with Windows on the PC.

JPG-JFIF — Supports 256 Shades of Gray and True Color. This image
file contains a single image page that is JPEG compressed.

Example

Users of your application may want to change the file type to take
advantage of the new file type’s special features.

Scenario

Assume Krystina sends Tom two BMP image files of an automobile that
was involved in an accident recently. Because the two BMP files are
separate and quite large, Tom converts each one to the TIFF file format
to take advantage of its special features. Once in the TIFF format, Tom
can:

■ Combine the two files into one multipage TIFF image file.
■ Apply compression to save disk space.
■ Annotate the images without making the annotations a permanent

part of the image.
■ Add Summary property information to the image file.

Color Type
The color type — also known as the page type or data type — specifies
the number of colors images can have. Your users will want to use, or
convert images to, the color type that best satisfies their color and storage
requirements.

The factor that determines the color content of images is the number of
data bits that compose each picture element (pixel). The formula for
determining the color content of image documents is 2 number of bits. The
more color an image contains, the greater the number of data bits in each
pixel.
95

Chapter 4
Aesthetics aside, the most important consideration when selecting the
color type is file size. The greater the number of data bits per pixel, the
greater the memory and storage requirements.

The following color types are available:

Black and White — One bit makes up each pixel. Images can therefore
have only two colors: black and white.

16 Shades of Gray — Four bits make up each pixel. Images can
therefore have a maximum of 16 shades of gray.

256 Shades of Gray — Eight bits make up each pixel. Images can
therefore have a maximum of 256 shades of gray.

16 Colors — Four bits make up each pixel. Images can therefore have a
maximum of 16 colors.

256 Colors — Eight bits make up each pixel. Images can therefore have
a maximum of 256 colors.

True Color — Twenty-four bits make up each pixel. Images can
therefore have a maximum of 16,777,216 colors.

Example

Users of your application may want to change a color type to save disk
space.

Scenario

Assume Tom scans a text-only insurance document in True Color and
then sends the image to Krystina so she can view it. When Krystina
receives the image, she notices that its file size is a little large for a text-
based image. Realizing that color is not a requirement for this type of
image, she converts its color type to Black and White. File size drops
27%, and the document is completely readable.

Compression Type
When saved to disk, images can require a large amount of storage space.
Compression is a technique that reduces this large disk space
requirement. The more compression applied when saving images, the
lower the disk space requirement. Your users will want to use, or convert
images to, the compression type that best satisfies their storage
requirements.
96

Adding Imaging Using ActiveX Controls
The following compression types are available.

CCITT Group 3 (1d) Fax — Should be used to compress black-and-
white TIFF images when users anticipate sending them as faxes over
unreliable data links.

CCITT Group 3 (1d) Modified Huffman — Should be used to
compress black-and-white TIFF images when users anticipate sending
them as faxes over unreliable data links, and they require increased
compression over that provided by Group 3 (1d) Fax.

CCITT Group 4 (2d) Fax — Should be used to compress black-and-
white TIFF images when users anticipate saving them to disk or sending
them as faxes over reliable data links, such as ISDN, X.25, or e-mail.

JPEG — Can be used to compress TIFF images with a color type of 256
Shades of Gray or True Color. Should be used when users want to
significantly reduce the storage requirement, and they don’t mind if the
image is altered by the compression process.

When users select this compression type, they can also specify JPEG
compression options, which comprise all combinations of high, medium,
or low Resolution and high, medium, or low Quality. The higher the
Resolution and Quality settings, the greater the image quality, but the
greater the disk space requirement.

For example, an image compressed with the High Resolution/High
Quality option has the highest image quality and the highest disk space
requirement. Conversely, an image compressed with the Low
Resolution/Low Quality option has the lowest image quality and the
lowest disk space requirement.

LZW — Can be used to compress TIFF image documents of any color
type, except black-and-white. Should be used when users do not want
the image to be altered by the compression process.

PackBits — Can be used to compress black-and-white TIFF image
documents for any purpose.

Uncompressed — No compression options are set.

Note: With CCITT compression types, users can set the Reversed Bit
Order compression option, which signifies that the compressed
data codes begin at the left, most significant bit (MSB) of each
byte and are ordered from MSB to the least significant bit (LSB).
Users should employ this option when they need to exchange
images with someone whose image software cannot handle
non-reversed image documents.

JPEG is a lossy compression
type, which means that some
data is altered and lost during
compression. Usually, data
alteration and loss are not
significant. Lossy compression
types often offer higher
compression ratios than do
lossless types, like LZW.
97

Chapter 4
Example

Users of your application may want to change the compression type to
save disk space.

Scenario

In an earlier scenario, Krystina sent Tom two True Color bitmap (BMP)
image files of an automobile that was involved in a recent accident. Tom
converted each BMP file to the TIFF file format and saved both of the
images in a single TIFF image file. The resulting uncompressed file was
quite large at 21 megabytes (MB); so, Tom elected to compress the file
using the JPEG compression type with the following compression
options:

■ JPEG Compression: Medium
■ JPEG Resolution: Medium

The resulting image file was reduced to just under 2 MB.

Resolution
Resolution determines the display quality of an image. Typically
expressed as horizontal and vertical dots per inch (dpi), resolution
describes the density of the dots that make up the image. The higher the
resolution — or dots per inch — the better the display quality.

An important consideration when setting the resolution is file size. The
greater the dots per inch, the greater the memory and storage
requirements. For example, the file size of an image with a resolution of
200 x 200 dpi is four times greater than the file size of the same image at
100 x 100 dpi.

Another important consideration when setting the resolution is how the
images are to be used:

Displayed on the screen — For images that are displayed on the
screen, resolution need not be any greater than the display resolution of
the monitor, typically 75 x 75 dpi to 100 x 100 dpi.

Faxed — For images that are faxed, resolution should conform to the
international fax standard of 200 x 200 dpi.

Converted to text or printed — For images that are printed,
resolution should be set to 300 x 300 dpi.

Your users want to use, or convert images to, the resolution that best
satisfies their aesthetic, storage, and usage requirements.
98

Adding Imaging Using ActiveX Controls
Example

Users of your application may want to change the resolution of an image
to save disk space.

Scenario

Assume Tom received a complimentary letter from a customer that he
wants to post on the company’s intranet page for all to see. Tom knows
that he can use your application to scan the letter and convert it to
HTML using the OCR functions you have provided.

Because you stated in your documentation that the OCR engine
processes images with optimum efficiency when their resolution is 300 x
300 dpi, Tom scans the letter at that resolution.

After performing OCR on the image and uploading its HTML file to
the Web server, Tom realizes that he wants to save the image on his
PC — just in case he needs it later. Knowing that an image with a
resolution of 300 x 300 dpi takes more storage space than one with a
lower resolution, Tom uses the conversion functions in your program to
convert the image to 200 x 200 dpi just prior to saving it.

Size
The size settings determine the dimensions of an image. Your users may
want to change the size of the image and/or the unit of measure
employed to suit their purposes.

Example

Users of your application may want to change the size of an image to
accommodate an annotation.

Scenario

Assume Krystina scans a claim form and then wants to add a rubber
stamp annotation to the bottom of it. The problem is: there’s no room at
the bottom of the image to accommodate the annotation. To make room
for the annotation, Krystina converts the size of the image from 8 1/2 x
11 inches to 8 1/2 x 12 inches, thereby making room for the annotation.
99

Chapter 4
Convert Image Project
The Convert Image project shows how to provide image file type and
page property conversion functions to your users.

The project consists of one form and the following controls:

■ One Image Admin control
■ One Image Edit control
■ Three Command Button controls in a control array

It uses the following Imaging methods to provide the image conversion
functions:

ShowFileDialog (Image Admin) — To enter the path and file name
and select the new file type of the converted image.

SaveAs (Image Edit) — To save the image file with the new file type.

ShowPageProperties (Image Edit) — To change the color type,
compression type, resolution, and/or size of the image page.

Save (Image Edit) — To save the image file after changing its color
type, compression type, resolution, and/or size.

Changing the File Type
Start the Convert Image project. The application begins by displaying an
Open dialog box, which lets you select the image file you want to
convert. After you select the image file, the application displays it.

To change the file type of the displayed image, click the File Type
button. The cmdConvert_Click() event procedure fires and executes
the code in Case 0 of the Select Case statement.

The procedure invokes the ShowFileDialog method of the Image
Admin control, passing to it the following parameter values:

SaveDlg (literal 1) — To display a Save As dialog box

frmConvertImage.hWnd — To assign the parent window handle to
the Save As dialog box

The Save As dialog box lets you specify the new path and file name and
the new file type you want for the image. It assigns the new path and file
name to the Image property of the Image Admin control, and it assigns

The file name for the Convert
project is Convert.vbp.

Note: Users can change the color type, compression type, resolution,
and size on a page-by-page basis only.

Similar to the Microsoft
Common Dialog box, you can
use the Filter property of the
Image Admin control to
populate the Files of Type list
box with the file types you
desire.
100

Adding Imaging Using ActiveX Controls
the list box index value of the selected file type to the FilterIndex
property of the Image Admin control.

The procedure continues by assigning the content of the Image property
of the Image Admin control to the Image property of the Image Edit
control. And it assigns the new file type — provided by the value of the
FilterIndex property of the Image Admin control — to the
intFileType local variable.

Next, the procedure invokes the “SaveAs method of the Image Edit
control, passing to it the new path and file name provided by the Image
property and the new file type provided by intFileType.

The SaveAs method saves the image file using the new file name and file
type.

Changing the Color, Compression, Resolution, and Size
If necessary, start the Convert project and open an image file.

To change the color type, compression type, resolution, and/or size of
the displayed image, click the Page button. The cmdConvert_
Click() event procedure fires and executes the code in Case 1 of the
Select Case statement.

The procedure invokes the ShowPageProperties method of the Image
Edit control, which displays the Page Properties dialog box. As long as
the False parameter is included in the call to ShowPageProperties
method, the dialog box can be used to specify a new color type,
compression type, resolution, and/or size for the image page.
101

Chapter 4
The ShowPageProperties method returns an integer that indicates
whether the user has pressed the OK or Cancel button on the dialog

Private Sub cmdConvert_Click(Index As Integer)
 Dim intFileType As Integer
 Dim iResponse As Integer

 Select Case Index

 Case 0 'File Type button

 'Set the Filter property to include the file types that can be

 'written to disk.
 ImgAdmin1.Filter = "TIFF Image file (*.tif)|*. tif|

 Bitmap Image file (*.bmp)|*. bmp|"

 'Set the FilterIndex property to the file type of the displayed image
 'if it can be written; otherwise to TIFF.
 If ImgAdmin1.FileType = FileTypeBMP Then
 ImgAdmin1.FilterIndex = 2
 Else
 ImgAdmin1.FilterIndex = 1
 End If

 'Invoke ShowFileDialog method.
 On Error GoTo CancelPressed_EH
 ImgAdmin1.ShowFileDialog SaveDlg, frmConvertImage.hWnd

 'Set Image property of the Image Edit control to the filename
 'returned by theOpen dialog box.
 ImgEdit1.Image = ImgAdmin1.Image

 'Set the iFileType variable to the file type returned by the
 'Open dialog box.
 If ImgAdmin1.FilterIndex = 2 Then
 iFileType = iFileTypeBMP

Else
iFileType = FileTypeTIFF

End If

 'Invoke the SaveAs method using the new file name and file type
 ImgEdit1.SaveAs ImgEdit1.Image, intFileType
.
.
.
End Select

CancelPressed_EH:

End Sub
102

Adding Imaging Using ActiveX Controls
box (the standard vbOK and vbCancel constants are available for use).
The cmdConvert_Click() event procedure assigns this value to the
iResponse local variable.

The procedure evaluates the value of the iResponse variable. If users
click the OK button, it saves the altered image using the Save method of
the Image Edit control. If users click the Cancel button, the event
procedure exits without saving the image.

Private Sub cmdConvert_Click(Index As Integer)
 Dim intFileType As Integer
 Dim iResponse As Integer

 Select Case Index
.
.
.
 Case 1 'Page button

 'Display the ShowPageProperties dialog box to let users convert the
 'image
 iResponse = ImgEdit1.ShowPageProperties(False)
 If iResponse = vbOK Then
 'User clicked OK on the dialog box so save the converted image
 ImgEdit1.Save
 ElseIf iResponse = vbCancel Then
 'User clicked Cancel on the dialog box so exit without saving
 Exit Sub
 End If
.
.
.
 End Select

CancelPressed_EH:

End Sub
103

Chapter 4
Copying An Image
The Image Copy demonstration project shows how to add a Clipboard
copy function to your image-enabled applications. Before walking
through the demonstration project, read the following section, which
explains the concept of using the Clipboard with image data.

Clipboard Functions Defined
You’re probably familiar with using the Clipboard to copy, cut, and paste
text data within your development environment or word processor.
Using the Clipboard with image data is similar.

The Imaging ActiveX controls provide several properties, methods, and
events that let you add Clipboard functions to your image-enabled
applications. With them, your users can:

■ Copy or cut image and/or annotation data to the Clipboard.
■ Paste image or annotation data from the Clipboard onto an image

displayed in the Image Edit control or into any application that
supports the pasting of image data (for example, Microsoft Word,
WordPad, Exchange, or Excel).

Depending on how you code your application, you can let your users
copy or cut an entire image page, a selected portion of an image page, or
selected annotations.

The following sections briefly describe the properties, methods, and
events of the Image Edit control you’ll find useful when adding
Clipboard functions to your applications.

Clipboard Copy and Cut

ClipboardCopy method — Copies image or annotation data to the
Clipboard.

ClipboardCut method — Copies image or annotation data to the
Clipboard and then removes the data from the Image Edit control.

Clipboard Paste

IsClipboardDataAvailable method — Checks to see if image or
annotation data is present in the Clipboard. You can use this method to
see if data is available for pasting.

ClipboardPaste method — Pastes image or annotation data from the
Clipboard onto an image in the Image Edit control.
104

Adding Imaging Using ActiveX Controls
CompletePaste method — Completes a Clipboard paste operation,
making the pasted image or annotation data a part of the original image.

PasteCompleted event — Fires when the pasted image or annotation
data is committed to a location on the target image.

PasteClip event — Fires when the pasted image or annotation data is
too large to fit within the confines of the target image.

Image Selection

SelectionRectangle property — Sets whether a selection rectangle is
drawn when an end user clicks the left mouse button and drags the
mouse pointer over a displayed image. Can be used to select a portion of
an image to copy or cut to the Clipboard.

DrawSelectionRect method — Draws a selection rectangle on an
image programmatically.

SelectionRectDrawn event — Fires after a selection rectangle has
been drawn by the end user or by the DrawSelectionRect method.

Annotation Selection

AnnotationType property — When set to the Select Annotations
annotation type, lets end users select one or more annotations for
copying or cutting to the Clipboard (or for some other Imaging
purpose).

Draw method — Draws an annotation. Can be used to select
annotations programmatically by drawing a Select Annotations
annotation type.

MarkSelect event — Fires after an end user or the program selects one
or more annotations for copying or cutting to the Clipboard (or for some
other Imaging purpose, such as ZoomToSelection, for example).

Note: A selection rectangle can be used to select a portion of an image
with or without annotations; however, it cannot be used to
select annotations alone.

Note: The Select Annotations annotation type selects annotations
exclusively. It does not select the underlying image data.
105

Chapter 4
Example

Users of your application may want to copy an image page to the
Clipboard so they can paste the image into a word processing document.

Scenario

Assume Susan is writing a follow-up letter to her insurance company
about a reimbursement claim she has yet to receive. Before she sent the
original receipt, she scanned it and saved it to disk. Now she wants to
include a copy of the receipt in her follow-up letter.

With the image of the receipt displayed in your application, she copies it
to the Clipboard using the Clipboard functions you provided. Then, in
Word, she pastes the image into her letter.

Copy Image Project
The Copy Image project demonstrates copying an entire image page to
the Clipboard.

The project consists of one form and the following controls:

■ One Image Admin control
■ One Image Edit control
■ One Picture Box control
■ Two Frame controls

The file name for the Copy
Image project is
Imgcopy.vbp.
106

Adding Imaging Using ActiveX Controls
It uses the following methods in the Image Edit control to provide the
image copy function:

Display — To display the image in the Image Edit control.

ClipboardCopy — To copy the image page to the Clipboard.

Copying the Image Page
Start the Image Copy project. The Form_Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to copy.

After you select the image file, the procedure invokes the Display
method to display the image in the Image Edit control (which is inside
the Copied To Clipboard frame).

Next, the procedure invokes the ClipboardCopy method of the Image
Edit control, passing to it the following parameters:

■ The Left and Top coordinates of the image relative to the Image Edit
control (0,0).

■ The Width and Height of the image in pixels, as provided by the
current values of the ImageScaleWidth and ImageScaleHeight
properties of the Image Edit control.
107

Chapter 4
Finally, the procedure obtains the current image content of the Clipboard
using Visual Basic’s GetData method and displays it in the PictureBox
control (which is inside the Data In Clipboard frame) I.

Private Sub Form_Load()
 Dim vntTemp As Variant
 Dim lngRPosition As Long
 Dim sngLeftChar As Single, sngRightChar As Single
 .
 .
 .
 'Check for valid TIFF file.
 If ImgAdmin1.FileType <> 1 Then
 GoTo File_EH
 Else
 'Use the FitTo method to make the displayed image fit into the width
 'of the Image Edit control.
 ImgEdit1.FitTo FIT_TO_WIDTH

 'Display the image.
 ImgEdit1.Display

 'Copy the whole image onto the Clipboard.
 ImgEdit1.ClipboardCopy 0, 0, ImgEdit1.ImageScaleWidth, _
 ImgEdit1.ImageScaleHeight

 'Get the image data from the the Clipboard and display it in
 'the PictureBox control to make show it was copied.
 picImage = Clipboard.GetData()
 End If

 Exit Sub

 File_EH:

 MsgBox "Quitting the program now. Please select a TIFF file to use the _
 program."
 'Quit the program
 End

End Sub
108

Adding Imaging Using ActiveX Controls
Printing An Image
The Print Image demonstration project shows how to add image
printing to your image-enabled applications. Before walking through the
demonstration project, read the following section, which explains the
concept of printing an image file.

Image Printing Defined
Printing an image file is very similar to printing a word processing
document.

You can use the ShowPrintDialog method of the Image Admin control
to present a Print dialog box to the end user. With it — and the Print
Options dialog box that can be invoked from it — the end user can
select:

■ The printer to use.
■ The pages to print.
■ The number of copies to print, and whether to collate.
■ The output format to use.
■ The page orientation to use.
■ Whether to print annotations.

The PrintImage method of the Image Edit control performs the actual
print operation. Its parameters let you set the start page, end page, output
format, annotation print preference, and printer to use.

Example

Users of your application may want to print an image file on a particular
printer — and have complete control over the process of doing so.

Scenario

Assume Geoff is using your application to view an image of a technical
drawing. As he views it, he annotates it with his comments.

After entering his last comment, Geoff realizes that he is supposed to
meet Susan for lunch in just 15 minutes. He would like her to take a look
at the technical drawing too — only he doesn’t want her to see his
annotated comments.

On the File menu of your application, Geoff clicks Print. Then, on the
Print dialog box, he clicks the Options button.
109

Chapter 4
On the Print Options dialog box, he unchecks the Print displayed
annotations and zones check box and then clicks OK to return to the
Print dialog box.

On the Print dialog box, Geoff selects the printer he wants use and
specifies the page range and number of copies to print. When he clicks
OK, your application prints the drawing without Geoff ’s annotations.

Print Image Project
The Print Image project demonstrates printing an image file.

The project consists of one form and the following controls:

■ One Image Admin control
■ One Image Edit control
■ Two Command button controls in a control array

And it uses the following Imaging methods to provide the print image
function:

ShowPrintDialog (Image Admin) — To display a Print dialog box
to the end user.

PrintImage (Image Edit) — To actually print the image.

The file name for the Print
Image project is Print.vbp.
110

Adding Imaging Using ActiveX Controls
Printing an Image File
Start the Print Image project. The Form_Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to print.

After you select the image file, the procedure displays it in the Image Edit
control.

To print the image, click the Print button. The cmdPrint_Click()
event procedure fires and executes the code in Case 0 of the Select
Case statement.

The procedure invokes the ShowPrintDialog method of the Image
Admin control, passing to it the handle of the parent window.

The ShowPrintDialog method displays a Print dialog box, which lets
you specify the print options mentioned earlier.

Note: Even though passing the handle to the parent window is
optional, for best results always include it when you invoke the
ShowPrintDialog method.
111

Chapter 4
After you click the OK button on the Print dialog box, the Image
Admin control sets several of its print-related properties to values that
correspond to the selections made on the Print and Print Options
dialog boxes. (Keep in mind that the Print Image project does not use all
of these properties.)

You can set the print-related
properties to preferred values
prior to invoking the Print
dialog box. Doing so lets you
preset dialog box fields to
default settings. Print-Related Properties Set By the Print and Print Options

Dialog Boxes

Image Admin
Property

Set

Associated Field
and

Dialog Box

Value
Property
Contains

PrintAnnotations Print displayed
annotations and
zones check box
on the Print
Options dialog
box

True or False —
Indicating whether to
print annotations

PrintCollate Collate check box
on the Print dialog
box

True or False —
Indicating whether to
collate image pages

PrintEndPage Pages to text box
on the Print dialog
box

The ending page
number in the range
of pages to print

PrintNumCopies Number of
copies text box on
the Print dialog
box

The number of
copies to print

PrintOrientation Print
orientation list
box on the Print
Options dialog
box

The page
orientation:
0 — Portrait
1 — Landscape
2 — Automatic

PrintOutputFormat Print format list
box on the Print
Options dialog
box

The output format to
use:
0 — Pixel to pixel
1 — Actual size
2 — Fit to page
3 — Best fit
112

Adding Imaging Using ActiveX Controls
PrintRangeOption The following
option buttons on
the Print dialog
box:
■ All pages
■ Current page
■ Selection
■ Pages

Whether to print:
0 — All pages
1 — Range of pages
2 — Current page
3 — Selection

PrintStartPage Pages from text
box on the Print
dialog box

The start page
number in a range of
pages to print

PrintToFile Print to file check
box on the Print
dialog box

True or False —
Indicating whether to
print to a file

Print-Related Properties Set By the Print and Print Options
Dialog Boxes (continued)

Image Admin
Property

Set

Associated Field
and

Dialog Box

Value
Property
Contains
113

Chapter 4
The procedure continues by evaluating the value of the
PrintRangeOption property. It invokes the PrintImage method of
the Image Edit control with the StartPage and EndPage parameter values
that are appropriate for the PrintRangeOption value selected on the
Print dialog box (as described in the following table).

Each invocation of the PrintImage method also includes the
OutputFormat and Annotation parameter values supplied by the
PrintOutputFormat and PrintAnnotations properties of the Image
Admin control.

Once invoked, the PrintImage method prints the image to the printer
or file specified.

StartPage and EndPage Parameter Values Passed

PrintRangeOption
Constant (Literal)

StartPage
Parameter

EndPage
Parameter

PrintAll (0) The value of the
PrintStartPage
property of Image
Admin control

The value of the
PrintEndPage
property of Image
Admin control

PrintRange (1) The value of the
PrintStartPage
property of Image
Admin control

The value of the
PrintEndPage
property of Image
Admin control

PrintCurrent (2) The value of the
Page property of
Image Edit control

The value of the
Page property of
Image Edit control
114

Adding Imaging Using ActiveX Controls
Private Sub cmdPrint_Click(Index As Integer)

 Select Case Index

 Case 0 'Print

 On Error GoTo Print_EH

 'Display the Print dialog box.
 ImgAdmin1.ShowPrintDialog frmPrintImage.hWnd

 'User pressed OK continue with print
 If ImgAdmin1.StatusCode = 0 Then

 'Check on which option the user selected then print
 'image using the Image Edit control.
 If ImgAdmin1.PrintRangeOption = PrintAll Then
 ImgEdit1.PrintImage ImgAdmin1.PrintStartPage, _
 ImgAdmin1.PrintEndPage, ImgAdmin1.PrintOutputFormat, _
 ImgAdmin1.PrintAnnotations
 End If

 If ImgAdmin1.PrintRangeOption = PrintRange Then
 ImgEdit1.PrintImage ImgAdmin1.PrintStartPage, _
 ImgAdmin1.PrintEndPage, ImgAdmin1.PrintOutputFormat, _
 ImgAdmin1.PrintAnnotations
 End If

 If ImgAdmin1.PrintRangeOption = PrintCurrent Then
 ImgEdit1.PrintImage ImgEdit1.Page, ImgEdit1.Page, _
 ImgAdmin1.PrintOutputFormat, ImgAdmin1.PrintAnnotations
 End If

 End If

 Case 1 'Exit
 'End the program
 End

 End Select
.
.
.
End Sub
115

Chapter 4
Scanning an Image Using a Template
The Template Scanning demonstration project shows how to add
template scanning to your image-enabled applications. Before walking
through the demonstration project, read the following section, which
explains the concept of template scanning.

Template Scanning Defined
When the Imaging software operates in the Template Scanning mode, it
saves scanned images to files that are named and incremented
automatically.

Each file name is based on a template, which consists of:

■ A path to where the images are saved.
■ A file name prefix, which is used to generate the file names.

The end user of the application usually provides the path and prefix.

Responding to input from your end user, you can place the Imaging
software in Template Scanning mode by setting the ScanTo property of
the Image Scan control to the appropriate value. You can then specify the
template by setting the Image property of the Image Scan control to the
path and prefix provided.

For example, if the user wants image files to be saved to the
c:\claims\automobile path using file names prefixed with auto, enter the
following string in the Image property of the Image Scan control:

imgScan1.Image = “c:\claims\automobile\auto”

Using this template, the Imaging software will save images to files named
auto0001.tif, auto0002.tif, and so on in the c:\claims\automobile folder
(TIFF file format assumed).

The file type as well as the setting of the PageCount and MultiPage
properties of the Image Scan control determines the number of image
files generated and the number of image pages saved per file.

When scanning images using the BMP file type, each image page is
always saved to a separate file. For example:

c:\claims\automobile\auto0001.bmp

c:\claims\automobile\auto0002.bmp

c:\claims\automobile\auto0003.bmp

This occurs because the BMP file type does not support multiple image
pages per file.

The ScanTo property also has
settings that permit scanning
directly to a file (non-Template
Scanning). When scanning to a
file, consider using the
ShowScanNew and the
ShowScanPage methods of
the Image Scan control to
quickly add scanning functions
to your applications.
116

Adding Imaging Using ActiveX Controls
When scanning images using the TIFF file type — which supports
multiple image pages per file — the setting of the PageCount and
MultiPage properties of the Image Scan control determines the number
of image files created and the number of pages in each image file. (Refer
to the following table.)

For example, if you set the PageCount property to 5 and the
MultiPage property to True, and then you scan 20 pages, the Imaging
software creates four image files with five pages in each one.

Example

Users of your application may want to use a scanner equipped with an
automatic document feeder (ADF) to automatically scan multiple pages
into one or more image files.

Scenario

Assume Gloria has five 10-page documents she wants to scan using her
ADF-equipped scanner and your application.

She wants each 10-page document to be saved to its own TIFF image file
in the c:\employees path, and she wants the file name of each document
to be prefixed with the word review.

PageCount and Multipage Property Influence

PageCount
Setting

MultiPage
Setting

Number of
Image Files

Pages In
Image File

0 True 1 All pages
scanned

0 False One file for
each page
scanned

1

Xa True Total number
of pages
scanned

divided by X

X

X False X 1

a. Any value greater than 0.
117

Chapter 4
Because you provided a way for users to:

■ Specify the desired path,
■ Enter the file prefix,
■ Select the file type,
■ Set the PageCount property, and
■ Set the MultiPage property,

Gloria was able to specify that:

■ All documents are saved in the c:\employees folder.
■ Each file name begins with the word review.
■ Each document is scanned and saved as TIFF.
■ Each document contains 10 pages.
■ Each image file contains multiple image pages.

When Gloria commences scanning, your application:

1 Sets the ScanTo property of the Image Scan control to 3
(DisplayAndUseFileTemplate).

2 Creates the template by concatenating the path, a backslash, and the
template prefix and by setting the Image property of the Image
Admin control to the resulting string: c:\employees\revi.

3 Sets the FileType property of the Image Admin control to TIFF.

4 Sets the PageCount property of the Image Admin control to 10.

5 Sets the MultiPage property of the Image Admin control to True.

6 Scans 50 pages and saves each set of 10 scanned pages to 5 individual
TIFF image files — each one generated and incremented using the
template specified:

c:\employees\revi0001.tif

c:\employees\revi0002.tif

c:\employees\revi0003.tif

c:\employees\revi0004.tif

c:\employees\revi0005.tif

Note: A ScanTo property setting of 4 (UseFileTemplateOnly) also
enables template scanning.
118

Adding Imaging Using ActiveX Controls
Template Scan Project
The Template Scan project demonstrates scanning to a template.

The project consists of the following forms and modules:

frmFileType — Enables the user to select the desired file type.

frmHelp — Presents a brief help message to the user.

frmMain — Lets the user enter the template prefix, specify the number
of pages per file, commence scanning, and view the first page of the
image file.

frmPaperSize — Enables the user to specify the desired paper size.

frmPath — Enables the user to specify the desired template path.

modMain — Contains global constant definitions and global variable
declarations.

The scanning functions exist in the Main form (frmMain), which
contains the following controls:

■ One Image Scan control
■ One Image Edit control
■ Two text box and label controls
■ One Command button control

The file name for the Template
Scan project is
Template.vbp.
119

Chapter 4
■ Three menus

The form uses the following methods of the Image Scan control to
provide the scanning functions:

ShowSelectScanner — To select the scanner to use.

StartScan — To scan images.

Template Scanning
Start the Template Scan project. The Main form appears.

In the File Prefix text box, enter the prefix you want for the template.
Then, in the Pages per File text box, enter the number of pages you
want each image file to contain.

On the File menu:

■ Click File Type. On the File Type form, click the file type you
want and then click OK. Depending on the option button you
clicked, the cmdOK_Click() event of the File Type form
(frmFileType) sets the FileType property of the Image Scan control
— contained on the Main form (frmMain) — to the file type
specified.

■ Click Path. On the Folder dialog box, specify the template path,
which is where the image files are saved, and then click OK. The
cmdOK_Click() event of the Path form (frmPath) sets the global
variable, gstrFolder, to the path specified. (Later, the
cmdStartScan_Click() event of the Main form uses the value of
gstrFolder to set the Image property of the Image Scan control).

On the Options menu:

■ Click Paper Size. On the Paper Size dialog box, click the paper
size you expect to scan and then click OK. Depending on the option
button you clicked, the cmdOK_Click() event of the Paper Size
form (frmPaperSize) sets the global variable, gsngAspect, to the size
specified. It then calls the Form_Resize() event of the Main form,
which uses the value of gsngAspect, to resize the Main form and
its controls (not shown).
120

Adding Imaging Using ActiveX Controls
Private Sub cmdOK_Click()

 'Set the File Type property of the Image Scan
 'control on frmMain according to File Type option
 'button on this form. In addition, set the Enabled
 'property of the label and text box controls accordingly.
 If optTiff.Value Then
 frmMain!ImgScan1.FileType = TIFF
 frmMain!lblPages.Enabled = True
 frmMain!txtPages.Enabled = True
 ElseIf optBMP.Value Then
 frmMain!ImgScan1.FileType = BMP_Bitmap
 frmMain!lblPages.Enabled = False
 'Set text box to 1 because BMP is a
 'single-page file format
 frmMain!txtPages.Text = 1
 frmMain!txtPages.Enabled = False
 End If

 Unload Me

End Sub

Private Sub cmdOK_Click()

 'Set the global path variable to the path specified
 gstrFolder = dirPath.Path

 'Set the Caption of the Main form to the path specified
 frmMain.Caption = gstrFolder + " - " + gstrCMainCaption

 'Unload the Path form
 Unload Me

End Sub
121

Chapter 4
Private Sub cmdOK_Click()

 'Set the global Aspect variable to either
 'the size selected using an option button
 'or the custom values entered
 If optLetter Then
 gsngAspect = 11 / 8.5
 ElseIf optLegal Then
 gsngAspect = 14 / 8.5
 ElseIf optOther Then
 If CSng(txtWidth.Text) < 1 Then
 txtWidth.Text = 1
 Beep
 End If
 If CSng(txtHeight.Text) < 1 Then
 txtHeight.Text = 1
 Beep
 End If
 msngTmpWidth = CSng(txtWidth.Text)
 msngTmpHeight = CSng(txtHeight.Text)
 gsngOtherWidth = CSng(txtWidth.Text)
 gsngOtherHeight = CSng(txtHeight.Text)
 gsngAspect = gsngOtherHeight / gsngOtherWidth
 End If

 'Hide this form, resize frmMain, and reset the
 'Image Edit control to Best Fit
 frmPaperSize.Hide
 frmMain.Form_Resize

End Sub
122

Adding Imaging Using ActiveX Controls
■ Click Scan Options to apply compression. The
mnuCompressionOptions_Click() event in the
Main form invokes the ShowScanPreferences method
of the Image Scan control. The method displays a Scan Options
dialog box that lets you specify the compression you want.

Private Sub mnuCompressionOptions_Click()

 'Invoke the ShowScanPreferences method which
 'displays the Scan Options dialog box
 ImgScan1.ShowScanPreferences

End Sub
123

Chapter 4
■ Click Select Scanner to select the scanner you want to use. The
mnuSelectScanner_Click() event in the Main form invokes the
ShowSelectScanner method of the Image Scan control. The
method displays a Select Scanner dialog box that lets you select the
scanner you want.

■ Click Stop Button to have the Imaging software display a Stop
button while scanning.

The mnuStopButton_Click() event in the Main form sets the
StopScanBox property to True or False (as appropriate) to either
display, or not display, the Stop button. The Stop button enables you
to abort a scanning operation in progress.

Private Sub mnuSelectScanner_Click()

 'Invoke the ShowSelectScanner method which
 'displays the Select Scanner dialog box
 ImgScan1.ShowSelectScanner

End Sub
124

Adding Imaging Using ActiveX Controls
To begin scanning, click the Start Scan button. The
cmdStartScan_Click() event procedure in the Main
form fires and executes its code.

The procedure sets several properties of the Image Scan control to
enable template scanning:

DestImageControl — Set to the same value as the ImageControl
property of the Image Edit control to permit image display while
scanning.

ScanTo — Set to DisplayAndUseFileTemplate (literal 3) to select
template scanning.

Image — Set to the template, which is a concatenated string containing:

− The path (as specified on the Path form and assigned to the
gstrFolder global variable),

− A backslash (\), and

− The file name prefix (as specified in the File Prefix text box).

PageCount — Set to the value entered in the Pages per File text box
to establish the number of pages per file.

MultiPage — Set to True to permit the scanning of multiple image
pages.

Private Sub mnuStopButton_Click()

 'Set the StopScanBox property in accordance with
 'the Checked status of the mnuStopButton menu
 'selection
 If mnuStopButton.Checked Then
 mnuStopButton.Checked = False
 ImgScan1.StopScanBox = False
 Else
 mnuStopButton.Checked = True
 ImgScan1.StopScanBox = True
 End If

End Sub

Note: Setting the DestImageControl property to the value of the
ImageControl property is essential whenever you want to
display the image being scanned. It may be used for all types of
scanning — not just template scanning.
125

Chapter 4
Next, the procedure invokes the StartScan method of the Image Scan
control, which scans multiple image pages:

■ To the appropriate number of image files.
■ Using auto-incremented path and file names that begin with the

template specified.
■ Containing the number of image pages specified.

Private Sub cmdStartScan_Click()

 On Error GoTo Scan_EH
.
.
.
 'Link the Image Scan and Image Edit controls to permit display
 'while scanning
 ImgScan1.DestImageControl = "ImgEdit1"

 'Set the ScanTo property to enable template scanning
 ImgScan1.ScanTo = DisplayAndUseFileTemplate

 'Concatenate the path, backslash, and template prefix. Then assign the
 'string to the Image property
 ImgScan1.Image = gstrFolder + "\" + txtPrefix.Text

 'Assign the Pages per File value to the PageCount property
 ImgScan1.PageCount = txtPages

 'Set the MultiPage property to enable multipage scanning
 ImgScan1.MultiPage = True

 'Commence scanning
 ImgScan1.StartScan

 Exit Sub

Scan_EH:

 'Display the error message
 lblStatus.Caption = "ERROR - " + Err.Description
 Beep

End Sub
126

Adding Imaging Using ActiveX Controls
Managing an Image File Using Thumbnails
The Thumbnail Sorter demonstration project shows how to use the
Image Thumbnail control to reorganize multipage image files. Before
walking through the demonstration project, read the following section,
which explains the basics of working with thumbnails.

Thumbnails Defined
The Image Thumbnail control lets you view each page of an image file
in miniature boxes called thumbnails. There is one thumbnail image for
each page in the file.

Each thumbnail has a caption beneath it that indicates its page position
within the image file and an annotation indicator if one or more
annotation marks exist on the corresponding image page.

In addition to viewing image pages, the Image Thumbnail control — in
conjunction with the Image Admin control — also lets you provide
image file management functions to your end users. These functions
enable them to:

■ Select an image page for display, edit, manipulation, deletion, or some
other Imaging function.

■ Reorganize pages within the image file.
■ Drag and drop image pages to and from other applications that

support drag-and-drop.

Example

Users of your application may want to view image files as a series of
thumbnail images. They may also want to manage image files using drag
and drop.

Scenario

Assume Chris and his staff regularly review large fax files that contain
mostly blueprint drawings.

Chris is concerned that in the middle of any of these files there might be
a letter, or other piece of important information, that could go
unnoticed when someone is scrolling through the file.

Using your application, Chris and his staff can quickly review each fax
file by looking at its thumbnail images. When they find pages that have
important information, they can drag and drop them into an another
Image Thumbnail control, whose ThumbDrop() event contains code
that routes the image pages to the appropriate personnel.

The Image Thumbnail control
has several properties that
enable you to assign different
fonts, colors, and styles to the
captions, as well as to the
control itself.
127

Chapter 4
Thumbnail Sorter Project
The Thumbnail Sorter project demonstrates using thumbnails to manage
an image file. Specifically, it allows you to:

■ Reorganize images pages within the file.
■ Drag and drop image pages from Explorer.
■ Delete image pages from the file by dragging and dropping them into

another Image Thumbnail control.

The project consists of one form and the following controls:

■ One Image Admin control
■ Two Image Thumbnail controls
■ Three Command button controls
■ Two Text Box box controls
■ Two Label controls
■ One Frame control

The project uses the following Imaging methods to provide the
thumbnail file management functions:

The file name for the
Thumbnail Sort project is
Thumbnail.vbp.
128

Adding Imaging Using ActiveX Controls
DisplayThumbs (Image Thumbnail control) — To display the
pages of an image file as a series of thumbnail images.

Insert (Image Admin control) — To insert one or more selected
pages into the current image file.

InsertThumbs (Image Thumbnail control) — To refresh the Image
Thumbnail control with the inserted pages.

DeletePages (Image Admin control) — To delete one or more
selected pages from the current image file.

DeleteThumbs (Image Thumbnail control) — To refresh the Image
Thumbnail control without the deleted pages.

Sorting an Image File (Using Specified Page Numbers)
Start the Thumbnail Sorter project. The Form_Load() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to work with. Be sure to select a multipage image file.

After you select the image file, the procedure:

■ Sets the Image property of the Image Thumbnail control to the
complete path and file name you selected (as supplied by the Image
property of the Image Admin control).

■ Invokes the DisplayThumbs method of the Image Thumbnail
control to display each page of the file as a thumbnail in the Image
Thumbnail control located inside the Thumbnails frame.

■ Sets the AutoSelect property of the Image Thumbnail control to
True to have the control handle all thumbnail selections made using
the mouse.

Note: The Thumbnail Sorter project also uses the Drag (extender)
method, which is provided by the frame that contains the Image
Thumbnail control. When invoked, it begins a drag operation.
129

Chapter 4
■ Sets the EnableDragDrop property of the Image Thumbnail
control to a literal value of 15, which is a bit-wise combination of the
settings described in the following table.

■ Gets the number of thumbnail images displayed from the
ThumbCount property of the Image Thumbnail control.

■ Sets up another Image Thumbnail control to serve as a trash bin by
setting its ThumbWidth and ThumbHeight properties to the
desired dimensions, and its Image property to a bitmap of a trash
bin.

The EnableDragDrop
property lets you set the
desired drag-and-drop
behavior.

Note: The EnableDragDrop property value determines the drag-and-
drop behavior of the Thumbnail Sorter application, which is
described in the sections entitled “Sorting an Image File (Using
Drag and Drop)” and “Deleting Image Pages (Using Drag and
Drop)” .

Combined EnableDragDrop Property Settings

Literal Value Setting Description

1 Enable drag using left mouse button

2 Enable drag using right mouse button

4 Enable drop into

8 Enable dropping of image files

Result = 15 DropFilesDropDragLeftRight
130

Adding Imaging Using ActiveX Controls
In the Insert Page text box, enter the number of the page you want to
insert before another page in the file. Then in the Before Page text box,
enter the number of the page you want the Insert page to appear before.

Private Sub Form_Load()
 Dim strPathName As String
 Dim strTemp As String
 Dim strRightChar As String, strLeftChar As String
 Dim intRPosition As Integer
.
.
.
 'Invoke the ShowFileDialog box
 ImgAdmin1.ShowFileDialog OpenDlg

 End If

 'Display an error message if the image file is not TIFF
 If ImgAdmin1.FileType <> 1 Then
 GoTo File_EH
 Else
 'Set the Image property of the Thumbnail control.
 ImgThumbnail.Image = ImgAdmin1.Image

 'Get the path of the application
 strPathName = App.Path

 'Display a thumbnail for each image page in the file
 ImgThumbnail.DisplayThumbs

 'Set AutoSelect to true to enable drag and drop, and
 'EnableDragDrop to DropFilesDropDragLeftRight (literal 15)
 ImgThumbnail.AutoSelect = True
 ImgThumbnail.EnableDragDrop = 15

 'Get the thumbnail page count
 mlngThumbCount = ImgThumbnail.ThumbCount

 'Set up an Image Thumbnail control as a trash bin
 'to provide a way to delete pages
 ImgThumbnailTrash.ThumbWidth = 50
 ImgThumbnailTrash.ThumbHeight = 50
 ImgThumbnailTrash.Image = strPathName + "\trashbin.bmp"
.
.
.
End Sub
131

Chapter 4
For example, to insert page 4 before page 2, enter 4 in the Insert Page
text box and 2 in the Before Page text box.

Click the Execute button. The cmdExecute_Click() event
procedure fires and executes its code.

The procedure performs the following actions:

■ Gets the complete path and file name of the current image file from
the Image property of the Image Thumbnail control and assigns it to
the strName local variable.

■ Gets the Insert page number from the Insert Page text box and
assigns it to the lngInsertPage local variable.

■ Gets the Insert Before page from the Before Page text box and
assigns it to the lngInsertBeforePage local variable.

■ Invokes the Insert method of the Image Admin control, passing to it
the:

− Path and file name of the current image file (from strName).

− Insert Page number (from lngInsertPage).

− Insert Before page number (from lngInsertBeforePage).

− 1 (which specifies the number of pages to insert).

The Insert method inserts a copy of the Insert page before the Insert
Before page in the current image file.

■ Invokes the InsertThumbs method of the Image Thumbnail
control, passing to it the:

− Insert Before page number (from lngInsertBeforePage).

− 1 (which specifies the number of pages to insert).

The InsertThumbs method refreshes the control. Were you to set a
breakpoint after invoking this method, you’d see two copies of the
Insert page in the Image Thumbnail control.

■ Determines the page number of the unwanted, “leftover” copy of the
image page (from the value of lngInsertPage) so it can be deleted
from the file.

If the unwanted page is after the Insert Before page, the procedure
increments lngInsertPage by one to delete the correct page.

Note: You must call the Insert method of the Image Admin control
before calling the InsertThumbs method of the Image
Thumbnail control.
132

Adding Imaging Using ActiveX Controls
■ Invokes the DeletePages method of the Image Admin control,
passing to it the:

− Number of the page to delete (from lngInsertPage).

− 1 (which specifies the number of pages to delete).

The DeletePages method deletes the unwanted, “leftover” copy of
the image page from the file.

■ Invokes the DeleteThumbs method of the Image Thumbnail
control, passing to it the:

− Number of the page to delete (from lngInsertPage).

− 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
unwanted page.

Note: You must call the DeletePages method of the Image Admin
control before calling the DeleteThumbs method of the Image
Thumbnail control.
133

Chapter 4
Private Sub cmdExecute_Click()
 Dim strName As String
 Dim lngInsertPage As Long
 Dim lngInsertBeforePage As Long

 'Get the path and file name of the displayed image
 strName = ImgThumbnail.Image

 'Get the Insert page and the Insert Before page
 lngInsertPage = CLng(txtInsertPage.Text)
 lngInsertBeforePage = CLng(txtInsertBeforePage.Text)

 'Check to see if the Insert page is to be inserted
 'before itself. If it is, abort processing.
 If lngInsertPage = lngInsertBeforePage Or lngInsertPage =

lngInsertBeforePage - 1 Then
 Exit Sub
 End If

 'Place the Insert page before the Insert Before page in the current
 'image file
 ImgAdmin1.Insert strName, lngInsertPage, lngInsertBeforePage, 1

 'Refresh the Image Thumbnail control to display the reordered
 'image file
 ImgThumbnail.InsertThumbs lngInsertBeforePage, 1

 'Delete the "leftover" page
 If strName = ImgThumbnail.Image Then
 'If the InsertPage number is greater than the Insert Before
 'number, increment the lngInsertPage variable by 1 to set
 'the appropriate page for deletion
 If lngInsertPage > lngInsertBeforePage Then
 lngInsertPage = lngInsertPage + 1
 End If
 'Delete the "leftover" page from the image file and the Image
 'Thumbnail control
 ImgAdmin1.DeletePages lngInsertPage, 1
 ImgThumbnail.DeleteThumbs lngInsertPage, 1
 End If

End Sub
134

Adding Imaging Using ActiveX Controls
Sorting an Image File (Using Drag and Drop)
If necessary, start the Thumbnail Sorter project and select a multipage
image file.

Point to the thumbnail of an image page you want to insert before
another page in the file. Then hold down the left mouse button. The
MouseDown() event procedure of the Image Thumbnail control fires
and invokes the Drag (extender) method of Visual Basic, which starts the
Drag operation.

Next, drag the thumbnail (or image file) to the desired position and
release the left mouse button. The ThumbDrop() event procedure of
the Image Thumbnail control fires and performs the following actions:

■ Gets the complete source path and file name from the
ThumbDropNames property of the Image Thumbnail control for
each image page being inserted and assigns it to the strName local
variable.

If you’re dragging and dropping pages within the current image file,
the ThumbDropNames property returns the path and file name of
the displayed image file.

If you’re dragging and dropping pages from Explorer, the Thumb-
DropNames property returns the path and file name of the source
image file.

■ Gets the Insert page number from the ThumbDropPages property
of the Image Thumbnail control for each image page being inserted,
and assigns it to the lngInsertPage local variable.

You can select multiple
thumbnails by holding down
the Shift or Ctrl keys.

Private Sub ImgThumbnail_MouseDown(ByVal Button As Integer, _
ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single, _
ByVal ThumbNumberAs Long)

 'Invoke the Drag operation
 ImgThumbnail.Drag

End Sub

Note: As an alternative, you can point to an image file in Explorer and
then hold down the left mouse button.
135

Chapter 4
■ Invokes the Insert method of the Image Admin control, passing to it
the:

− Path and file name of the current image file (from strName).

− Insert Page number (from lngInsertPage).

− Insert Before page number (from the InsertBefore argument of
the ThumbDrop() event).

− 1 (which specifies the number of pages to insert).

The Insert method inserts a copy of the Insert page before the Insert
Before page in the current image file.

■ Invokes the InsertThumbs method of the Image Thumbnail
control, passing to it the:

− Insert Before page number (from InsertBefore).

− 1 (which specifies the number of pages to insert).

The InsertThumbs method refreshes the control. As in the previous
section, were you to set a breakpoint after invoking this method,
you’d see two copies of the Insert page in the Image Thumbnail con-
trol.

■ Determines the page number of the unwanted, “leftover” copy of the
image page (from the value of lngInsertPage) so it can be deleted
from the file.

If the unwanted page is after the Insert Before page, the procedure
increments lngInsertPage by one to delete the correct page.

■ Invokes the DeletePages method of the Image Admin control,
passing to it the:

− Number of the page to delete (from lngInsertPage).

− 1 (which specifies the number of pages to delete).

The DeletePages method deletes the unwanted, “leftover” copy of
the image page from the file.

Note: You must call the Insert method of the Image Admin control
before calling the InsertThumbs method of the Image
Thumbnail control.

Note: You must call the DeletePages method of the Image Admin
control before calling the DeleteThumbs method of the Image
Thumbnail control.
136

Adding Imaging Using ActiveX Controls
■ Invokes the DeleteThumbs method of the Image Thumbnail
control, passing to it the:

− Number of the page to delete (from lngInsertPage).

− 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
unwanted page.
137

Chapter 4
Private Sub ImgThumbnail_ThumbDrop(ByVal InsertBefore As Long, _
ByVal DropCount As Long, ByVal Shift As Integer)
 Dim X As Integer
 Dim strName As String
 Dim lngInsertPage As Long

 'Move all selected pages or insert from Explorer
 For X = 0 To DropCount - 1
 'Get the path and name of the file containing the Insert page
 strName = ImgThumbnail.ThumbDropNames(X)
 'Get the Insert page
 lngInsertPage = ImgThumbnail.ThumbDropPages(X)

 'Check to see if the Insert page is to be inserted
 'before itself. If it is, abort processing.
 If strName = ImgThumbnail.Image Then
 If lngInsertPage = InsertBefore Or lngInsertPage = InsertBefore - 1 Then
 Exit Sub
 End If
 End If

 'Place the Insert page before the Insert Before page in the image file
 ImgAdmin1.Insert strName, lngInsertPage, InsertBefore, 1

 'Refresh the Image Thumbnail control to display the reordered image file
 ImgThumbnail.InsertThumbs InsertBefore, 1

 'Delete the "leftover" page
 If strName = ImgThumbnail.Image Then
 'If the InsertPage number is greater than the Insert Before
 'number, increment the lngInsertPage variable by 1 to set
 'the appropriate page for deletion
 If lngInsertPage > InsertBefore Then
 lngInsertPage = lngInsertPage + 1
 End If
 'Delete the "leftover" page from the image file and the Image
 'Thumbnail control
 ImgAdmin1.DeletePages lngInsertPage, 1
 ImgThumbnail.DeleteThumbs lngInsertPage, 1
 End If
 Next X

End Sub
138

Adding Imaging Using ActiveX Controls
Deleting Image Pages (Using Drag and Drop)
If necessary, start the Thumbnail Sorter project and select a multipage
image file.

Point to the thumbnail of an image page you want to delete. Then hold
down the left mouse button. The MouseDown() event procedure of the
Image Thumbnail control fires and invokes the Drag (extender) method
of Visual Basic, which starts the Drag operation.

Next, drag the thumbnail to the Image Thumbnail control resembling a
trash bin and release the left mouse button. The ThumbDrop() event
procedure of the Image Thumbnail (trash bin) control fires and performs
the following actions for each selected page in the For...Next loop:

■ Gets the complete path and file name from the ThumbDropNames
property of the Image Thumbnail control for each image page being
deleted and assigns it to the strName local variable.

■ Gets the Delete page number from the ThumbDropPages property
of the Image Thumbnail control for each image page being deleted
and assigns it to the lngDeletePage local variable.

■ Makes sure that only pages from the current image file are deleted by
comparing the value returned by the Image property of the source
Image Thumbnail control to the value returned by the
ThumbDropNames property of the destination Image Thumbnail
(trash bin) control (from strName). If the path and file name values
don’t match, the event procedure is exited.

This action prevents using the Thumbnail Sorter to delete image files
from Windows Explorer.

You can select multiple
thumbnails by holding down
the Shift or Ctrl keys.

Private Sub ImgThumbnail_MouseDown(ByVal Button As Integer, _
ByVal Shift As Integer, ByVal X As Single, ByVal Y As Single, _
ByVal ThumbNumber As Long)

 'Invoke the Drag operation
 ImgThumbnail.Drag

End Sub

Note: The DropCount argument of the ThumbDrop() event provides
the array-maximum value. Subtracting 1 from DropCount is
required because the For...Next loop is 0-relative.
139

Chapter 4
■ Invokes the DeletePages method of the Image Admin control,
passing to it the:

− Number of the page to delete (from lngDeletePage-X).

− 1 (which specifies the number of pages to delete).

The DeletePages method deletes the image page from the file.

■ Invokes the DeleteThumbs method of the source Image Thumbnail
control, passing to it the:

− Number of the page to delete (from lngDeletePage-X).

− 1 (which specifies the number of pages to delete).

The DeleteThumbs method refreshes the control without the
deleted page.

Subtracting the Value of X

When calling the DeletePages and DeleteThumbs methods, the
procedure subtracts the value of counter X from the page number to
ensure that the proper page is deleted from the file and the control. The
necessity of this action becomes apparent when you have selected more
than one page for deletion.

For example, assume you delete pages two and three from a five-page file.

The first-page-to-delete value passed to both methods is 2
[(lngDeletePage = 2) minus (X = 0)]. The DeletePages method deletes
page 2 from the file and the DeleteThumbs method refreshes the
control without the deleted page.

The second-page-to-delete value passed to both methods is also 2
[(lngDeletePage = 3) minus (X = 1)]. Subtracting 1 from the
lngDeletePage value of 3 compensates for the page that was previously
deleted.

Note: You must call the DeletePages method of the Image Admin
control before calling the DeleteThumbs method of the Image
Thumbnail control.
140

Adding Imaging Using ActiveX Controls
Private Sub ImgThumbnailTrash_ThumbDrop(ByVal InsertBefore As Long, _
 ByVal DropCount As Long, ByVal Shift As Integer)
 Dim X As Integer
 Dim strName As String
 Dim lngDeletePage As Long

 'Delete the selected pages
 For X = 0 To DropCount - 1
 'Get the path and name of the file containing the Delete page
 strName = ImgThumbnailTrash.ThumbDropNames(X)
 'Get the Delete page
 lngDeletePage = ImgThumbnailTrash.ThumbDropPages(X)

 'If page dropped from Explorer, exit the procedure
 If strName <> ImgThumbnail.Image Then
 Exit Sub
 Else
 'Delete the selected page from the image file and
 'the source Image Thumbnail control
 ImgAdmin1.DeletePages lngDeletePage - X, 1
 ImgThumbnail.DeleteThumbs lngDeletePage - X, 1
 End If
 Next X

End Sub
141

Chapter 4
Unloading a Multipage Image File
The Unload demonstration project shows how to save the individual
pages of a multipage image file as a series of single-page files; in effect,
extracting — or unloading — the pages of a multipage image file. Before
walking through the demonstration project, read the following sections,
which explain the concept of multipage image files and describe the
properties and methods that enable you to add page management and
manipulation functions to your applications.

Multipage Image Files Defined
Some image file types, such as BMP, can contain only one image page
per file.
142

Adding Imaging Using ActiveX Controls
Other file types, such as TIFF, can contain several image pages per file.

The following table describes the multipage support provided by the file
types that the Imaging software can read and read/write.

Multipage Support By File Type

File
Type

Supports Multiple
Pages?

Read/Write
Status

BMP No Read/Write

DCX Yes Read Only

GIF No Read Only

JPG-JFIF No Read/Write

PCX No Read Only

TIFF Yes Read/Write

WIFF Yes Read Only

XIF Yes Read Only
143

Chapter 4
Page-Related Properties and Methods
The Imaging ActiveX controls have several properties and methods that
enable you to work with multipage image files — either to create them
or perform some sort of Imaging action on their individual pages.

The following list briefly describes the properties and methods you’ll find
useful when working with multipage image documents.

Image Admin

PageCount property — Returns the number of pages in an image file.

PageNumber property — Returns or sets a page number in an image
file.

PageType property — Returns the page type — also known as the
color type or data type — of a specified page.

Append method — Adds one or more pages to an image file.

DeletePages method — Deletes a range of pages from an image file.

Replace method — Replaces one or more pages in an image file.

Image Edit

Page property — Returns or sets the page number of an image file
where an imaging action was or will be performed.

PageCount property — Returns the number of pages in the displayed
image file.

PageType property — Returns the page type of the image specified in
the Image property and the page specified in the Page property of the
Image Edit control.

ConvertPageType method — Converts a displayed image page to a
specific page type.

SavePage method — Saves the displayed image page to the path and
file name specified.

Note: Because each thumbnail image represents an image page, the
Image Thumbnail control — in conjunction with the Image
Admin control — is particularly useful for working with image
pages. (Refer to “Managing an Image File Using Thumbnails” to
see a sample application.)
144

Adding Imaging Using ActiveX Controls
ShowPageProperties method — Displays the Page Properties
dialog box, which enables users to view or modify the properties of the
displayed image page (color, compression, resolution, and size).

Image Scan

MultiPage property — Determines whether multiple image pages will
be scanned to an image file.

Page property — Returns or sets the starting page for a scanning
session.

PageCount property — Returns or sets the number of pages scanned
per image file. Works in conjunction with the MultiPage property to
determine how many pages are scanned to how many files. (Refer to the
“PageCount and Multipage Property Influence” table earlier in this
chapter for more information.)

PageOption property — Returns or sets whether a page will be
appended, inserted, or overwritten during a scanning session.

ShowScanPage method — Displays the Scan Page dialog box, which
lets users scan a page into an image file.

Image Thumbnail

FirstSelectedThumb property — Returns the page number of the
first selected thumbnail.

LastSelectedThumb property — Returns the page number of the last
selected thumbnail.

SelectedThumbCount property — Returns the number of
thumbnails currently selected.

ThumbCount property — Returns the total number of pages in the
current image file.

ThumbDropNames property — Returns the file name(s) of image
pages dropped on the Thumbnail control.

ThumbDropPages property — Returns a list of pages for the file
name(s) dropped on the Thumbnail control.

ThumbSelected property — Returns or sets the selection status of a
specified thumbnail.

DeleteThumbs method — Refreshes the Thumbnail control without
the image pages that have been deleted from an image file.
145

Chapter 4
GetManualThumbPage method — Returns the page within the
image file corresponding to the thumbnail array subscript.

InsertThumbs method — Refreshes the Thumbnail control with the
image pages that have been inserted into the current image file.

Example

Users of your application may want to unload a multipage image file
when the individual pages have no logical relationship to each other or
when the individual pages need to be routed to different people.

Scenario

As described in an earlier scenario, Chris regularly reviews large
multipage fax files as part of his job.

Sometimes Chris encounters pages that contain memos, letters, or forms
that are of interest to different people but have no relationship with the
remainder of the file.

Using your application, Chris can quickly unload these pages and save
them to disk as individual image files — or send them to the appropriate
people via e-mail if you have included e-mail support in your
application.
146

Adding Imaging Using ActiveX Controls
Unload Project
The Unload project demonstrates unloading the pages of a multipage
image file and saving them to disk as a series of single-page image files.

The project consists of one form and the following controls:

■ One Image Admin control
■ One Image Edit control
■ Two Command button controls
■ One list box control

And it uses the following methods of the Image Admin control to
provide the unload functions:

Append — To create the individual image files.

Delete — To remove existing image files.

VerifyImage — To see if an image file already exists.

Unloading an Image File
Start the Unload project. The Form_Activate() event procedure
displays an Open dialog box to let you select the TIFF image file you
want to unload. Be sure to select a multipage image file.

After you select the image file, the Unload form appears.

The file name for the Unload
project is Unload.vbp.
147

Chapter 4
To unload the image file, click the Unload button. The
cmdUnload_Click() event procedure fires and executes its code.

The procedure begins by setting two local string variables to the path and
file name of the multipage image file you selected (the source file). The
strSourceFile variable will retain the path and file name throughout
the procedure. The strPrefix variable will be gradually parsed until it
contains only the first three letters of the source image file name —
becoming a prefix of the destination file names.

The procedure continues by obtaining the number of image pages in the
source file from the PageCount property of the Image Edit control,
assigning it to the intPageCount local variable. It also obtains the
current path, assigning it to the strCurrentPath local variable. It is
into this path that the individual destination file names will be written.

Next, the procedure parses the strPrefix variable until it consists of a
three-character prefix:

■ First, it gets rid of the path information.
■ Second, it gets rid of all of the remaining characters — including the

file extension, which is assigned to the strExt variable for later use.

Before building the individual (Unloaded) file names, the procedure
appends a slash to the current path variable, strCurrentPath.

With all of these preliminaries out of the way, the procedure is now ready
to build the Unloaded file names.

A For...Next statement executes for each page in the image file —
starting at 1 and continuing until it exceeds the maximum number of
pages in the image file (from intPageCount).

For each iteration of the For...Next loop, the procedure concatenates the
following six items to build an Unloaded path and file name, which it
assigns to the strUnloadedFileName local variable (the examples
assume a source path and file name of c:\Images\Faxes.tif):

1 Current path and slash (from strCurrentPath).

Example: c:\Images\

2 Three-character prefix (from strPrefix).

Example: c:\Images\Fax

3 “Pag” (a hard-coded preface to the page number).

Example: c:\Images\FaxPag.

4 Current page number (from strPageNum, which is the counter
value converted to a string).
148

Adding Imaging Using ActiveX Controls
Example: c:\Images\FaxPag1

5 “.” (the dot before the file extension).

Example: c:\Images\FaxPag1.

6 File extension (from strExt).

Example: c:\Images\FaxPag1.tif

Now that the complete path and file name exist for the unloaded page,
the procedure assigns the Unloaded path and file name (from
strUnloadedFileName) to the Image property of the Image Admin
control.

Next, the procedure invokes the VerifyImage method of the Image
Admin control to see if the Unloaded file already exists in the current
path. If it does, the procedure invokes the Delete method of the Image
Admin control to remove it.

The procedure invokes the Append method of the Image Admin
control to add the source page to the unloaded file, creating it
automatically.

Finally, the procedure adds the path and file name of the first Unloaded
image to the list box control and executes the next iteration in the
For...Next loop (the second Unloaded image).

The procedure invokes the
VerifyImage method with a
parameter value of 0 (Verify
Existence). Other parameter
values let you check an image
file’s read/write attributes.
149

Chapter 4
Private Sub cmdUnload_Click()
 Dim intPageCount As Integer, intPageNumber As Integer
 Dim intSlashPos As Integer, intDotPos As Integer
 Dim intVerifyExistence As Integer
 Dim strPrefix As String, strCurrentPath As String
 Dim strSourceFile As String, strUnloadedFileName As String
 Dim strExt As String, strPageNum As String

 'Get the path and file name of the source file
 strSourceFile = ImgEdit1.Image
 strPrefix = ImgEdit1.Image

 'Get the number of pages in the source file
 intPageCount = ImgEdit1.PageCount

 'Get the current path
 strCurrentPath = CurDir

 'Establish an appropriate prefix for the Unloaded file names
 intSlashPos = 7
 'First, eliminate the characters to the left of the slashes
 Do While intSlashPos <> 0
 intSlashPos = InStr(1, strPrefix, "\", 1)
 strPrefix = Right(strPrefix, Len(strPrefix) - intSlashPos)
 Loop
 'Second, eliminate the characters to the right of the dot
 intDotPos = InStr(1, strPrefix, ".", 1)
 strExt = Right(strPrefix, Len(strPrefix) - intDotPos)
 If intDotPos > 4 Then
 strPrefix = Left(strPrefix, 3)
 Else
 strPrefix = Left(strPrefix, intDotPos - 1)
 End If

 'Append a slash to the current path specification
 intSlashPos = InStr(1, strCurrentPath, "\", 1)
 If intSlashPos <> Len(strCurrentPath) Then
 strCurrentPath = strCurrentPath + "\"
 End If

(Continued next page)
150

Adding Imaging Using ActiveX Controls
 'Build and populate one image file for each of the pages in the source image
 'file
 For intPageNumber = 1 To intPageCount

 'Get the current page number
 strPageNum = Str$(intPageNumber)
 'Build the Unloaded path and file name
 strUnloadedFileName = strCurrentPath + strPrefix + "Pag" + strPageNum + _
 "." + strExt
 'Assign the Unloaded path and file name to the Image property
 ImgAdmin1.Image = strUnloadedFileName
 intVerifyExistence = 0
 'If the Unloaded file exists, delete it
 If ImgAdmin1.VerifyImage(intVerifyExistence) = True Then
 ImgAdmin1.Delete strUnloadedFileName
 End If

 'Populate the Unloaded image file
 ImgAdmin1.Append strSourceFile, intPageNumber, 1

 'Add the new image path and file name to the list box control
 lstFiles.AddItem strUnloadedFileName

 Next intPageNumber

End Sub

151

Chapter 4
152

5

Developing Client/Server Applications

This chapter explains how to use the Imaging ActiveX controls to

develop applications that can access and interact with WMS Imaging
Server (1.x) and WMS Imaging and Workflow (WMS) servers.

It also explains how to add zoom and annotation functions to your
applications. Even if you are not going to include Imaging server access
in your applications, you’ll find the sections on these functions useful.

In This Chapter
Imaging Server Concepts ... 154

Imaging 1.x Server Programming Considerations 157

WMS Server Programming Considerations 173

Demonstration Project ... 176

Chapter 5
Imaging Server Concepts
This section explains the
basic concepts of Imaging 1.x
server and WMS Imaging
server access.

Using the Imaging ActiveX controls, you can develop applications that
can access and interact with both WMS Imaging Server (1.x) and WMS
Imaging and Workflow (WMS) servers. Using the controls, you can
enable your users to:

■ Read and display image files and server documents from Imaging 1.x
servers.

■ Write image files and documents to Imaging 1.x servers.
■ Read and display documents from WMS Imaging servers.
■ Save 1.x image files and server documents and WMS Imaging

documents to local and network drives.

Before getting into the specifics, read the following sections that:

■ List the file types supported by each Imaging server.
■ Describe the standard, server-related dialog boxes available with the

Imaging ActiveX controls.
■ Explain the difference between image files and server documents.
■ Describe how your program can interact with each Imaging server.

Note: To use the Imaging ActiveX controls with Imaging and Workflow
servers, you and your users must install and configure Imaging
Server Access when installing Imaging for Windows.

Note: Because a wide-ranging discussion of each Imaging server is
beyond the scope of this chapter, you should also review the
documentation that came with the server you and your users
use.
154

Developing Client/Server Applications
File Type Support
1.x and WMS servers support the file types described in the following
table.

Standard Dialog Boxes
Several methods in the Image Admin control display server-related dialog
boxes to your end users. These dialog boxes enable your users to:

■ Log onto the desired server — either Imaging 1.x or WMS Imaging.
■ Set Imaging 1.x server options.
■ Browse for Imaging 1.x file and document volumes.
■ Browse the Imaging 1.x file and document volumes for files and

documents to open.
■ Query Imaging 1.x document volumes by document name, location,

creation date, modification date, or keywords to locate documents to
open.

■ Query WMS Imaging and Workflow servers by document name or
field values to locate documents to open.

■ Save 1.x image files, 1.x documents, and WMS Imaging documents
to an Imaging 1.x file volume, an Imaging 1.x document volume, or
a local or network drive, respectively.

Imaging Server File Types

Server File Types Supported

Imaging 1.x TIFF 6.0

BMP

DCX (read only)

GIF (read only)

JPG-JFIF

PCX (read only)

WIFF (read only)

XIF (read only)

WMS
Imaging

TIFF 6.0 with WMS Imaging
6.0
155

Chapter 5
Image Files and Server Documents
An Image file is simply a binary file that contains one or more images. You
or your users can use operating system commands to save, organize, copy,
rename, delete, and otherwise operate on files of this type.

A Server document is a collection of related images, logically organized as
pages within the document. The Imaging software stores the actual
images as image files; a server document simply contains references — or
pointers — to the location and name of each associated image page.

Interacting with Imaging 1.x Servers
When interacting with Imaging 1.x servers, your program can read
images from — and write images to — image file or document volumes.

Image File Volume

Otherwise known as a file repository, a file volume is the location where
the actual image files are stored.

Your program can process image files in the file repository directly, using
a file specification. File specifications consist of a server name, volume
name, one or more directory names (optional), and a file name in the
following format:

Image://server/file volume:/directory/filename.tif

Document Volume

Formerly known as a document manager database, a document volume is
where server documents are stored. A document volume does not
contain the actual image files, only references to the files in the file
repository.

Server documents are stored using a familiar hierarchy. Documents are
stored within a Folder; Folders are stored within a Drawer; and Drawers
are stored within a Cabinet; using the following format:

Image://server/doc volume:\cabinet\drawer\folder\doc

Interacting with WMS Imaging and Workflow Servers
When interacting with WMS Imaging and Workflow servers, your
program can read documents from those servers.

Users cannot edit these documents unless they save them on their local
or network drives first or on an Imaging 1.x server if one is available to
them.
156

Developing Client/Server Applications
WMS Imaging and Workflow servers store documents using a flat syntax
that consists of a prefix and document name; for example,
Imagex://claim234.

Imaging 1.x Server Programming Considerations
This section describes the
Imaging 1.x functions
provided by the Imaging
ActiveX controls.

Several properties and methods in the Imaging ActiveX controls let you
provide Imaging 1.x server access functions to your end users.
Specifically, they permit your users to:

■ Log onto the server.
■ Set server options.
■ Browse for Imaging 1.x file and document volumes.
■ Browse the Imaging 1.x file and document volumes for files and

documents to open.
■ Query Imaging 1.x document volumes by document name, location,

creation date, modification date, or keywords to locate documents to
open.

■ Save 1.x image files and server documents to Imaging 1.x file or
document volumes or to local or network drives.

The following sections describe each function in detail by pointing out
the properties and methods you can use.

Logging Onto the Server
Before users can interact with an Imaging 1.x server, they must log onto
it. The Image Admin control provides a LoginToServer method that
lets you programmatically log your users onto an Imaging 1.x server.

In your call to the LoginToServer method, you can optionally display
the standard Server Login dialog box, which permits users to enter
their user name and password and then click OK to log onto the server.

Note: The LoginToServer method does not support non-unified
logins — it is intended to be used in UNIX environments.
157

Chapter 5
The Username text box can accommodate up to 20 alphanumeric
characters; the Password text box can contain up to 36 alphanumeric
characters.

You can also bypass the dialog box and simply pass the user name and
password as parameters to the LoginToServer method, most likely in
response to a user completing and closing a logon dialog box of your
own design.

If a user is not logged on and attempts to access the server, the Imaging
software displays the standard Server Login dialog box automatically —
thereby prompting the user to log onto the server.

Setting Imaging 1.x Server Options
Setting server options is a task that users should perform after they install
your program and whenever necessary thereafter.

You, or your users, should specify:

■ The path to the 1.x file repository, where your program stores new or
copied image files that comprise server documents.

■ Whether to force lower-case path and file names.
■ Whether to link server documents to the original image files or to

copies of the original files.
■ Whether to delete image files that were linked to deleted server

document pages.

The Image Admin control provides a Show1xServerOptDlg method
that lets you display the standard Imaging Server Options dialog box
to your end users. The dialog box lets them set server options.

The Image Admin control also
provides a LogOffServer
method that lets you program-
matically log your users off an
Imaging 1.x server.
158

Developing Client/Server Applications
When users click OK on the Imaging Server Options dialog box, the
Image Adman control sets several of its server-related properties to values
that correspond to the selections made on the dialog box. The following
table lists the properties set.

Imaging 1.x Server-Related Properties Set By the Server
Options Dialog Box

Image Admin
Property

Set

Associated Field
on Dialog Box

Value
Property
Contains

FileStgLoc1x File location for
document pages
text box

The path to the file
repository, where
your program stores
new or copied image
files that comprise
server documents.

ForceLowerCase1x Force lower-case
file names check
box

True or False —
Indicating whether
paths and file
names are con-
verted to lower case
before being passed
to the Imaging 1.x
server.
159

Chapter 5
If desired, you can set these properties in advance to present default
dialog box settings to your users.

You can also bypass the standard dialog box and set these properties
within your code — most likely in response to a user completing and
closing a server options dialog box of your own design.

ForceFileLinking1x Link files on
reference check
box

True or False —
Indicating whether
pages being added
to an Imaging 1.x
document from an
existing 1.x image
file are linked
(True) or copied
(False).

ForceFileDeletion1x Delete files with
pages check box

True or False —
Indicating whether
the file referenced
by an Imaging 1x
server document
page is deleted
when the docu-
ment page is
deleted.

Imaging 1.x Server-Related Properties Set By the Server
Options Dialog Box (continued)

Image Admin
Property

Set

Associated Field
on Dialog Box

Value
Property
Contains
160

Developing Client/Server Applications
The following sections explain each server option setting and related
property in detail.

File Location for Document Pages
(FileStgLoc1x Property)

When your program saves a server document page, it may have to create a
file that contains the actual image. Such files must reside somewhere on
an Imaging 1.x server and only your users know exactly where that
should be. As a result, you need to let your users enter the location where
your program stores these files.

The FileStgLoc1x property of the Image Admin control contains the
location where your program stores the new image files. You can set this
property yourself in response to user input or you can have users set it via
the Imaging Server Options dialog box.

Depending on how you code your program, the following methods use
this location to save images: the SaveAs and SavePage methods of the
Image Edit control; the SaveAs method of the Image Thumbnail
control; and the Append, Replace, and Insert methods of the Image

Note: Update List of Server Volumes
There are no properties or methods associated with the Update
list of server volumes automatically check box or the
Update Now button on the Server Options dialog box. Both
invoke a facility that updates the list of server volumes in the
current domain. Users can access this list by clicking the Browse
button on the dialog box. They use the list to locate and enter
the desired file location for document pages.

Hide Server File Volumes
Likewise, there are no properties or methods associated with the
Hide server volume files check box. This check box specifies
whether Imaging 1.x server file volumes are displayed or hidden
on the Open dialog box, which you can display by invoking the
ShowFileDialog method of the Image Admin control.
Hiding server file volumes is useful when users only want to
browse server document volumes.

Invoke the Show1xServerOptDlg method if you want to pro-
vide the Update List of Server Volumes function and the
Hide Server File Volumes function to your end users.
161

Chapter 5
Admin control. Each of these methods creates a new image file with a
unique file name in the following situations:

■ When a page from a local or redirected file is being inserted,
appended, or saved to an Imaging 1.x document.

■ When the ForceFileLinking1x property is set to False and a page
from an Imaging 1.x image file or document is being inserted,
appended, replaced, or saved in another Imaging 1.x document.

Force Lower-Case File Names
(ForceLowerCase1x Property)

Older Imaging 1.x 16-bit clients have traditionally converted path and
file names to lower-case when communicating with the Imaging 1.x file
system.

To maintain backward compatibility with the 16-bit clients and to ensure
that Imaging for Windows clients can access Imaging 1.x file repositories
created by the 16-bit clients, Imaging for Windows includes a facility
that performs this conversion.

The ForceLowerCase1x property of the Image Admin control
determines whether your program converts path and file names to lower-
case when communicating with the Imaging 1.x file system. You can set
this property yourself in response to user input or you can have users set
it via the Imaging Server Options dialog box.

When the ForceLowerCase1x property is set to True, case conversion
occurs. When set to False, no case conversion occurs.

Link Files On Reference
(ForceFileLinking1x Property)

As stated earlier, an Imaging 1.x document is basically a list of references
to the files that contain the actual images.

Certain operations, such as that performed by the Append method of
the Image Admin control, allow your program to add pages to an
Imaging 1.x document.

Note: You or your users should set the ForceLowerCase1x property
to False unless you or they have specific compatibility problems
with older document volumes (document manager databases).
162

Developing Client/Server Applications
There are two different ways to add such a page:

■ Linking the document directly to the actual image file, as long as the
file resides in a 1.x file volume (link on reference).

■ Copying the page to another image file and then linking the
document to the copied image file (copy on reference).

The ForceFileLinking1x property of the Image Admin control
determines how pages being added to an Imaging 1.x document are
referenced. You can set this property yourself in response to user input or
you can have users set it via the Imaging Server Options dialog box.

Then to add pages to an Imaging 1.x document, use one of the
following: the Append, Replace, or Insert method of the Image
Admin control; the SaveAs or SavePages method of the Image Edit
control; or the SaveAs method of the Image Thumbnail control.

When you do, the value of the ForceFileLinking1x property and where
the source image file resides determine the behavior of the Imaging
software, as follows:

■ When the ForceFileLinking1x property is set to True and the
source image file resides on an Imaging 1.x server, the Imaging
software links the document to the source image file where the file
resides on the server.

■ When the ForceFileLinking1x property is set to False and the
source image file resides on an Imaging 1.x server, the Imaging
software copies the image file to the location specified within the
FileStgLoc1x property. Then it links the document to the copied
file.

■ Regardless of the setting of the ForceFileLinking1x property, when
the source image file resides outside of an Imaging 1.x server (for
example, on a local or redirected drive), the Imaging software copies
the image file to the location specified within the FileStgLoc1x
property. Then it links the document to the copied file.

■ When the SaveAs or SavePage method is used to save changes to an
existing 1.x document page, the Imaging software replaces the
original file page regardless of the setting of the ForceFileLinking1x
property (unless the original file is write-protected).
163

Chapter 5
Delete Files With Pages
(ForceFileDeletion1x Property)

When users delete a page from an Imaging 1.x document, they may also
want to delete the linked image file.

The ForceFileDeletion1x property of the Image Admin control
determines whether the Imaging software deletes the file referenced by a
deleted Imaging 1x server document page. You can set this property
yourself in response to user input or you can have users set it via the
Imaging Server Options dialog box. The Delete or DeletePages
method of the Image Admin control performs the actual deletion.

When set to True, the Imaging software deletes the source file linked to
an Imaging 1.x document when a user deletes the corresponding
document page.

When set to False, the Imaging software does not delete the linked
source file when a user deletes the corresponding document page.

Referential Integrity Behavior

The Imaging software ignores the True setting of the ForceFile
Linking1x property when two or more pages of a server document are
linked to the same image file and not all of these pages have been deleted
from the document. The Imaging software does not delete the linked
image file because one or more pages in the document are still linked to
the file.

Example

Assume a server document named Claims contains 5 pages and that
pages 1 and 4 in the document are linked to the autoclaims.tif
image file.

Assume you delete page 1 of Claims.

Even though the ForceFileDeletion1x property is set to True, the
Imaging software does not delete autoclaims.tif. Why? Because the
file contains the image that is still linked to page 4 of the Claims
document.

Note: Keep in mind that the referential integrity behavior of the
ForceFileDeletion1x property provides protection against
inadvertently deleting image files that are referenced within the
same document only. It provides no protection against deleting
image files that are referenced within two or more documents.
164

Developing Client/Server Applications
Browsing for Volumes or Image Files and Server Documents
The Image Admin control provides two ways to browse Imaging 1.x
servers. Using them, you can let your users:

■ Browse the server for image file or server document volumes, or
■ Browse the server for image files and/or server documents.

Browsing for Volumes

The Browse1x method of the Image Admin control displays a dialog
box that lets your users browse the Imaging 1.x server for the file and/or
document volumes they want.

Use this method whenever you want users to select a desired volume for
a particular purpose in your program. A good example of using this
method exists on the Server Options dialog box, which is described in
the previous section. After users click the Browse button, they can use
the Browse 1.x dialog box to navigate to and then select the location
where they want new image files to be stored.
165

Chapter 5
In your call to the Browse1x method, you can specify:

■ Whether to browse:

File volumes — By passing the BrowseFiles constant or a literal
value of 0.

Document volumes — By passing the BrowseDocuments
constant or a literal value of 1.

Both file and document volumes — By passing the
BrowseBoth constant or a literal value of 2.

■ A string that becomes the title bar caption of the dialog box (for
example, “Browse Imaging 1.x Server” in the preceding figure).

■ Another string that instructs the user to browse the server (for
example, “Select the desired path” in the preceding figure).

■ The handle to the parent window (optional).

After users make their selection and click OK, the Imaging software
writes the path selected to the Browse1xReturnedPath property of the
Image Admin control.

The Imaging software also writes the type of volume selected to the
Browse1xReturnedPathType property, which can contain one of the
following integer values:

0 — To indicate that users selected a file volume.

1 — To indicate that users selected a document volume.

Browsing for Files and Documents

As you know from Chapter 4, the ShowFileDialog method of the
Image Admin control displays an Open dialog box that lets users browse
for and then select (open) the image file they want to display.

When you install Imaging 1.x Server Access, the Imaging software alters
the Open dialog box slightly by adding a Look for list box that lets users
select for browsing and display:

Desktop Files — The image files stored on local or network drives.

Keep in mind that the Get
VolumeType method of the
Image Admin control lets you
determine whether a specified
Imaging 1.x volume is a file
volume or a document volume.
166

Developing Client/Server Applications
1.x Files and Documents — The image files or server documents
stored on Imaging 1.x servers.

Invoke the ShowFileDialog method, therefore, whenever you want
users to browse for and then select an Imaging 1.x file or server
document they want to display.

When users select 1.x Files and Documents from the Look for list box,
they can use the Look in list box to browse the file and document
volumes in the current domain, as illustrated in the following figure2

The Look for list box also
contains a WMS Imaging
Documents selection. When
clicked, a message appears
instructing users to click the
Find button to perform a
query.
167

Chapter 5
Once users select the desired directory or folder, the area below the
Look in box lists the files or documents contained within it, as illustrated
in the following figure.

When users select the desired file or document and then click Open, the
Imaging software writes the path and name of the file or document to
the Image property of the Image Admin control.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the DisplayThumbs method of
the Image Thumbnail control to display the image file or document.

Refer to Chapter 4 for more information about displaying images and
thumbnails as well as for more information about the ShowFileDialog
method.
168

Developing Client/Server Applications
Querying for Imaging 1.x Documents
The ShowFindDialog method of the Image Admin control displays a
dialog box that enables users to query Imaging 1.x document volumes
for the documents they want.

Prior to your call to the ShowFindDialog method, you can set the
Init1xFindDir property of the Image Admin control to the name of the
document volume you want to initially display in the Look in list box (as
a default). If desired, you can also include a cabinet; cabinet and drawer;
or cabinet, drawer, and folder.

In your call to the ShowFindDialog method, you can specify the
handle to the parent window. Doing so sets the state of the dialog box to
application-modal; not doing so sets the state of the dialog box to modeless.Clicking the Find button on

the Open dialog box
(described in the previous
section) also displays the Find
Image Document dialog box.

Note: Refer to the Imaging for Windows Getting Started Guide for
instructions on how to use the Find Image Document dialog
box to find Imaging 1.x documents.
169

Chapter 5
After users make their selection and click Open, the Imaging software
writes the path and name of the document to the Image property of the
Image Admin control.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the DisplayThumbs method of
the Image Thumbnail control to display the Imaging 1.x document.

Refer to Chapter 4 for more information about displaying images and
thumbnails and for more information about the ShowFindDialog
method.

Saving 1.x Image Files and Documents
As you know, the ShowFileDialog method of the Image Admin control
also displays a dialog box that lets users enter the path and name for the
image files they want to save.

When you install Imaging 1.x Server Access, the Imaging software alters
the SaveAs dialog box slightly by adding a Look for list box that lets
users select for saving:

Desktop Files — Image files on their PCs.

1.x Files and Documents — Image files or server documents on
Imaging 1.x servers.

The ImgQuery and
ImgQueryEnd methods of the
Image Admin control enable
you to query a 1.x document
volume programmatically. The
“Demonstration Project”
section of this chapter
describes and demonstrates
these methods.

Note: The Imaging software does not alter the value of the
Init1xFindDir property.
170

Developing Client/Server Applications
When users select 1.x Files and Documents, they can use the Look in
list box to browse file and document volumes in the current domain, as
illustrated in the following figure.
171

Chapter 5
Once users select the desired directory or folder, the area below the
Look in box lists the files or documents contained within it, as illustrated
in the following figure.

When users select or enter the name of the file or document and then
click Save, the Imaging software writes the path and name of the file or
document to the Image property of the Image Admin control.

Use the Image property and the SaveAs or SavePage method of the
Image Edit control to save the image file or server document.
172

Developing Client/Server Applications
WMS Server Programming Considerations
This section describes the
WMS Imaging and Workflow
server functions that are
provided by the Imaging
ActiveX controls.

Several properties and methods in the Imaging ActiveX controls let you
provide WMS Imaging and Workflow server access functions to your
end users. Specifically, they permit your users to:

■ Log onto the server.
■ Query WMS Imaging and Workflow servers by document name as

well as by Class and Index field values.

The following sections describe each function in detail by pointing out
the properties and methods you can use.

Logging Onto the Server
Before users can interact with a WMS Imaging and Workflow server,
they must log onto it. The Image Admin control provides a
LoginToServer method that lets you programmatically log your users
onto the WMS Imaging and Workflow server specified in the Domain
property.

In your call to the LoginToServer method, you can optionally display
the standard Server Login dialog box, which permits users to enter
their user name, password, and desired domain and then click OK to log
onto the server.

The Username, Password, and Domain text boxes can contain up to
80 alphanumeric characters.

The Domain property is
initialized to either an empty
string or the name of the WMS
Imaging and Workflow server
last accessed.
173

Chapter 5
You can also bypass the dialog box and simply pass the user name and
password as parameters to the LoginToServer method, most likely in
response to a user completing and closing a logon dialog box of your
own design.

If a user is not logged on and attempts to access the server, the Imaging
software displays the standard Server Login dialog box automatically —
thereby prompting the user to log onto the server.

Querying WMS Imaging Documents
The ShowFindDialog method of the Image Admin control displays a
dialog box that enables users to query a WMS Imaging and Workflow
server for the documents they want.

In your call to the ShowFindDialog method, you can specify the
handle to the parent window. Doing so sets the state of the dialog box to
application-modal; not doing so sets the state of the dialog box to modeless.

The Image Admin control also
provides a LogOffServer
method that lets you program-
matically log your users off an
WMS Imaging and Workflow
server.

Note: If the unified logon facility is enabled on the WMS Imaging and
Workflow server being accessed, there is no need to explicitly
call the LoginToServer method. Each user will be logged on
automatically using the Windows user name and password.

If users attempt to access WMS
Imaging documents via the
Open dialog box, the Imaging
software prompts them to click
the Find button to access the
Find Image Document dialog
box.

Note: Refer to the Imaging for Windows Getting Started Guide for
instructions on how to use the Find Image Document dialog
box to find WMS Imaging documents.
174

Developing Client/Server Applications
After users make their selection and click Open, the Imaging software
writes the path and name of the document to the Image property of the
Image Admin control.

Use the Image property and the Display method of the Image Edit
control and/or the Image property and the DisplayThumbs method of
the Image Thumbnail control to display the WMS Imaging document.

Refer to Chapter 4 for more information about displaying images and
thumbnails and for more information about the ShowFindDialog
method.

The ImgQuery and
ImgQueryEnd methods of the
Image Admin control enable
you to query a WMS Imaging
and Workflow server
programmatically. The
“Demonstration Project”
section of this chapter
describes and demonstrates
these methods.
175

Chapter 5
Demonstration Project
This section demonstrates
how to add Imaging 1.x
server access functions to
your image-enabled
applications.

While a wide-ranging
discussion of Imaging server
access functions is beyond
the scope of this chapter, the
information presented here
is sufficient to get started.

The demonstration project
was developed using
Microsoft Visual Basic.

Even if you are not going to
include Imaging Server
Access in your applications,
you will find the sections on
adding zoom and
annotation functions useful.

To help you use the Imaging ActiveX controls to interact with Imaging
1.x servers, a demonstration project — called Image Server — shows you
how to:

■ Set server options.
■ Browse for Imaging 1.x file and document volumes.
■ Browse Imaging 1.x file and document volumes for files and

documents to open.
■ Query Imaging 1.x document volumes to locate documents to open.
■ Zoom an image.
■ Invoke the standard annotation tool palette.
■ Show and hide annotations.

Before walking through the demonstration project, read the following
sections, which explain the concepts of zooming an image and of
working with annotations. Chapter 4 of this guide explains the concepts
of displaying an image in the Image Edit control and of multipage image
files.

Zooming an Image Defined
Zoom options affect the way images appear in an Image Edit control.
You can zoom an entire image page or just a portion of an image page.

Zooming an Entire Image Page

The Zoom property of the Image Edit control lets you set — usually in
response to user input — the zoom factor that is applied to image pages
when they're displayed or refreshed.

After you set the Zoom property, invoke the Display method or
Refresh method of the Image Edit control (as appropriate) to display
the image at the new zoom factor.

Most image application developers make zoom functions available to
their end users. These functions let users maximize or minimize the
image page so it can be seen more clearly, which is particularly important
when users will be reading scanned documents or faxes.

Note: The Imaging ActiveX Controls on-line help system identifies the
properties, methods, events, parameters, and constants that are
available in Imaging for Windows.

You can provide your users
with even more control over a
displayed image by using the
FitTo method of the Image
Edit control in addition to the
Zoom property. (Refer to
Chapter 4 for more
information.)
176

Developing Client/Server Applications
Zooming a Portion of an Image Page

The SelectionRectangle property and the ZoomToSelection method
of the Image Edit control let you provide your users with a zoom-to-
selection function. The zoom-to-selection function enables them to
zoom a selected portion of an image page rather than the entire image
page.

After you set the SelectionRectangle property to True, users can draw
a selection rectangle on the portion of an image page they want to zoom.
Then — usually in response to users clicking a menu item — you invoke
the ZoomToSelection method.

The ZoomToSelection method scales the selected portion of the image
so it fits into the current size of the Image Edit control. Then it updates
the Zoom property with the zoom factor it applied.

Example

Users of your application may want control over the display of image
documents to make them easy to read.

Scenario

As described in Chapter 4, Eileen receives several scanned business
documents in her role as product manager for a major computer
company.

Because the documents contain important information, she really needs
to be able to read them, which is why you included all of Image Edit’s
fit-to options in the first version of your application.

But now you realize that users like Eileen need even more control over
how image files or documents are displayed. So, in the second version of
your application, you include a wide range of zoom options in addition
to the fit-to options provided earlier. Users can now select the fit-to or
zoom option that produces the best display quality.
177

Chapter 5
Annotations Defined
The Image Edit and Image Annotation Tool Button controls provide
several ways to add annotation functions to your image-enabled
applications. Using them you can:

■ Create an annotation tool palette of your own design.
■ Invoke a single method that displays a fully-functional, standard

annotation tool palette to your users.
■ Implement custom annotations programmatically.

The method you choose depends on the annotation requirements of
your users.

Annotations are digitized versions of the marks or items commonly
applied to paper-based documents; for example, highlighting, rubber
stamps, lines, and post-it notes. People typically use annotations to
emphasize important portions of documents or to add their comments to
documents being circulated for review.

Digital annotations go well beyond the capabilities of paper-based
annotations. With digital annotations, users can:

■ Add, move, and delete annotations at will.
■ Modify their attributes — such as color, size, text, and visibility.
■ Use them to add hypertext links to other pages in the same file, to

other files, and to pages on the World Wide Web.

The following table lists the annotation types that are available with the
Imaging ActiveX controls.

Imaging for Windows Annotation Types

Annotation Type Description

Attach-a-Note Enters text into a background rectangle on an
image.

Auto Polygon Covers a portion of the image with a polygon
that can be stretched to the desired size and
shape. An auto polygon is text-aware, so if
text is detected during creation, the text
boundaries will be used to set the polygon
boundaries. Because an Auto Polygon
annotation starts with only two points, it is
easy to create.
178

Developing Client/Server Applications
Filled Polygon Covers a portion of an image with a polygon
that can be stretched to the desired size and
shape.

Filled Rectangle Covers a portion of an imageHighlights text
when drawn using the transparent line style.

Freehand Line Draws a freehand line on a section of text or
a portion of an image for emphasis.

Hollow Polygon Places a polygon around an area of an image
for emphasis. The polygon can be stretched
to the desired size and shape.

Hollow Rectangle Places a border around areas of an image for
emphasis.

Hyperlink Enters a hypertext link directly on an image;
invokes the Link To dialog box to permit end
users to specify the desired link.

Image Embedded Embeds an actual copy of another image in
an image file.

Image Reference Includes another image in an image file by
reference (that is, it links to an external file
that contains the image).

Initials Places system-generated data onto the image
including the initials of the user who is
logged on, the date, and the time.

OCR Zone Draws an OCR Text or Picture zone on an
image.

Select Annotations Selects annotation marks for deleting, modi-
fying, moving, or resizing.

Straight Line Underlines text, demarcates a section of a
page, or draws callout linesHighlights text
when drawn using the transparent line style.

Text Enters text directly on an image.

Imaging for Windows Annotation Types (continued)

Annotation Type Description
179

Chapter 5
Users can save annotations separately from the image data within TIFF
image files only.

Users can also merge annotations with the image data in a process known
as burning-in. To save annotations to any file type other than TIFF, the
annotations must be burned-in.

Image Annotation Tool Button Control

The Image Annotation Tool Button control lets you create a custom
annotation tool bar or palette. Each control is actually a button that
invokes an annotation type when your end user clicks it.

Your custom annotation tool bar or palette can contain buttons that
provide:

■ Discrete annotation types; for example, a Freehand Line annotation
type and a Rubber Stamp annotation type.

■ The same annotation type with different annotation styles; for
example, two buttons that each invoke an Attach-a-Note annotation
— one with a yellow background and black text, the other with
a red background and white text.

■ A combination of both.

The Image Edit control shares several properties and one method with
the Image Annotation Tool Button control. Together they let you
manage annotation functions when creating a tool bar or palette of your
own design. Refer to the next section for more information.

Text From File Enters text from a file on an image.

Text Stamp Places a text stamp directly on an image.

Imaging for Windows Annotation Types (continued)

Annotation Type Description

When using a Filled Rectangle
annotation to redact images,
make sure that your users
select the opaque fill style and
that they burn-in the anno-
tation to cover the image
permanently.
180

Developing Client/Server Applications
Image Edit Control

The Image Edit control has a fully-functional, standard annotation
tool palette as well as several properties, methods, and events that let
you provide a wide range of annotation functions to your end users.

Standard Annotation Tool Palette

You can invoke the ShowAnnotationToolPalette method to display
the standard annotation tool palette to your users. The following
illustration lists the annotation types the tool palette provides.

Once displayed, users can right-click a button on the tool palette to set
an annotation’s properties. Then they can left-click the button to draw
the annotation.

Programmatic Annotations

The Image Edit control also has an array of properties, methods, and
events that enable you to add annotation functions to your applications
programmatically. The properties, methods, and events also let you and
your users edit and manage existing annotations whether they were
drawn programmatically, drawn using the Image Annotation Tool Button
control, or drawn using the standard annotation tool palette.

The remainder of this section briefly describes the properties, methods,
and events of the Image Edit and Image Annotation Tool Button controls
you’ll find useful when adding annotation functions to your applications.

Note: The Highlighter annotation is actually a Filled Rectangle
annotation with its transparent property selected and its
background color property set to yellow.

Hyperlink

Highlighter

Text From File

Text

Hollow Rectangle

Rubber Stamp
Attach-a-Note

Filled Rectangle

Straight Line

Freehand LineSelect Annotations and Zones

Hollow Polygon Filled Polygon
Auto Polygon

Initials
181

Chapter 5
Properties, Methods, and Events of Both the Image Edit
Control and the Image Annotation Tool Button Control

AnnotationBackColor property — Returns or sets the background
color of an Attach-a-Note annotation.

AnnotationFillColor property — Returns or sets the color used to fill
a Filled Rectangle, Filled Polygon, or Auto Polygon annotation.

AnnotationFillStyle property — Returns or sets the pattern used to
fill Image Embedded, Image Reference, and Filled Polygon, Auto
Polygon, or Filled Rectangle annotations.

AnnotationFont property — Returns or sets font object properties for
all text-related annotation types.

AnnotationFontColor property — Returns or sets the font color for
all text-related annotation types.

AnnotationImage property — Returns or sets the fully-qualified file
name of the image file used in Image Embedded and Image Reference
annotations.

AnnotationLineColor property — Returns or sets the line color for
Straight Line, Freehand Line, and Hollow Polygon, and Hollow
Rectangle annotations.

AnnotationLineStyle property — Returns or sets the line style for
Straight Line, Freehand Line, Hollow Polygon, and Hollow Rectangle
annotations.

AnnotationLineWidth property — Returns or sets the line width for
Straight Line, Freehand Line, Hollow Polygon, and Hollow Rectangle
annotations.

AnnotationStampText property — Returns or sets the stamp text to
be placed on an image by the Text Stamp annotation type. The stamp
text can consist of text, text macros (like the current date and time), or a
combination of both.

AnnotationTextFile property — Returns or sets the fully-qualified
file name of the text file to be placed on an image by the Text From File
annotation type.

AnnotationType property — Returns or sets the type of annotation
to draw.

Draw method — Draws the annotation.
182

Developing Client/Server Applications
Remaining Properties, Methods, and Events of the Image Edit
Control

AnnotationGroupCount property — Returns the number of
annotation groups that are on an image page.

AnnotationOcrType property — Returns or sets the type of OCR
zone to be drawn on an image page.

OcrZoneVisibility property — Determines the visibility of OCR
zones on the image page.

AddAnnotationGroup method — Adds a new annotation group to
an image page.

BurnInAnnotations method — Burns annotations onto an image
page, permanently incorporating them into the image.

DeleteAnnotationGroup method — Deletes an annotation group
and its associated annotations, and then redisplays the image.

DeleteSelectedAnnotations method — Deletes selected annotations
from an image page.

EditSelectedAnnotationText method — Displays a dialog box that
lets end users modify Text, Attach-a-Note, and Hyperlink annotations.

ExecuteTextEditCommand method — Executes commands on the
Text Edit dialog box when the Image Edit control is operating in the
Text Edit mode (which is invoked using the EditSelected
AnnotationText method).

EditingTextAnnotation event — Fires immediately after the Image
Edit control enters or exits the Text Edit mode.

GetAnnotationGroup method — Returns the name of the
annotation group based on the index specified.

GetAnnotationMarkCount method — Returns the number of
annotation marks on an image page or in an annotation group.

GetCurrentAnnotationGroup method — Returns the name of the
annotation group to which subsequent annotations will belong.

GetRubberStampItem method — Returns the item number of the
currently selected rubber stamp according to its position on the Rubber
Stamp Properties dialog box and in the shortcut menu of the
standard annotation tool palette.

Use the BurnInAnnotations
method with care because
once annotations are burned-
in, they cannot be removed or
modified as annotation data.

The EditSelected
AnnotationText method is
very useful. It enables users to
modify text annotations. You
should consider using it
whether users draw
annotations from the
standard annotation tool
palette, a tool palette of your
own design, or from functions
you provide programmatically.

For non-text annotations, use
the ShowAttribs
Dialog method. It enables
users to modify non-text
annotations.
183

Chapter 5
SetRubberStampItem method — Sets the item number for a rubber
stamp annotation according to its position on the Rubber Stamp
Properties dialog box and in the shortcut menu of the standard
annotation tool palette. It also activates the Rubber Stamp annotation
type.

GetRubberStampMenuItems method — Returns the menu items of
the Rubber Stamp tool on the standard annotation tool palette.

ShowRubberStampDialog method — Shows the Rubber Stamp
Properties dialog box, which permits end users to create, delete, and
edit rubber stamp annotation properties.

GetSelectedAnnotationBackColor method — Returns the
background color of a selected Attach-a-Note annotation.

SetSelectedAnnotationBackColor method — Sets the background
color of a selected Attach-a-Note annotation.

GetSelectedAnnotationFillColor method — Returns the color used
to fill a selected Filled Rectangle annotation.

SetSelectedAnnotationFillColor method — Sets the color used to
fill a selected Auto Polygon, Filled Polygon, or Filled Rectangle
annotation.

GetSelectedAnnotationFillStyle method — Returns the style used
to fill selected Image Embedded, Image Reference, Auto Polygon, Filled
Polygon, and Filled Rectangle annotations.

SetSelectedAnnotationFillStyle method — Sets the style used to fill
selected Image Embedded, Image Reference, Auto Polygon, Filled
Polygon, and Filled Rectangle annotations.

GetSelectedAnnotationFont method — Returns font object
properties for selected text-related annotation types.

SetSelectedAnnotationFont method — Sets font object properties
for selected text-related annotation types.

GetSelectedAnnotationFontColor method — Returns the font
color used in selected text-related annotation types.

SetSelectedAnnotationFontColor method — Sets the font color to
use in selected text-related annotation types.

GetSelectedAnnotationImage method — Returns the fully-
qualified file name of the image being used in selected Image Embedded
and Image Reference annotations.
184

Developing Client/Server Applications
GetSelectedAnnotationLineColor method — Returns the line
color used in selected Straight Line, Freehand Line, Hollow Polygon,
and Hollow Rectangle annotations.

SetSelectedAnnotationLineColor method — Sets the line color to
use in selected Straight Line, Freehand Line, Hollow Polygon, and
Hollow Rectangle annotations.

GetSelectedAnnotationLineStyle method — Returns the line style
used in selected Straight Line, Freehand Line, Hollow Polygon, and
Hollow Rectangle annotations.

SetSelectedAnnotationLineStyle method — Sets the line style to use
in selected Straight Line, Freehand Line, Hollow Polygon, and Hollow
Rectangle annotations.

GetSelectedAnnotationLineWidth method — Returns the line
width (in pixels) used in selected Straight Line, Freehand Line, Hollow
Polygon, and Hollow Rectangle annotations.

SetSelectedAnnotationLineWidth method — Sets the line width to
use in selected Straight Line, Freehand Line, Hollow Polygon, and
Hollow Rectangle annotations.

GetSelectedAnnotationOcrType method — Returns the OCR type
of a selected OCR zone annotation.

SetSelectedAnnotationOcrType method — Changes the OCR type
of a selected OCR Zone annotation.

HideAnnotationGroup method — Hides the specified annotation
group.

ShowAnnotationGroup method — Shows the specified annotation
group.

HideAnnotationToolPalette method — Hides the standard
annotation tool palette.

ToolPaletteHidden event — Fires immediately after the standard
annotation tool palette is hidden.

ShowAnnotationToolPalette method — Shows the standard
annotation tool palette.

SelectTool method — Selects an annotation tool from the standard
annotation tool palette.

ToolSelected event — Fires immediately after the user selects a tool
from the standard annotation tool palette.
185

Chapter 5
LoadAnnotations method — Loads annotations from a data file and
places them on the specified page(s) of the displayed image file.

SaveAnnotations method — Saves annotations from the specified
page(s) of the displayed image file to a data file.

RemoveAllOCRMarks method — Removes OCR zones from all
image pages in the displayed image document.

SelectAnnotationGroup method — Selects all annotation marks
within a specific annotation group on an image page.

SelectFirstOcrZone method — Selects the first OCR zone on the
displayed image page.

SelectNextOcrZone method — Selects the next OCR zone on the
displayed image page.

SetCurrentAnnotationGroup method — Sets the annotation group
to which subsequent annotations will belong.

ShowAttribsDialog method — Shows an annotation attributes dialog
box, which lets end users change the properties of a selected annotation
mark.

HyperlinkGoToDoc event — Fires when users click a Hyperlink
annotation that is linked to a page in an external image file.

HyperlinkGoToPage event — Fires when users click a Hyperlink
annotation that is linked to a page within the current image file.

MarkEnd event — Fires immediately after the user or the program
completes the drawing of an annotation mark.

MarkMove event — Fires immediately after the user or the program
moves or resizes an annotation mark.

MarkSelect event — Fires immediately after the user or the program
selects an annotation mark.

ToolTip event — Fires immediately after a tool tip is displayed on the
standard annotation tool palette.

The ShowAttribsDialog
method is very useful. It
enables users to edit existing
non-text annotations. You
should consider using it
whether users draw
annotations from the
standard annotation tool
palette, a tool palette of your
own design, or from functions
you provide programmatically.

For text annotations, use the
EditSelectedAnnotationText
method. It enables users to
modify text annotations.
186

Developing Client/Server Applications
Example

Users of your application may want to annotate image files with
important comments. They may also want to link image pages to related
Web pages.

Scenario

Kim manages a QA (quality assurance) group in a software company that
produces applications for engineer-to-order manufacturing firms around
the world. Some of the development and testing of the applications is
performed in the United States, the remainder is performed in Ireland.

As part of their jobs, Kim and her staff regularly distribute and peer-
review scanned specification and test plan documents. Because the QA
group is spread across two continents, each analyst relies on e-mail
exclusively to exchange the image documents.

Because you included e-mail and image annotation functions in your
program, Kim and her staff can use it to retrieve, annotate, and send the
image documents. Analysts use its text-related annotation types to enter
their review comments directly on the documents. And they use its
Hyperlink annotation type to link their comments to related reference
pages on the company’s intranet site.

The Image Server Project
As stated previously, the Image Server project demonstrates:

■ Setting server options.
■ Browsing for Imaging 1.x file and document volumes.
■ Browsing Imaging 1.x file and document volumes for files and

documents to open.
■ Querying Imaging 1.x document volumes for documents to open.
■ Zooming an image.
■ Invoking the standard annotation tool palette.
■ Showing and hiding annotations.

The project consists of the following forms and modules:

frmMain — Lets users open image files that reside on their PCs or
image files and server documents that reside on Imaging 1.x servers. It
also lets users browse Imaging 1.x servers for file or document volumes,
as well as zoom and annotate the image files or documents they open.

The file name for the Image
Server project is
ImgServr.vbp.
187

Chapter 5
frm1xCDFD — Enables users to query an Imaging 1.x document
volume for documents by location, using the following hierarchy:
Cabinet\Drawer\Folder\Document

frm1xQuery — Enables users to query an Imaging 1.x document
volume for documents by name, creation date, modification date, or
keyword.

The project uses the following Imaging controls:

■ One Image Admin control
■ One Image Edit control

It uses the following methods of the Image Admin control to provide
setup, open, browse, and query functions:

Show1xServerOptDlg method — To display the Imaging Server
Options dialog box, which lets users set Imaging 1.x server options.

ShowFileDialog method — To display the Open dialog box, which
lets users select the image files or server documents they want to open.

Browse1x method — To display the Browse 1.x dialog box, which
lets users browse the Imaging 1.x server for server file and/or document
volumes.

CreateDirectory method — To create a cabinet, drawer, and/or
folder.

ConvertDate method — To convert conventional (Gregorian) dates to
Julian dates when using the ImgQuery method to query 1.x document
volumes.

ImgQuery method — To query Imaging 1.x document volumes.

ImgQueryEnd method — To complete a query and free associated
resources.

And it uses the following methods in the Image Edit control to provide
the image display and annotation functions:

Display method — To display the image file or server document
specified in the Image property of the Image Edit control.

Refresh method — To redisplay the current image in the Image Edit
control.

ShowAnnotationToolPalette method — To show the standard
annotation tool palette.

HideAnnotationToolPalette method — To hide the standard
annotation tool palette.
188

Developing Client/Server Applications
ShowAnnotationGroup method — To show annotations.

HideAnnotationGroup method — To hide annotations.

Setting Server Options

Start the Image Server project. On the Server menu, click Imaging
Server Options.

The mnuServerItem_Click() event procedure of frmMain executes
the appropriate code in its Select Case statement (as shown in the
following code snippet). Each Case expression corresponds to the Index
value of an option on the Server menu.

In this case, the procedure invokes the Show1xServerOptDlg method
of the Image Admin control, which displays the Imaging Server
Options dialog box described in the “Setting Imaging 1.x Server
Options” section of this chapter.

Make the appropriate entries on the Imaging Server Options dialog
box and then click OK.

Private Sub mnuServerItem_Click(Index As Integer)
 Dim strPath As String
 Dim strPathType As String

 On Error Resume Next

 Select Case Index

 Case 0 'Access Imaging Server Options dialog box

 ImgAdmin1.Show1xServerOptDlg
 .
 .
 .
 End Select

End Sub
189

Chapter 5
Browsing for Imaging 1.x File and/or
Document Volumes

To browse an Imaging 1.x server, on the Server menu, click:

Browse 1.x Files — To browse for file volumes.

Browse 1.x Documents — To browse for document volumes.

Browse 1.x Files and Documents — To browse for both file and
document volumes.

The mnuServerItem_Click() event procedure of frmMain (shown in
the following code snippet) executes the appropriate code in the Case
2,3,4 statement — depending on the Index value of the Server menu
option clicked. For each Index value, the procedure invokes the Browse
1.x method of the Image Admin control with the appropriate parameter
values:

Browse1xScope parameter — Determines the volume type to
browse:

− Index = 2 passes the BrowseFiles constant (literal 0).

− Index = 3 passes the BrowseDocuments constant (literal 1).

− Index = 4 passes the BrowseBoth constant (literal 2).

Title parameter — Determines the text that appears in the title bar of
the Browse1.x dialog box:

− Index = 2 passes “Browse 1.x File Volumes”.

− Index = 3 passes “Browse 1.x Document Volumes”.

− Index = 4 passes “Browse 1.x File and Document
Volumes”.

Caption parameter — Determines the prompt that appears in the title
bar of the Browse 1.x dialog box. Each invocation of the Browse1.x
method passes “Select the Desired Path”.

hParentWnd parameter — Assigns a parent window handle to the
Browse 1.x dialog box. Each invocation of the Browse1.x method
passes frmMain.hWnd, which is the handle to the main form.

The Browse1x method displays the Browse 1.x dialog box described in
the “Browsing for Volumes” section of this chapter.

Browse the file and/or document volumes. Then make your selection
and click OK. The Imaging software writes the path selected to the
Browse1xReturnedPath property of the Image Admin control and the
type of path selected to the Browse1xReturnedType property.

When the user clicks Cancel, a
“Cancel is pressed” error
condition occurs. The
mnuServerItem_Click() event
shows you how to handle it.
190

Developing Client/Server Applications
Private Sub mnuServerItem_Click(Index As Integer)
 Dim strPath As String
 Dim strPathType As String

 On Error Resume Next

 Select Case Index

 Case 0 'Access Imaging Server Options dialog box
 ImgAdmin1.Show1xServerOptDlg

 Case 2, 3, 4 'Browse 1.x File, Document, or File and Document Volumes
 If Index = 2 Then
 ImgAdmin1.Browse1x BrowseFiles, "Browse 1.x File Volumes", _
 "Select the Desired Path", frmMain.hWnd
 ElseIf Index = 3 Then
 ImgAdmin1.Browse1x BrowseDocuments, _
 "Browse 1.x Document Volumes", _
 "Select the Desired Path", frmMain.hWnd
 Else
 ImgAdmin1.Browse1x BrowseBoth, _

 "Browse 1.x File and Document Volumes", _
 "Select the Desired Path", frmMain.hWnd
 End If
 If Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
 Exit Sub
 ElseIf ImgAdmin1.Browse1xReturnedPath = "" Then ‘Not installed.
 Exit Sub
 ElseIf ImgAdmin1.StatusCode <> 0 Then
 MsgBox Err.Description & " (ImgAdmin error " & _
 Hex(ImgAdmin1.StatusCode) & ")", vbCritical
 Exit Sub
 End If

 strPath = ImgAdmin1.Browse1xReturnedPath
 strPathType = ImgAdmin1.Browse1xReturnedType

 .
 .
 .
 End Select

End Sub
191

Chapter 5
 Opening 1.x Files and Documents

To simply browse for and then open an Imaging 1.x image file or
document for display, on the File menu, click Open.

The mnuFileOpen_Click() event procedure of frmMain executes its
code (as shown in the following code snippet). Specifically, it invokes the
ShowFileDialog method of the Image Admin control with the
following parameter values:

DialogOption parameter — Passes the OpenDlg constant (literal 0) to
display the Open dialog box.

hParentWnd parameter — Passes the handle to the main window
(frmMain.hWnd).

The ShowFileDialog method displays the standard Open dialog box
described in the “Browsing for Files and Documents” section earlier in
this chapter.

Browse and then make your image file or server document selection,
then click OK. The Imaging software writes the path and file (or
document) selected to the Image property of the Image Admin control.

Next, the cmdFileOpen_Click() event procedure invokes the public
subroutine, PerformFileOpen(ImgAdmin1.Image), which opens
and displays the image file or server document selected.

When the user clicks Cancel, a
“Cancel is pressed” error
condition occurs. The
mnuFileOpen_Click() event
shows you how to handle it.
192

Developing Client/Server Applications
Private Sub mnuFileOpen_Click()

 On Error Resume Next

 '--
 ' Set Flags to 0, and then show the Open dialog box.
 '--
 ImgAdmin1.Flags = 0
 ImgAdmin1.ShowFileDialog OpenDlg, frmMain.hWnd

 '--
 ' If the Cancel button was pressed, exit the subroutine.
 ' If a different error occurred, display a message box and
 ' exit the subroutine.
 '--
 If Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
 Exit Sub
 ElseIf ImgAdmin1.StatusCode <> 0 Then
 MsgBox Err.Description & " (ImgAdmin error " & _
 Hex(ImgAdmin1.StatusCode) & ")", vbCritical
 Exit Sub
 End If

 '--
 ' Display the image.
 '--
 Call PerformFileOpen(ImgAdmin1.Image)

End Sub
193

Chapter 5
 Querying 1.x Document Manager Databases

To query an Imaging 1.x database, on the Server menu, click:

1.x Query by Cabinet\Drawer\Folder\Document — To query 1.x
document manager databases by Cabinet, Drawer, Folder, and
Document.

1.x Query — To query 1.x document manager databases by document
name, date, or keyword.

The following sections discuss each type of query.

Performing a 1.x Query by Cabinet\Drawer\Folder\Document

After you make your menu selection, the 1.x Cabinet\Drawer\
Folder\Document window (frm1.xCDFD) loads without being
shown. Its Form_Load() event procedure (shown in the following code
snippet) invokes the ImgQueryEnd method of the Image Admin
control to clear any previous Imaging queries and to free associated
system resources.

Next, the procedure invokes the ImgQuery method to initiate a new
query, passing to it the following parameters:

vScope parameter — Constant DMVOLUMES (literal 1), which sets the
method so it performs a query for Imaging 1.x document manager
databases.

szQueryTerms parameter — A blank string, which makes the
method return the available Imaging 1.x databases.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query. You
can extract the results of a query by using a For Each...Next
statement in the following format:

For Each VariantItem In objResults
 ' Your code that processes each VariantItem
Next VariantItem

The query finds the available Imaging 1.x databases. Then the
Form_Load() event procedure loads them from the objResults

Note: This portion of the Image Server project refers to document
volumes as document manager databases or document
managers.
Document volumes were referred to as document manager
databases in earlier versions of the Imaging 1.x software.

Refer to the on-line help for
more information about the
ImgQuery method of the
Image Admin control.
194

Developing Client/Server Applications
object variable into the Document Manager combo box
(cboDocManager).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method. Both actions free system
resources associated with the query.

The procedure wraps up its work by:

■ Showing the 1.x Cabinet\Drawer\Folder\Document window.
■ Displaying the number of document manager databases found.
■ Giving focus to the Document Manager combo box.
195

Chapter 5
Private Sub Form_Load()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 '--
 ' Perform an ImgQuery for all Document Manager databases.
 '--
 ImgAdmin1.ImgQueryEnd
 ImgAdmin1.ImgQuery "DMVOLUMES", "", objResults
 '--
 ' If an error occurred, display a message box and exit.
 '--
 If ImgAdmin1.StatusCode <> 0 Then
 MsgBox Err.Description & " (ImgAdmin error " & _
 Hex(ImgAdmin1.StatusCode) & ")", vbCritical
 Exit Sub
 End If
 '--
 ' Store the results in the cboDocManager combo box.
 '--
 For Each vntItem In objResults
 If vntItem <> "" Then
 cboDocManager.AddItem vntItem
 End If
 Next vntItem
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of Document Managers found.
 '--
 If cboDocManager.ListCount = 1 Then
 strSinglePlural = " Document Manager:"
 Else
 strSinglePlural = " Document Managers:"
 End If
 lblDocumentManager.Caption = cboDocManager.ListCount & strSinglePlural
 '--
 ' Show the form, set focus to cboDocManager.
 '--
 Me.Show
 cboDocManager.SetFocus

End Sub
196

Developing Client/Server Applications
On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired document manager database in the Document Managers
combo box. The cboDocManager_Click() event procedure fires and
executes its code (as shown in the following code snippet).

The basic task of this event procedure is to query the selected document
manager database for all of its cabinets and to load them in the Cabinets
combo box. To accomplish this task, it saves the path to the document
manager you selected in the mstrDocManager module variable and
then invokes the ImgQuery method with the following parameters:

vScope parameter — The result of Mid(mstrDocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The string “findcabinets”, which is
contained in the mstrQuery module variable. This parameter value
makes the method return the cabinets in the referenced database.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds the cabinets in the selected database and returns them
via the collection object in the following format:

Image://server/database:\cabinet

Because we’re only interested in cabinet names, the procedure invokes
the public function GetEndString(), which returns just the cabinet
names. The cboDocManager_Click() event procedure then loads the
cabinet names into the Cabinets combo box (cboCabinet).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of cabinets
found and giving focus to the Cabinets combo box.

Once you select a document
manager database, you can
create a new cabinet, drawer,
and/or folder by entering the
names in the respective combo
boxes and clicking the Create
button.

The cmdCreate_Click() event
procedure concatenates a
string containing your entries
and invokes the Create
Directory method of the
Image Admin control to create
the cabinet, drawer, and/or
folder you specified (code not
shown).

Note: Using the Mid function with a Start value of 9 is required
because the mstrDocManager variable contains the path to
the document manager in the following format:
Image://server/database:

... and the ImgQuery method is only interested in the
server/database: part. Accordingly, the Mid function elim-
inates the Image:// part and returns a variant (string) value of
“server/database:”.
197

Chapter 5
Private Sub cboDocManager_Click()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 mstrDocManager = cboDocManager.Text
 '--
 ' Perform an ImgQuery for Cabinet names, load them in the
 ' cboCabinet combo box.
 '--
 mstrQuery = "findcabinets"
 ImgAdmin1.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults
 For Each vntItem In objResults
 If vntItem <> "" Then
 cboCabinet.AddItem GetEndString(vntItem, "\")
 End If
 Next vntItem
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of Cabinets found.
 '--
 If cboCabinet.ListCount = 1 Then
 strSinglePlural = " Cabinet:"
 Else
 strSinglePlural = " Cabinets:"
 End If
 lblCabinet.Caption = cboCabinet.ListCount & strSinglePlural
 '--
 ' Set the focus to cboCabinet.
 '--
 cboCabinet.SetFocus

End Sub
198

Developing Client/Server Applications
On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired cabinet in the Cabinets combo box. The
cboCabinet_Click() event procedure fires and executes its code (as
shown in the following code snippet).

The basic task of this event procedure is to query the selected database
and cabinet for all of its drawers and to load them in the Drawers combo
box. To accomplish this task, it saves the path to the document manager
and cabinet you selected in the mstrDocManager and mstrCabinet
module variables respectively. Then it invokes the ImgQuery method
with the following parameters:

vScope parameter — The result of Mid(mstrDocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string
"finddrawers cabinet=" & mstrCabinet, which is contained in
the mstrQuery module variable. This parameter value makes the
method return the drawers in the referenced database and cabinet.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds the drawers in the selected database and returns them via
the collection object in the following format:

Image://database:\cabinet\drawer

Because we’re only interested in drawer names, the procedure invokes the
public function GetEndString(), which returns just the drawer names.
The cboCabinet_Click() event procedure then loads the drawer
names into the Drawers combo box (cboDrawer).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of drawers
found and giving focus to the Drawers combo box.

Make sure that the Enable
Drawers check box has a
check mark next to it. If it does
not, the cboCabinet_Click()
procedure performs a query for
folders.
199

Chapter 5
Private Sub cboCabinet_Click()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 mstrDocManager = cboDocManager.Text
 mstrCabinet = cboCabinet.Text
 '--
 ' Perform an ImgQuery, and store the Drawer or Folder names
 ' in the appropriate combo box.
 '--
 If chkEnableDrawers.Value = Checked Then
 mstrQuery = "finddrawers cabinet=" & mstrCabinet
 ImgAdmin1.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults
 For Each vntItem In objResults
 If vntItem <> "" Then
 cboDrawer.AddItem GetEndString(vntItem, "\")
 End If
 Next vntItem
 .
 .
 .
 End If
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 .
 .
 .
End Sub
200

Developing Client/Server Applications
On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired drawer in the Drawers combo box. The cboDrawer_Click()
event procedure fires and executes its code (as shown in the following
code snippet).

The basic task of this event procedure is to query the selected database,
cabinet, and drawer for all of its folders and to load them in the Folders
combo box. To accomplish this task, it saves the path to the document
manager, cabinet, and drawer you selected in the mstrDocManager,
mstrCabinet, and mstrDrawer module variables respectively. Then it
invokes the ImgQuery method with the following parameters:

vScope parameter — The result of Mid(mstrDocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string
"findfolders cabinet=" & mstrCabinet & ":drawer=" &

mstrDrawer, which is contained in the mstrQuery module variable.
This parameter value makes the method return the folders in the
referenced database, cabinet, and drawer.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds the folders in the selected database and returns them via
the collection object in the following format:

Image://database:\cabinet\drawer\folder

Because we’re only interested in folder names, the procedure invokes the
public function GetEndString(), which returns just the folder names.
The cboDrawer_Click() event procedure then loads the folder names
into the Folders combo box (cboFolder).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of folders
found and giving focus to the Folders combo box.
201

Chapter 5
Private Sub cboDrawer_Click()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 mstrDocManager = cboDocManager.Text
 mstrCabinet = cboCabinet.Text
 mstrDrawer = cboDrawer.Text
 '--
 ' Perform an ImgQuery, and store the Folder names in the
 ' cboFolder combo box.
 '--
 mstrQuery = "findfolders cabinet=" & mstrCabinet & ";drawer=" & mstrDrawer
 ImgAdmin1.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

 For Each vntItem In objResults
 If vntItem <> "" Then
 cboFolder.AddItem GetEndString(vntItem, "\")
 End If
 Next vntItem
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of Folders found.
 '--
 If cboFolder.ListCount = 1 Then
 strSinglePlural = " Folder:"
 Else
 strSinglePlural = " Folders:"
 End If
 lblFolder.Caption = cboFolder.ListCount & strSinglePlural
 '--
 ' Set the focus to cboFolder.
 '--
 cboFolder.SetFocus

End Sub
202

Developing Client/Server Applications
On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired folder in the Folders combo box. The cboFolder_Click()
event procedure fires and executes its code (as shown in the following
code snippet).

The basic task of this event procedure is to query the selected database,
cabinet, drawer, and folder for all of its documents and to load them in
the Documents combo box. To accomplish this task, it saves the path to
the document manager, cabinet, drawer, and folder you selected in the
mstrDocManager, mstrCabinet, mstrDrawer, and mstrFolder
module variables respectively. Then it invokes the ImgQuery method
with the following parameters:

vScope parameter — The result of Mid(mstrDocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated string "finddocs
cabinet = " & mstrCabinet & " drawer = " & mstrDrawer

& " folder = " & mstrFolder, which is contained in the
mstrQuery module variable. This parameter value makes the method
return the documents in the referenced database, cabinet, drawer, and
folder.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds the documents in the selected database and returns them
via the collection object in the following format:

Image://database:\cabinet\drawer\folder\document

Because we’re only interested in document names, the procedure invokes
the public function GetEndString(), which returns just the document
names. The cboFolder_Click() event procedure then loads the
document names into the Documents combo box (cboDocument).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method.

The procedure wraps up its work by displaying the number of
documents found and giving focus to the Documents combo box.
203

Chapter 5
Private Sub cboFolder_Click()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 mstrDocManager = cboDocManager.Text
 mstrCabinet = cboCabinet.Text
 mstrDrawer = cboDrawer.Text
 mstrFolder = cboFolder.Text
 '--
 ' Perform an ImgQuery, and store the Document names in the
 ' cboDocument combo box.
 '--
 mstrQuery = "finddocs cabinet = " & mstrCabinet & " drawer = " _
 & mstrDrawer & " folder = " & mstrFolder
 ImgAdmin1.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

 For Each vntItem In objResults
 If vntItem <> "" Then
 cboDocument.AddItem GetEndString(vntItem, "\")
 End If
 Next vntItem
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of Documents found.
 '--
 If cboDocument.ListCount = 1 Then
 strSinglePlural = " Document:"
 Else
 strSinglePlural = " Documents:"
 End If
 lblDocument.Caption = cboDocument.ListCount & strSinglePlural
 '--
 ' Set the focus to cboDocument.
 '--
 cboDocument.SetFocus

End Sub
204

Developing Client/Server Applications
On the 1.x Cabinet\Drawer\Folder\Document window, click the
desired document in the Document combo box and then click the
Open button. The cmdOpen_Click() event procedure invokes the
public subroutine, PerformFileOpen(strDocManagerCDFD), which
opens and displays the document selected.

Performing a 1.x Query by Name, Date, or Keyword

After you select 1.x Query on the Server menu, the 1.x Query
window (frm1.xQuery) loads without being shown. Its Form_Load()
event procedure (shown in the following code snippet) invokes the
ImgQueryEnd method of the Image Admin control to clear any
previous Imaging queries and to free associated system resources.

Next, the procedure invokes the ImgQuery method, passing to it the
following parameters:

vScope parameter — Constant DMVOLUMES (literal 1), which sets the
method so it performs a query for Imaging 1.x document manager
databases.

szQueryTerms parameter — A blank string, which makes the
method return the available Imaging 1.x databases.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds all of the available Imaging 1.x databases. The
Form_Load() event procedure loads them from the objResults
object variable into the Document Manager combo box
(cboDocManager).

The procedure ends the query by setting objResults to Nothing and
by invoking the ImgQueryEnd method. Both actions free system
resources associated with the query.
205

Chapter 5
The procedure wraps up its work by:

■ Showing the 1.x Query window.
■ Displaying the number of document manager databases found.
■ Giving focus to the Document Manager combo box.
206

Developing Client/Server Applications
Private Sub Form_Load()
 Dim objResults As Object
 Dim strSinglePlural As String
 Dim vntItem As Variant
 .
 .
 .
 '--
 ' Perform an ImgQuery for all Document Manager databases.
 '--
 ImgAdmin1.ImgQueryEnd
 ImgAdmin1.ImgQuery "DMVOLUMES", "", objResults
 '--
 ' If an error occurred, display a message box and exit.
 '--
 If ImgAdmin1.StatusCode <> 0 Then
 MsgBox Err.Description & " (ImgAdmin error " & _
 Hex(ImgAdmin1.StatusCode) & ")", vbCritical
 Exit Sub
 End If
 '--
 ' Store the results in the cboDocManager combo box.
 '--
 For Each vntItem In objResults
 If vntItem <> "" Then
 cboDocManager.AddItem vntItem
 End If
 Next vntItem
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of Document Managers found.
 '--
 If cboDocManager.ListCount = 1 Then
 strSinglePlural = " Document Manager:"
 Else
 strSinglePlural = " Document Managers:"
 End If
 lblDocumentManager.Caption = cboDocManager.ListCount & strSinglePlural
 '--
 ' Show the form, set focus to cboDocManager.
 '--
 Me.Show
 cboDocManager.SetFocus

End Sub
207

Chapter 5
On the 1.x Query window, click the desired document manager
database in the Document Managers combo box. The
cboDocManager_Click() event procedure assigns the document
manager database you selected to the mstrDocManager module variable
(code not shown).

In the Find 1.x Document area, click the type of query you want to
perform.

If you clicked the:

Name option button (Query by Document) — Click the desired
boolean operator and then enter the name of the document you are
trying to locate in the adjacent text box.

Date option button (Query by Date) — Click whether to search for
documents that were created or modified, then click the desired boolean
operator (including before, after, and on). Finally, enter the desired date in
the adjacent text box.

Keyword option button (Query by Date) — Click the desired
boolean operator and then enter, in the adjacent text box, the keyword
whose documents you want to search for. Use the date format set in
Regional Settings.

Click the Find button. The cmdFind_Click() event procedure fires
and executes its code (as shown in the following code snippet).

The basic task of this event procedure is to find all of the Imaging 1.x
documents that satisfy the parameters you specified and to load them in
the list box control at the bottom of the window.

To accomplish this task, the procedure evaluates the Value property of
each option button on the form. When it finds the option button you
clicked, it builds an appropriate Query Terms string and assigns it to the
mstrQuery module variable. (The procedure passes the value of this
variable to the ImgQuery method later as the szQueryTerms
parameter.)

The composition of the Query Terms string depends on the type of
query you are performing. If you are performing a:

Query by Document — The string contains:

■ The finddocs document qualifier.
■ The selected boolean operator from the adjacent combo box.
■ The document name entered in the adjacent text box.

When you select the Like
operator, you can use the
asterisk (*) wildcard character
to represent a group of
characters and a question
mark(?) to match any single
character.

When building your own
QueryTerms strings, be sure
to include a space between
each element.
208

Developing Client/Server Applications
Query by Date — The string contains:

■ The finddocs created or finddocs modified qualifier,
depending on whether you selected created or modified in the adjacent
combo box.

■ The selected boolean operator from the next combo box.
■ The date returned by the ConvertDate method of the Image Admin

control (which converted the Gregorian date you entered in the
adjacent text box to a Julian date).

Query by Keyword — The string contains:

■ The finddocs keyword qualifier.
■ The selected boolean operator from the adjacent combo box.
■ The keyword entered in the adjacent text box.

With the Query Terms string now composed and assigned, the
cmdFind_Click() event procedure invokes the ImgQuery method,
passing to it the following parameters:

vScope parameter — The result of Mid(mstrDocManager, 9),
which sets the method so it performs a query on the selected document
manager.

szQueryTerms parameter — The concatenated Query Terms string
from the mstrQuery module variable, which sets the method so it
performs the query you specified.

iDispatch parameter — The object variable, objResults, which
represents the collection object that contains the results of the query.

The query finds the documents in the selected database and returns them
via the collection object in the following format:

Image://database:\cabinet\drawer\folder\document

Then, the cmdFind_Click() event procedure ends the query by
setting objResults to Nothing and by invoking the ImgQueryEnd
method.

The procedure wraps up its work by displaying the documents in the list
box at the bottom of the window.
209

Chapter 5
Private Sub cmdFind_Click()
 Dim objResults As Object
 Dim vntItem As Variant
 Dim strConvertedDate As String

 lstResults.Clear
 '--
 ' Perform a query; store Doc names in the lstResults listbox.
 '--
 If optQuery(0).Value = True Then 'Query by Document
 mstrQuery = "finddocs document " & _
 cboName.List(cboName.ListIndex) & " " & txtName.Text

 ElseIf optQuery(1).Value = True Then 'Query by Date
 strConvertedDate = ImgAdmin1.ConvertDate(txtDate.Text)
 mstrQuery = "finddocs " & _
 cboDateName.List(cboDateName.ListIndex) & " " & _
 cboDate.List(cboDate.ListIndex) & " " & strConvertedDate

 ElseIf optQuery(2).Value = True Then 'Query by Keyword
 mstrQuery = "finddocs keyword " & _
 cboKeyword.List(cboKeyword.ListIndex) & " " & txtKeyword.Text
 End If

 ImgAdmin1.ImgQuery Mid(mstrDocManager, 9), mstrQuery, objResults

 For Each vntItem In objResults
 If vntItem <> "" Then
 lstResults.AddItem vntItem
 End If
 Next
 '--
 ' End the query.
 '--
 Set objResults = Nothing
 ImgAdmin1.ImgQueryEnd
 '--
 ' Display the number of documents found.
 '--
 If lstResults.ListCount = 0 Then
 lblResults.Caption = SELECT_NONE
 ElseIf lstResults.ListCount = 1 Then
 lblResults.Caption = SELECT_SINGULAR
 Else
 lblResults.Caption = SELECT_PLURAL1 & lstResults.ListCount &

SELECT_PLURAL2
 End If

End Sub
210

Developing Client/Server Applications
Select a document and click OK. The cmdOK_Click() event
procedure invokes the public subroutine, PerformFileOpen
(ImgAdmin1.Image), which opens and displays the server document
you selected (code not shown).

Zooming an Image

Open an image file or server document. After the image appears in the
Image Edit control, on the Zoom menu, click the desired zoom factor.

The mnuZoomFactorItem_Click event procedure fires and executes
the appropriate code in its Select Case statement (as shown in the
following code snippet).

Each Case expression corresponds to the Index value of a Zoom menu
item. Further, each Case expression sets the Zoom property of the
Image Edit control to an appropriate zoom factor.

With the Zoom property now set, the procedure completes its work by
invoking the Refresh method of the Image Edit control, which
redisplays the image at its new zoom factor.
211

Chapter 5
Private Sub mnuZoomFactorItem_Click(Index As Integer)
 Dim intIndex As Integer
 '--
 ' Uncheck all the zoom menu items.
 '--
 For intIndex = 0 To 5
 mnuZoomFactorItem(intIndex).Checked = False
 Next intIndex
 '--
 ' Set the zoom factor.
 '--
 Select Case Index
 Case 0 '25%
 ImgEdit1.Zoom = 25
 Case 1 '50%
 ImgEdit1.Zoom = 50
 Case 2 '75%
 ImgEdit1.Zoom = 75
 Case 3 '100%
 ImgEdit1.Zoom = 100
 Case 4 '200%
 ImgEdit1.Zoom = 200
 Case 5 '400%
 ImgEdit1.Zoom = 400
 End Select
 '--
 ' Check the menu item that was clicked.
 '--
 mnuZoomFactorItem(Index).Checked = True
 '--
 ' Refresh the image at the new zoom factor.
 '--
 ImgEdit1.Refresh
End Sub
212

Developing Client/Server Applications
Invoking the Standard Annotation
Tool Palette

Open an image file or server document. After the image appears in the
Image Edit control, on the Annotations menu, click Show
Annotation Toolbar.

The mnuAnnotationItem_Click event procedure fires and executes
the appropriate code in its Select Case statement (as shown in the
following code snippet).

Each Case expression corresponds to the Index value of an Annotation
menu item.

As long the corresponding menu item is not checked, the Case 1
expression invokes the ShowAnnotationToolPalette method of the
Image Edit control, which displays the standard annotation tool
palette. (Refer to the“Annotations Defined” section earlier in this
chapter for more information about annotations and the annotation
tool palette.)

If the corresponding menu item is checked, the Case 1 expression
invokes the HideAnnotationToolPalette method, which closes the
annotation tool palette.

Closing or hiding the standard annotation tool palette causes the
ToolPaletteHidden() event of the Image Edit control to fire. Code
within it removes the check mark from the Show Annotation Toolbar
menu item (code not shown).

If desired, you can include
parameters in your call to the
ShowAnnotationTool
Palette method. The
parameters control:

■ Whether users can set
annotation properties.

■ Where the tool palette will
appear on the screen.

■ The tool tip text the
appears when the mouse
pointer hovers over a
button on the tool palette.
213

Chapter 5
Private Sub mnuAnnotationItem_Click(Index As Integer)

 Select Case Index

 Case 0 'Show Annotations
 If mnuAnnotationItem(Index).Checked = True Then
 mnuAnnotationItem(Index).Checked = False
 ImgEdit1.HideAnnotationGroup
 Else
 mnuAnnotationItem(Index).Checked = True
 ImgEdit1.ShowAnnotationGroup
 End If

 Case 1 'Show Annotation Toolbar
 If mnuAnnotationItem(Index).Checked = True Then
 mnuAnnotationItem(Index).Checked = False
 ImgEdit1.HideAnnotationToolPalette
 Else
 mnuAnnotationItem(Index).Checked = True
 ImgEdit1.ShowAnnotationToolPalette
 End If

 End Select

End Sub
214

A

Imaging ActiveX Sample Applications

This appendix describes the Imaging ActiveX sample applications that

are available on the media on which your software was distributed.

In This Appendix
Overview ... 216

Sample Applications .. 217

Appendix A
Overview
This section introduces you
to the Imaging ActiveX
sample applications.

The Imaging ActiveX sample applications are relatively large Visual Basic
projects that demonstrate how to use the Imaging ActiveX controls to
build comprehensive and useful, image-enabled applications.

It is beyond the scope of this appendix to walk you through each and
every application. eiStream WMS, Inc. suggests that you run each one
and analyze its code to determine whether you can use it:

■ Directly in your applications, or
■ As a guide to writing your own, related code.

Requirements

With the exception of the sample application, to compile and run the
Imaging ActiveX sample applications, you must use:

■ Microsoft Visual Basic 6.0.
■ Imaging for Windows.

To compile and run the sample application, you must use:

■ Microsoft Visual Basic 6.0 with Service Pack 3 or later.
■ Imaging for Windows.
216

Imaging ActiveX Sample Applications
Sample Applications
This section describes the
Imaging ActiveX sample
applications.

The code in each sample application is highly organized, commented,
and written using Hungarian notation. There are eight sample
applications in the following categories:

■ Image Editor samples
■ Function Specific samples
■ Imaging Flow samples

The following sections describe them.

Image Editor Samples
This section describes the Image Editor sample applications.

Sample Application

The sample application emulates the look and feel of the Imaging for
Windows application. It is a baseline image editor that — due to its
simplicity — is the best one from which to study and learn.

Sample functions include:

Delete Pages — Deletes selected pages from a displayed image
document file. Note that looping through the image pages is performed
from last to first to prevent the renumbering of image pages as they are
deleted. See the code within the mnuEditActionItem_Click event
procedure.

Drag Hand — Emulates the Drag Hand behavior evident in the
Imaging for Windows application. The drag hand enables you to pan an
image page; that is, to scroll the image page horizontally and vertically
without using the scroll bars. See the code within the
ImgEdit1_MouseMove event procedure.

Splitter Bar — Emulates the splitter bar behavior evident in the
Imaging for Windows application. Note that the splitter bar
(imgDivider) has a Top value of -20000 and a Height value of 40000 to
prevent the top and bottom of the splitter bar from being visible as you
drag it. See the code within the ImgEdit1_DragDrop and
ImgThumbnail1_DragDrop event procedures.

The file name for the sample
project is EastSamp.vbp.
217

Appendix A
Image Editor

Image Editor is a more sophisticated application that emulates the look
and feel of the Imaging for Windows application.

After you master the sample application, investigate Image Editor, which
includes toolbars and advanced features, such as:

■ Contact sheet creation
■ Image enhancement
■ Magnification
■ Optical Character Recognition (OCR)
■ Summary properties (TIFF image document files only)

Function Specific Samples
This section describes the Function Specific sample applications.

All Function Specific applications have a common menu template.
Because the menus are common, you can ignore the “standard” code and
concentrate on the unique features of each application. The common
menu selections include:

■ File
■ “Generic”
■ Page
■ Zoom
■ Annotation
■ Tools

The “Generic” menu provides access to functions that are specific to
each application. Its caption changes appropriately within each one.

The Tools menu of the Image Scan and Image Thumbnails sample
applications provides access to an interesting facility called the Event
Tracker.

The Event Tracker lets you track the events fired by any of the Imaging
ActiveX controls.

The file name for the Image
Editor project is
ImgEditr.vbp.
218

Imaging ActiveX Sample Applications
The tracker consists of two functions:

Track [control name] Events — Lets you select the Imaging ActiveX
control events you want to track.

Show Event Log — Lists the selected Imaging ActiveX control events
as they fire. You can view the events and their associated parameter values
within a dialog box or in a hard-copy report.

Image Print

Image Print shows you how to print image document files from the
standard Print dialog box, as well as programmatically from a custom
Print Settings dialog box (frmSettings).

The application has two functions that the Imaging for Windows
application doesn't have:

Page with Header — Prints an image with a header at the top. The
header is created by programmatically generating an annotation and then
shifting the image down so that it begins below the header. You can find
the code that performs this task in the GenerateHeaderWorkFile
procedure of frmMain.

Displayed Portion — When you zoom in on an image in the display
window, this function prints only the portion of the image that is
displayed. You can find the code that performs this task in the
GenerateDisplayedPortionWorkFile procedure of frmMain.

You can select the Page with Header and Displayed Portion
functions from the Area to Print frame on the Print Settings dialog
box. They are functional only when you invoke printing via the Print
via Program Control option on the Print menu.

Image Properties

Image Properties shows you how to display and print the general,
summary, and page property values of image files.

It uses the standard dialog boxes provided by the controls, as well as a few
custom dialog boxes, to display the property values.

You can display and print the properties of:

■ A single image file.
■ All of the image files contained within a single folder.
■ All of the image files contained within a folder and all of its

subfolders.

The file name for the Image
Print project is
ImgPrint.vbp.

The file name for the Image
Properties project is
ImgProp.vbp.
219

Appendix A
In addition to the general, summary, and page property values, the
application displays additional information, such as the:

■ Total number of bytes the files consume.
■ Minimum/maximum file size.
■ Average (mean) file size.
■ Total number of pages.
■ Smallest and largest page size.
■ Total number of annotations by type and group.

Image Scan

Image Scan demonstrates a variety of scanning functions.

In addition to using the standard scanning dialog boxes provided by the
controls, Image Scan also shows you how to get and set scanner
capabilities programmatically using a series of custom dialog boxes.

The application also demonstrates how to scan double-sided originals on
a simplex scanner and how to collate the pages into the correct order.
This feature makes a simplex scanner function like a duplex scanner.

Image Thumbnails

Image Thumbnails shows you how to manage and manipulate the
individual thumbnail images within an Image Thumbnail control.

Specifically, the application shows you how to:

■ Display thumbnails.
■ Drag and drop thumbnails.
■ Change thumbnail format and size.

In addition to displaying as thumbnail images the pages of a single image
file, the program can also display as thumbnail images the first page of
every image file within a specified folder.

The file name for the Image
Scan project is ImgScan.vbp.

The file name for the Image
Thumbnails project is
ImgThumb.vbp.
220

Imaging ActiveX Sample Applications
Imaging Flow Samples
This section describes the sample applications designed to work with
Imaging Flow.

Flow Program

The Flow Program demonstrates how a third-party program can be
invoked from within a flow and how it may be used to control — or
affect — the current flow.

The program has two operating modes:

Separator Page mode — Locates separator pages so it can assemble
scanned pages into discreet, single- or multi-page image document files.

Form Number mode — Reads form numbers by performing zoned
OCR on images. And then uses the OCR results to name the image
document files.

If you invoke the program with command line arguments from the
process version of the Run Program tool, it functions in the background.
Two command line arguments are available; the one you pass selects the
operating mode of the program:

/separatorpage — Places the program in Separator Page mode.

/formnumber — Places the program in Form Number mode.

If you invoke the program without command line arguments, it assumes
that you want to change its settings. Accordingly, it provides a user
interface for doing so.

Flow Variables

The Flow Variables program also demonstrates how a third-party
program can be invoked from within a flow. The program shows you
how to monitor and set flow variables.

This program is designed as a diagnostic tool only; however, you may get
some interesting ideas from analyzing it.

Refer to the “Flow Variables Reference” within Imaging Flow’s on-line
help system to learn more about flow variables.

The file name for the Flow
Program project is
FlowPgm.vbp.

Note: The OCR function within Flow Program is an excellent example
of using OCR text zones to perform targeted OCR processing.
Refer to the Imaging Flow on-line help system for more informa-
tion on the Run Program flow tool (Process version).

The file name for the Flow
Variables project is
FlowVar.vbp.
221

B

Imaging ActiveX Tips and Tricks

This appendix describes some tips and tricks you might find useful when

working with the Imaging ActiveX controls.

In This Appendix
Tips and Tricks ... 224

Appendix B
Tips and Tricks
This section provides some
tips and tricks for using the
Imaging ActiveX controls.

Use the tips and tricks in this section as guidelines when you use the
Imaging ActiveX controls to image-enable your applications. Refer to
the remainder of this guide for more information about the controls.

Miscellaneous Programming Tips

How to use functions of the ActiveX sample
applications
With the exception of sample program, the ActiveX sample applications
contained on the media on which your software was distributed are
designed for programmers and users running eiStream Imaging for
Windows.

If you and your users are running older versions of Imaging for
Windows, some of the features in the sample applications may not work
with some operating systems.

To do so, perform the following steps:

1 Use a text editor to view the .frm files within each sample
application distributed with your software.

2 Ensure that the functions you use in your applications are supported
by the vsrsion of Imaging that your users are running.

Specify tenths of degrees when calling rotation
methods
The RotateAll, RotateLeft, and RotateRight methods of the Image
Edit control permit you to specify the degree of image rotation to apply.
When you do so, keep in mind that you must specify the rotation
amount in tenths of degrees.

For example, to rotate an image page 45 degrees to the right, specify 450
when you invoke the RotateRight method.

Use the DisplayScaleAlgorithm property to scale black-and-
white image pages to gray

eiStream WMS, Inc. recommends that you set the
DisplayScaleAlgorithm property of the Image Edit control to
wiScaleOptimize (literal 4) when you want to make black-and-white

Note: When setting a property, invoking a method, or responding to
an event, if you encounter results you consider unusual,
consider changing the parameter(s) you are using.
224

Imaging ActiveX Tips and Tricks
images appear in gray scale. Color images continue to appear in color
using this setting.

Catch errors properly when working with the
ShowFileDialog method
When invoked, the ShowFileDialog method of the Image Admin
control displays an Open or Save As dialog box to your end users.
When users click the Cancel button on one of these dialog boxes, a
“Cancel button is pressed” error condition occurs. Other Image Admin
error conditions can also occur as the procedure containing the
ShowFileDialog method continues its processing.

It is important to understand the difference between catching the
“Cancel button is pressed” error condition and any other Image Admin
error condition that may occur.

When users click the Cancel button on the Open or Save As dialog
box, the Number property of Visual Basic’s Err object contains the
literal value for the “Cancel button is pressed” error condition. The
Description property of the Err object contains any other Image
Admin error condition that may have occurred.

The following code snippet from the sample application demonstrates
the recommended way of handling ShowFileDialog and Image Admin
error conditions:

'--
' If the Cancel button was pressed, exit the subroutine.
' If a different error occurred, declare a message box and
' exit the subroutine.
'--
If Err.Number = CANCEL_PRESSED Then '32755 = Cancel pressed
 Exit Sub
ElseIf ImgAdmin1.StatusCode <> 0 Then
 MsgBox Err.Description & " (ImgAdmin error " & _
 Hex(ImgAdmin1.StatusCode) & ")", vbCritical
 Exit Sub
End If

225

Appendix B
Always pass the parent window handle when invoking
the ShowPrintDialog method
Even though passing the handle to the parent window is optional, for
best results always include it when you invoke the ShowPrintDialog
method of the Image Admin control. The ShowPrintDialog method
displays a Print dialog box, which enables users to print image files.

Retain generated file names when template scanning
As you know from Chapter 4, you can assign a template to the Image
property of the Image Admin control to perform template scanning. The
Imaging software uses the template you assign to automatically generate
the file names for each document it scans.

Unfortunately, if you need to know the name of each generated file, you
cannot use the Image property to return the file names when template
scanning.

However, you can use the following alternative procedure to retain each
file name while template scanning. Perform the following steps:

1 Use the GetUniqueName method of the Image Admin control to
generate a unique file name.

2 Assign the generated file name to the Image property of the Image
Scan control, which is a prerequisite for scanning.

3 Assign the generated file name to a local or module variable so you
can retain it for your use.

4 Invoke scanning manually.

Refer to Chapter 4 for more information about scanning.

Clear a selection rectangle
To clear a selection rectangle, use the DrawSelectionRect method of
the Image Edit control to draw a small, one-pixel selection rectangle on
the Image Edit control.

The resulting selection rectangle is too small to be seen and clears the
original one from the display.

Prevent flicker when using the Image Edit and Image
Thumbnail controls simultaneously
To prevent flicker when using the Image Edit and Image Thumbnail
controls simultaneously in your program, set the ImagePalette property
of the Image Edit control to the appropriate setting.
226

Imaging ActiveX Tips and Tricks
The setting you use depends on the page type of the image being
displayed in the Image Edit control, as follows:

When the page type of the displayed image is RGB (24-bit)
— Set the ImagePalette property to the RGB24 palette by entering a
constant value of wiPaletteRGB24 or a literal value of 3.

When the page type of the displayed image is not RGB — Set the
ImagePalette property to the Common palette by entering a constant
value of wiPaletteCommon or a literal value of 1.

Image File Management Tips

Provide file type and page property options to your
users
When saved to disk, image files can require a large amount of storage
space.

The size of an image file depends on several factors; among these are its:

■ File type.
■ Color type (also known as its page type or data type).
■ Resolution.
■ Compression.

Giving your users the capability of changing these factors enables them
to control file size and appearance.

The table on the following page lists the results of varying these factors
on a one-page newsletter. The newsletter consists of:

■ An image that occupies approximately one-quarter of the page.
■ Three columns of text that fill the remainder of the page.

Use the table as a guideline when providing file type and page property
options to your end users. You may want to include a table like it in your
documentation.
227

Appendix B
1By adjusting JPEG resolution and quality compression options, you can
increase or decrease the file size by 20 to 30%. In our newsletter example, the
JPEG compression option applied was medium resolution and medium quality.
The image file would be larger if we applied high resolution and high quality
and smaller if we applied low resolution and low quality.

Results of Varying Image File Type and Page Property Options

File
Type

Color
Type

Compression
Applied

Resolution
100 x 100

Resolution
200 x 200

Resolution
300 x 300

BMP Black & White Not available 114 KB 448 KB 1.0 MB

Pallettized 8-bit Not available 898 KB 3.5 MB 7.9 MB

BGR 24-bit Not available 2.6 MB 10.5 MB 23.6 MB

TIFF Black & White None 112 KB 449 KB 1.0 MB

Group3 (1d) 68 KB 134 KB 226 KB

Group3 Mod. Huffman 67 KB 132 KB 223 KB

Group4 (2d) 68 KB 92 KB 115 KB

PackBits 59 KB 193 KB 389 KB

Gray Scale 4-bit None 449 KB 1.8 MB 3.9 MB

LZW 132 KB 261 KB 579 KB

Gray Scale 8-bit None 898 KB 3.5 MB 7.9 MB

LZW 585 KB 1.5 MB 2.5 MB

JPEG — Medium1 128 KB 367 KB 703 KB

Pallettized 8-bit None 899 KB 3.5 MB 7.9 MB

LZW 137 KB 367 KB 670 KB

RGB 24-bit None 2.6 MB 10.5 MB 23.6 MB

LZW 897 KB 2.2 MB 3.9 MB

JPEG — Medium1 144 KB 448 KB 907 KB
228

Imaging ActiveX Tips and Tricks
Several properties and methods within the Imaging ActiveX controls
permit you to manage image file type and page property options.

Pay particular attention to the SaveAs, SavePage, and
ShowPageProperties methods of the Image Edit control because
they provide the quickest and easiest ways to provide file type and page
property options to your users.

Use the Append method to assemble several image
files into one multipage TIFF image file
You can use the Append method of the Image Admin control to copy
image pages from one image file to another.

The following Visual Basic statements copy the first two pages of the
source.tif file to the destination.tif file:

ImgAdmin1.Image = "c:\images\destination.tif"

ImgAdmin1.Append "c:\images\source.tif", 1, 2

The copied pages become the last two pages of the destination.tif
file.

Always clear a displayed image page before deleting it
You must clear an image page from the Image Edit control before you
delete it. Failure to do so results in a run-time error.

The following code snippet from the sample program demonstrates the
recommended way of deleting an image page:

Note: If you make the LZW compression type available to your users,
you may need to negotiate a license with Unisys Corporation,
depending on the country in which your product is released.

'--
' Delete: Loop through the image pages, deleting
' those pages which have been selected.
'--
For intCounter = ImgThumbnail1.ThumbCount To 1 Step -1
 If ImgThumbnail1.ThumbSelected(intCounter) = True Then
 lngDeletedPageNo = intCounter
 ImgEdit1.ClearDisplay
 ImgAdmin1.DeletePages lngDeletedPageNo, 1
 ImgThumbnail1.DeleteThumbs lngDeletedPageNo, 1
 End If
Next intCounter
229

Appendix B
Use caution when copying selected image data to the
Clipboard
When copying the image data within a selection rectangle to the
Clipboard, do not pass the parameters received from the
SelectionRectDrawn event to the ClipboardCopy method. If you do,
the ClipboardCopy method may not copy the expected image area.

Although the SelectionRectDrawn event and the ClipboardCopy
method both use Left, Top, Width, and Height parameters, they each
work with different base locations. The SelectionRectDrawn event
uses the image pixel position relative to the upper-left corner of the
Image Edit control, while the ClipboardCopy property uses the
absolute image pixel position.

When you want to copy the data in a selection rectangle, invoke the
ClipboardCopy method with its Left, Top, Width, and Height
parameters empty.

Annotation Tips

Let your users modify the properties of a drawn
annotation
After drawing an annotation, your users may want to change its
properties. For example, they may want to change a line color from red
to blue.

To provide this capability, invoke the ShowAttribsDialog method of
the Image Edit control. It displays an annotation attributes dialog box
that lets your end users change the properties (attributes) of a selected
annotation.

For text annotations, invoke the EditSelectedAnnotationText method
of the Image Edit control. It enables end users to modify the text.

Guidelines for making annotations permanent
You can use the BurnInAnnotations method of the Image Edit control
to make annotations a permanent part of the image. When you or your
users burn-in annotations, keep the following points in mind:

■ Once annotations are burned-in, they cannot be removed or
modified as annotations. They can, however, be edited or manipulated
just like image data — clearing as well as copying and cutting to the
Clipboard is available.

■ BurnInAnnotations works only on the currently displayed image
page. If you or your users want to burn-in the annotations of an
230

Imaging ActiveX Tips and Tricks
entire image file, you must apply the BurnInAnnotations method
to each individual page.

■ Annotation data can be saved separately from the image data only
when you or your users save image files in the TIFF file format. For
all other file formats, the annotations must be burned-in prior to
saving.

How to retain annotations when users navigate
multipage image files
When users draw annotations on a page in a multipage image file and
then navigate to another page in the file, the Imaging software does not
automatically retain the annotations drawn. When users return to the
“annotated” image page, the annotations are no longer there.

To retain annotations under these circumstances, create a temporary
image file and use it as a work file. When users draw annotations on a
page, invoke the Save method of the Image Edit control to save the
entire image file to the work file. This action forces the Imaging software
to retain the annotations because they have been saved to a file.

Then, when users close the image file or exit your application, prompt
them to indicate whether they want to save any changes.

If users respond with Yes — Copy the work file to the original image
file and then delete the work file.

If users respond with No — Simply delete the work file.

When printing annotations
Keep in mind that some printers may not print annotations correctly
— especially Image Embedded and Image Reference annotations.

The reason for this behavior is that printer drivers function differently,
making it impossible to print annotations consistently on all printers.
The solution to this problem is to have your users:

1 Burn the annotations onto the image page.

2 Save the image file.

3 Print the image file.

If users do not want to permanently alter an image, have them save the
image to a temporary file before performing the preceding steps.
231

Appendix B
Optical Character Recognition Tips

Working with Interactive Training
Keep the following points in mind when working with Interactive
Training:

■ When you assign a training file to the TrainingFile property of the
Image OCR control, make sure that the training file actually exists. If
it does not, training does not occur.

■ Interactive Training is not available when performing OCR to the
Clipboard.

■ If you or your users perform Interactive Training on a skewed image,
the yellow highlights that indicate each questionable word may not
appear directly over the appropriate word. You or your users should
invoke the AutoDeskew or ManualDeSkew method of the Image
Edit control to straighten a skewed image and then save the image
prior to performing Interactive Training.

Performing OCR
Keep the following points in mind when performing OCR processing:

■ Do not attempt to OCR a severely skewed image. You or your users
should invoke the AutoDeskew or ManualDeSkew method of the
Image Edit control and then save the file prior to performing OCR.
You or your users must save the image file because the OCR engine
reads from the file and not from the display buffer.

■ Communicate to your users that OCR processing occurs more
efficiently when there is less blank space on an image. For example, if
users want to OCR a 3x5-inch card, you should tell them to scan the
card as a 3x5-inch image instead of, for example, a letter-size image.
In addition to saving disk space, scanning a 3x5-inch card as a 3x5-
inch image makes OCR processing occur more efficiently because
the OCR engine traverses less blank space as it looks for characters to
convert.

■ The OCR engine performs its processing on a black-and-white
image. If your users are receiving poor OCR results from a page that
looks good, provide a way for them to turn off scale-to-gray. With
scale-to-gray turned off, users see what the OCR engine is actually
analyzing and may come to the realization that rescanning or
enhancing the image is necessary.

■ The Imaging software can perform OCR processing in three ways.
Providing your users with the appropriate OCR functions may
improve OCR results:
232

Imaging ActiveX Tips and Tricks
When users want to OCR a small area of text — Set the
CopyToClipboard property of the Image OCR control to True.
Then have your users draw a selection rectangle and invoke OCR.
The OCR engine recognizes only the area your users indicate rather
than the entire page.

When users want to OCR most of the page — Set the
CopyToClipboard property of the Image OCR control to False.
Then set the AnnotationType property of the Image Edit control
to wiOcrRegion (literal 13) and the AnnotationOcrType
property to wiOcrTypeText (literal 0). Have your users draw
OCR text zones over the areas of the page they want to recognize
and invoke OCR. Again, the OCR engine recognizes only those
areas your users indicate.

If users want to include graphics in the OCR results, set the
AnnotationOcrType property to wiOcrTypePicture (literal 1).
Then have your users draw OCR picture zones over the graphics
they want to include.

To OCR the entire page — Set the CopyToClipboard property
of the Image OCR control to False and invoke OCR. Performing
OCR on the entire page is the default.

■ Keep in mind that setting the OutputFile property of the Image
OCR control to blank does not invoke the Save As dialog box. To
have the Imaging software prompt the user to specify where the
OCR results should be saved, simply omit the OutputFile property
from your code.
233

715-C008 ■ www.eiStream.com ■ Copyright © 1998 - 2003 eiStream Technologies, Inc. ■ 8/03

	Title
	Contents
	About This Guide
	Purpose
	Prerequisites
	Related Information
	Support

	Chapter 1 - About Imaging
	Introducing Imaging for Windows
	Imaging Components

	What Imaging Lets You Do
	Command-line Invocation
	OLE
	Automation
	ActiveX Controls
	Which to Use: Command-line Interface, OLE, Automation, or ActiveX Controls?
	Sample Code

	What Imaging Lets Your Users Do
	What Is Document Imaging?
	Compiling and Distributing Your Image-Enabled Application
	Compiling Software with Imaging for Windows
	Compiling Software with an Operating System Component

	Use of LZW Compression
	Documentation Conventions

	Chapter 2 - Adding Imaging Using Automation
	Overview
	The Object Hierarchy
	Application Object
	ImageFile Object
	Page Object
	PageRange Object

	Automation Server and Embedded Server Modes
	Automation Server Mode
	Embedded Server Mode
	Examples

	Demonstration Project
	View Modes
	Example
	The Automation From Excel Project

	Chapter 3 - Automation Lexicon
	Overview
	Application Object
	Application Object Properties
	Application Object Methods

	ImageFile Object
	ImageFile Object Properties
	ImageFile Object Methods

	Page Object
	Page Object Properties
	Page Object Methods

	PageRange Object
	PageRange Object Properties
	PageRange Object Methods

	Chapter 4 - Adding Imaging Using ActiveX Controls
	Loading the Controls
	Visual Basic
	Visual C++
	Access

	Obtaining Help
	Visual Basic
	Visual C++
	Access

	Demonstration Projects
	Displaying an Image and Applying Fit-To Options
	Converting an Image
	Copying An Image
	Printing An Image
	Scanning an Image Using a Template
	Managing an Image File Using Thumbnails
	Unloading a Multipage Image File

	Chapter 5 - Developing Client/Server Applications
	Imaging Server Concepts
	File Type Support
	Standard Dialog Boxes
	Image Files and Server Documents
	Interacting with Imaging 1.x Servers
	Interacting with WMS Imaging and Workflow Servers

	Imaging 1.x Server Programming Considerations
	Logging Onto the Server
	Setting Imaging 1.x Server Options
	Browsing for Volumes or Image Files and Server Documents
	Querying for Imaging 1.x Documents
	Saving 1.x Image Files and Documents

	WMS Server Programming Considerations
	Logging Onto the Server

	Demonstration Project
	Zooming an Image Defined
	Annotations Defined
	The Image Server Project

	Appendix A - Imaging ActiveX Sample Applications
	Overview
	Sample Applications
	Image Editor Samples
	Function Specific Samples
	Imaging Flow Samples

	Appendix B - Imaging ActiveX Tips and Tricks
	Tips and Tricks

