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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 1.1: If r ∈ Q \ {0} and x ∈ R \ Q, prove that r + x, rx 6∈ Q.

Solution: We prove this by contradiction. Let r ∈ Q\{0}, and suppose that r+x ∈
Q. Then, using the field properties of both R and Q, we have x = (r +x)− r ∈ Q.
Thus x 6∈ Q implies r + x 6∈ Q.

Similarly, if rx ∈ Q, then x = (rx)/r ∈ Q. (Here, in addition to the field
properties of R and Q, we use r 6= 0.) Thus x 6∈ Q implies rx 6∈ Q.

Problem 1.2: Prove that there is no x ∈ Q such that x2 = 12.

Solution: We prove this by contradiction. Suppose there is x ∈ Q such that
x2 = 12. Write x = m

n in lowest terms. Then x2 = 12 implies that m2 = 12n2.
Since 3 divides 12n2, it follows that 3 divides m2. Since 3 is prime (and by unique
factorization in Z), it follows that 3 divides m. Therefore 32 divides m2 = 12n2.
Since 32 does not divide 12, using again unique factorization in Z and the fact that
3 is prime, it follows that 3 divides n. We have proved that 3 divides both m and
n, contradicting the assumption that the fraction m

n is in lowest terms.

Alternate solution (Sketch): If x ∈ Q satisfies x2 = 12, then x
2 is in Q and satisfies(

x
2

)2 = 3. Now prove that there is no y ∈ Q such that y2 = 3 by repeating the
proof that

√
2 6∈ Q.

Problem 1.5: Let A ⊂ R be nonempty and bounded below. Set −A = {−a : a ∈
A}. Prove that inf(A) = − sup(−A).

Solution: First note that −A is nonempty and bounded above. Indeed, A contains
some element x, and then −x ∈ A; moreover, A has a lower bound m, and −m is
an upper bound for −A.

We now know that b = sup(−A) exists. We show that −b = inf(A). That −b is
a lower bound for A is immediate from the fact that b is an upper bound for −A.
To show that −b is the greatest lower bound, we let c > −b and prove that c is not
a lower bound for A. Now −c < b, so −c is not an upper bound for −A. So there
exists x ∈ −A such that x > −c. Then −x ∈ A and −x < c. So c is not a lower
bound for A.

Problem 1.6: Let b ∈ R with b > 1, fixed throughout the problem.

Comment: We will assume known that the function n 7→ bn, from Z to R, is
strictly increasing, that is, that for m, n ∈ Z, we have bm < bn if and only if
m < n. Similarly, we take as known that x 7→ xn is strictly increasing when n is
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an integer with n > 0. We will also assume that the usual laws of exponents are
known to hold when the exponents are integers. We can’t assume anything about
fractional exponents, except for Theorem 1.21 of the book and its corollary, because
the context makes it clear that we are to assume fractional powers have not yet
been defined.

(a) Let m, n, p, q ∈ Z, with n > 0 and q > 0. Prove that if m
n = p

q , then
(bm)1/n = (bp)1/q.

Solution: By the uniqueness part of Theorem 1.21 of the book, applied to the
positive integer nq, it suffices to show that[

(bm)1/n
]nq

=
[
(bp)1/q

]nq

.

Now the definition in Theorem 1.21 implies that[
(bm)1/n

]n

= bm and
[
(bp)1/q

]q

= bp.

Therefore, using the laws of integer exponents and the equation mq = np, we get[
(bm)1/n

]nq

=
[[

(bm)1/n
]n]q

= (bm)q = bmq

= bnp = (bp)n =
[[

(bp)1/q
]q]n

=
[
(bp)1/q

]nq

,

as desired.

By Part (a), it makes sense to define bm/n = (bm)1/n for m, n ∈ Z with n > 0.
This defines br for all r ∈ Q.

(b) Prove that br+s = brbs for r, s ∈ Q.

Solution: Choose m, n, p, q ∈ Z, with n > 0 and q > 0, such that r = m
n and

s = p
q . Then r + s = mq+np

nq . By the uniqueness part of Theorem 1.21 of the book,
applied to the positive integer nq, it suffices to show that[

b(mq+np)/(nq)
]nq

=
[
(bm)1/n(bp)1/q

]nq

.

Directly from the definitions, we can write
[
b(mq+np)/(nq)

]nq

=
[[

b(mq+np)
]1/(nq)

]nq

= b(mq+np).

Using the laws of integer exponents and the definitions for rational exponents, we
can rewrite the right hand side as[

(bm)1/n(bp)1/q
]nq

=
[[

(bm)1/n
]n]q [[

(bp)1/q
]q]n

= (bm)q(bp)n = b(mq+np).

This proves the required equation, and hence the result.

(c) For x ∈ R, define

B(x) = {br : r ∈ Q ∩ (−∞, x]}.
Prove that if r ∈ Q, then br = sup(B(r)).

Solution: The main point is to show that if r, s ∈ Q with r < s, then br < bs.
Choose m, n, p, q ∈ Z, with n > 0 and q > 0, such that r = m

n and s = p
q . Then
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also r = mq
nq and s = np

nq , with nq > 0, so

br = (bmq)1/(nq) and bs = (bnp)1/(nq).

Now mq < np because r < s. Therefore, using the definition of c1/(nq),

(br)nq = bmq < bnp = (bs)nq.

Since x 7→ xnq is strictly increasing, this implies that br < bs.
Now we can prove that if r ∈ Q then br = sup(B(r)). By the above, if s ∈ Q

and s ≤ r, then bs ≤ br. This implies that br is an upper bound for B(r). Since
br ∈ B(r), obviously no number smaller than br can be an upper bound for B(r).
So br = sup(B(r)).

We now define bx = sup(B(x)) for every x ∈ R. We need to show that B(x)
is nonempty and bounded above. To show it is nonempty, choose (using the
Archimedean property) some k ∈ Z with k < x; then bk ∈ B(x). To show it
is bounded above, similarly choose some k ∈ Z with k > x. If r ∈ Q ∩ (−∞, x],
then br ∈ B(k) so that br ≤ bk by Part (c). Thus bk is an upper bound for B(x).
This shows that the definition makes sense, and Part (c) shows it is consistent with
our earlier definition when r ∈ Q.

(d) Prove that bx+y = bxby for all x, y ∈ R.

Solution:
In order to do this, we are going to need to replace the set B(x) above by the

set

B0(x) = {br : r ∈ Q ∩ (−∞, x)}
(that is, we require r < x rather than r ≤ x) in the definition of bx. (If you are
skeptical, read the main part of the solution first to see how this is used.)

We show that the replacement is possible via some lemmas.

Lemma 1. If x ∈ [0,∞) and n ∈ Z satisfies n ≥ 0, then (1 + x)n ≥ 1 + nx.

Proof: The proof is by induction on n. The statement is obvious for n = 0. So
assume it holds for some n. Then, since x ≥ 0,

(1 + x)n+1 = (1 + x)n(1 + x) ≥ (1 + nx)(1 + x)

= 1 + (n + 1)x + nx2 ≥ 1 + (n + 1)x.

This proves the result for n + 1.

Lemma 2. inf{b1/n : n ∈ N} = 1. (Recall that b > 1 and N = {1, 2, 3, . . . }.)
Proof: Clearly 1 is a lower bound. (Indeed, (b1/n)n = b > 1 = 1n, so b1/n > 1.) We
show that 1+x is not a lower bound when x > 0. If 1+x were a lower bound, then
1 + x ≤ b1/n would imply (1 + x)n ≤ (b1/n)n = b for all n ∈ N. By Lemma 1, we
would get 1 + nx ≤ b for all n ∈ N, which contradicts the Archimedean property
when x > 0.

Lemma 3. sup{b−1/n : n ∈ N} = 1.

Proof: Part (b) shows that b−1/nb1/n = b0 = 1, whence b−1/n = (b1/n)−1. Since
all numbers b−1/n are strictly positive, it now follows from Lemma 2 that 1 is an
upper bound. Suppose x < 1 is an upper bound. Then x−1 is a lower bound for
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{b1/n : n ∈ N}. Since x−1 > 1, this contradicts Lemma 2. Thus sup{b−1/n : n ∈
N} = 1, as claimed.

Lemma 4. bx = sup(B0(x)) for x ∈ R.

Proof: If x 6∈ Q, then B0(x) = B(x), so there is nothing to prove. If x ∈ Q,
then at least B0(x) ⊂ B(x), so bx ≥ sup(B0(x)). Moreover, Part (b) shows that
bx−1/n = bxb−1/n for n ∈ N. The numbers bx−1/n are all in B0(x), and

sup{bxb−1/n : n ∈ N} = bx sup{b−1/n : n ∈ N}
because bx > 0, so using Lemma 3 in the last step gives

sup(B0(x)) ≥ sup{bx−1/n : n ∈ N} = bx sup{b−1/n : n ∈ N} = bx.

Now we can prove the formula bx+y = bxby. We start by showing that bx+y ≤
bxby, which we do by showing that bxby is an upper bound for B0(x + y). Thus let
r ∈ Q satisfy r < x+y. Then there are s0, t0 ∈ R such that r = s0 + t0 and s0 < x,
t0 < y. Choose s, t ∈ Q such that s0 < s < x and t0 < t < y. Then r < s + t, so
br < bs+t = bsbt ≤ bxby. This shows that bxby is an upper bound for B0(x + y).

(Note that this does not work using B(x + y). If x + y ∈ Q but x, y 6∈ Q, then
bx+y ∈ B(x + y), but it is not possible to find s and t with bs ∈ B(x), bt ∈ B(y),
and bsbt = bx+y.)

We now prove the reverse inequality. Suppose it fails, that is, bx+y < bxby. Then
bx+y

by
< bx.

The left hand side is thus not an upper bound for B0(x), so there exists s ∈ Q with
s < x and

bx+y

by
< bs.

It follows that
bx+y

bs
< by.

Repeating the argument, there is t ∈ Q with t < y such that
bx+y

bs
< bt.

Therefore

bx+y < bsbt = bs+t

(using Part (b)). But bs+t ∈ B0(x + y) because s + t ∈ Q and s + t < x + y, so this
is a contradiction. Therefore bx+y ≤ bxby.

Problem 1.9: Define a relation on C by w < z if and only if either Re(w) < Re(z)
or both Re(w) = Re(z) and Im(w) < Im(z). (For z ∈ C, the expressions Re(z)
and Im(z) denote the real and imaginary parts of z.) Prove that this makes C an
ordered set. Does this order have the least upper bound property?

Solution: We verify the two conditions in the definition of an order. For the first,
let w, z ∈ C. There are three cases.

Case 1: Re(w) < Re(z). Then w < z, but w = z and w > z are both false.
Case 2: Re(w) > Re(z). Then w > z, but w = z and w < z are both false.
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Case 3: Re(w) = Re(z). This case has three subcases.
Case 3.1: Im(w) < Im(z). Then w < z, but w = z and w > z are both false.
Case 3.2: Im(w) > Im(z). Then w > z, but w = z and w < z are both false.
Case 3.3: Im(w) = Im(z). Then w = z, but w > z and w < z are both false.
These cases exhaust all possibilities, and in each of them exactly one of w < z,

w = z, and w > z is true, as desired.
Now we prove transitivity. Let s < w and w < z. If either Re(s) < Re(w)

or Re(w) < Re(z), then clearly Re(s) < Re(z), so s < z. If Re(s) = Re(w)
and Re(w) = Re(z), then the definition of the order requires Im(s) < Im(w) and
Im(w) < Im(z). We thus have Re(s) = Re(z) and Im(s) < Im(z), so s < z by
definition.

It remains to answer the last question. We show that this order does not have
the least upper bound property. Let S = {z ∈ C : Re(z) < 0}. Then S 6= ∅ because
−1 ∈ S, and S is bounded above because 1 is an upper bound for S.

We show that S does not have a least upper bound by showing that if w is an
upper bound for S, then there is a smaller upper bound. First, by the definition of
the order it is clear that Re(w) is an upper bound for

{Re(z) : z ∈ S} = (−∞, 0).

Therefore Re(w) ≥ 0. Moreover, every u ∈ C with Re(u) ≥ 0 is in fact an upper
bound for S. In particular, if w is an upper bound for S, then w − i < w and has
the same real part, so is a smaller upper bound.

Note: A related argument shows that the set T = {z ∈ C : Re(z) ≤ 0} also has
no least upper bound. One shows that w is an upper bound for T if and only if
Re(w) > 0.

Problem 1.13: Prove that if x, y ∈ C, then ||x| − |y|| ≤ |x − y|.
Solution: The desired inequality is equivalent to

|x| − |y| ≤ |x − y| and |y| − |x| ≤ |x − y|.
We prove the first; the second follows by exchanging x and y.

Set z = x − y. Then x = y + z. The triangle inequality gives |x| ≤ |y| + |z|.
Substituting the definition of z and subtracting |y| from both sides gives the result.

Problem 1.17: Prove that if x, y ∈ Rn, then

‖x + y‖2 + ‖x − y‖2 = 2‖x‖2 + 2‖y‖2.

Interpret this result geometrically in terms of parallelograms.

Solution: Using the definition of the norm in terms of scalar products, we have:

‖x + y‖2 + ‖x − y‖2 = 〈x + y, x + y〉 + 〈x − y, x − y〉
= 〈x, x〉 + 〈x, y〉 + 〈y, x〉 + 〈y, y〉
+ 〈x, x〉 − 〈x, y〉 − 〈y, x〉 + 〈y, y〉
= 2〈x, x〉 + 2〈y, y〉 = 2‖x‖2 + 2‖y‖2.

The interpretation is that 0, x, y, x + y are the vertices of a parallelogram, and
that ‖x+y‖ and ‖x−y‖ are the lengths of its diagonals while ‖x‖ and ‖y‖ are each
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the lengths of two opposite sides. Therefore the sum of the squares of the lengths
of the diagonals is equal to the sum of the squares of the lengths of the sides.

Note: One can do the proof directly in terms of the formula ‖x‖2 =
∑n

k=1 |xk|2.
The steps are all the same, but it is more complicated to write. It is also less
general, since the argument above applies to any norm that comes from a scalar
product.
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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 2.2: Prove that the set of algebraic numbers is countable.

Solution (sketch): For each fixed integer n ≥ 0, the set Pn of all polynomials
with integer coefficients and degree at most n is countable, since it has the same
cardinality as the set {(a0, . . . , an) : ai ∈ N} = Nn+1. The set of all polynomials
with integer coefficients is

⋃∞
n=0 Pn, which is a countable union of countable sets

and so countable. Each polynomial has only finitely many roots (at most n for
degree n), so the set of all possible roots of all polynomials with integer coefficients
is a countable union of finite sets, hence countable.

Problem 2.3: Prove that there exist real numbers which are not algebraic.

Solution (Sketch): This follows from Problem 2.2, since R is not countable.

Problem 2.4: Is R \ Q countable?

Solution (Sketch): No. Q is countable and R is not countable.

Problem 2.5: Construct a bounded subset of R with exactly 3 limit points.

Solution (Sketch): For example, use{
1
n : n ∈ N

} ∪ {
1 + 1

n : n ∈ N
} ∪ {

2 + 1
n : n ∈ N

}
.

Problem 2.6: Let E′ denote the set of limit points of E. Prove that E′ is closed.
Prove that E

′
= E′. Is (E′)′ always equal to E′?

Solution (Sketch): Proving that E′ is closed is equivalent to proving that (E′)′ ⊂
E′. So let x ∈ (E′)′ and let ε > 0. Choose y ∈ E′ ∩ (Nε(x) \ {x}). Choose
δ = min(d(x, y), ε − d(x, y)) > 0. Choose z ∈ E ∩ (Nδ(y) \ {y}). The triangle
inequality ensures z 6= x and z ∈ Nε(x). This shows x is a limit point of E.

Here is a different way to prove that (E′)′ ⊂ E′. Let x ∈ (E′)′ and ε > 0.
Choose y ∈ E′ ∩ (Nε/2(x) \ {x}). By Theorem 2.20 of Rudin, there are infinitely
many points in E ∩ (Nε/2(y) \ {y}). In particular there is z ∈ E ∩ (Nε/2(y) \ {y})
with z 6= x. Now z ∈ E ∩ (Nε(x) \ {x}).

To prove E
′
= E′, it suffices to prove E

′ ⊂ E′. We first claim that if A and B
are any subsets of X, then (A ∪ B)′ ⊂ A′ ∪ B′. The fastest way to do this is to
assume that x ∈ (A ∪ B)′ but x 6∈ A′, and to show that x ∈ B′. Accordingly, let
x ∈ (A ∪ B)′ \ A′. Since x 6∈ A′, there is ε0 > 0 such that Nε0(x) ∩ A contains no
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points except possibly x itself. Now let ε > 0; we show that Nε(x) ∩ B contains at
least one point different from x. Let r = min(ε, ε0) > 0. Because x ∈ (A ∪ B)′,
there is y ∈ Nr(x)∩ (A∪B) with y 6= x. Then y 6∈ A because r ≤ ε0. So necessarily
y ∈ B, and thus y is a point different from x and in Nr(x) ∩ B. This shows that
x ∈ B′, and completes the proof that (A ∪ B)′ ⊂ A′ ∪ B′.

To prove E
′ ⊂ E′, we now observe that

E
′
= (E ∪ E′)′ ⊂ E′ ∪ (E′)′ ⊂ E′ ∪ E′ = E′.

An alternate proof that E
′ ⊂ E′ can be obtained by slightly modifying either of

the proofs above that (E′)′ ⊂ E′.
For the third part, the answer is no. Take

E = {0} ∪ {
1
n : n ∈ N

}
.

Then E′ = {0} and (E′)′ = ∅. (Of course, you must prove these facts.)

Problem 2.8: If E ⊂ R2 is open, is every point of E a limit point of E? What if
E is closed instead of open?

Solution (Sketch): Every point of an open set E ⊂ R2 is a limit point of E. Indeed,
if x ∈ E, then there is ε > 0 such that Nε(x) ⊂ E, and it is easy to show that x is
a limit point of Nε(x).

(Warning: This is not true in a general metric space.)
Not every point of a closed set need be a limit point. Take E = {(0, 0)}, which

has no limit points.

Problem 2.9: Let E◦ denote the set of interior points of a set E, that is, the
interior of E.

(a) Prove that E◦ is open.

Solution (sketch): If x ∈ E◦, then there is ε > 0 such that Nε(x) ⊂ E. Since Nε(x)
is open, every point in Nε(x) is an interior point of Nε(x), hence of the bigger set
E. So Nε(x) ∈ E◦.

(b) Prove that E is open if and only if E◦ = E.

Solution: If E is open, then E = E◦ by the definition of E◦. If E = E◦, then E is
open by Part (a).

(c) If G is open and G ⊂ E, prove that G ⊂ E◦.

Solution (sketch): If x ∈ G ⊂ E and G is open, then x is an interior point of G.
Therefore x is an interior point of the bigger set E. So x ∈ E◦.

(d) Prove that X \ E◦ = X \ E.

Solution (sketch): First show that X \ E◦ ⊂ X \ E. If x 6∈ E, then clearly x ∈
X \ E. Otherwise, consider x ∈ E \ E◦. Rearranging the statement that x fails to
be an interior point of E, and noting that x itself is not in X \E, one gets exactly
the statement that x is a limit point of X \ E.

Now show that X \ E ⊂ X \E◦. If x ∈ X \E, then clearly x 6∈ E◦. If x 6∈ X \E
but x is a limit point of X \E, then one simply rearranges the definition of a limit
point to show that x is not an interior point of E.

(e) Prove or disprove:
(
E

)◦
= E.
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Solution (sketch): This is false. Example: take E = (0, 1)∪(1, 2). We have E◦ = E,
Ē = [0, 2], and

(
E

)◦
= (0, 2).

Another example is Q.

(f) Prove or disprove: E◦ = E.

Solution (sketch): This is false. Example: take E = (0, 1) ∪ {2}. Then E =
[0, 1] ∪ {2}, E◦ = (0, 1), and E

◦
= [0, 1].

The sets Q and {0} are also examples: in both cases, E◦ = ∅.

Problem 2.11: Which of the following are metrics on R?

(a) d1(x, y) = (x − y)2.

Solution (Sketch): No. The triangle inequality fails with x = 0, y = 2, and z = 4.

(b) d2(x, y) =
√|x − y|.

Solution (Sketch): Yes. Some work is needed to check the triangle inequality.

(c) d3(x, y) = |x2 − y2|.
Solution (Sketch): No. d3(1,−1) = 0.

(d) d4(x, y) = |x − 2y|.
Solution (Sketch): No. d4(1, 1) 6= 0. Also, d4(1, 6) 6= d4(6, 1).

(e) d5(x, y) =
|x − y|

1 + |x − y| .

Solution (Sketch): Yes. Some work is needed to check the triangle inequality. You
need to know that t 7→ t

1+t is nondecreasing on [0,∞), and that a, b ≥ 0 implies

a + b

1 + a + b
≤ a

1 + a
+

b

1 + b
.

Do the first by algebraic manipulation. The second is
a + b

1 + a + b
=

a

1 + a + b
+

b

1 + a + b
≤ a

1 + a
+

b

1 + b
.

(This is easier than what most people did the last time I assigned this problem.)
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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 2.14: Give an example of an open cover of the interval (0, 1) ⊂ R which
has no finite subcover.

Solution (sketch): {(1/n, 1) : n ∈ N}. (Note that you must show that this works.)

Problem 2.16: Regard Q as a metric space with the usual metric. Let E = {x ∈
Q : 2 < x2 < 3}. Prove that E is a closed and bounded subset of Q which is not
compact. Is E an open subset of Q?

Solution (sketch): Clearly E is bounded.
We prove E is closed. The fast way to do this is to note that

Q \ E = Q ∩
[(

−∞,−
√

3
)
∪

(
−
√

2,
√

2
)
∪

(√
3,∞

)]
,

and so is open by Theorem 2.30. To do it directly, suppose x ∈ Q is a limit point
of E which is not in E. Since we can’t have x2 = 2 or x2 = 3, we must have
x2 < 2 or x2 > 3. Assume x2 > 3. (The other case is handled similarly.) Let
r = |x| − √

3 > 0. Then every z ∈ Nr(x) satisfies

|z| ≥ |x| − |x − z| > |x| − r > 0,

which implies that z2 > (|x| − r)2 = 3. This shows that z 6∈ E, which contradicts
the assumption that x is a limit point of E.

The fast way to see that E is not compact is to note that it is a subset of R,
but is not closed in R. (See Theorem 2.23.) To prove this directly, show that, for
example, the sets {

y ∈ Q : 2 + 1
n < y2 < 3 − 1

n

}
form an open cover of E which has no finite subcover.

To see that E is open in Q, the fast way is to write

E = Q ∩
[(

−
√

3,−
√

2
)
∪

(√
2,−

√
3
)]

,

which is open by Theorem 2.30. It can also be proved directly.

Problem 2.19: Let X be a metric space, fixed throughout this problem.
(a) If A and B are disjoint closed subsets of X, prove that they are separated.

Solution (Sketch): We have A ∩ B = A ∩ B = A ∩ B = ∅ because A and B are
closed.
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(b) If A and B are disjoint open subsets of X, prove that they are separated.

Solution (Sketch): X \ A is a closed subset containing B, and hence containing B.
Thus A ∩ B = ∅. Interchanging A and B, it follows that A ∩ B = ∅.

(c) Fix x0 ∈ X and δ > 0. Set

A = {x ∈ X : d(x, x0) < δ} and B = {x ∈ X : d(x, x0) > δ}.
Prove that A and B are separated.

Solution (Sketch): Both A and B are open sets (proof!), and they are disjoint. So
this follows from Part (b).

(d) Prove that if X is connected and contains at least two points, then X is
uncountable.

Solution: Let x and y be distinct points of X. Let R = d(x, y) > 0. For each
r ∈ (0, R), consider the sets

Ar = {z ∈ X : d(z, x) < r} and Br = {z ∈ X : d(z, x) > r}.
They are separated by Part (c). They are not empty, since x ∈ Ar and y ∈ Br.
Since X is connected, there must be a point zr ∈ X \ (Ar ∪Br). Then d(x, zr) = r.

Note that if r 6= s, then d(x, zr) 6= d(x, zs), so zr 6= zs. Thus r 7→ zr defines an
injective map from (0, R) to X. Since (0, R) is not countable, X can’t be countable
either.

Problem 2.20: Let X be a metric space, and let E ⊂ X be a connected subset.
Is E necessarily connected? Is int(E) necessarily connected?

Solution to the first question (sketch): The set int(E) need not be connected. The
easiest example to write down is to take X = R2 and

E = {x ∈ R2 : ‖x − (1, 0)‖ ≤ 1} ∪ {x ∈ R2 : ‖x − (−1, 0)‖ ≤ 1}.
Then

int(E) = {x ∈ R2 : ‖x − (1, 0)‖ < 1} ∪ {x ∈ R2 : ‖x − (−1, 0)‖ < 1}.
This set fails to be connected because the point (0, 0) is missing. A more dramatic
example is two closed disks joined by a line, say

E = {x ∈ R2 : ‖x − (2, 0)‖ ≤ 1} ∪ {x ∈ R2 : ‖x − (−2, 0)‖ ≤ 1}(1)

∪ {(α, 0) ∈ R2 : − 3 ≤ α ≤ 3}.(2)

Then

int(E) = {x ∈ R2 : ‖x − (2, 0)‖ < 1} ∪ {x ∈ R2 : ‖x − (−2, 0)‖ < 1}.

Solution to the second question: If E is connected, then E is necessarily connected.
To prove this using Rudin’s definition, assume E = A∪B for separated sets A and
B; we prove that one of A and B is empty. The sets A0 = A ∩ E and B0 = B ∩ E
are separated sets such that E = A0∪B0. (They are separated because A0 ⊂ A and
B0 ⊂ B.) Because E is connected, one of A0 and B0 must be empty; without loss
of generality, A0 = ∅. Then A ⊂ E \ E. Therefore E ⊂ B. But then A ⊂ E ⊂ B.
Because A and B are separated, this can only happen if A = ∅.
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Alternate solution to the second question: If E is connected, we prove that E is
necessarily connected, using the traditional definition. Thus, assume that E = A∪B
for disjoint relatively open sets A and B; we prove that one of A and B is empty.
The sets A0 = A ∩ E and B0 = B ∩ E are disjoint relatively open sets in E such
that E = A0 ∪ B0. Because E is connected, one of A0 and B0 must be empty;
without loss of generality, A0 = ∅. Then A ⊂ E \ E and is relatively open in E.

Now let x ∈ A. Then there is ε > 0 such that Nε(x) ∩ E ⊂ A. So Nε(x) ∩ E ⊂
E \ E, which implies that Nε(x) ∩ E = ∅. This contradicts the fact that x ∈ E.
Thus A = ∅.

Problem 2.22: Prove that Rn is separable.

Solution (sketch): The subset Qn is countable by Theorem 2.13. To show that Qn

is dense, let x = (x1, . . . , xn) ∈ Rn and let ε > 0. Choose y1, . . . , yn ∈ Q such that
|yk−xk| < ε

n for all k. (Why is this possible?) Then y = (y1, . . . , yn) ∈ Qn∩Nε(x).

Problem 2.23: Prove that every separable metric space has a countable base.

Solution: Let X be a separable metric space. Let S ⊂ X be a countable dense
subset of X. Let

B = {N1/n(s) : s ∈ S, n ∈ N}.
Since N and S are countable, B is a countable collection of open subsets of X.

Now let U ⊂ X be open and let x ∈ U . Choose ε > 0 such that Nε(x) ⊂ U .
Choose n ∈ N such that 1

n < ε
2 . Since S is dense in X, there is s ∈ S ∩ N1/n(x),

that is, s ∈ S and d(s, x) < 1
n . Then x ∈ N1/n(s) and N1/n(s) ∈ B. It remains to

show that N1/n(s) ⊂ U . So let y ∈ N1/n(s). Then

d(x, y) ≤ d(x, s) + d(s, y) < 1
n + 1

n < ε,

so y ∈ Nε(x) ⊂ U .

Problem 2.25: Let K be a compact metric space. Prove that K has a countable
base, and that K is separable.

The easiest way to do this is actually to prove first that K is separable, and
then to use Problem 2.23. However, the direct proof that K has a countable base
is not very different, so we give it here. We actually give two versions of the proof,
which differ primarily in how the indexing is done. The first version is easier to
write down correctly, but the second has the advantage of eliminating some of the
subscripts, which can be important in more complicated situations. Note that the
second proof is shorter, even after the parenthetical remarks about indexing are
deleted from the first proof. Afterwards, we give a proof that every metric space
with a countable base is separable.

Solution 1: We prove that K has a countable base. For each n ∈ N, the open sets
N1/n(x), for x ∈ K, form an open cover of K. Since K is compact, this open cover
has a finite subcover, say

{N1/n(xn,1), N1/n(xn,2), . . . , N1/n(xn,kn
)}

for suitable xn,1, xn,2, . . . , xn,kn
∈ K. (Note: For each n, the collection of x’s is

different; therefore, they must be labelled independently by both n and a second
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parameter. The number of them also depends on n, so must be called kn, k(n), or
something similar.)

Now let

B = {N1/n(xn,j) : n ∈ N, 1 ≤ j ≤ kn}.
(Note that both subscripts are used here.) Then B is a countable union of finite
sets, hence countable. We show that B is a base for K.

Let U ⊂ K be open and let x ∈ U . Choose ε > 0 such that Nε(x) ⊂ U . Choose
n ∈ N such that 1

n < ε
2 . Since the sets

N1/n(xn,1), N1/n(xn,2), . . . , N1/n(xn,kn
)

cover K, there is j with 1 ≤ j ≤ kn such that x ∈ N1/n(xn,j). (Here we see why
the double indexing is necessary: the list of centers to choose from depends on n,
and therefore their names must also depend on n.) By definition, N1/n(xn,j) ∈ B.
It remains to show that N1/n(xn,j) ⊂ U . So let y ∈ N1/n(xn,j). Since x and y are
both in N1/n(xn,j), we have

d(x, y) ≤ d(x, xn,j) + d(xn,j , y) < 1
n + 1

n < ε,

so y ∈ Nε(x) ⊂ U .

Solution 2: We again prove that K has a countable base. For each n ∈ N, the open
sets N1/n(x), for x ∈ K, form an open cover of K. Since K is compact, this open
cover has a finite subcover. That is, there is a finite set Fn ⊂ K such that the sets
N1/n(x), for x ∈ Fn, still cover K. Now let

B = {N1/n(x) : n ∈ N, x ∈ Fn}.
Then B is a countable union of finite sets, hence countable. We show that B is a
base for K.

Let U ⊂ K be open and let x ∈ U . Choose ε > 0 such that Nε(x) ⊂ U . Choose
n ∈ N such that 1

n < ε
2 . Since the sets N1/n(y), for y ∈ Fn, cover K, there is

y ∈ Fn such that x ∈ N1/n(y). By definition, N1/n(y) ∈ B. It remains to show that
N1/n(y) ⊂ U . So let z ∈ N1/n(y). Since x and z are both in N1/n(y), we have

d(x, z) ≤ d(x, y) + d(y, z) < 1
n + 1

n < ε,

so z ∈ Nε(x) ⊂ U .

It remains to prove the following lemma.

Lemma: Let X be a metric space with a countable base. Then X is separable.

Proof: Let B be a countable base for X. Without loss of generality, we may assume
∅ 6∈ B. For each U ∈ B, choose an element xU ∈ U . Let S = {xU : U ∈ B}. Clearly
S is (at most) countable. We show it is dense. So let x ∈ X and let ε > 0. If
x ∈ S, there is nothing to prove. Otherwise Nε(x) is an open set in X, so there
exists U ∈ B such that x ∈ U ⊂ Nε(x). In particular, xU ∈ Nε(x). Since xU 6= x
and since ε > 0 is arbitrary, this shows that x is a limit point of S.
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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 3.1: Prove that if (sn) converges, then (|sn|) converges. Is the converse
true?

Solution (sketch): Use the inequality
∣∣|sn| − |s|∣∣ ≤ |sn − s| and the definition of the

limit. The converse is false. Take sn = (−1)n. (This requires proof, of course.)

Problem 3.2: Calculate limn→∞
(√

n2 + 1 − n
)
.

Solution (sketch):
√

n2 + 1 − n =
n√

n2 + 1 + n
=

1√
1 + 1

n2 + 1
→ 1

2
.

(Of course, the last step requires proof.)

Problem 3.3: Let s1 =
√

2, and recursively define

sn+1 =
√

2 +
√

sn

for n ∈ N. Prove that (sn) converges, and that sn < 2 for all n ∈ N.

Solution (sketch): By induction, it is immediate that sn > 0 for all n, so that sn+1

is always defined.
Next, we show by induction that sn < 2 for all n. This is clear for n = 1. The

computation for the induction step is

sn+1 =
√

2 +
√

sn ≤
√

2 +
√

2 < 2.

To prove convergence, it now suffices to show that (sn) is nondecreasing. (See
Theorem 3.14.) This is also done by induction. To start, observe that

s2 =
√

2 +
√

s1 =

√
2 +

√√
2 >

√
2.

The computation for the induction step is:

sn+1 − sn =
√

2 +
√

sn −
√

2 +
√

sn−1 =
√

sn −√
sn−1√

2 +
√

sn +
√

2 + √
sn−1

> 0.

Date: 22 October 2001.
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Problem 3.4: Let s1 = 0, and recursively define

sn+1 =
{

1
2 + sn n is even
1
2sn n is odd .

for n ∈ N. Find lim supn→∞ sn and lim infn→∞ sn.

Solution (sketch): Use induction to show that

s2m =
2m−1 − 1

2m
and s2m+1 =

2m − 1
2m

.

It follows that

lim sup
n→∞

sn = 1 and lim inf
n→∞ sn = 1

2 .

Problem 3.5: Let (an) and (bn) be sequences in R. Prove that

lim sup
n→∞

(an + bn) ≤ lim sup
n→∞

an + lim sup
n→∞

bn,

provided that the right hand side is defined, that is, not of the form ∞ − ∞ or
−∞ + ∞.

Four solutions are presented or sketched. The first is what I presume to be the
solution Rudin intended. The second is a variation of the first, which minimizes
the amount of work that must be done in different cases. The third shows what
must be done if one wants to work directly from Rudin’s definition. The fourth is
the “traditional” proof of the result, and proceeds via the traditional definition.

Solution 1 (sketch): We give a complete solution for the case

lim sup
n→∞

an ∈ (−∞,∞) and lim sup
n→∞

bn ∈ (−∞,∞).

One needs to consider several other cases, but the basic method is the same.
Define

a = lim sup
n→∞

an and b = lim sup
n→∞

bn.

Let c > a + b. We show that c is not a subsequential limit of (an + bn).
Let ε = 1

3 (c − a − b) > 0. Use Theorem 3.17 (b) of Rudin to choose N1 ∈ N
such that n ≥ N1 implies an < a + ε, and also to choose N2 ∈ N such that n ≥ N2

implies bn < b + ε. For n ≥ max(N1, N2), we then have an + bn < a + b + 2ε. It
follows that every subsequential limit l of (an + bn) satisfies l ≤ a + b + 2ε. Since
c = a+ b+3ε > a+ b+2ε, it follows that c is not a subsequential limit of (an + bn).

We conclude that a + b is an upper bound for the set of subsequential limits of
(an + bn). Therefore lim supn→∞(an + bn) ≤ a + b.

Solution 2: This solution is a variation of Solution 1, designed to handle all cases
at once. (You will see, though, that the case breakdown can’t be avoided entirely.)

As in Solution 1, define

a = lim sup
n→∞

an and b = lim sup
n→∞

bn,

and let c > a + b. We show that c is not a subsequential limit of (an + bn).
We first find r, s, t ∈ R such that

a < r, b < s, c > 0, and r + s + t ≤ c.
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If a = ∞ or b = ∞, this is vacuous, since no such c can exist. Next, suppose a and
b are finite. If c = ∞, then

r = a + 1, s = b + 1, and c = 1

will do. Otherwise, let ε = 1
3 (c − a − b) > 0, and take

r = a + ε, s = b + ε, and t = ε.

Finally, suppose at least one of a and b is −∞, but neither is ∞. Exchanging the
sequences if necessary, assume that a = −∞. Choose any s > b, choose any t > 0,
and set r = c − s − t, which is certainly greater than −∞.

Having r, s, and t, use Theorem 3.17 (b) of Rudin to choose N1 ∈ N such that
n ≥ N1 implies an < r, and also to choose N2 ∈ N such that n ≥ N2 implies
bn < s. For n ≥ max(N1, N2), we then have an + bn < r + s. It follows that every
subsequential limit l of (an + bn) satisfies l ≤ r + s. Since c = r + s + t > r + s, it
follows that c is not a subsequential limit of (an + bn).

We conclude that a + b is an upper bound for the set of subsequential limits of
(an + bn). Therefore lim supn→∞(an + bn) ≤ a + b.

Solution 3 (sketch): We only consider the case that both a = lim supn→∞ an and
b = lim supn→∞ bn are finite. Let s = lim supn→∞(an + bn). Then there is a
subsequence (ak(n) + bk(n)) of (an + bn) which converges to s. Further, (ak(n))
is bounded. (This sequence is bounded above by assumption, and it is bounded
below because (ak(n) + bk(n)) is bounded and (bk(n)) is bounded above.) So there
is a subsequence (al(n)) of (ak(n)) which converges. (That is, there is a strictly
increasing function n → r(n) such that the sequence (ak◦r(n)) converges, and we let
l = k ◦r : N → N. Note that if we used traditional subsequence notation, we would
have the subsequence j 7→ ankj

at this point.) Let c = limn→∞ al(n). By similar
reasoning to that given above, the sequence (bl(n)) is bounded. Therefore it has a
convergent subsequence, say (bm(n)). (With traditional subsequence notation, we
would now have the subsequence i 7→ ankji

. You can see why I don’t like traditional
notation.) Let d = limn→∞ bm(n). Since (am(n)) is a subsequence of (al(n)), we still
have limn→∞ am(n) = c. So limn→∞(am(n) + bm(n)) = c+d. But also am(n) + bm(n)

is a subsequence of (ak(n) + bk(n)), and so converges to s. Therefore s = c + d. We
have c ≤ a and d ≤ b by the definition of lim supn→∞ an and lim supn→∞ bn, giving
the result.

Solution 4 (sketch): First prove that

lim sup
n→∞

xn = lim
n→∞ sup

k≥n
xk.

(We will probably prove this result in class; otherwise, see Problem A in Home-
work 6. This formula is closer to the usual definition of lim supn→∞ xn, which
is

lim sup
n→∞

xn = inf
n∈N

sup
k≥n

xk,

using a limit instead of an infimum.)
Then prove that

sup
k≥n

(ak + bk) ≤ sup
k≥n

ak + sup
k≥n

bk,
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provided that the right hand side is defined. (For example, if both terms on the right
are finite, then the right hand side is clearly an upper bound for {ak + bk : k ≥ n}.)
Now take limits to get the result.

Remark: It is quite possible to have

lim sup
n→∞

(an + bn) < lim sup
n→∞

an + lim sup
n→∞

bn.

Problem 3.21: Prove the following analog of Theorem 3.10(b): If

E1 ⊃ E2 ⊃ E3 ⊃ · · ·
are closed bounded nonempty subsets of a complete metric space X, and if

lim
n→∞diam(En) = 0,

then
⋂∞

n=1 En consists of exactly one point.

Solution (sketch): It is clear that
⋂∞

n=1 En can contain no more than one point, so
we need to prove that

⋂∞
n=1 En 6= ∅.

For each n, choose some xn ∈ En. Then, for each n, we have

{xn, xn+1, . . . } ⊂ En,

whence

diam({xn, xn+1, . . . }) ≤ diam(En).

Therefore (xn) is a Cauchy sequence. Since X is complete, x = limn→∞ xn exists
in X. Since En is closed, we have x ∈ En for all n. So x ∈ ⋂∞

n=1 En.

Problem 3.22: Prove the Baire Category Theorem: If X is a complete metric
space, and if (Un) is a sequence of dense open subsets of X, then

⋂∞
n=1 Un is dense

in X.

Note: In this formulation, the statement is true even if X = ∅.

Solution (sketch): Let x ∈ X and let ε > 0. We recursively construct points xn ∈ X
and numbers εn > 0 such that

d(x, x1) <
ε

3
, ε1 <

ε

3
, εn → 0,

and

Nεn+1(xn+1) ⊂ Un+1 ∩ Nεn
(xn)

for all n. Problem 3.21 will then imply that
∞⋂

n=1

Nεn
(xn) 6= ∅.

(Note that diam
(
Nεn

(xn)
)
≤ 2εn.) One easily checks that

∞⋂
n=1

Nεn
(xn) ⊂ Nε(x) ∩

∞⋂
n=1

Un.

Thus, we will have shown that
⋂∞

n=1 Un contains points arbitrarily close to x,
proving density.
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Since U1 is dense in X, there is x1 ∈ U1 such that d(x, x1) < ε
3 . Choose ε1 > 0

so small that

ε1 < 1, ε1 <
ε

3
, and N2ε1(x1) ⊂ U1.

Then also

Nε1(x1) ⊂ U1.

Given εn and xn, use the density of Un+1 in X to choose

xn+1 ∈ Un+1 ∩ Nεn/2(xn).

Choose εn+1 > 0 so small that

εn+1 <
1

n + 1
, εn+1 <

εn

2
, and N2εn+1(xn+1) ⊂ Un+1.

Then also

Nεn+1(xn+1) ⊂ Un+1.

This gives all the required properties. (We have εn → 0 since εn < 1
n for all n.)

Note: We don’t really need to use Problem 3.21 here. If we always require
εn < 2−n in the argument above, we will get d(xn, xn+1) < 2−n−1 for all n. This
inequality implies that (xn) is a Cauchy sequence.
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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 3.6: Investigate the convergence or divergence of the following series.
(Note: I have supplied lower limits of summation, which I have chosen for max-

imum convenience. Of course, convergence is independent of the lower limit, pro-
vided none of the individual terms is infinite.)

(a)
∞∑

n=0

(√
n + 1 −√

n
)
.

Solution: The n-th partial sum is
(√

n + 1 −√
n
)

+
(√

n −√
n − 1

)
+ · · · +

(√
1 −

√
0
)

=
√

n + 1.

We have limn→∞
√

n = ∞, so limn→∞
√

n + 1 = ∞. Therefore the series diverges.

Remark: This sort of series is known as a telescoping series. The more interesting
cases of telescoping series are the ones that converge.

Alternate solution: We calculate:

√
n + 1 −√

n =
(√

n + 1 −√
n
) ·

(√
n + 1 +

√
n√

n + 1 +
√

n

)

=
1√

n + 1 +
√

n
≥ 1√

n + 1 +
√

n + 1
=

1
2
√

n + 1
.

Now
∑∞

n=1
1√
n

diverges by Theorem 3.28 of Rudin. Therefore
∑∞

n=1
1

2
√

n
diverges,

and hence so does
∑∞

n=0
1

2
√

n+1
. So the comparison test implies that

∞∑
n=0

(√
n + 1 −√

n
)

diverges.

(b)
∞∑

n=1

√
n + 1 −√

n

n
.
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Solution (sketch):
√

n + 1 −√
n

n
=

1
n

(√
n + 1 +

√
n
) ≤ 1

n3/2
.

Therefore the series converges by the comparison test.

(c)
∞∑

n=1

(
n
√

n − 1
)n

.

Solution: We use the root test (Theorem 3.33 of Rudin). With an = ( n
√

n − 1)n,
we have n

√
an = n

√
n− 1. Theorem 3.20 (c) of Rudin implies that limn→∞ n

√
n = 1.

Therefore limn→∞ n
√

an = 0. Since limn→∞ n
√

an < 1, convergence follows.

Alternate solution (sketch): Let xn = n
√

n − 1, so that(
n
√

n − 1
)n = xn

n and (1 + xn)n = n.

The binomial formula implies that

n = (1 + xn)n = 1 + nxn +
n(n − 1)

2
· x2

n + · · · ≥ n(n − 1)
2

· x2
n,

from which it follows that

0 ≤ xn ≤
√

2
n − 1

for n ≥ 2. Hence, for n ≥ 4,

(
n
√

n − 1
)n = xn

n ≤
(

2
n − 1

)n/2

≤
((

2
3

)1/2
)n

.

Since
(

2
3

)1/2
< 1, the series converges by the comparison test.

(d)
∞∑

n=0

1
1 + zn

,

for z ∈ C arbitrary.

Solution: We show that the series converges if and only if |z| > 1.
If z = exp(2πir), with r = k/l, with k an odd integer and l an even integer, then

zn = −1 for infinitely many values of n, so that infinitely many of the terms of the
series are undefined. Convergence is therefore clearly impossible.

In all other cases with |z| ≤ 1, we have

|1 + zn| ≤ 1 + |zn| ≤ 1 + 1 = 2,

which implies that ∣∣∣∣ 1
1 + zn

∣∣∣∣ ≥ 1
2
.

The terms thus don’t converge to 0, and again the series diverges.
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Now let |z| > 1. Then |1 + zn| ≥ |zn| − 1 = |z|n − 1. Choose N such that if
n ≥ N then |z|n > 2. For such n, we have

|z|n
2

> 1,

whence

|1 + zn| ≥ |z|n − 1 =
|z|n
2

+
( |z|n

2
− 1

)
>

|z|n
2

.

So ∣∣∣∣ 1
1 + zn

∣∣∣∣ ≤ 2 · 1
|z|n

for all n ≥ N . Since |z| > 1, the comparison test implies that
∞∑

n=0

1
1 + zn

converges.

Problem 3.7: Let an ≥ 0 for n ∈ N. Suppose
∑∞

n=1 an converges. Show that∑∞
n=1

1
n

√
an converges.

Solution (sketch): Using the inequality 2ab ≤ a2 + b2, we get
√

an

n
≤ 1

2

(
an +

1
n2

)
.

Since both
∑∞

n=1 an and
∑∞

n=1
1

n2 converge,
∑∞

n=1
1
n

√
an converges by the com-

parison test.

Problem 3.8: Let (bn) be a bounded monotone sequence in R, and let an ∈ C be
such that

∑∞
n=1 an converges. Prove that

∑∞
n=1 anbn converges.

Solution (sketch): We first reduce to the case limn→∞ bn = 0. Since (bn) is a
bounded monotone sequence, it follows that b = limn→∞ bn exists. Set cn = bn − b.
Then (cn) is a bounded monotone sequence with limn→∞ cn = 0. Since anbn =
ancn +anb and

∑∞
n=1 anb converges, it suffices to prove that

∑∞
n=1 ancn converges.

That is, we may assume that limn→∞ bn = 0.
With this assumption, if b1 ≥ 0, then b1 ≥ b2 ≥ · · · ≥ 0, so

∑∞
n=1 anbn converges

by Theorem 3.42 in the book. Otherwise, replace bn by −bn.

Problem 3.9: Find the radius of convergence of each of the following power series:

(a)
∞∑

n=0

n3zn.

Solution 1: Use Theorem 3.20 (c) of Rudin in the second step to get

lim sup
n→∞

n
√

n3 =
(

lim
n→∞

n
√

n
)3

= 1.

It now follows from Theorem 3.39 of Rudin that the radius of convergence is 1.

Solution 2: We show that the series converges for |z| < 1 and diverges for |z| > 1.
For |z| = 0, convergence is trivial.
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For 0 < |z| < 1, we use the ratio test (Theorem 3.34 of Rudin). We have

lim
n→∞

|(n + 1)3zn+1|
|n3zn| = lim

n→∞ |z|
(

n + 1
n

)3

= |z| lim
n→∞

(
1 +

1
n

)3

= |z|
(

1 + lim
n→∞

1
n

)3

= |z|.

For |z| < 1 the hypotheses of Theorem 3.34 (a) of Rudin are therefore satisfied, so
that the series converges.

For |z| > 1, we use the ratio test. The same calculation as in the case 0 < |z| < 1
gives

lim
n→∞

|(n + 1)3zn+1|
n3zn| = |z|.

Since |z| > 1, it follows that there is N such that for all n ≥ N we have∣∣∣∣ |(n + 1)3zn+1|
|n3zn| − |z|

∣∣∣∣ < 1
2 (|z| − 1).

In particular,

|(n + 1)3zn+1|
|n3zn| > 1

for n ≥ N . The hypotheses of Theorem 3.34 (b) of Rudin are therefore satisfied,
so that the series diverges.

Theorem 3.39 of Rudin implies that there is some number R ∈ [0,∞] such that
the series converges for |z| < R and diverges for |z| > R. We have therefore shown
that R = 1.

Solution 3: We calculate

lim
n→∞

|(n + 1)3|
|n3| = lim

n→∞

(
1 +

1
n

)3

=
(

1 + lim
n→∞

1
n

)3

= 1.

According to Theorem 3.37 of Rudin, we have

lim inf
n→∞

|(n + 1)3|
|n3| ≤ lim inf

n→∞
n
√
|n3| ≤ lim sup

n→∞
n
√
|n3| ≤ lim sup

n→∞
|(n + 1)3|

|n3| .

Therefore limn→∞ n
√|n3| exists and is equal to 1. It now follows from Theorem 3.39

of Rudin that the radius of convergence is 1.

(b)
∞∑

n=0

2n

n!
· zn.

Solution (sketch): Use the ratio test to show that the series converges for all z.
(See Solution 2 to Part (a).) So the radius of convergence is ∞.

Remark: Note that
∞∑

n=0

2n

n!
· zn = e2z.

(c)
∞∑

n=0

2n

n2
· zn.

Solution (sketch): Either the root or ratio test gives radius of convergence equal to
1
2 . (Use the methods of any of the three solutions to Part (a).)
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(d)
∞∑

n=0

n3

3n
· zn.

Solution (sketch): Either the root or ratio test gives radius of convergence equal to
3. (Use the methods of any of the three solutions to Part (a).)

Problem 3.10: Suppose the coefficients of the power series
∑∞

n=0 anzn are inte-
gers, infinitely many of which are nonzero. Prove that the radius of convergence is
at most 1.

Solution 1: For infinitely many n, the numbers an are nonzero integers, and there-
fore satisfy |an| ≥ 1. So, if |z| ≥ 1, then infinitely many of the terms anzn have
absolute value |anzn| ≥ |an| ≥ 1, and the terms of the series

∑∞
n=0 anzn don’t

approach zero. This shows that
∑∞

n=0 anzn diverges for |z| ≥ 1, and therefore that
its radius of convergence is at most 1.

Solution 2 (Sketch): There is a subsequence (ak(n)) of (an) such that |ak(n)| ≥ 1
for all n. So k(n)

√|ak(n)| ≥ 1 for all n, whence lim supn→∞
n
√|an| ≥ 1.

Remarks: (1) It is quite possible that infinitely many of the an are zero, so that
lim infn→∞ n

√|an| could be zero. For example, we could have an = 0 for all odd n.
(2) In Solution 2, the expression n

√|ak(n)|, and its possible limit as n → ∞, have
no relation to the radius of convergence.

Problem 3.16: Fix α > 0. Choose x1 >
√

α, and recursively define

xn+1 =
1
2

(
xn +

α

xn

)
.

(a) Prove that (xn) is nonincreasing and limn→∞ xn =
√

α.

Solution (sketch): Using the inequality a2 + b2 ≥ 2ab, and assuming xn > 0, we get

xn+1 =
1
2

(
xn +

α

xn

)
≥ √

xn ·
√

α

xn
=

√
α.

This shows (using induction) that xn >
√

α for all n. Next,

xn − xn+1 =
x2

n − α

2xn
> 0.

Thus (xn) is nonincreasing. We already know that this sequence is bounded below
(by α), so x = limn→∞ xn exists. Letting n → ∞ in the formula

xn+1 =
1
2

(
xn +

α

xn

)
.

gives

x =
1
2

(
x +

α

x

)
.

This equation implies x = ±√
α, and we must have x =

√
α because (xn) is bounded

below by
√

α > 0.

(b) Set εn = xn −√
α, and show that

εn+1 =
ε2

n

2xn
<

ε2
n

2
√

α
.
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Further show that, with β = 2
√

α,

εn+1 < β

(
ε1

β

)2n

.

Solution (sketch): Prove all the relations at once by induction on n, together with

the statement εn+1 > 0. For n = 1, the relation εn+1 =
ε2

n

2xn
is just algebra, the

inequality
ε2

n

2xn
<

ε2
n

2
√

α
follows from x1 >

√
α, and the inequality εn+1 < β

(
ε1

β

)2n

is just a rewritten form of
ε2

n

2xn
<

ε2
n

2
√

α
. The statement εn+1 > 0 is clear from

εn+1 =
ε2

n

2xn
and x1 > 0.

Now assume all this is known for some value of n. As before, the relation

εn+1 =
ε2

n

2xn
is just algebra, and implies that εn+1 > 0. (We know that xn =

√
α+εn >

√
α > 0.) Since εn > 0, we have xn >

√
α, so the inequality

ε2
n

2xn
<

ε2
n

2
√

α
follows. To get the other inequality, write

εn+1 <
ε2

n

2
√

α
=

ε2
n

β
<

(
1
β

)
·
[
β ·

(
ε1

β

)2n−1]2

= β

(
ε1

β

)2n

.

(c) Specifically take α = 3 and x1 = 2. show that
ε1

β
<

1
10

, ε5 < 4 · 10−16, and ε6 < 4 · 10−32.

Solution (sketch): This is just calculation.
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Generally, a “solution” is something that would be acceptable if turned in in the
form presented here, although the solutions given are often close to minimal in this
respect. A “solution (sketch)” is too sketchy to be considered a complete solution
if turned in; varying amounts of detail would need to be filled in.

Problem 3.23: Let X be a metric space, and let (xn)n∈N and (yn)n∈N be Cauchy
sequences in X. Prove that limn→∞ d(xn, yn) exists.

Solution (sketch): Since R is complete, it suffices to show that (d(xn, yn))n∈N is
a Cauchy sequence. Let ε > 0. Choose N so large that if m, n ≥ N , then both
d(xm, xn) < ε

2 and d(ym, yn) < ε
2 . Then check that, for such m and n,

|d(xm, ym) − d(xn, yn)| ≤ d(xm, xn) + d(ym, yn) < ε.

Problem 3.24: Let X be a metric space.
(a) Let (xn)n∈N and (yn)n∈N be Cauchy sequences in X. We say they are

equivalent, and write (xn)n∈N ∼ (yn)n∈N, if limn→∞ d(xn, yn) = 0. Prove that
this is an equivalence relation.

Solution (sketch): That (xn)n∈N ∼ (xn)n∈N, and that (xn)n∈N ∼ (yn)n∈N implies
(yn)n∈N ∼ (xn)n∈N, are obvious. For transitivity, assume (xn)n∈N ∼ (yn)n∈N

and (yn)n∈N ∼ (zn)n∈N. Then (xn)n∈N ∼ (zn)n∈N follows by taking limits in the
inequality

0 ≤ d(xn, zn) ≤ d(xn, yn) + d(yn, zn).

(b) Let X∗ be the set of equivalence classes from Part (a). Denote by [(xn)n∈N]
the equivalence class in X∗ of the Cauchy sequence (xn)n∈N. If (xn)n∈N and
(yn)n∈N are Cauchy sequences in X, set

∆0((xn)n∈N, (yn)n∈N) = lim
n→∞ d(xn, yn).

Prove that ∆0((xn)n∈N, (yn)n∈N) only depends on [(xn)n∈N] and [(yn)n∈N]. More-
over, show that the formula

∆([(xn)n∈N], [(yn)n∈N]) = ∆0((xn)n∈N, (yn)n∈N)

defines a metric on X∗.

Solution (sketch): It is easy to check that ∆0 is a semimetric, that is, it satisfies all
the conditions for a metric except that possibly

∆0((xn)n∈N, (yn)n∈N) = 0

Date: 5 November 2001.
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without having (xn)n∈N = (yn)n∈N. (For example,

∆0((xn)n∈N, (zn)n∈N) = lim
n→∞ d(xn, zn) ≤ lim

n→∞ d(xn, yn) + lim
n→∞ d(yn, zn)

= ∆0((xn)n∈N, (yn)n∈N) + ∆0((yn)n∈N, (zn)n∈N)

because d(xn, zn) ≤ d(xn, yn) + d(yn, zn); the other properties are proved simi-
larly.) We further note that, by definition, (xn)n∈N ∼ (yn)n∈N if and only if
∆0((xn)n∈N, (yn)n∈N) = 0.

Now we prove that ∆0((xn)n∈N, (yn)n∈N) only depends on

[(xn)n∈N] and [(yn)n∈N].

Let (xn)n∈N ∼ (rn)n∈N and (yn)n∈N ∼ (sn)n∈N. Then, by the previous paragraph,

∆0((xn)n∈N, (yn)n∈N)

≤ ∆0((xn)n∈N, (rn)n∈N) + ∆0((rn)n∈N, (sn)n∈N) + ∆0((sn)n∈N, (yn)n∈N)

= 0 + ∆0((rn)n∈N, (sn)n∈N) + 0 = ∆0((rn)n∈N, (sn)n∈N);

similarly

∆0((rn)n∈N, (sn)n∈N) ≤ ∆0((xn)n∈N, (yn)n∈N).

Thus

∆0((rn)n∈N, (sn)n∈N) = ∆0((xn)n∈N, (yn)n∈N).

The previous paragraph implies that ∆ is well defined. It is now easy to check
that ∆ satisfies all the conditions for a metric except that possibly

∆([(xn)n∈N], [(yn)n∈N]) = 0

without having [(xn)n∈N] = [(yn)n∈N]. (For example,

∆([(xn)n∈N], [(zn)n∈N]) = ∆0((xn)n∈N, (zn)n∈N)

≤ ∆0((xn)n∈N, (yn)n∈N) + ∆0((yn)n∈N, (zn)n∈N)

= ∆([(xn)n∈N], [(yn)n∈N]) + ∆0([(yn)n∈N], [(zn)n∈N]);

the other properties are proved similarly.)
Finally, if ∆([(xn)n∈N], [(yn)n∈N]) = 0 then it follows from the definition of

(xn)n∈N ∼ (yn)n∈N that we actually do have [(xn)n∈N] = [(yn)n∈N]. So ∆ is a
metric.

(c) Prove that X∗ is complete in the metric ∆.

The basic idea is as follows. We start with a Cauchy sequence in X∗, which is a
sequence of (equivalence classes of) Cauchy sequences in X. The limit is supposed
to be (the equivalence class of) another Cauchy sequence in X. This sequence is
constructed by taking suitable terms from the given sequences. The choices get a
little messy. Afterwards, we will give a different proof.

Solution (sketch): Let (ak)k∈N be a Cauchy sequence in X∗; we show that it
converges. Each ak is an equivalence class of Cauchy sequences in X. We may
therefore write ak = [(x(k)

n )n∈N], where each (x(k)
n )n∈N is a Cauchy sequence in

X. The limit we construct in X∗ will have the form a = [(x(f(n))
n )] for a suitable

function f : N → N.
We recursively construct

M(1) < M(2) < M(3) < · · · and N(1) < N(2) < N(3) < · · ·



MATH 413 [513] (PHILLIPS) SOLUTIONS TO HOMEWORK 6 3

such that
(1) ∆(ak, al) < 2−r−2 for k, l ≥ M(r).
(2) For all k, l ≤ M(r) and m ≥ N(r), we have d(x(k)

m , x
(l)
m ) < ∆(ak, al) +

2−r−2.
(3) For all k ≤ M(r) and m, n ≥ N(r), we have d(x(k)

m , x
(k)
n ) < 2−r−2.

To do this, first use the fact that (ak)k∈N is a Cauchy sequence to find M(1).
Then choose N(1) large enough to satisfy (2) and (3) for r = 1; this can be done
because limm→∞ d(x(k)

m , x
(l)
m ) = ∆(ak, al) (for (2)) and because (x(k)

n )n∈N is Cauchy
(for (3)), and using the fact that there are only finitely many pairs (k, l) to consider
in (2) and only finitely many k to consider in (3). Next, use the fact that (ak)k∈N

is a Cauchy sequence to find M(2), and also require M(2) > M(1). Choose N(2) >
N(1) by the same reasoning as used to get N(1). Proceed recursively.

We now take a to be the equivalence class of the sequence

x
(1)
1 , . . . , x

(1)
N(1)−1, x

(M(1))
N(1) , . . . , x

(M(1))
N(2)−1, x

(M(2))
N(2) , . . . , x

(M(2))
N(3)−1, x

(M(3))
N(3) , . . . .

That is, the function f above is given by f(n) = M(r) for N(r) ≤ n ≤ N(r+1)−1.
We show that (x(f(n))

n )n∈N is Cauchy. First, estimate:

d
(
x

(M(r))
N(r) , x

(M(r+1))
N(r+1)

)
≤ d

(
x

(M(r))
N(r) , x

(M(r))
N(r+1)

)
+ d

(
x

(M(r))
N(r+1), x

(M(r+1))
N(r+1)

)

< 2−r−2 + ∆(aM(r), aM(r+1)) + 2−r−3

< 2−r−2 + 2−r−2 + 2−r−3 < 3 · 2−r−2.

The first term on the second line is gotten from (2) above, because M(r) ≤ M(r)
and N(r), N(r + 1) ≥ N(r). The other two terms on the second line are gotten
from (3) above (for r + 1)), because M(r), M(r + 1) ≤ M(r + 1) and N(r + 1) ≥
N(r + 1). The estimate used to get the third line comes from (1) above. Then use
induction to show that s ≥ r implies

d
(
x

(M(r))
N(r) , x

(M(s))
N(s)

)
≤ 3[2−r−2 + 2−r−3 + · · · + 2−s−1].

Now let n ≥ N(r) be arbitrary. Choose s ≥ r such that N(s) ≤ n ≤ N(s+1)−1.
Then f(n) = M(s), so

d
(
x(f(n))

n , x
(M(s))
N(s)

)
= d

(
x(M(s))

n , x
(M(s))
N(s)

)
< 3 · 2−s−2,

using (3) above with r = s and k = M(s). Therefore

d
(
x

(M(r))
N(r) , x(f(n))

n

)
< 3[2−r−2 + 2−r−3 + · · · + 2−s−1 + 2−s−2] < 3 · 2−r−1.

Finally, if m, n ≥ N(r) are arbitrary, then

d
(
x(f(m))

m , x(f(n))
n

)
≤ d

(
x(f(m))

m , x
(M(r))
N(r)

)
+ d

(
x

(M(r))
N(r) , x(f(n))

n

)
< 3 · 2−r.

This is enough to prove that (x(f(n))
n )n∈N is Cauchy.

It remains to show that ∆(ak, a) → 0. Fix k, choose r with M(r−1) < k ≤ M(r),
and let n ≥ N(r). From the previous paragraph we have

d
(
x

(M(r))
N(r) , x(f(n))

n

)
< 3 · 2−r−1.

Since n, N(r) ≥ N(r) and k ≤ M(r), condition (3) above gives

d
(
x(k)

n , x
(k)
N(r)

)
< 2−r−2.
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Furthermore,

d
(
x

(k)
N(r), x

(M(r))
N(r)

)
< ∆(ak, aM(r)) + 2−r−2 < 2−r−1 + 2−r−2,

where the first step uses (2) above and the inequalities k, M(r) ≤ M(r) and N(r) ≥
N(r), while the second step uses (1) above and the inequality r ≥ M(r − 1).
Combining these estimates using the triangle inequality, we get

d(x(k)
n , x(f(n))

n ) < 2−r−2 + [2−r−1 + 2−r−2] + 3 · 2−r−1 < 2−r+2.

Therefore

∆(ak, a) = lim
n→∞ d(x(k)

n , x(f(n))
n ) ≤ 2−r+2

for M(r − 1) < k ≤ M(r). Since M(r) → ∞, this implies that ∆(ak, a) → 0.

Here is a perhaps slicker way to do the same thing, although it isn’t any shorter.
Essentially, by passing to suitable subsequences, we can take the representative of
the limit to be the diagonal sequence, that is, f(n) = n in the proof above. The
construction requires the following lemmas.

Lemma 1. Let (xn)n∈N be a Cauchy sequence in a metric space Y . Then there is
a subsequence (xk(n))n∈N of (xn)n∈N such that d(xk(n+1), xk(n)) < 2−n for all n.

Proof (sketch): Choose k(n) recursively to satisfy k(n + 1) > k(n) and d(xl, xm) <
2−n for all l, m ≥ k(n).

Lemma 2. Let (xn)n∈N be a sequence in a metric space Y . Suppose
∞∑

k=1

d(xk, xk+1)

converges. Then (xn)n∈N is Cauchy. Moreover, if n > m then

d(xm, xn) ≤
n−1∑
k=m

d(xk, xk+1).

Proof (sketch): The Cauchy criterion for convergence of a series implies that for
all ε > 0, there is N such that if n > m ≥ N , then

∑n−1
k=m d(xk, xk+1) < ε. But

the triangle inequality gives d(xm, xn) ≤ ∑n−1
k=m d(xk, xk+1). Thus if n > m ≥ N

then d(xm, xn) < ε. The case m > n ≥ N is handled by symmetry, and the case
n = m ≥ N is trivial.

Lemma 3. Let (xn)n∈N be a Cauchy sequence in a metric space Y , and let
(xk(n))n∈N be a subsequence. Then limn→∞ d(xn, xk(n)) = 0.

Proof (sketch): Let ε > 0. Choose N such that if m, n ≥ N then d(xm, xn) < ε. If
n ≥ N , then k(n) ≥ n ≥ N , so d(xn, xk(n)) < ε.

Lemma 4. Let (xn)n∈N be a Cauchy sequence in a metric space Y . If (xn)n∈N

has a convergent subsequence, then (xn)n∈N converges.

Proof (sketch): Let (xk(n))n∈N be a subsequence with limit x. Then, using
Lemma 3,

d(xn, x) ≤ d(xn, xk(n)) + d(xk(n), x) → 0.
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Proof of the result: Let (ak) be a Cauchy sequence in X∗; we show that it converges.
Use Lemma 1 to choose a subsequence (ar(k))k∈N such that

∆(ar(k), ar(k+1)) < 2−k

for all k. By Lemma 4, it suffices to show that (ar(k))k∈N converges. Without
loss of generality, therefore, we may assume the original sequence (ak)k∈N satisfies
∆(ak, ak+1) < 2−k for all k.

Each ak is an equivalence class of Cauchy sequences in X. By Lemmas 1 and 3,
we may write ak = [(x(k)

n )n∈N], with d(x(k)
n , x

(k)
n+1) < 2−n for all n.

We now estimate d(x(k)
n , x

(k+1)
n ). For ε > 0, we can find m > n such that

d(x(k)
m , x(k+1)

m ) < ∆([(x(k)
n )n∈N], [(x(k+1)

n )n∈N]) + ε

= ∆(ak, ak+1) + ε < 2−k + ε.

Now, using Lemma 2,

d(x(k)
n , x(k)

m ) < 2−n + 2−n−1 + · · · + 2−m+1 < 2−n+1.

The same estimate holds for d(x(k+1)
n , x

(k+1)
m ). Therefore

d(x(k)
n , x(k+1)

n ) ≤ d(x(k)
n , x(k)

m ) + d(x(k)
m , x(k+1)

m ) + d(x(k+1)
m , x(k+1)

n )

< 2−n+1 + ε + 2−n+1.

Since ε > 0 is arbitrary, this gives

d(x(k)
n , x(k+1)

n ) ≤ 2−n+2

for all n and k.
Now define yn = x

(n)
n . First, observe that

d(yn, yn+1) ≤ d(x(n)
n , x

(n)
n+1) + d(x(n)

n+1, x
(n+1)
n+1 )

≤ 2−n + 2−n+1 < 2−n+2.

Therefore (yn)n∈N is Cauchy, by Lemma 2. So a = [(yn)n∈N] ∈ X∗.
It remains to show that ∆(an, a) → 0. If m > n, then we use the estimates

d(x(n)
n , x

(n)
m ) < 2−n+1 (as above) and d(yn, ym) < 2−n+3 (obtained similarly, using

Lemma 2 again) to get

d(x(n)
m , ym) ≤ d(x(n)

m , x(n)
n ) + d(yn, ym) < 2−n+4.

In particular,

∆(an, a) = lim
m→∞ d(x(n)

m , ym) ≤ 2−n+4.

Thus ∆(an, a) → 0, as desired.

(d) Define f : X → X∗ by f(x) = [(x, x, x, . . . )]. Prove that f is isometric, that
is, that ∆(f(x), f(y)) = d(x, y) for all x, y ∈ X.

Solution (sketch): This is immediate.

(e) Prove that f(X) is dense in X∗, and that f(X) = X∗ if X is complete.

Solution (sketch): To prove density, let [(xn)n∈N] ∈ X∗, and let ε > 0. Choose N
such that if m, n ≥ N then d(xm, xn) < ε

2 . Then

∆(f(xN ), [(xn)n∈N]) = lim
n→∞ d(xN , xn),
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which is at most ε
2 because d(xN , xn) < ε

2 for n ≥ N . (Note that the limit exists
by Problem 3.23.) In particular, ∆(f(xN ), [(xn)n∈N]) < ε.

Now assume X is complete. Then f(X) is complete, because f is isometric.
Therefore it suffices to prove that a complete subset of a metric space is closed. (A
subset of a metric space which is both closed and dense must be equal to the whole
space.)

Accordingly, let Y be a metric space, and let E ⊂ Y be a complete subset. Let
(xn)n∈N be a sequence in E which converges to some point y ∈ Y ; we show y ∈ E.
(By a theorem proved in class, this is sufficient to verify that E is closed.) Now
(xn)n∈N converges, and is therefore Cauchy. Since E is complete, there is x ∈ E
such that xn → x. By uniqueness of limits, we have x = y. Thus y ∈ E, as desired.

Problem A. Prove the equivalence of four definitions of the lim sup of a sequence.
That is, prove the following theorem.

Theorem. Let (an) be a sequence in R. Let E be the set of all subsequential
limits of (an) in [−∞,∞]. Define numbers r, s, t, and u ∈ [−∞,∞] as follows:

(1) r = sup(E).
(2) s ∈ E and for every x > s, there is N ∈ N such that n ≥ N implies an < x.
(3) t = infn∈N supk≥n ak.
(4) u = limn→∞ supk≥n ak.

Prove that s is uniquely determined by (2), that the limit in (4) exists in [−∞,∞],
and that r = s = t = u.

Note: You do not need to repeat the part that is done in the book (Theo-
rem 3.17).

Solution: Theorem 3.17 of Rudin implies that s is uniquely determined by (2) and
that s = r.

Define bn = supk≥n ak, which exists in (−∞,∞]. We clearly have

{ak : k ≥ n + 1} ⊂ {ak : k ≥ n},
so that supk≥n+1 ak ≤ supk≥n ak. This shows that the sequence in (4), which has
values in (−∞,∞], is nonincreasing. Therefore it has a limit u ∈ [−∞,∞], and
moreover

u = inf
n∈N

bn = inf
n∈N

sup
k≥n

ak = t.

We finish the proof by showing that s ≤ t and t ≤ r.
To show that s ≤ t, let x > s; we show that x > t. Choose y with x > y > s. By

the definition of s, there is N ∈ N such that n ≥ N implies an < y. This implies
that y ≥ supn≥N an, so that x > supn≥N an. It follows that x is not a lower bound
for {supn≥N an : N ∈ N}. So x > t by the definition of a greatest lower bound.

To show that t ≥ r, let x > t; we show that x ≥ r. Since x > t, it follows
that x is not a lower bound for the set {supn≥N an : N ∈ N}. Accordingly, there is
N0 ∈ N such that supn≥N0

an < x. In particular, n ≥ N0 implies an < x. Now let
(ak(n)) be any convergent subsequence of (an). Choose N ∈ N such that n ≥ N
implies k(n) ≥ N0. Then n ≥ N implies ak(n) < x, from which it follows that
limn→∞ ak(n) ≤ x. This shows that x is an upper bound for the set E, so that
x ≥ sup(E) = r.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in.

Problem 4.1: Let f : R → R satisfy limh→0[f(x+h)−f(x−h)] = 0 for all x ∈ R.
Is f necessarily continuous?

Solution (Sketch): No. The simplest counterexample is

f(x) =
{

0 x 6= 0
1 x = 0 .

More generally, let f0 : R → R be continuous. Fix x0 ∈ R, and fix y0 ∈ R with
y0 6= f0(x0). Then the function given by

f(x) =
{

f0(x) x 6= x0

y0 x = x0

is a counterexample. There are even examples with a nonremovable discontinuity,
such as

f(x) =
{ 1

|x| x 6= 0
0 x = 0

.

Problem 4.3: Let X be a metric space, and let f : X → R be continuous. Let
Z(f) = {x ∈ X : f(x) = 0}. Prove that Z(f) is closed.

Solution 1: The set Z(f) is equal to f−1({0}). Since {0} is a closed subset of R
and f is continuous, it follows from the Corollary to Theorem 4.8 of Rudin that
Z(f) is closed in X.

Solution 2: We show that X \ Z(f) is open. Let x ∈ X \ Z(f). Then f(x) 6= 0.
Set ε = 1

2 |f(x)| > 0. Choose δ > 0 such that y ∈ X and d(x, y) < δ imply
|f(x) − f(y)| < ε. Then f(y) 6= 0 for y ∈ Nδ(x). Thus Nδ(x) ⊂ X \ Z(f) with
δ > 0. This shows that X \ Z(f) is open.

Note that we really could have taken ε = |f(x)|. Also, there is no need to do
anything special if Z(f) is empty, or even to mention the that case separately: the
argument works (vacuously) just as well in that case.

Solution 3 (sketch): We show Z(f) contains all its limit points. Let x be a limit
point of Z(f). Then there is a sequence (xn) in Z(f) such that xn → x. Since f is
continuous and f(xn) = 0 for all n, we have

f(x) = lim
n→∞ f(xn) = 0.

So x ∈ Z(f).

Date: 12 Nov. 2001.
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Again, there is no need to treat separately the case in which Z(f) has no limit
points.

Problem 4.4: Let X and Y be metric spaces, and let f, g : X → Y be continuous
functions. Let E ⊂ X be dense. Prove that f(E) is dense in f(X). Prove that if
f(x) = g(x) for all x ∈ E, then f = g.

Solution: We first show that f(E) is dense in f(X). Let y ∈ f(X). Choose x ∈ X
such that f(x) = y. Since E is dense in X, there is a sequence (xn) in E such that
xn → x. Since f is continuous, it follows that f(xn) → f(x). Since f(xn) ∈ f(E)
for all n, this shows that x ∈ f(E).

Now assume that f(x) = g(x) for all x ∈ E; we prove that f = g. It suffices to
prove that F = {x ∈ X : f(x) = g(x)} is closed in X, and we prove this by showing
that X \ F is open. Thus, let x0 ∈ F . Set ε = 1

2d(f(x0), g(x0)) > 0. Choose
δ1 > 0 such that if x ∈ X satisfies d(x, x0) < δ, then d(f(x), f(x0)) < ε. Choose
δ2 > 0 such that if x ∈ X satisfies d(x, x0) < δ, then d(g(x), g(x0)) < ε. Set
δ = min(δ1, δ2). If d(x, x0) < δ, then (using the triangle inequality several times)

d(f(x), g(x)) ≥ d(f(x0), g(x0)) − d(f(x), f(x0)) − d(g(x), g(x0))

> d(f(x0), g(x0)) − ε − ε = 0.

So f(x) 6= g(x). This shows that Nδ(x0) ⊂ X \ F , so that X \ F is open.

The second part is closely related to Problem 4.3. If Y = R (or Cn, or . . . ),
then {x ∈ X : f(x) = g(x)} = Z(f − g), and f − g is continuous when f and
g are. For general Y , however, this solution fails, since f − g won’t be defined.
The argument given is the analog of Solution 2 to Problem 4.3. The analog of
Solution 3 to Problem 4.3 also works the same way: F is closed because if xn → x
and f(xn) = g(xn) for all n, then limn→∞ f(xn) = limn→∞ g(xn). The analog of
Solution 1 can actually be patched in the following way (using the fact that the
product of two metric spaces is again a metric space): Define h : X → Y × Y by
h(x) = (f(x), g(x)). Then h is continuous and D = {(y, y) : y ∈ Y } ⊂ Y × Y is
closed, so {x ∈ X : f(x) = g(x)} = h−1(D) is closed.

Problem 4.6: Let E ⊂ R be compact, and let f : E → R be a function. Prove
that f is continuous if and only if the graph G(f) = {(x, f(x)) : x ∈ E} ⊂ R2 is
compact.

Remark: This statement is my interpretation of what was intended. Normally
one would assume that E is supposed to be a compact subset of an arbitrary metric
space X, and that f is supposed to be a function from E to some other metric space
Y . (In fact, one might as well assume E = X.) The proofs are all the same (with
one exception, noted below), but require the notion of the product of two metric
spaces. We make X × Y into a metric space via the metric

d((x1, y1), (x2, y2)) =
√

d(x1, x2)2 + d(y1, y2)2;

there are other choices which are easier to deal with and work just as well.

We give several solutions for each direction. We first show that if f is continuous
then G(f) is compact.
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Solution 1 (Sketch): The map x 7→ (x, f(x)) is easily checked to be continuous,
and G(f) is the image of the compact set E under this map, so G(f) is compact
by Theorem 4.14 of Rudin.

Solution 2 (Sketch): The graph of a continuous function is closed, as can be verified
by arguments similar to those of Solutions 2 and 3 to Problem 4.3. The graph is a
subset of E×f(E). This set is bounded (clear) and closed (check this!) in R2, and is
therefore compact. (Note: This does not work for general metric spaces. However,
it is true in general that the product of two compact sets, with the product metric,
is compact.) Therefore the closed subset G(f) is compact.

Now we show that if G(f) is compact then f is continuous.

Solution 1 (Sketch): We know that the function g0 : E×R → E, given by g0(x, y) =
x, is continuous. (See Example 4.11 of Rudin.) Therefore g = g0|G(f) : G(f) → E
is continuous. Also g is bijective (because f is a function). Since G(f) is compact,
it follows (Theorem 4.17 of Rudin) that g−1 : E → G(f) is continuous. Further-
more, the function h : E × R → R, given by h(x, y) = y, is continuous, again by
Example 4.11 of Rudin. Therefore f = h ◦ g−1 is continuous.

Solution 2 (Sketch): Let (xn) be a sequence in E with xn → x. We show that
f(xn) → f(x). We do this by showing that every subsequence of (f(xn)) has in
turn a subsubsequence which converges to f(x). (To see that this is sufficient, let
(yn) be a sequence in some metric space Y , let y ∈ Y , and suppose that (yn) does not
converge to y. Find a subsequence (yk(n)) of (yn) such that infn∈N d(yk(n), y) > 0.
Then no subsequence of (yk(n)) can converge to y.)

Accordingly, let (f(xk(n))) be a subsequence of (f(xn)). Let (xk(n)) be the cor-
responding subsequence of (xn). If (xk(n)) is eventually constant, then already
f(xk(n)) → f(x). Otherwise, {xk(n) : n ∈ N} is an infinite set, whence so is
{(xk(n), f(xk(n))) : n ∈ N} ⊂ G(f). Since G(f) is compact, this set has a limit
point, say (a, b). It is easy to check that a must equal x. Since G(f) is compact, it
is closed, so b = f(x). Since (a, b) is a limit point of G(f), there is a subsequence
of

(
(xk(n), f(xk(n)))

)
which converges to (a, b). Using continuity of projection onto

the second coordinate, we get a subsequence of
(
f(xk(n))

)
which converges to f(x).

Solution 3: We first observe that the range Y = {f(x) : x ∈ E} of f is compact.
Indeed, Y is the image of G(f) under the map (x, y) 7→ y, which is continuous by
Example 4.11 of Rudin. So Y is compact by Theorem 4.14 of Rudin. It suffices to
prove that f is continuous as a function from E to Y , as can be seen, for example,
from the sequential criterion for limits (Theorem 4.2 of Rudin).

Now let x0 ∈ E and let V ⊂ Y be an open set containing f(x0). We must find
an open set U ⊂ E containing x0 such that f(U) ⊂ V . For each y ∈ Y \ V , the
point (x0, y) is not in the closed set G ⊂ E × R. Therefore there exist open sets
Ry ⊂ E containing x0 and Sy ⊂ Y containing y such that (Ry × Sy) ∩ G = ∅.
Since Y \ V is compact, there are n and y(1), . . . , y(n) ∈ Y \ V such that the sets
Sy(1), . . . , Sy(n) cover Y \ V . Set U = Ry(1) ∩ · · · ∩ Ry(n) to obtain f(U) ⊂ V .
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Problem 4.7: Define f, g : R2 → R by

f(x, y) =




xy2

x2 + y4
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)

and

g(x, y) =




xy2

x2 + y6
(x, y) 6= (0, 0)

0 (x, y) = (0, 0)
.

Prove:
(1) f is bounded.
(2) f is not continuous at (0, 0).
(3) The restriction of f to every straight line in R2 is continuous.
(4) g is not bounded on any neighborhood of (0, 0).
(5) g is not continuous at (0, 0).
(6) The restriction of g to every straight line in R2 is continuous.

Solution (Sketch): (1) We use the inequality 2ab ≤ a2 + b2 (which follows from
a2 + b2 − 2ab = (a − b)2 ≥ 0). Taking a = |x| and b = y2, we get 2|x|y2 ≤ x2 + y4,
which implies |f(x, y)| ≤ 1

2 for all (x, y) ∈ R2.
(2) Set xn = 1

n2 and yn = 1
n . Then (xn, yn) → (0, 0), but f(xn, yn) = 1

2 6→ 0 =
f(0, 0).

(3) Clearly f is continuous on R2 \ {(0, 0)}, so the restriction of f to every
straight line in R2 not going through (0, 0) is clearly continuous. Furthermore, the
restriction of f to the y-axis is given by (0, y) 7→ 0, which is clearly continuous.

Every other line has the form y = ax for some a ∈ R. We have

f(x, ax) =
a2x

1 + a4x2

for all x ∈ R, so the restriction of f to this line is given by the continuous function

(x, y) 7→ a2x

1 + a4x2
.

(4) Set xn = 1
n3 and yn = 1

n . Then (xn, yn) → (0, 0), but g(xn, yn) = n → ∞.
(5) This is immediate from (4).
(6) Clearly g is continuous on R2 \ {(0, 0)}, so the restriction of g to every

straight line in R2 not going through (0, 0) is clearly continuous. Furthermore, the
restriction of g to the y-axis is given by (0, y) 7→ 0, which is clearly continuous.

Every other line has the form y = ax for some a ∈ R. We have

g(x, ax) =
a3x

1 + a6x4

for all x ∈ R, so the restriction of g to this line is given by the continuous function

(x, y) 7→ a3x

1 + a6x4
.



MATH 413 [513] (PHILLIPS) SOLUTIONS TO HOMEWORK 8

Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in.

Problem 4.8: Let E ⊂ R be bounded, and let f : E → R be uniformly continu-
ous. Prove that f is bounded. Show that a uniformly continuous function on an
unbounded subset of R need not be bounded.

Solution (Sketch): Choose δ > 0 such that if x, y ∈ E satisfy |x − y| < δ, then
|f(x) − f(y)| < 1. Choose n ∈ N such that 1

n < δ. Since E is a bounded subset
of R, there are finitely many closed intervals

[
ak, ak + 1

n

]
whose union contains

the closed interval [inf(E), sup(E)] and hence also E. Let S be the finite set of
those k for which E ∩ [

ak, ak + 1
n

] 6= ∅. Thus E ⊂ ⋃
k∈S

[
ak, ak + 1

n

]
. Choose

bk ∈ E ∩ [
ak, ak + 1

n

]
. Set M = 1 + maxk∈S |f(bk)|.

We show that |f(x)| ≤ M for all x ∈ E. For such x, choose k ∈ S such
that x ∈ [

ak, ak + 1
n

]
. Then |x − bk| ≤ 1

n < δ, so |f(x) − f(bk)| < 1. Thus
|f(x)| ≤ |f(x) − f(bk)| + |f(bk)| < 1 + M .

As a counterexample with E unbounded, take E = R and f(x) = x for all x.

Problem 4.9: Let X and Y be metric spaces, and let f : X → Y be a function.
Prove that f is uniformly continuous if and only if for every ε > 0 there is δ > 0
such that whenever E ⊂ X satisfies diam(E) < δ, then diam(f(E)) < ε.

Solution: Let f be uniformly continuous, and let ε > 0. Choose δ > 0 such
that if x1, x2 ∈ X satisfy d(x1, x2) < δ, then d(f(x1), f(x2)) < 1

2ε. Let E ⊂
X satisfy diam(E) < δ. We show that diam(f(E)) < ε. Let y1, y2 ∈ f(E).
Choose x1, x2 ∈ E such that f(x1) = y1 and f(x2) = y2. Then d(x1, x2) < δ,
so d(f(x1), f(x2)) < 1

2ε. This shows that d(y1, y2) < 1
2ε for all y1, y2 ∈ f(E).

Therefore

diam(f(E)) = sup
y1,y2∈E

d(y1, y2) ≤ 1
2ε < ε.

Now assume that for every ε > 0 there is δ > 0 such that whenever E ⊂
X satisfies diam(E) < δ, then diam(f(E)) < ε. We prove that f is uniformly
continuous. Let ε > 0. Choose δ > 0 as in the hypotheses. Let x1, x2 ∈ X
satisfy d(x1, x2) < δ. Set E = {x1, x2}. Then diam(E) < δ. So d(f(x1), f(x2)) =
diam(f(E)) < ε.

Problem 4.10: Use the fact that infinite subsets of compact sets have limit points
to give an alternate proof that if X and Z are metric spaces with X compact, and
f : X → Z is continuous, then f is uniformly continuous.

Date: 19 Nov. 2001.
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Solution: Assume that f is not uniformly continuous. Choose ε > 0 for which the
definition of uniform continuity fails. Then for every n ∈ N there are xn, yn ∈ X
such that d(xn, yn) < 1

n and d(f(xn), f(yn)) ≥ ε. Since X is compact, the sequence
(xn) has a convergent subsequence. (See Theorem 3.6 (a) of Rudin.) Let x =
limn→∞ xk(n). Since d(xk(n), yk(n)) < 1

k(n) ≤ 1
n , we also have limn→∞ yk(n) = x.

If f were continuous at x, we would have

lim
n→∞ f(xk(n)) = lim

n→∞ f(yk(n)) = f(x).

This contradicts d(f(xn), f(yn)) ≥ ε for all n. To see this, choose N ∈ N such that
n ≥ N implies

d(f(xk(n)), f(x)) < 1
3ε and d(f(yk(n)), f(x)) < 1

3ε.

Then

d(f(xk(N)), f(yk(N)) ≤ d(f(xk(n)), f(x)) + d(f(x), f(yk(n))) < 1
3ε + 1

3ε = 2
3ε,

but by construction d(f(xk(N)), f(yk(N)) ≥ ε.

Remark: It is not correct to simply claim that the sequence (xn) has a convergent
subsequence (xk(n)) and the sequence (yn) has a convergent subsequence (yk(n)).
If one chooses convergent subsequences of (xn) and (yn), they must be called, say,
(xk(n)) and (yl(n)) for different functions k, l : N → N.

It is nevertheless possible to carry out a proof by passing to convergent subse-
quences of (xn) and (yn). The following solution shows how it can be done. This
solution is not recommended here, but in other situations it may be the only way
to proceed.

Alternate solution: Assume that f is not uniformly continuous. Choose ε > 0 for
which the definition of uniform continuity fails. Then for every n ∈ N there are
xn, yn ∈ X such that d(xn, yn) < 1

n and d(f(xn), f(yn)) ≥ ε. Since X is compact,
the sequence (xn) has a convergent subsequence (xk(n)). (See Theorem 3.6 (a)
of Rudin.) Then (yk(n)) is a sequence in a compact metric space, and therefore,
again by Theorem 3.6 (a) of Rudin, it has a convergent subsequence (yk(r(n))). Let
l = k ◦ r. Then (xl(n)) is a subsequence of the convergent sequence (xk(n)), and
therefore converges.

Let x = limn→∞ xl(n) and y = limn→∞ yl(n). Now d(xl(n), yl(n)) < 1
l(n) ≤ 1

n . It
follows that d(x, y) = 0. (To see this, let ε > 0, and choose N1, N2, N3 ∈ N so large
that n ≥ N1 implies d(xl(n), x) < 1

3ε, so large that n ≥ N2 implies d(yl(n), y) < 1
3ε,

and so large that n ≥ N3 implies 1
n < 1

3ε. Then with n = max(N1, N2, N3), we get

d(x, y) ≤ d(x, xl(n)) + d(xl(n), yl(n)) + d(yl(n), y) < 1
3ε + 1

n + 1
3ε < ε.

Since this is true for all ε > 0, it follows that d(x, y) = 0.)
We now know that limn→∞ yl(n) = x = limn→∞ xl(n).
If f were continuous at x, we would have

lim
n→∞ f(xl(n)) = lim

n→∞ f(yl(n)) = f(x).

This contradicts d(f(xn), f(yn)) ≥ ε for all n. To see this, choose N ∈ N such that
n ≥ N implies

d(f(xl(n)), f(x)) < 1
3ε and d(f(yl(n)), f(x)) < 1

3ε.
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Then

d(f(xl(N)), f(yl(N)) ≤ d(f(xl(n)), f(x)) + d(f(x), f(yl(n))) < 1
3ε + 1

3ε = 2
3ε,

but by construction d(f(xl(N)), f(yl(N)) ≥ ε.

Problem 4.11: Let X and Y be metric spaces, and let f : X → Y be uniformly
continuous. Prove that if (xn) is a Cauchy sequence in X, then (f(xn)) is a Cauchy
sequence in Y . Use this result to prove that if Y is complete, E ⊂ X is dense,
and f0 : E → Y is uniformly continuous, then there is a unique continuous function
f : X → Y such that f |E = f0.

Solution: We prove the first statement. Let (xn) be a Cauchy sequence in X.
Let ε > 0. Choose δ > 0 such that if x1, x2 ∈ X satisfy d(s1, s2) < δ, then
d(f(s1), f(s2)) < ε. Choose N ∈ N such that if m, n ∈ N satisfy m, n ≥ N , then
d(xm, xn) < δ. Then whenever m, n ∈ N satisfy m, n ≥ N , we have d(xm, xn) < δ,
so that d(f(xm), f(xn)) < ε. This shows that (f(xn)) is a Cauchy sequence.

Now we prove the second statement. The neatest arrangement I can think of is
to prove the following lemmas first.

Lemma 1. Let X and Y be metric spaces, with Y complete, let E ⊂ X, and let
f : E → Y be uniformly continuous. Let (xn) be a sequence in E which converges
to some point in X. Then limn→∞ f(xn) exists in Y .

Proof: We know that convergent sequences are Cauchy. This is therefore immediate
from the first part of the problem and the definition of completeness.

Lemma 2. Let X and Y be metric spaces, with Y complete, let E ⊂ X, and let
f : E → Y be uniformly continuous. Then for every ε > 0 there is δ > 0 such
that whenever x1, x2 ∈ X satisfy d(x1, x2) < δ, and whenever (rn) and (sn) are
sequences in E such that rn → x1 and sn → x2, then

d
(

lim
n→∞ f(rn), lim

n→∞ f(sn)
)

< ε.

Note that the limits exist by Lemma 1.

Proof of Lemma 2: Let ε > 0. Choose ρ > 0 such that whenever x1, x2 ∈ E
satisfy d(x1, x2) < ρ, then d(f(x1), f(x2)) < 1

2ε. Set δ = 1
2ρ > 0. Let x1, x2 ∈ X

satisfy d(x1, x2) < δ, and let (rn) and (sn) be sequences in E such that rn → x1

and sn → x2. Let y1 = limn→∞ f(rn) and y2 = limn→∞ f(sn). (These exist by
Lemma 1.) Choose N so large that for all n ∈ N with n ≥ N , the following four
conditions are all satisfied:

• d(rn, x1) < 1
4ρ.

• d(sn, x2) < 1
4ρ.

• d(f(rn), y1) < 1
4ε.

• d(f(sn), y2) < 1
4ε.

We then have

d(rN , sN ) ≤ d(rN , x1) + d(x1, x2) + d(x2, sN ) < 1
4ρ + 1

2ρ + 1
4ρ = ρ.

Therefore d(f(rN ), f(sN )) < 1
2ε. So

d(y1, y2) ≤ d(y1, f(rN )) + d(f(rN ), f(sN )) + d(f(sN ), y2) < 1
4ε + 1

2ε + 1
4ε = ε,

as desired.
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Theorem. Let X and Y be metric spaces, with Y complete, let E ⊂ X, and let
f : E → Y be uniformly continuous. Then there is a unique continuous function
f : X → Y such that f |E = f0.

Proof: If f exists, then it is unique by Problem 4.4, which was in the previous
assignment. So we prove existence. For x ∈ X, we want to define f(x) by choosing
a sequence (rn) in E with limn→∞ rn = x and then setting f(x) = limn→∞ f0(rn).
We know that such a sequence exists because E is dense in X. We know that
limn→∞ f0(rn) exists, by Lemma 1. However, we must show that limn→∞ f0(rn)
only depends on x, not on the sequence (rn).

To prove this, let (rn) and (sn) be sequences in E with

lim
n→∞ rn = lim

n→∞ sn = x.

Let ε > 0; we show that

d
(

lim
n→∞ f0(rn), lim

n→∞ f0(sn)
)

< ε.

(Since ε is arbitrary, this will give limn→∞ f0(rn) = limn→∞ f0(sn).) To do this,
choose δ > 0 according to Lemma 2. We certainly have d(x, x) < δ. Therefore the
conclusion of Lemma 2 gives

d
(

lim
n→∞ f0(rn), lim

n→∞ f0(sn)
)

< ε,

as desired.
We now get a well defined function f : X → Y by setting f(x) = limn→∞ f0(rn),

where (rn) is any sequence in E with limn→∞ rn = x. By considering the constant
sequence xn = x for all n, we see immediately that f(x) = f0(x) for x ∈ E.
We show that f is continuous, in fact uniformly continuous. Let ε > 0. Choose
δ > 0 according to Lemma 2. For x1, x2 ∈ X with d(x1, x2) < δ, choose (by
density of E, as above) sequences (rn) and (sn) in E such that rn → x1 and
sn → x2. Then d (limn→∞ f0(rn), limn→∞ f0(sn)) < ε. By construction, we have
f(x1) = limn→∞ f0(rn) and f(x2) = limn→∞ f0(sn). Therefore we have shown that
d(f(x1), f(x2)) < ε, as desired.

The point of stating Lemma 2 separately is that the proof that f is well defined,
and the proof that f is continuous, use essentially the same argument. By putting
that argument in a lemma, we avoid repeating it.

Problem 4.12: State precisely and prove the following: “A uniformly continuous
function of a uniformly continuous function is uniformly continuous.”

Solution: Here is the precise statement:

Proposition. Let X, Y , and Z be metric spaces. Let f : X → Y and g : Y → Z
be uniformly continuous functions. Then g ◦ f is uniformly continuous.

Proof: Let ε > 0. Choose ρ > 0 such that if y1, y2 ∈ Y satisfy d(y1, y2) < ρ, then
d(g(y1), g(y2)) < ε. Choose δ > 0 such that if x1, x2 ∈ X satisfy d(x1, x2) < δ,
then d(f(x1), f(x2)) < ρ. Then whenever x1, x2 ∈ X satisfy d(x1, x2) < δ, we have
d(f(x1), f(x2)) < ρ, so that d(g(f(x1)), g(f(x2))) < ε.

Problem 4.14: Let f : [0, 1] → [0, 1] be continuous. Prove that there is x ∈ [0, 1]
such that f(x) = x.
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Solution: Define g : [0, 1] → R by g(x) = x − f(x). Then g is continuous. Since
f(0) ∈ [0, 1], we have g(0) = −f(0) ≤ 0, while since g(1) ∈ [0, 1], we have g(1) =
1 − f(1) ≥ 0. If g(0) = 0 then x = 0 satisfies the conclusion, while if g(1) = 0 then
x = 1 satisfies the conclusion. Otherwise, g(0) < 0 and g(1) > 0, so Theorem 4.23
of Rudin provides x ∈ (0, 1) such that g(x) = 0. This x satisfies f(x) = x.

Something much more general is true, namely the Brouwer Fixed Point Theorem:

Theorem. Let n ≥ 1, and let B = {x ∈ Rn : ‖x‖ ≤ 1}. Let f : B → B be
continuous. Then there is x ∈ B such that f(x) = x.

The proof requires higher orders of connectedness, and is best done with algebraic
topology.

Problem 4.16: For x ∈ R, define [x] by the relations [x] ∈ Z and x − 1 < [x] ≤ x
(this is called the “integer part of x” or the “greatest integer function”), and define
(x) = x − [x] (this is called the “fractional part of x”, but the notation (x) is not
standard). What discontinuities do the functions x 7→ [x] and x 7→ (x) have?

Solution (Sketch): Both functions are continuous at all noninteger points, since
x ∈ (n, n + 1) implies [x] = n and (x) = x− n; both expressions are continuous on
the interval (n, n + 1).

Both functions have jump discontinuities at all integers: for n ∈ Z, we have

lim
x→n+

[x] = lim
x→n+

n = n = f(n) and lim
x→n−

[x] = lim
x→n−

(n − 1) = n − 1 6= f(n),

and also

lim
x→n+

(x) = lim
x→n+

(x − n) = 0 = f(n)

and

lim
x→n−

(x) = lim
x→n−

[x − (n − 1)] = 1 6= f(n).

Problem 4.18: Define f : R → R by

f(x) =
{

0 x ∈ R \ Q
1
q x = p

q in lowest terms .

(By definition, we require q > 0. If x = 0 we take p = 0 and q = 1.) Prove that
f is continuous at each x ∈ R \ Q, and that f has a simple discontinuity at each
x ∈ Q.

Solution: We show that limx→0 f(x) = 0 for all x ∈ R. This immediately im-
plies that f is continuous at all points x for which f(x) = 0 and has a removable
discontinuity at every x for which f(x) 6= 0.

Let x ∈ R, and let ε > 0. Choose N ∈ N such that 1
N < ε. For 1 ≤ n ≤ N , let

Sn =
{a

n
: a ∈ Z and 0 <

∣∣∣a
n
− x

∣∣∣ < 1
}

.

Then Sn is finite; in fact, card(Sn) ≤ 2n. Set

S =
N⋃

n=1

Sn,
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which is a finite union of finite sets and hence finite. Note that x 6∈ S. Set

δ = min
(

1, min
y∈S

|y − x|
)

.

Then δ > 0 because x 6∈ S and S is finite.
Let 0 < |y−x| < δ. If y 6∈ Q, then |f(y)−0| = 0 < ε. Otherwise, because y 6∈ S,

|y − x| < 1, and y 6= x, it is not possible to write y = p
q with q ≤ N . Thus, when

we write y = p
q in lowest terms, we have q > N , so f(y) = 1

q < 1
N < ε. This shows

that |f(y) − 0| < ε in this case also.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in.

Problem 4.15: Prove that every continuous open map f : R → R is monotone.

Sketches of two solutions are presented. The second is what I expect people
to have done. The first is essentially a careful rearrangement of the ideas of the
second, done so as to minimize the number of cases. (You will see when reading
the second solution why this is desirable.)

Solution (Sketch):

Lemma 1. Let f : R → R be continuous and open. Let a, b ∈ R satisfy a < b.
Then f(a) 6= f(b).

Proof (sketch): Suppose f(a) = f(b). Let m1 and m2 be the minimum and maxi-
mum values of f on [a, b]. (These exist because f is continuous and [a, b] is compact.)
If m1 = m2, then m1 = m2 = f(a) = f(b), and f((a, b)) = {m1} is not an open set.
Since (a, b) is open, this is a contradiction. So suppose m1 < m2. If m1 6= f(a),
choose c ∈ [a, b] such that f(c) = m1. Then actually c ∈ (a, b). So f((a, b)) con-
tains f(c) but contains no real numbers smaller than f(c). This is easily seen to
contradict the assumption that f((a, b)) is open. The case m2 6= f(a) is handled
similarly, or by considering −f in place of f .

Note: The last part of this proof is the only place where I would expect a
submitted solution to be more complete than what I have provided.

Lemma 2. Let f : R → R be continuous and open. Let a, b ∈ R satisfy a < b. If
f(a) < f(b), then whenever x ∈ R satisfies x < a, we have f(x) < f(a).

Proof: We can’t have f(x) = f(a), by Lemma 1. If f(x) = f(b), we again have a
contradiction by Lemma 1. If f(x) > f(b), then the Intermediate Value Theorem
provides z ∈ (x, a) such that f(z) = f(b). Since z < b, this contradicts Lemma 1.
If f(a) < f(x) < f(b), then the Intermediate Value Theorem provides z ∈ (a, b)
such that f(z) = f(x). Since x < z, this again contradicts Lemma 1. The only
remaining possibility is f(x) < f(a).

Lemma 3. Let f : R → R be continuous and open. Let a, b ∈ R satisfy a < b. If
f(a) < f(b), then whenever x ∈ R satisfies b < x, we have f(b) < f(x).

Proof: Apply Lemma 2 to the function x 7→ −f(−x).

Lemma 4. Let f : R → R be continuous and open. Let a, b ∈ R satisfy a < b. If
f(a) < f(b), then whenever x ∈ R satisfies a < x < b, we have f(a) < f(x) < f(b).

Date: 30 Nov. 2001.
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Proof: Lemma 1 implies that f(x) is equal to neither f(a) nor f(b). If f(x) < f(a),
we apply Lemma 3 to −f , with b and x interchanged, to get f(b) < f(x). This
implies f(b) < f(a), which contradicts the hypotheses. If f(x) > f(b), we apply
Lemma 2 to −f , with a and x interchanged, to get f(a) > f(x). This again
contradicts the hypotheses.

Corollary 5. Let f : R → R be continuous and open. Let a, b ∈ R satisfy a < b,
and suppose that f(a) < f(b). Let x ∈ R. Then:

(1) If x ≤ a then f(x) ≤ f(a).
(2) If x ≤ b then f(x) ≤ f(b).
(3) If x ≥ a then f(x) ≥ f(a).
(4) If x ≥ b then f(x) ≥ f(b).

Proof: If we have equality (x = a or x = b), the conclusion is obvious. With strict
inequality, Part (1) follows from Lemma 2, and Part (4) follows from Lemma 3.
Part (2) follows from Lemma 4 if x > a, from Lemma 2 if x < a, and is trivial if
x = a. Part (3) follows from Lemma 4 if x < b, from Lemma 3 if x > b, and is
trivial if x = b.

I won’t actually use Part (2); it is included for symmetry.

Now we prove the result. Choose arbitrary c, d ∈ R with c < d. We have
f(c) 6= f(d) by Lemma 1. Suppose first that f(c) < f(d). Let r, s ∈ R satisfy
r ≤ s. We prove that f(r) ≤ f(s), and there are several cases. I will try to arrange
this to keep the number of cases as small as possible.

Case 1: r ≤ c ≤ s. Then f(r) ≤ f(c) ≤ f(s) by Parts (1) and (3) of Corollary 5,
taking a = c and b = d.

Case 2: r ≤ s ≤ a. Then f(s) ≤ f(a) by Part (1) of Corollary 5, taking a = c
and b = d. Further, f(r) ≤ f(s) by Part (1) of Corollary 5, taking a = s and b = d.

Case 3: a ≤ r ≤ s. Then f(a) ≤ f(r) by Part (3) of Corollary 5, taking a = c
and b = d. Further, f(r) ≤ f(s) by Part (4) of Corollary 5, taking a = c and b = r.

The case f(c) > f(d) follows by applying the preceding argument to −f .

Alternate solution (Brief sketch):
Suppose f is not monotone; we prove that f is not open. Since f isn’t nonde-

creasing, there exist a, b ∈ R such that a < b and f(a) > f(b); and since f isn’t
nonincreasing, there exist c, d ∈ R such that c < d and f(c) < f(d). Now there are
various cases depending on how a, b, c, and d are arranged in R, and depending on
how f(a) and f(b) relate to f(c) and f(d). Specifically, there are 13 possible ways
for a, b, c, and d to be arranged in R, namely:

a < b < c < d(1)

a < b = c < d(2)

a < c < b < d(3)

a < c < b = d(4)

a < c < d < b(5)

a = c < b < d(6)
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a = c < b = d(7)

a = c < d < b(8)

c < a < b < d(9)

c < a < b = d(10)

c < a < d < b(11)

c < a = d < b(12)

c < d < a < b(13)

Of these, the arrangement (7) gives an immediate contradiction. For each of the
others, we find x < y < z such that f(y) < f(x), f(z) (so that f is not open
by Lemma 2 of the previous solution), or such that f(y) > f(x), f(z) (so that f
is not open by Lemma 3 of the previous solution). Many cases break down into
subcases depending on how the values of f are arranged. We illustrate by treating
the arrangement (1).

Suppose a < b < c < d and f(b) < f(c). Set

x = a, y = b, and z = d.

Then x < y < z and f(y) < f(x), f(z), so Lemma 2 applies. Suppose, on the other
hand, that a < b < c < d and f(b) ≥ f(c). Set

x = a, y = c, and z = d.

Then again x < y < z and f(y) < f(x), f(z), so Lemma 2 applies.

Problem 5.1: Let f : R → R be a function such that

|f(x) − f(y)| ≤ (x − y)2

for all x, y ∈ R. Prove that f is constant.

Solution: We first prove that f ′(x) = 0 for all x ∈ R. For h 6= 0,∣∣∣∣f(x + h) − f(x)
h

∣∣∣∣ =
|f(x + h) − f(x)|

|h| ≤ |h2|
|h| = |h|.

It follows immediately that

f ′(x) = lim
h→0

f(x + h) − f(x)
h

= 0.

It now follows that f is constant. (See Theorem 5.11 (b) of Rudin’s book.)

The solution above is the intended solution. However, there is another solution
which is nearly as easy and does not use calculus.

Alternate solution: Let x, y ∈ R and let ε > 0; we prove that |f(x) − f(y)| < ε. It
will clearly follow that f is constant.
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Choose N ∈ N with N > ε−1(x − y)2. The hypothesis implies that, for any k,
we have
∣∣f (

x + (k − 1) · 1
N (y − x)

) − f
(
x + k · 1

N (y − x)
)∣∣ ≤ (

1
N (y − x)

)2

=
(

1
N

) (
(y − x)2

N

)
<

1
N

· ε.

Therefore

|f(x) − f(y)| ≤
N∑

k=1

∣∣f (
x + (k − 1) · 1

N (y − x)
) − f

(
x + k · 1

N (y − x)
)∣∣

< N · 1
N

· ε = ε.

Problem 5.2: Let f : (a, b) → R satisfy f ′(x) > 0 for all x ∈ (a, b). Prove that f
is strictly increasing, that its inverse function g is differentiable, and that

g′(f(x)) =
1

f ′(x)

for all x ∈ (a, b).

Solution: That f is strictly increasing on (a, b) follows from the Mean Value The-
orem and the fact that f ′(x) > 0 for all x ∈ (a, b).

Define

c = inf
x∈(a,b)

f(x) and d = sup
x∈(a,b)

f(x).

(Note that c could be −∞ and d could be ∞.) Our next step is to prove that f
is a bijection from (a, b) to (c, d). Clearly f is injective, and has range contained
in [c, d]. If c = f(x) for some x ∈ (a, b), then there is q ∈ (a, b) with q < x. This
would imply f(q) < c, contradicting the definition of c. So c is not in the range of
f . Similarly d is not in the range of f . So the range of f is contained in (c, d). For
surjectivity, let y0 ∈ (c, d). By the definitions of inf and sup, there are r, s ∈ (a, b)
such that f(r) < y0 < f(s). Clearly r < s. The Intermediate Value Theorem
provides x0 ∈ (r, s) such that f(x0) = y0. This shows that the range of f is all of
(c, d), and completes the proof that f is a bijection from (a, b) to (c, d).

Now we show that g : (c, d) → (a, b) is continuous. Again, let y0 ∈ (c, d), and
choose r and s as in the previous paragraph. Since f is strictly increasing, and
again using the Intermediate Value Theorem, we see that f |[r,s] is a continuous
bijection from [r, s] to [f(r), f(s)]. Since [r, s] is compact, the function

(
f |[r,s]

)−1 =
g|[f(r), f(s)] is continuous. Since y0 ∈ (f(r), f(s)), it follows that g is continuous at
y0. Thus g is continuous.

Now we find g′. Fix x0 ∈ (a, b), and set y0 = f(x0). For y ∈ (c, d) \ {y0}, we
write

g(y) − g(y0)
y − y0

=
(

f(g(y)) − f(x0)
g(y) − x0

)−1

.
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(Note that g(y) 6= x0 because g is injective.) Since g is continuous, we have
limy→y0 g(y) = x0. Therefore

lim
y→y0

f(g(y)) − f(x0)
g(y) − x0

= f ′(x0).

Hence

lim
y→y0

g(y) − g(y0)
y − y0

=
1

f ′(x0)
.

That is, g′(y0) exists and is equal to
1

f ′(x0)
, as desired.

Note: I believe, but have not checked, that further use of the Intermediate
Value Theorem can be substituted for the use of compactness in the proof that g
is continuous.

Problem 5.3: Let g : R → R be a differentiable function such that g′ is bounded.
Prove that there is r > 0 such that the function f(x) = x + εg(x) is injective
whenever 0 < ε < r.

Solution: Set M = max(0, supx∈R(−g′(x)). Set r = 1
M . (Take r = ∞ if M = 0.)

Suppose 0 < ε < r, and define f(x) = x + εg(x) for x ∈ R. For x ∈ R, we have

f ′(x) = 1 + εg′(x) = 1 − ε(−g′(x)) ≥ 1 − εM > 1 − rM = 0

(except that 1 − rM = 1 if M = 0). Thus f ′(x) > 0 for all x, so the Mean Value
Theorem implies that f is strictly increasing. In particular, f is injective.

Note: The problem as stated in Rudin’s book is slightly ambiguous: it could be
interpreted as asking that f(x) = x + εg(x) be injective whenever −r < ε < r. To
prove this version, take M = supx∈R |g′(x)|, and estimate

f ′(x) = 1 + εg′(x) ≥ 1 − |ε|M > 1 − rM = 0.

Problem 5.4: Let C0, C1, . . . , Cn ∈ R. Suppose

C0 +
C1

2
+ · · · + Cn−1

n
+

Cn

n + 1
= 0.

Prove that the equation

C0 + C1x + C2x
2 + · · · + Cn−1x

n−1 + Cnxn = 0

has at least one real solution in (0, 1).

Solution (Sketch): Define f : R → R by

f(x) = C0x +
C1x

2

2
+ · · · + Cn−1x

n

n
+

Cnxn+1

n + 1
for x ∈ R. Then f(0) = 0 (this is trivial) and f(1) = 0 (this follows from the
hypothesis). Since f is differentiable on all of R, the Mean Value Theorem provides
x ∈ (0, 1) such that f ′(x) = 0. Since

f ′(x) = C0 + C1x + C2x
2 + · · · + Cn−1x

n−1 + Cnxn,

this is the desired conclusion.

Problem 5.5: Let f : (0,∞) → R be differentiable and satisfy limx→∞ f ′(x) = 0.
Prove that limx→∞[f(x + 1) − f(x)] = 0.
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Solution: Let ε > 0. Choose M ∈ R such that x > M implies |f ′(x)| < ε.
Let x > M . By the Mean Value Theorem, there is z ∈ (x, x + 1) such that
f(x + 1) − f(x) = f ′(z). Then |f(x + 1) − f(x)| = |f ′(z)| < ε. This shows that
limx→∞[f(x + 1) − f(x)] = 0.

Problem 5.9: Let f : R → R be continuous. Assume that f ′(x) exists for all
x 6= 0, and that limx→0 f ′(x) = 3. Does it follow that f ′(0) exists?

Solution: We prove that f ′(0) = 3. Define g(x) = x. Then

lim
x→0

f ′(x)
g′(x)

= 3

by assumption. Therefore Theorem 5.13 of Rudin (L’Hospital’s rule) applies to the
limit

lim
x→0

f(x) − f(0)
x

= lim
x→0

f(x) − f(0)
g(x)

(because f − f(0) vanishes at 0 and has derivative f ′). Thus

f ′(0) = lim
x→0

f(x) − f(0)
x

= lim
x→0

f ′(x)
g′(x)

= 3.

In particular, f ′(0) exists.

Note: It is mathematically bad practice (although it is tolerated in freshman
calculus courses) to write

lim
x→0

f(x) − f(0)
g(x)

= lim
x→0

f ′(x)
g′(x)

= 3

before checking that

lim
x→0

f ′(x)
g′(x)

exists, because the equality

lim
x→0

f(x) − f(0)
g(x)

= lim
x→0

f ′(x)
g′(x)

is only known to hold when the second limit exists.

Problem 5.11: Let f be a real valued function defined on a neighborhood of
x ∈ R. Suppose that f ′′(x) exists. Prove that

lim
h→0

f(x + h) + f(x − h) − 2f(x)
h2

= f ′′(x).

Show by example that the limit might exist even if f ′′(x) does not exist.

Solution (Sketch): Check using algebra that

lim
h→0

f ′(x + h) − f ′(x − h)
2h

= lim
h→0

(
f ′(x + h) − f ′(x)

2h
+

f ′(x) − f ′(x − h)
2h

)

= f ′′(x).

Now use Theorem 5.13 of Rudin (L’Hospital’s rule) to show that

lim
h→0

f(x + h) + f(x − h) − 2f(x)
h2

= lim
h→0

f ′(x + h) − f ′(x − h)
2h

= f ′′(x).
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For the counterexample, take

f(t) =




1 t > x
0 t = x
−1 t < x

.

Then

f(x + h) + f(x − h) − 2f(x)
h2

= 0

for all h 6= 0. This shows that the limit can exist even if f isn’t continuous at x.

Note 1: I gave a counterexample for an arbitrary value of x, but it suffices to
give one at a single value of x, such as x = 0.

Note 2: A legitimate counterexample must be defined at x, since it must satisfy
all the hypotheses except for the existence of f ′′(x).

Note 3: Another choice for the counterexample is

f(t) =
{

(t − x)2 t ≥ x
−(t − x)2 t < x

.

This function is continuous at x, and even has a continuous derivative on R, but
f ′′(x) doesn’t exist. One can also construct examples which are continuous nowhere
on R.

Note 4: It is tempting to use L’Hospital’s rule a second time, to get

lim
h→0

f ′(x + h) − f ′(x − h)
2h

= lim
h→0

f ′′(x + h) + f ′′(x − h)
2

.

This reasoning is not valid, since the second limit need not exist. (We do not
assume that f ′′ is continuous.)

Problem 5.13: Let a and c be fixed real numbers, with c > 0, and define f =
fa,c : [−1, 1] → R by

f(x) =
{ |x|a sin (|x|−c) x 6= 0

0 x = 0

Prove the following statements. (You may use the standard facts about the func-
tions sin(x) and cos(x).)

Note: The book has

f(x) =
{

xa sin (|x|−c) x 6= 0
0 x = 0 .

However, unless a is a rational number with odd denominator, this function will
not be defined for x < 0.

(a) f is continuous if and only if a > 0.

Solution (Sketch): Since x 7→ sin(x) is continuous, we need only consider continuity
at 0. If a > 0, then limx→0 f(x) = 0 since |f(x)| ≤ |x|a and limx→0 |x|a = 0.

Now define sequences (xn) and (yn) by

xn =
1[(

2n + 1
2

)
π
]1/c

and yn =
1[(

2n + 3
2

)
π
]1/c

.
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Note that

lim
n→∞xn = lim

n→∞ yn = 0

and

sin
(|xn|−c

)
= 1 and sin

(|yn|−c
)

= −1

for all n. (We will use these sequences in other parts of the problem.)
If now a = 0, then

lim
n→∞ f(xn) = 1 and lim

n→∞ f(yn) = −1,

so limx→0 f(x) does not exist, and f is not continuous at 0. If a < 0, then

lim
n→∞ f(xn) = ∞ and lim

n→∞ f(yn) = −∞,

with the same result.

Note: Since f(0) is defined to be 0, we actually need only consider limn→∞ f(xn).
The conclusion limx→0 f(x) does not exist is stronger, and will be useful later.

(b) f ′(0) exists if and only if a > 1.

Solution (Sketch): We test for existence of

f ′(0) = lim
h→0

f(h) − f(0)
h

= lim
h→0

f(h)
h

= lim
h→0

fa−1, c(h),

which we saw in Part (a) exists if and only if a − 1 > 0. Moreover (for use below),
note that if the limit does exist then it is equal to 0.

(c) f ′ is bounded if and only if a ≥ 1 + c.

Solution (Sketch): Boundedness does not depend on f ′(0) (or even on whether
f ′(0) exists). So we use the formula

f ′(x) = axa−1 sin
(
x−c

)
+ cxa−c−1 cos

(
x−c

)
for x > 0, and for x < 0 we use

f ′(x) = −f ′(−x) = −f ′(|x|) = −a|x|a−1 sin
(|x|−c

) − c|x|a−c−1 cos
(|x|−c

)
.

If a − c − 1 ≥ 0, then also a − 1 ≥ 0 (recall that c > 0), and f ′ is bounded (by
c + a).

Otherwise, we consider the sequences (wn) and (zn) given by

wn =
1

[2nπ]1/c
and yn =

1

[(2n + 1) π]1/c
.

Since

sin
(
w−c

n

)
= sin

(
z−c

n

)
= 0

and

cos
(
w−c

n

)
= 1 and cos

(
z−c

n

)
= −1,

arguments as in Part (a) show that

lim
n→∞ f ′(wn) = −∞ and lim

n→∞ f ′(zn) = ∞,

so f ′ is not bounded.

(d) f ′ is continuous on [−1, 1] if and only if a > 1 + c.
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Solution (Sketch): If a < 1 + c, then f ′ is not bounded on [−1, 1] \ {0} by Part (c),
and therefore can’t be the restriction of a continuous function on [−1, 1]. If a = 1+c,
then the sequences of Part (c) satisfy

lim
n→∞ f ′(wn) = −c and lim

n→∞ f ′(zn) = c,

so again f ′ can’t be the restriction of a continuous function on [−1, 1]. If a > 1+ c,
then also a > 1, and limx→0 f ′(x) = 0 by reasoning similar to that of Part (a).
Moreover f ′(0) = 0 by the extra conclusion in the proof of Part (b). So f ′ is
continuous at 0, hence continuous.

f ′′(0) exists if and only if a > 2 + c.

Solution (Sketch): This is reduced to Part (d) in the same way Part (b) was reduced
to Part (a). As there, note also that f ′′(0) = 0 if it exists.

(f) f ′′ is bounded if and only if a ≥ 2 + 2c.

Solution (Sketch): For x 6= 0, we have

f ′′(x) = a(a − 1)|x|a−2 sin
(|x|−c

)
+ (2ac − c2 − c)xa−c−2 cos

(|x|−c
)

− c2|x|a−2c−2 sin
(|x|−c

)
.

(One handles the cases x > 0 and x < 0 separately, as in Part (c), but this time the
resulting formula is the same for both cases.) Since c > 0, if a−2c−2 ≥ 0 then also
a − c − 2 ≥ 0 and a − 2 ≥ 0, so f ′′ is bounded on [−1, 1] \ {0}. For a − 2c − 2 < 0,
consider

f ′′(xn) = a(a − 1)xa−2
n − c2xa−2c−2

n .

Since xn → 0 and a− 2c− 2 < min(0, a− 2), one checks that the term −c2xa−2c−2
n

dominates and f ′′(xn) → −∞. So f ′′ is not bounded.

(g) f ′′ is continuous on [−1, 1] if and only if a > 2 + 2c.

Solution (Sketch): Recall from the extra conclusion in Part (e) that f ′′(0) = 0 if it
exists. If a− 2c− 2 > 0, then also a− c− 1 > 0 and a− 2 > 0, so limx→0 f ′′(x) = 0
by a more complicated version of the arguments used in Parts (a) and (d). If
a − 2c − 2 < 0, then f ′′ isn’t bounded on [−1, 1] \ {0}, so f ′′ can’t be continuous
on [−1, 1]. If a − 2c − 2 = 0, then a − 2 > 0. Therefore

f ′′(xn) = a(a − 1)xa−2
n − c2xa−2c−2

n = a(a − 1)xa−2
n − c2 → c2 6= 0

as n → ∞. So f ′′ is not continuous at 0.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in.

Problem 5.12: Define f : R → R by f(x) = |x|3. Compute f ′(x) and f ′′(x) for
all real x. Prove that f ′′′(0) does not exist.

Solution: To make clear exactly what is being done, we first prove a lemma.

Lemma. Let (a, b) ⊂ R be an open interval, and let f, g : R → R be functions.
Let c ∈ (a, b), and suppose f ′(c) exists. Suppose that there is ε > 0 such that
(c − ε, c + ε) ⊂ (a, b) and g(x) = f(x) for all x ∈ (c − ε, c + ε). Then g′(c) exists
and g′(c) = f ′(c).

Proof: We have

g(c + h) − g(c)
h

=
f(c + h) − f(c)

h

for all h with 0 < |h| < ε. Therefore

lim
h→0

g(c + h) − g(c)
h

= lim
h→0

f(c + h) − f(c)
h

.

Now we start the calculation. For x > 0, we have f(x) = x3. Therefore, by the
lemma, f ′(x) = 3x2 and f ′′(x) = 6x. Similarly, for x < 0, we have f(x) = −x3, so
f ′(x) = −3x2 and f ′′(x) = −6x.

The lemma is not useful for x = 0. So we calculate directly. For h 6= 0, we have∣∣∣∣f(h) − f(0)
h

∣∣∣∣ =
∣∣∣∣ |h|

3

h

∣∣∣∣ = |h|2.

Therefore

f ′(0) = lim
h→0

f(h) − f(0)
h

= 0.

With this result in hand, we can calculate f ′′(0). For h 6= 0, we have |f ′(h)| =
3|h|2 (regardless of whether h is positive or negative), so∣∣∣∣f

′(h) − f ′(0)
h

∣∣∣∣ =
∣∣∣∣f

′(h)
h

∣∣∣∣ =
∣∣∣∣3|h|

2

h

∣∣∣∣ = 3|h|.

Therefore

f ′′(0) = lim
h→0

f ′(h) − f ′(0)
h

= 0.

Date: 14 January 2002.
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Finally, we consider f ′′′(0). For h > 0, we have

f ′′(h) − f ′′(0)
h

=
6h

h
= 6.

For h < 0, we have

f ′′(h) − f ′′(0)
h

=
−6h

h
= −6.

So

f ′′′(0) = lim
h→0

f ′′(h) − f ′′(0)
h

does not exist.

Problem 5.22: Let f : R → R be a function. We say that x ∈ R is a fixed point
of f if f(x) = x.

(a) Suppose that f is differentiable and f ′(t) 6= 1 for all t ∈ R. Prove that f has
at most one fixed point.

Solution: Suppose f has two distinct fixed points r and s. Without loss of generality
r < s. Apply the Mean Value Theorem on the interval [r, s], to find c ∈ (r, s) such
that f(s) − f(r) = f ′(c)(s − r). Since f(r) = r and f(s) = s, and since s − r 6= 0,
this implies that f ′(c) = 1. This contradicts the assumption that f ′(t) 6= 1 for all
t ∈ R.

(b) Define f by f(t) = t + (1 + et)−1 for t ∈ R. Prove that 0 < f ′(t) < 1 for all
t ∈ R, but that f has no fixed points. (You may use the standard properties of the
exponential function from elementary calculus.)

Solution: If x is a fixed point for f , then

x = f(x) = x +
1

1 + ex
,

whence
1

1 + ex
= 0.

This is obviously impossible.
Using the fact from elementary calculus that the derivative of et is et, and using

the differentiation rules proved in Chapter 5 of Rudin’s book, we get

f ′(t) = 1 − et

(1 + et)2
.

Since 0 < et < 1 + et < (1 + et)2, we have

0 <
et

(1 + et)2
< 1

for all t, from which it is clear that 0 < f ′(t) < 1 for all t.

(c) Suppose there is a constant A < 1 such that |f ′(t)| ≤ A for all t ∈ R. Prove
that f has a fixed point. Prove that if x0 ∈ R, and that if the sequence (xn)n∈N is
defined recursively by xn+1 = f(xn), then (xn)n∈N converges to a fixed point of f .
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Solution: It suffices to prove the last statement. First, observe that the version of
the Mean Value Theorem in Theorem 5.19 of Rudin’s book implies that |f(s) −
f(t)| ≤ A|s − t| for all s, t ∈ R.

Now let x0 ∈ R be arbitrary, and define the sequence (xn)n∈N recursively as in
the statement. Using induction and the estimate above, we get

|xn+1 − xn| ≤ An|x1 − x0|
for all n. Using the triangle inequality in the first step and the formula for the sum
of a geometric series at the second step, we get, for n ∈ N and m ∈ N,

|xn+m − xn| ≤
m−1∑
k=0

An+k|x1 − x0| =
An − An+m

1 − A
· |x1 − x0| ≤ An

1 − A
· |x1 − x0|.

With this estimate, we can prove that (xn)n∈N is a Cauchy sequence. Let ε > 0.
Since 0 ≤ A < 1, we have limN→∞ AN = 0, so we can choose N so large that

AN

1 − A
· |x1 − x0| < ε.

For m, n ≥ N , we then have

|xm − xn| ≤ Amin(m,n)

1 − A
· |x1 − x0| < ε.

This shows that (xn)n∈N is a Cauchy sequence.
Since R is complete, x = limn→∞ xn exists. It is trivial that limn→∞ xn+1 = x

as well. Using the continuity of f at x in the first step, we get

f(x) = lim
n→∞ f(xn) = lim

n→∞xn+1 = x,

that is, x is a fixed point for f .

We can give an alternate proof of the existence of a fixed point, which is of
interest, even though I do not see how to use it to show that the fixed point is the
limit of the sequence described in the problem without essentially redoing the other
solution.

Partial alternate solution (Sketch): Without loss of generality f(0) 6= 0. We
consider only the case f(0) > 0; the proof for f(0) < 0 is similar. Define b =
f(0)(1−A)−1 > 0, and define g(x) = f(x)−x. Then g is continuous and g(0) > 0.
The version of the Mean Value Theorem in Theorem 5.19 of Rudin’s book implies
that |f(b) − f(0)| ≤ Ab. Therefore f(b) ≤ f(0) + Ab, whence

g(b) = f(b) − b ≤ f(0) + Ab − b = f(0) + (A − 1)f(0)(1 − A)−1 = 0.

So the Intermediate Value Theorem provides x ∈ [0, b] such that g(x) = 0, that is,
f(x) = x.

Problem 5.26: Let f : [a, b] → R be differentiable, and suppose that f(a) = 0 and
there is a real number A such that |f ′(x)| ≤ A|f(x)| for all x ∈ [a, b]. Prove that
f(x) = 0 for all x ∈ [a, b].

Hint: Fix x0 ∈ [a, b], and define

M0 = sup
x∈[a,b]

|f(x)| and M1 = sup
x∈[a,b]

|f ′(x)|.
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For x ∈ [a, b], we then have

|f(x)| ≤ M1(x0 − a) ≤ A(x0 − a)M0.

If A(x0 − a) < 1, it follows that M0 = 0. That is, f(x) = 0 for all x ∈ [a, x0].
Proceed.

Solution (Sketch): Choose numbers xk with

a = x0 < x1 < · · · < xn = b

and such that A(xk − xk−1) < 1 for 1 ≤ k ≤ n. We prove by induction on k that
f(x) = 0 for all x ∈ [a, xk]. This is immediate for k = 0. So suppose it is known
for some k; we prove it for k + 1.

Define

M0 = sup
x∈[xk−1, xk]

|f(x)| and M1 = sup
x∈[xk−1, xk]

|f ′(x)|.

The hypotheses imply that M1 ≤ AM0. For x ∈ [xk−1, xk], we have (using the
version of the Mean Value Theorem in Theorem 5.19 of Rudin’s book at the second
step)

|f(x)| = |f(x) − f(xk)| ≤ M1(x − xk) ≤ AM0(x − xk).

In this inequality, take the supremum over all x ∈ [xk−1, xk], getting

M0 = sup
x∈[xk−1, xk]

|f(x)| ≤ AM0 sup
x∈[xk−1, xk]

(x − xk) = A(xk+1 − xk)M0.

Since 0 ≤ A(xk+1−xk) < 1 and M0 ≥ 0, this can only happen if M0 = 0. Therefore
f(x) = 0 for all x ∈ [xk−1, xk], and hence for all x ∈ [a, xk]. This completes the
induction step, and the proof.

Problem 6.2: Let f : [a, b] → R be continuous and nonnegative. Assume that∫ b

a
f = 0. Prove that f = 0.

Solution (Sketch): Assume that f 6= 0. Choose x0 ∈ [a, b] such that f(x0) > 0. By
continuity, there is δ > 0 such that f(x) > 1

2f(x0) for |x − x0| < δ. Let

I = [a, b] ∩ [
x0 − 1

2δ, x0 + 1
2δ

]
,

which is an interval of positive length, say l. It is now easy to construct a partition
P such that L(P, f) ≥ l · 1

2f(x0) > 0.

Alternate solution (Sketch): Let x0, δ, I, and l be as above. Let χI be the char-
acteristic function of I. Check that χI is integrable, and

∫ b

a
χI = l, by choosing

a partition P of [a, b] such that L(P, χI) = U(P, χI) = l. Then g = 1
2f(x0)χI is

integrable, and
∫ b

a
g = 1

2f(x0)l. Since f ≥ χI , we have
∫ b

a
f ≥ ∫ b

a
χI > 0.

Problem 6.4: Let a, b ∈ R with a < b. Define f : [a, b] → R by

f(x) =
{

0 x ∈ R \ Q
1 x ∈ Q .

Prove that f is not Riemann integrable on [a, b].

Solution (Sketch): For every partition P = (x0, x1, . . . , xn) of [a, b], every subinter-
val [xj−1, xj ] contains both rational and irrational numbers. Therefore L(P, f) = 0
and U(P, f) = b − a for every P .
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Problem A: Let X be a complete metric space, and let f : X → X be a function.
Suppose that there is a constant k such that d(f(x), f(y)) ≤ kd(x, y) for all x, y ∈
X.

(1) Prove that f is uniformly continuous.

Solution (Sketch): For ε > 0, take δ = k−1ε.

(2) Suppose that k < 1. Prove that f has a unique fixed point, that is, there is
a unique x ∈ X such that f(x) = x.

Solution (Sketch): If r, s ∈ X are fixed points, then d(r, s) = d(f(r), f(s)) ≤
kd(r, s). Since 0 ≤ k < 1, this implies that d(r, s) = 0, that is, r = s. So f has at
most one fixed point.

The proof that f has a fixed point is essentially the same as the proof of Prob-
lem 5.22 (c). Choose any x0 ∈ X. Define a sequence (xn)n∈N recursively by
xn+1 = f(xn) for n ≥ 1. The same calculations as there show that

d(xn, xn+1) ≤ knd(x0, x1)

for all n, that

d(xn, xn+m) ≤ kn

1 − k
· d(x0, x1)

for n ∈ N and m ∈ N, and hence (using k < 1) that (xn)n∈N is a Cauchy sequence.
Since X is assumed to be complete, x = limn→∞ xn exists. Using the continuity of
f at x, it then follows, as there, that x is a fixed point for f .

(3) Show that the conclusion in Part (2) need not hold if X is not complete.

Solution: Take X = R \ {0}, with the restriction of the usual metric on R, and
define f : X → X by f(x) = 1

2x for all x ∈ X. Then d(f(x), f(y)) = 1
2d(x, y) for

all x, y ∈ X, but clearly f has no fixed point.
It follows from Part (2) that X is not complete. (This is also easy to check

directly:
(

1
n

)
n∈N\{0} is a Cauchy sequence which does not converge.)



MATH 414 [514] (PHILLIPS) SOLUTIONS TO HOMEWORK 2

Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 6.7: Let f : (0, 1] → R be a function, and suppose that f |[c,1] is Riemann
integrable for every c ∈ (0, 1). Define

∫ 1

0

f = lim
c→0+

∫ 1

c

f

if this limit exists and is finite.

(a) If f is the restriction to (0, 1] of a Riemann integrable function on [0, 1], show
that the new definition agrees with the old one.

Solution: The function F (x) =
∫ x

0
f is continuous, so that

lim
c→0+

∫ 1

c

f = lim
c→0+

(∫ 1

0

f − F (c)
)

=
∫ 1

0

f − F (0) =
∫ 1

0

f.

(b) Give an example of a function f : (0, 1] → R such that limc→0+

∫ 1

c
f exists

but limc→0+

∫ 1

c
|f | does not exist.

Solution (nearly complete): We will use the fact that the series
∑∞

n=1(−1)n 1
n con-

verges but does not converge absolutely.
Define f : (0, 1] → R by setting f(x) = 1

n (−1)n · 2n for x ∈ (
1
2n , 1

2n−1

]
and

n ∈ N. Then h(c) =
∫ 1

c
|f | increases as c decreases to 0, and is is easy to check

that

h

(
1
2n

)
=

n∑
k=1

2k

k
· 1
2k

=
n∑

k=1

1
k

.

Therefore limc→0+

∫ 1

c
|f | = ∞.

Now we prove that

lim
c→0+

∫ 1

c

f =
∞∑

n=1

(−1)n

n
.
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(Note that it is clear that this should be true, but that proving it requires a little
care.) First, one checks that ∫ 1

1
2n

f =
n∑

k=1

(−1)k

k
.

Second, note that the series converges by the Alternating Series Test. Let its sum
be a. Let ε > 0, and choose N such that if n ≥ N than∣∣∣∣∣a −

n∑
k=1

(−1)k

k

∣∣∣∣∣ < ε.

Take δ = 1
2N . Let 0 < c < δ, and choose n such that c ∈ [

1
2n , 1

2n−1

)
. Note that

n − 1 ≥ N . If n is even, then∫ 1

1
2n

f ≥
∫ 1

c

f ≥
∫ 1

1
2n−1

f.

Since n − 1 ≥ N , we have∣∣∣∣∣a −
∫ 1

1
2n

f

∣∣∣∣∣ =

∣∣∣∣∣a −
n∑

k=1

(−1)k

k

∣∣∣∣∣ < ε and

∣∣∣∣∣a −
∫ 1

1
2n−1

f

∣∣∣∣∣ =

∣∣∣∣∣a −
n−1∑
k=1

(−1)k

k

∣∣∣∣∣ < ε.

Therefore
∣∣∣a − ∫ 1

c
f
∣∣∣ < ε. The case n odd is handled similarly. Thus, whenever

0 < c < δ we have
∣∣∣a − ∫ 1

c
f
∣∣∣ < ε. This shows that limc→0+

∫ 1

c
f = a, as desired.

Problem 6.8: Let f : [a,∞) → R be a function, and suppose that f |[a,b] is Rie-
mann integrable for every b > a. Define∫ ∞

a

f = lim
b→∞

∫ b

a

f

if this limit exists and is finite. In this case, we say that
∫ ∞

a
f converges.

Assume that f is nonnegative and nonincreasing on [1,∞). Prove that
∫ ∞
1

f

converges if and only if
∑∞

n=1 f(n) converges.

Solution (nearly complete): First assume that
∑∞

n=1 f(n) converges. Since f is
nonnegative, b 7→ ∫ b

a
f is nondecreasing. It is therefore easy to check (as with

sequences) that limb→∞
∫ b

1
f exists if and only if b 7→ ∫ b

1
f is bounded.

Define g : [1,∞) → R by g(x) = f(n) for x ∈ [n, n + 1) and n ∈ N. Since f
is nondecreasing, it follows that g ≥ f . So if b ≥ 1 we can choose n ∈ N with
n + 1 ≥ b, giving ∫ b

1

f ≤
∫ n

1

f ≤
∫ n+1

1

g =
n∑

k=1

f(k) ≤
∞∑

k=1

f(k).

This shows that b 7→ ∫ b

1
f is bounded.

Now assume that
∫ ∞
1

f converges. This clearly implies that the sequence n 7→∫ n

1
f is bounded (in fact, converges). Define h : [1,∞) → R by h(x) = f(n + 1) for

x ∈ [n, n+1) and n ∈ N. Since f is nondecreasing, it follows that h ≤ f . Therefore
n∑

k=1

f(k) = f(1) +
n∑

k=2

f(k) = f(1) +
∫ n

1

h ≤ f(1) +
∫ n

1

f.
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This shows that the partial sums
∑n

k=1 f(k) form a bounded sequence. Since the
terms are nonnegative, it follows that

∑∞
n=1 f(n) converges.

Problem 6.10: Let p, q ∈ (1,∞) satisfy 1
p + 1

q = 1.

(a) For u, v ∈ [0,∞) prove that

uv ≤ up

p
+

vq

q
,

with equality if and only if up = vq.

Comment: The solution below was found by first letting x = up and y = vq, so that
the inequality is equivalent to x1/py1/q = x

p + y
q for x, y ∈ [0,∞); then dividing by

y and noting that 1
q − 1 = − 1

p , so that the inequality is equivalent to

(
x

y

)1/p

≤
(

1
p

) (
x

y

)
+

1
q
;

then letting α = x
y .

Solution: We first claim that α1/p ≤ 1
p · α + 1

q for all α ≥ 0, with equality if and
only if α = 1. That we have equality for α = 1 is clear. Set

f(α) = α1/p − 1
p
· α − 1

q

for α ≥ 0. Then

f ′(α) =
1
p
· α1/p−1 − 1

p
=

1
p

(
α1/p−1 − 1

)

for all α > 0. Fix α > 1. The Mean Value Theorem provides β ∈ (1, α) such that

f(α) − f(1) = f ′(β)(α − 1).

Since β > 1 and 1
p − 1 < 0, we have f ′(β) < 0. Since f(1) = 0, we therefore get

f(α) < 0. This proves the claim for α > 1. For 0 ≤ α < 1, a similar argument
works, using the fact that f ′(β) > 0 for 0 < β < 1.

Now we prove the statement of the problem. If vq = 0, the inequality reduces to
0 ≤ 1

pup. Clearly this is true for all u ≥ 0, and equality holds if and only if up = 0.
Otherwise, set α = up · v−q. Applying the claim, we get

(
up

vq

)1/p

≤
(

1
p

) (
up

vq

)
+

1
q

for all u ≥ 0 and v > 0, with equality if and only if up = vq. Since vq > 0, we can
multiply by vq, getting

uvq−q/p ≤ up

p
+

vq

q

for all u ≥ 0 and v > 0, with equality if and only if up = vq. Now the relationship
1
p + 1

q = 1 implies that q − q
p = 1, completing the proof.

(b) (with the function α taken to be α(x) = x). Let α : [a, b] → R be a nonde-
creasing function. Let f, g : [a, b] → R be nonnegative functions which are Riemann
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integrable, and such that
∫ b

a

fp = 1 and
∫ b

a

gq = 1.

Prove that ∫ b

a

fg ≤ 1.

Solution: The function fg is Riemann integrable, by Theorem 6.13 (a) of Rudin.
The inequality in Part (a) implies that fg ≤ 1

pfp + 1
q gq on [a, b]. Therefore

∫ b

a

fg ≤
∫ b

a

(
1
pfp + 1

q gq
)

= 1
p

∫ b

a

fp + 1
q

∫ b

a

gq = 1
p + 1

q = 1.

(c) (with the function α taken to be α(x) = x). Let f, g : [a, b] → C be Riemann
integrable complex valued functions. Prove that

∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤
(∫ b

a

|f |p
)1/p (∫ b

a

|g|q
)1/q

.

Solution: First, we note that the hypotheses imply that fg, |f |p, and |g|q are
Riemann integrable. For the second two, use Theorems 6.25 and 6.11 of Rudin.
For the first, use the decompositions of f and g into real and imaginary parts, and
then use Theorems 6.13 (a) and 6.12 (a).

Next observe that ∣∣∣∣∣
∫ b

a

fg

∣∣∣∣∣ ≤
∫ b

a

|f | · |g|.

Therefore it is enough to show that

∫ b

a

|f | · |g| ≤
(∫ b

a

|f |p
)1/p (∫ b

a

|g|q
)1/q

.

Let

α =

(∫ b

a

|f |p
)1/p

and β =

(∫ b

a

|g|q
)1/q

,

and apply Part (b) to the functions f0 = α−1|f | and g0 = β−1|g|.
(d) Prove that the result in Part (c) also holds for the improper Riemann integrals

defined in Problems 6.7 and 6.8. (Only actually do the case of the improper integral
defined in Problems 6.7.)

Solution (nearly complete): We assume that
∫ 1

0

|f |p and
∫ 1

0

|g|q
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exist in the extended sense defined in Problem 6.7, and we need to prove that
∫ 1

0
fg

exists and that ∣∣∣∣
∫ 1

0

fg

∣∣∣∣ ≤
(∫ 1

0

|f |p
)1/p (∫ 1

0

|g|q
)1/q

.

Once existence is proved, the inequality follows immediately from Part (c) by taking
the limit as c → 0+.

Define

I(c) =
∫ 1

c

fg

for c ∈ (0, 1). We claim that for every ε > 0 there is δ > 0 such that whenever
c1, c2 ∈ (0, δ), then |I(c1) − I(c2)| < ε. This will imply that limc→0+ I(c) exists.
Indeed, restricting to c = 1

n with n ∈ N ∩ [2,∞) gives a Cauchy sequence in C,
which necessarily has a limit α, and it is easy to show that limc→0+ I(c) = α as c
runs through arbitrary values too.

To prove the claim, let ε > 0. Choose δ > 0 so small that if 0 < c < δ then∣∣∣∣
∫ 1

0

|f |p −
∫ 1

c

|f |p
∣∣∣∣ <

(√
ε
)p

and ∣∣∣∣
∫ 1

0

|g|q −
∫ 1

c

|g|q
∣∣∣∣ <

(√
ε
)q

.

Since |f |p and |g|q are nonnegative, it follows that whenever 0 < c1 < c2 < δ, then∫ c2

c1

|f |p <
(√

ε
)p and

∫ c2

c1

|g|q <
(√

ε
)q

.

Now apply Part (c) to get

|I(c2) − I(c1)| =
∣∣∣∣
∫ c2

c1

fg

∣∣∣∣ ≤
(∫ c2

c1

|f |p
)1/p (∫ c2

c1

|g|q
)1/q

<
(√

ε
) (√

ε
)

= ε.

This takes care of the case c1 < c2. The reverse case is obtained easily from this
one, and the case c1 = c2 is trivial.

Problem 6.11 (with the function α taken to be α(x) = x): For any Riemann
integrable function u, define

‖u‖2 =

(∫ b

a

|u|2
)1/2

.

Prove that if f , g, and h are all Riemann integrable, then

‖f − h‖2 ≤ ‖f − g‖2 + ‖g − h‖2.

Hint: Use the Schwarz inequality, as in the proof of Theorem 1.37 of Rudin.

Comment: As I read the problem, it is intended that the functions be real. However,
the complex case is actually more important, so I will give the proof in that case.

Also, one can use Problem 6.10 (c) at an appropriate stage, but that isn’t actually
necessary.
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Solution (nearly complete): It is enough to prove that

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

Start by defining, for f , g Riemann integrable,

〈f, g〉 =
∫ b

a

fg.

Note that, by an argument similar to the one given in the proof of Problem 6.10 (c),
fg is in fact Riemann integrable. It is now immediate to verify the following facts:

(1) The set R([a, b]) of Riemann integrable complex functions is a vector space
(with the pointwise operations).

(2) For every g ∈ R([a, b]), the function f 7→ 〈f, g〉 is linear.
(3) 〈g, f〉 = 〈f, g〉 for all f, g ∈ R([a, b]).
(4) 〈f, f〉 ≥ 0 for all f ∈ R([a, b]).
(5) ‖f‖2

2 = 〈f, f〉 for all f ∈ R([a, b]).
We next show that

|〈f, g〉| ≤ ‖f‖2‖g‖2

for all f, g ∈ R([a, b]). Note that the proof uses only properties (1) through (5)
above.

Choose α ∈ C with |af | = 1 and α〈f, g〉 = |〈f, g〉|. It is clear that

‖αf‖2 = ‖f‖2 and 〈αf, g〉 = |〈f, g〉|.
Therefore it suffices to prove the inequality with αf in place of f . That is, without
loss of generality we may assume 〈f, g〉 ≥ 0.

For t ∈ R, define

p(t) = 〈f + tg, f + tg〉.
Using Properties (2) and (3), and the fact that 〈f, g〉 is real, we may expand this
as

p(t) = 〈f, f〉 + 2t〈f, g〉 + t2〈g, g〉.
Thus, p is a quadratic polynomial. Property (4) implies that its discriminant is
nonpositive, that is,

4〈f, g〉2 − 4〈f, f〉〈g, g〉 ≤ 0.

This implies the desired inequality.
Now we prove the inequality

‖f + g‖2 ≤ ‖f‖2 + ‖g‖2.

Again, the proof depends only on properties (1) through (5) above, and uses nothing
about integrals except what went into proving those properties.

We write (using Properties (2) and (3) to expand at the second step, and the
previously proved inequality at the third step):

‖f + g‖2
2 = 〈f + g, f + g〉 = 〈f, f〉 + 2Re(〈f, g〉) + 〈g, g〉
≤ ‖f‖2

2 + ‖f‖2‖g‖2 + ‖g‖2
2 = (‖f‖2 + ‖g‖2)2.

Now take square roots.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 6.15: Let f : [a, b] → R be a continuously differentiable function satis-
fying f(a) = f(b) = 0 and

∫ b

a
f(x)2 dx = 1. Prove that

∫ b

a

xf(x)f ′(x) dx = − 1
2 and

(∫ b

a

[f ′(x)]2 dx

) (∫ b

a

x2f(x)2 dx

)
> 1

4 .

Comments: (1) I do not use the notation “f2(x)”, because it could reasonably be
interpreted as f(f(x)).

(2) This result is related to the Heisenberg Uncertainly Principle in quantum
mechanics.

Solution (Sketch): For the equation, use integration by parts (Theorem 6.22 of
Rudin), ∫ b

a

u(x)v′(x) dx = u(b)v(b) − u(a)v(a) −
∫ b

a

u′(x)v(x) dx,

with

v′(x) = f(x)f ′(x), v(x) = 1
2f(x)2, u(x) = x, and u′(x) = 1.

The inequality (∫ b

a

[f ′(x)]2 dx

) (∫ b

a

x2f(x)2 dx

)
≥ 1

4

now follows from the Hölder inequality (Problem 6.10 of Rudin) with p = q = 2.
(Also see the solution given for Problem 6.11.)

To get strict inequality requires more work. First, we need to know that if(∫ b

a

f(x)g(x) dx

)2

=

(∫ b

a

f(x)2 dx

)(∫ b

a

g(x)2 dx

)
,

which in the notation used in the solution to Problem 6.11 is

〈f, g〉2 = 〈f, f〉 · 〈g, g〉
(for real valued f and g), then f and g are linearly dependent, that is, either one of
them is zero or there is a constant λ such that f = λg. This is proved below. Given
this, and taking g(x) = xf ′(x), the hypotheses and the first equation proved above

Date: 28 Jan. 2002.
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immediately rule out f = 0 or g = 0. Thus, if the strict inequality fails above, there
is a nonzero constant λ ∈ R such that

f ′(x) = λxf(x)

for all x ∈ [a, b].
The next step is motivated by the observation that the last equation is a differ-

ential equation for f whose solutions have the form

f(x) = 0 and f(x) = exp
(

1
2λx2 + γ

)
for all x (for some constant γ). Let

S = {x ∈ [a, b] : f(x) 6= 0} ⊂ [a, b].

Then S is open in [a, b] because f is continuous. We know that S 6= ∅, because∫ b

a
f(x)2 dx = 1. So choose x0 ∈ S. Let

c = inf{t ∈ [a, x0] : [t, x0] ⊂ S}.
Then c < x0 and (c, x0] ⊂ S. We show that [c, x0] ⊂ S. On the interval (c, x0],
since f(x) 6= 0, we can rewrite the differential equation above as

f ′(x)
f(x)

= λx.

Integrating, we get that there is a constant γ ∈ R such that

log(f(x)) = 1
2λx2 + γ

for x ∈ (c, x0]. (We have implicitly used Theorem 5.11 (b) of Rudin here: if f ′ = 0
on an interval, then f is constant.) Rewrite the above equation as

f(x) = exp
(

1
2λx2 + γ

)
for x ∈ (c, x0]. Since f is continuous at c, we let x approach zero from above to get

f(c) = exp
(

1
2λc2 + γ

) 6= 0.

So c ∈ S, whence [c, x0] ⊂ S.
Since S is open in [a, b], it is easy to see that this implies that c = a. (Otherwise,

c is a limit point of [a, b]\S but c 6∈ [a, b]\S.) We saw above that f(c) 6= 0. However,
this now contradicts the assumption that f(a) = 0, thus proving the required strict
inequality.

It remains to prove the criterion for 〈f, g〉2 = 〈f, f〉 · 〈g, g〉. Referring to the
solution to Problem 6.11 of Rudin, and taking α(x) = x there, we see that equality
implies that the polynomial

p(t) = 〈f, f〉 + 2t〈f, g〉 + t2〈g, g〉
used there has a real root, which implies the existence of t such that

0 = 〈f + tg, f + tg〉 =
∫ b

a

(f + tg)2.

Since f and g are assumed real and continuous here, and since we are using the
Riemann integral, this implies that f + tg = 0.

Problem 7.1: Prove that every uniformly convergent sequence of bounded func-
tions is uniformly bounded.
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Solution: Let E be a set, let fn : E → C be bounded functions, and assume that
fn → f uniformly. By the definition of uniform convergence, there is N such that
if n ≥ N then ‖fn − f‖∞ < 1. Set

M = max (‖f1‖∞, ‖f2‖∞, . . . , ‖fN−1‖∞, ‖fN‖∞ + 1) .

Then obviously ‖fn‖∞ ≤ M for 1 ≤ n < N . For n ≥ N , we have

‖fn‖∞ ≤ ‖fN‖∞ + ‖fn − f‖∞ < ‖fN‖∞ + 1 ≤ M.

This shows that supn∈N ‖fn‖∞ ≤ M , that is, that (fn) is uniformly bounded.

Problem 7.2: Let fn : E → C and gn : E → C be uniformly convergent sequences
of functions. Prove that fn + gn converges uniformly. If, in addition, the functions
fn and gn are all bounded, prove that fngn converges uniformly.

Solution: Let f and g be the functions (assumed to exist) such that fn → f
uniformly and gn → g uniformly.

For the sum, we show that fn +gn → f +g uniformly. Let ε > 0, choose N1 ∈ N
such that n ≥ N1 implies

sup
x∈E

|fn(x) − f(x)| < 1
2ε,

and choose N2 ∈ N such that n ≥ N2 implies

sup
x∈E

|gn(x) − g(x)| < 1
2ε.

Set N = max(N1, N2). Let n ≥ N and let x ∈ E. Then

|(fn + gn)(x) − (f + g)(x)| ≤ |fn(x) − f(x)| + |gn(x) − g(x)|
≤ sup

y∈E
|fn(y) − f(y)| + sup

x∈E
|gn(y) − g(y)|.

Therefore n ≥ N implies

sup
x∈E

|(fn + gn)(x) − (f + g)(x)|

≤ sup
y∈E

|fn(y) − f(y)| + sup
y∈E

|gn(y) − g(y)| < 1
2ε + 1

2ε = ε.

This shows that fn + gn → f + g uniformly.
(Here is an alternate way of presenting the computation. Having chosen N as

above, for any n ≥ N we have

sup
x∈E

|(fn + gn)(x) − (f + g)(x)| ≤ sup
x∈E

[|fn(x) − f(x)| + |gn(x) − g(x)|]
≤ sup

x∈E
|fn(x) − f(x)| + sup

x∈E
|gn(x) − g(x)|

< 1
2ε + 1

2ε = ε.

Note that the second inequality in this computation in general is not an equality.)
Now consider the uniform convergence of the products. Since the functions are

bounded, we will use norm notation.
First note that, for any bounded functions f and g, we have ‖fg‖∞ ≤ ‖f‖∞‖g‖∞.

Indeed, for any x ∈ E we have

|f(x)g(x)| = |f(x)| · |g(x)| ≤ ‖fg‖∞ ≤ ‖f‖∞‖g‖∞,

and we take the supremum over x ∈ E to get the result.
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Now let ε > 0. Choose N1 ∈ N such that n ≥ N1 implies

‖fn(x) − f(x)‖∞ <
ε

2(‖g‖∞ + 1)
,

and choose N2 ∈ N such that n ≥ N2 implies

‖gn(x) − g(x)‖∞ < min
(

1,
ε

2‖f‖∞ + 1

)
.

Set N = max(N1, N2). First, note that n ≥ N implies

‖gn‖∞ ≤ ‖g‖∞ + ‖gn − g‖∞ < ‖g‖∞ + 1.

Therefore, using the inequality in the previous paragraph and the triangle inequality
for ‖ · ‖∞ (proved in class), we see that n ≥ N implies

‖fngn − fg‖∞ ≤ ‖fngn − fgn‖∞ + ‖fgn − fg‖∞
≤ ‖fn − f‖∞‖gn‖∞ + ‖f‖∞‖gn − f‖∞
≤ ε

2(‖g‖∞ + 1)
· (‖g‖∞ + 1) + ‖f‖∞ · ε

2‖f‖∞ + 1
< ε.

This shows that fngn → fg uniformly.

Problem 7.3: Construct a set E and two uniformly convergent sequences fn : E →
C and gn : E → C of functions such that fngn does not converge uniformly. (Of
course, fngn converges pointwise.)

Solution (Sketch): Set E = R, let fn be the constant function fn(x) = 1
n for all

x ∈ R, and let f(x) = 0 for all x. Define g by g(x) = x for all x ∈ R, and let
gn = g for all n. It is obvious that fn → f uniformly and gn → g uniformly. Also
fngn → 0 pointwise. However, fn(n)gn(n) = 1 for all n.

Problem 7.4: Consider the series
∞∑

n=1

1
1 + n2x

.

For which values of x does the series converge absolutely? On which closed intervals
does the series converge uniformly? On which closed intervals does the series fail to
converge uniformly? Is the sum continuous wherever the series converges? Is the
sum bounded?

Comment: The problem was written in the book with the word “interval”. Because
of Rudin’s strange terminology, I believe “closed interval” is what was meant.

Solution (Sketch):
The situation will be clear with two lemmas. Define

fn(x) =
1

1 + n2x

for all x and n.

Lemma 1. For every ε > 0, we have
∞∑

n=1

‖fn|[ε,∞)‖∞ < ∞.
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Proof: Observe that if x ≥ ε, then

0 < fn(x) =
1

1 + n2x
≤ 1

1 + n2ε
<

1
n2ε

,

so that

‖fn|[ε,∞)‖∞ ≤ 1
n2ε

,

and
∞∑

n=1

‖fn|[ε,∞)‖∞ ≤ 1
ε

∞∑
n=1

1
n2

< ∞.

Lemma 2. For every ε > 0, there is N ∈ N such that
∞∑

n=N

‖fn|(−∞,−ε]‖∞ < ∞.

Proof: Choose N ∈ N such that N2 > 2ε−1. For x ≥ ε and n ≥ N we then have

n2x − 1 ≥ n2ε − 1 ≥ 2n2

N2
− 1 ≥ n2

N2
.

Thus

fn(−x) = − 1
n2x − 1

satisfies

0 > fn(−x) > −N2

n2
.

So

‖fn|(−∞,−ε]‖∞ ≤ N2

n2
,

and
∞∑

n=N

‖fn|(−∞,−ε]‖∞ ≤ N2
∞∑

n=N

1
n2

< ∞.

It is easy to check that
∑∞

n=1 fn(x) fails to converge at x = 0, and the series
doesn’t converge at x = − 1

n2 for any n ∈ N because one of the functions is not
defined there. Thus, the series does not converge even pointwise on any closed
interval containing any point of the set

S = {0} ∪ {−1, − 1
4 , − 1

9 , . . .
}

.

For any closed interval not containing any points of S (even an infinite closed
interval), the two lemmas above make it clear that the series

∑∞
n=1 fn(x) converges

uniformly to a bounded continuous function. In particular, the sum is continuous
off S.

The sum of the series is, however, not bounded on its domain. From the above,
the domain is clearly R \ S. We show carefully that if U is any neighborhood of
any point x0 ∈ S, then the sum is not bounded on U ∩ (R \ S).
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We first consider the case x0 = − 1
n2 for some n. Choose r with

0 < r <
1
n2

− 1
(n + 1)2

,

and set

E = U ∩
[
− 1

n2
− r,

1
n2

+ r

]
and E0 = E ∩ (R \ S) = E \

{
− 1

n2

}
.

Since E0 ⊂ U ∩ (R \S), it suffices to show that the sum is not bounded on E0. Set
ε = 1

(n+1)2 , and choose N as in Lemma 2 for this value of ε. We alse require that
N > n. Then

∑∞
k=N fk converges to a bounded function on E, by the conclusion

of Lemma 2. Moreover, each fk, for 1 ≤ k < N but k 6= n, is continuous on the
compact set

[− 1
n2 − r, 1

n2 + r
]
, hence bounded on its subset E. It follows that∑

k 6=n fk is bounded on E, hence on E0. However, fn is not bounded on E0, since
− 1

n2 is a limit point of E0 and

lim
x→(− 1

n2 )−
fn(x) = −∞ and lim

x→(− 1
n2 )+

fn(x) = ∞.

It follows that
∞∑

k=1

fk = fn +
∑
k 6=n

fk

is the sum of a bounded function on E0 and an unbounded function on E0, hence
is not bounded on E0.

Now consider the case x0 = 0. Then U also contains − 1
n2 for some n. Therefore

the sum is not bounded on U ∩ (R \ S) by the previous case.

We point out that, when showing that
∑∞

k=1 fk is not bounded on E0, it is not
sufficient to simply show that fn is unbounded there while all other fk are bounded
there. Here is an example of a series

∑∞
k=0 gk which converges on R \ {0} to a

bounded function, with g0 unbounded but with gk bounded for all k 6= 0. Set

g0(x) = − 1
x2

and, for k ≥ 1,

hk(x) = min
(

k − 1,
1
x2

)
and gk(x) = hk+1(x) − hk(x).

Then g0 is not bounded, |gk(x)| ≤ 1 for all k ≥ 1 and all x ∈ R \ {0}, but∑∞
k=0 gk(x) = 0 for all x ∈ R \ {0}.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 6.12 (with α(x) = x): Let ‖ ·‖2 be as in Problem 6.11. Let f : [a, b] → R
be Riemann integrable, and let ε > 0. Prove that there is a continuous function
g : [a, b] → R such that ‖f − g‖2 < ε.

Hint: For a suitable partition P = (x0, x1, . . . , xn) of [a, b], define g on [xj−1, xj ]
by

g(t) =
xj − t

xj − xj−1
f(xj−1) +

t − xj−1

xj − xj−1
f(xj).

Solution (nearly complete): Fix f as in the problem. For any partition P of [a, b],
let gP be the function defined in the hint. Check that gP is well defined and
continuous.

We now choose a suitable partition. Let M = supx∈[a,b] |f(x)|. Choose ρ > 0 so
small that

ρ2(b − a) < 1
2ε2.

Choose δ > 0 so small that

4M2ρ−1δ < 1
2ε2.

Choose a partition P as in the hint such that

U(P, f) − L(P, f) < δ.

Let

Mj = sup
x∈[xj−1, xj ]

f(x) and mj = inf
x∈[xj−1, xj ]

f(x).

On [xj−1, xj ], we then have both

mj ≤ f ≤ Mj and mj ≤ gP ≤ Mj .

Therefore

‖f − gP ‖2
2 =

∫ b

a

|f − gP |2 ≤
n∑

j=1

(Mj − mj)2(xj − xj−1).

Let

S = {j ∈ {1, 2, . . . , n} : Mj − mj ≥ ρ}.

Date: 17 Feb. 2002.
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We have

δ > U(P, f) − L(P, f) =
n∑

j=1

(Mj − mj)(xj − xj−1)

≥
∑
j∈S

(Mj − mj)(xj − xj−1) ≥ ρ
∑
j∈S

(xj − xj−1),

whence ∑
j∈S

(xj − xj−1) ≤ ρ−1δ

and ∑
j∈S

(Mj − mj)2(xj − xj−1) ≤ (2M)2ρ−1δ < 1
2ε2.

For j 6∈ S, we have Mj − mj < ρ. Therefore∑
j 6∈S

(Mj − mj)2(xj − xj−1) ≤ ρ2
∑
j 6∈S

(xj − xj−1)

≤ ρ2
n∑

j=1

(xj − xj−1) = ρ2(b − a) < 1
2ε2.

So

‖f − gP ‖2
2 ≤

n∑
j=1

(Mj − mj)2(xj − xj−1) < 1
2ε2 + 1

2ε2 = ε2,

whence ‖f − gP ‖2 < ε.

Problem 7.5: For x ∈ (0, 1) and n ∈ N, define

fn(x) =




0 0 < x < 1
n+1

sin2
(

π
x

)
1

n+1 ≤ x ≤ 1
n

0 1
n < x < 1

.

Prove that there is a continuous function f such that fn → f pointwise, but that
fn does not converge uniformly to f . Use the series

∑∞
n=1 fn to show that absolute

convergence of a series at every point does not imply uniform convergence of the
series.

Solution (nearly complete): All functions appearing here are bounded, so we may
work in the space Cb((0, 1)) with the metric obtained from the norm ‖ · ‖∞.

It is easy to see that fn(x) → 0 for all x. However, ‖fn‖∞ = 1 for all n, so fn

does not converge uniformly to 0.
The series

∑∞
n=1 fn(x) converges absolutely for all x, because for each fixed x

only one term is nonzero. The series
∑∞

n=1 fn does not converge uniformly: letting
sn be the n-th partial sum sn =

∑n
k=1 fk, we get ‖sn − sn−1‖∞ = ‖fn‖∞ = 1 for

all n, so the sequence (sn) is not Cauchy in the metric which determines uniform
convergence.

Problem 7.6: Prove that the series
∞∑

n=1

(−1)n · x2 + n

n2
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converges uniformly on every bounded interval in R, but does not converge abso-
lutely for any value of x.

Solution (nearly complete): Rewrite:
∞∑

n=1

(−1)n · x2 + n

n2
= x2

∞∑
n=1

(−1)n · 1
n2

+
∞∑

n=1

(−1)n · 1
n

.

For each fixed x, everything on the right converges, so this is legitimate; moreover,
it follows that the original series converges for all x.

For each fixed x, the first series on the right converges absolutely but the sec-
ond does not. Since the difference of absolutely convergent series is absolutely
convergent, the series on the left does not converge absolutely.

Now fix a bounded interval I ⊂ R. We want to show that the original series
converges uniformly on I. For x ∈ I and n ∈ N, set

fn(x) =
n∑

k=1

(−1)k · x2 + k

k2
, gn(x) =

n∑
k=1

(−1)k · x2

k2
, and hn(x) =

n∑
k=1

(−1)k · 1
k

.

All functions appearing here are bounded, so we may work in the space Cb(I) with
the metric obtained from the norm ‖ · ‖∞. It is easy to see that the sequence
(hn) converges in this metric to the function h with constant value

∑∞
n=1(−1)n · 1

n ,
and (because I is bounded) that the sequence (gn) converges in this metric to the
function g(x) = x2

∑∞
n=1(−1)n · 1

n2 . Therefore fn = gn+hn converges in this metric
to the function f = g + h. (The proof is the same as the proof of the convergence
of the sum of convergent sequences of complex numbers.)

Alternate proof of the failure of absolute convergence: Fix x ∈ R. Then∣∣∣∣(−1)n · x2 + n

n2

∣∣∣∣ =
x2 + n

n2
≥ n

n2
=

1
n

.

Since
∑∞

n=1
1
n diverges, the series

∞∑
n=1

∣∣∣∣(−1)n · x2 + n

n2

∣∣∣∣
diverges by the comparison test.

Alternate proof of uniform convergence: Define fn, gn, hn, f , g, and h as above.
Let ε > 0. Choose M so large that I ⊂ [−M, M ]. Using the convergence of∑∞

n=1(−1)n · 1
n2 , choose N1 such that if n ≥ N1 then∣∣∣∣∣

∞∑
k=1

(−1)k · 1
k2

−
n∑

k=1

(−1)k · 1
k2

∣∣∣∣∣ <
ε

2M
.

Using the convergence of
∑∞

n=1(−1)n · 1
n , choose N2 such that if n ≥ N2 then∣∣∣∣∣

∞∑
k=1

(−1)k · 1
k
−

n∑
k=1

(−1)k · 1
k

∣∣∣∣∣ <
ε

2
.

Then n ≥ max(N1, N2) implies

‖gn − g‖∞ ≤ 1
2ε and ‖hn − h‖∞ ≤ 1

2ε,
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from which it is easy to conclude that

‖fn − f‖∞ ≤ ε.

Second alternate proof of uniform convergence: We are going to use the Alternating
Series Test on a series of functions, but of course this needs justification. We
begin with an observation on the Alternating Series Test for a series of numbers∑∞

k=1(−1)kak, where

a1 > a2 > a3 > · · · > 0 and lim
n→∞ an = 0.

We claim (see below) that for any N we have∣∣∣∣∣
∞∑

k=1

(−1)kak −
N∑

k=1

(−1)kak

∣∣∣∣∣ ≤ aN+1.

Assuming this for the moment, consider an interval of the form [−M,M ] for
M ∈ (0,∞). (All bounded intervals are contained in intervals of this form.) For
each x ∈ [−M,M ], we have

x2

12
>

x2

22
>

x2

32
> · · · > 0

and
1
12

>
2
22

>
2
32

> · · · > 0,

whence
x2 + 1

12
>

x2 + 2
22

>
x2 + 3

32
> · · · > 0.

Also it is easy to see that

lim
n→∞

x2 + n

n2
= 0.

The Alternating Series Test therefore gives pointwise convergence of the series.
Moreover, applying the claim at the first step, we get, for x ∈ [−M,M ] and N ∈ N,∣∣∣∣∣

∞∑
k=1

(−1)k · x2 + k

k2
−

N∑
k=1

(−1)k · x2 + k

k2

∣∣∣∣∣ ≤
x2 + N + 1
(N + 1)2

≤ M2 + N + 1
(N + 1)2

.

The right hand side is independent of x ∈ [−M,M ] and has limit 0 as n → ∞, so
that the series converges uniformly on [−M,M ].

It remains to prove the claim above. Let sn =
∑n

k=1(−1)kak be the partial
sums. We can write an even partial sum s2n as

s2n = (a2 − a1) + (a4 − a3) + · · · + (a2n − a2n−1).

Using the analogous formula for s2n+2 and the fact that a2n+2 − a2n+1 < 0, we get
s2n+2 < s2n. That is,

s0 > s2 > s4 > · · · .

Therefore
∞∑

k=1

(−1)kak < s2n
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for all n. A similar argument on the odd partial sums, using a2n −a2n+1 > 0, gives

s1 < s3 < s5 < · · · and
∞∑

k=1

(−1)kak > s2n+1

In particular, if N = 2n is even then∣∣∣∣∣sN −
∞∑

k=1

(−1)kak

∣∣∣∣∣ = s2n −
∞∑

k=1

(−1)kak < s2n − s2n+1 = a2n+1 = aN+1,

while if N = 2n is odd then∣∣∣∣∣sN −
∞∑

k=1

(−1)kak

∣∣∣∣∣ =
∞∑

k=1

(−1)kak − s2n+1 < s2n+2 − s2n+1 = a2n+2 = aN+1.

This proves the claim, and completes the proof of uniform convergence.

Problem 7.7: For x ∈ (0, 1) and n ∈ N, define

fn(x) =
x

1 + nx2
.

Show that there is a function f such that fn → f uniformly, and that the equation
f ′(x) = limn→∞ f ′

n(x) holds for x 6= 0 but not for x = 0.

Solution: We show that ‖fn‖∞ ≤ n−1/2, which will imply that fn → 0 uniformly.
For |x| ≤ n−1/2, we have 1 + nx2 ≥ 1, so

|fn(x)| ≤ |x| ≤ n−1/2.

For |x| ≥ n−1/2, we can write

fn(x) =
x−1

x−2 + n
.

Since x−2 + n ≥ n, this gives

|fn(x)| ≤ x−1

n
≤ n1/2

n
= n−1/2.

So |fn(x)| ≤ n−1/2 for all x, proving the claim. This proves the first statement with
f = 0.

Now we consider the second part. We calculate:

f ′
n(x) =

1 − nx2

(1 + nx2)2
.

Clearly f ′
n(0) = 1 for all n, so limn→∞ f ′

n(0) = 1 6= f ′(0). Otherwise, we can rewrite

f ′
n(x) =

1
n2 − 1

nx2

1
n2 + 1

n · 2x2 + x4
,

and for each fixed x 6= 0 we clearly have limn→∞ f ′
n(x) = 0 = f ′(0).

Alternate solution for the first part (Sketch): Using the formula for f ′
n in the solu-

tion to the second part above, and standard calculus methods, show that fn(x) has
a global maximum at n−1/2, with value 1

2n−1/2, and a global minimum at −n−1/2,
with value − 1

2n−1/2. (Note that this requires consideration of limx→∞ fn(x) and
limx→−∞ fn(x) as well as those numbers x for which f ′

n(x) = 0. Forgetting to do
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so is already a blunder in elementary calculus.) This shows that ‖fn‖∞ = 1
2n−1/2,

so clearly limn→∞ ‖fn‖∞ = 0.

Second alternate solution for the first part (Sketch): The inequality (a − b)2 ≥ 0
implies that 2ab ≤ a2 + b2 for all a, b ∈ R. Apply this result with a = 1 and
b = |x|√n to get

2|x|√n ≤ 1 +
(|x|√n

)2 = 1 + nx2

for all n ∈ N and x ∈ R. It follows that

|fn(x)| =
|x|

1 + nx2
≤ 1

2
√

n

for all n ∈ N and x ∈ R. Therefore fn → 0 uniformly on R.

Problem 7.9: Let X be a metric space, let (fn) be a sequence of continuous
functions from X to C, and let f be a function from X to C. Show that if fn

converges uniformly to f , then for every sequence (xn) in X with limit x, one has
limn→∞ fn(xn) = f(x). Is the converse true?

Solution: We prove the direct statement. Let (xn) be a sequence in X with xn → x,
and let ε > 0. Note that f is continuous because it is the uniform limit of continuous
functions. So there is δ > 0 such that whenever y ∈ X satisfies d(y, x) < δ, then
|f(y) − f(x)| < 1

2ε. Choose N1 ∈ N so that if n ≥ N1 then for all x ∈ X we have
|fn(x) − f(x)| < 1

2ε. Choose N2 ∈ N so that if n ≥ N2 then d(xn, x) < δ. Take
n = max(N1, N2). Then for n ≥ N we have d(xn, x) < δ so that |f(xn)−f(x)| < 1

2ε.
Therefore

|fn(xn) − f(x)| ≤ |fn(xn) − f(xn)| + |f(xn) − f(x)| < 1
2ε + 1

2ε = ε.

The converse is false in general. Take X = R, fn(x) = 1
nx, and f = 0. Then

fn(x) → f(x) for all x, but the convergence is not uniform. Let (xn) be a sequence
in R such that limn→∞ xn = x. Then (xn) is bounded, so there is M such that
(xn) and x are all contained in [−M, M ]. Clearly fn|[−M, M ] converges uniformly
to f |[−M, M ]. The direct statement above therefore gives limn→∞ fn(xn) = f(x).
(This can also be checked directly:

|fn(xn) − f(x)| =
∣∣ 1
nxn

∣∣ ≤ 1
nM,

whence limn→∞ fn(xn) = f(x).)
The converse is true if X is compact. (This was, strictly speaking, not asked

for.) We first show that the hypotheses imply that f is continuous. Let x ∈ X, and
let (xn) be a sequence in X with xn → x; we show that f(xn) → f(x). Inductively
choose k(1) < k(2) < · · · such that |fk(n)(xn)−f(xn)| < 1

n . Define a new sequence
(yn) in X by taking yk(n) = xn and yn = x for n 6∈ {k(1), k(2), . . . }. Clearly
limn→∞ yn = x. By hypothesis, we therefore have limn→∞ fn(yn) = f(x). Now
(xn) is a subsequence of (yn), and (fk(n)(xn)) is the corresponding subsequence of
(fn(yn)). Therefore fk(n)(xn) → f(x). Since |fk(n)(xn) − f(xn)| < 1

n , it follows
easily that f(xn) → f(x). So f is continuous.

Now we prove that the convergence is uniform. Suppose not. Then there is ε > 0
such that for all N ∈ N there is n ≥ N with ‖fn − f‖∞ ≥ ε. Accordingly, there
are k(1) < k(2) < · · · and xn ∈ X such that |fk(n)(xn)− f(xn)| > 1

2ε. Passing to a
subsequence, we may assume that there is x ∈ X such that xn → x. (This is where
we use compactness.) As before, define a new sequence (yn) in X by taking yk(n) =
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xn and yn = x for n 6∈ {k(1), k(2), . . . }. Clearly limn→∞ yn = x. By hypothesis,
we therefore have limn→∞ fn(yn) = f(x). Also, limn→∞ f(yn) = f(x) because f
is continuous. However, since yk(n) = xn, we have |fk(n)(yk(n)) − f(yk(n))| > 1

2ε
for all n. So (fk(n)(yk(n))) and (f(yk(n))) can’t have the same limit. This is a
contradiction, and therefore we must have fn → f uniformly.

Problem 7.10: For x ∈ R, let (x) denote the fractional part of x, that is, (x) =
x − n for x ∈ [n, n + 1). For x ∈ R, define

f(x) =
∞∑

n=1

(nx)
n2

.

Show that the set of points at which f is discontinuous is a countable dense subset
of R. Show that nevertheless f is Riemann integrable on every closed bounded
interval in R.

Solution (nearly complete): Set

fn(x) =
(nx)
n2

.

First observe that ‖fn‖∞ = 1
n2 , so that

∑∞
n=1 fn converges uniformly by the Weier-

strass test.

Lemma. Let X be a metric space, let fn : X → C be functions, and suppose that
fn → f uniformly. Let x0 ∈ X. If all fn are continuous at x0, then f is continuous
at x0.

The proof can be obtained from Theorem 7.11 of Rudin, but we can give a
direct proof which imitates the standard proof that the uniform limit of continuous
functions is continuous.

Proof: Let ε > 0. Choose N ∈ N so that if n ≥ N then for all x ∈ X we have
|fn(x) − f(x)| < 1

3ε. Use the continuity of fN at x0 to choose δ > 0 such that
whenever x ∈ X satisfies d(x, x0) < δ, then |fN (x) − fN (x0)| < 1

3ε. For all x ∈ X
such that d(x, x0) < δ, we then have

|f(x) − f(x0)| ≤ |f(x) − fN (x)| + |fN (x) − fN (x0)| + |fN (x0) − f(x0)|
< 1

3ε + 1
3ε + 1

3ε = ε.

Our particular functions fn are continuous at every point of R\Q, so the lemma
implies that f is continuous on R \ Q.

We now show that f is not continuous at any point of Q. So let x ∈ Q. Write
x = p

q in lowest terms. (If x ∈ Z, take q = 1.) One checks that limt→x+ fq(t) <

limt→x− fq(t). So define

α = lim
t→x−

fq(t) − lim
t→x+

fq(t) > 0.

Choose N ∈ N so large that n ≥ N implies
∞∑

k=n

1
k2

< 1
2α.
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For any k, we clearly have limt→x+ fk(t) ≤ limt→x− fk(t). Set n = max(N, q).
Then

lim
t→x−

n∑
k=1

fk(t) − lim
t→x+

n∑
k=1

fk(t) ≥ α.

Moreover,

0 ≤
∞∑

k=n+1

fk(t) ≤
∞∑

k=n+1

1
k2

< 1
2α

for all t, whence

lim inf
t→x−

∞∑
k=n+1

fk(t) − lim sup
t→x+

∞∑
k=n+1

fk(t) ≥ − 1
2α.

(We use the obvious definitions of

lim inf
t→x−

g(t) and lim sup
t→x+

g(t)

here. Note, however, that these have not been formally defined, so if this is used
in a solution that is turned in, it needs justification. To avoid this, simply evaluate
everything at particular sequences converging to x from below and above, such as
sm = x − 1

m and tm = x + 1
m .) Therefore

lim inf
t→x−

f(t) − lim sup
t→x+

f(t)

=

(
lim

t→x−

n∑
k=1

fk(t) − lim
t→x+

n∑
k=1

fk(t)

)

+

(
lim inf
t→x−

∞∑
k=n+1

fk(t) − lim sup
t→x+

∞∑
k=n+1

fk(t)

)

≥ 1
2α > 0.

This is clearly incompatible with continuity of f at x.
The Riemann integrability of f on closed bounded intervals is immediate from

Theorem 7.16 of Rudin.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 7.16: Let K be a compact metric space, and let (fn) be a uniformly
equicontinuous sequence of functions in C(X). Suppose that (fn) converges point-
wise. Prove that (fn) converges uniformly.

Solution: We show that (fn) is a Cauchy sequence in C(K). Since C(K) is complete
(Theorem 7.15 of Rudin), this will imply that (fn) converges uniformly.

Let ε > 0. Choose δ > 0 such that for all n ∈ N, and for all x, y ∈ K such
that d(x, y) < δ, we have |fn(x) − fn(y)| < 1

4ε. Since K is compact, there exist
x1, x2, . . . , xk ∈ K such that the open δ-balls Nδ(x1), Nδ(x2), . . . , Nδ(xk) cover
K. Since each sequence (fn(xj)) converges, there is N ∈ N such that whenever
m, n ≥ N and 1 ≤ j ≤ k we have |fm(xj) − fn(xj)| < 1

4ε. Now let x ∈ K be
arbitrary. Choose j such that x ∈ Nδ(xj). For m, n ≥ N we then have

|fm(x) − fn(x)| ≤ |fm(x) − fm(xj)| + |fm(xj) − fn(xj)| + |fn(xj) − fn(x)|
< 1

4ε + 1
4ε + 1

4ε = 3
4ε.

Since x is arbitrary, this shows that ‖fm − fn‖∞ ≤ 3
4ε < ε.

Alternate solution: Let f(x) = limn→∞ fn(x). We show that (fn) converges uni-
formly to f .

Let ε > 0. Choose δ > 0 such that for all n ∈ N, and for all x, y ∈ K
such that d(x, y) < δ, we have |fn(x) − fn(y)| < 1

4ε. Letting n → ∞, we find that
|f(x)−f(y)| ≤ 1

4ε whenever x, y ∈ K satisfy d(x, y) < δ. Since K is compact, there
exist x1, x2, . . . , xk ∈ K such that the open δ-balls Nδ(x1), Nδ(x2), . . . , Nδ(xk)
cover K. Choose N ∈ N such that whenever n ≥ N and 1 ≤ j ≤ k, then
|fn(xj)−f(xj)| < 1

4ε. Now let x ∈ K be arbitrary. Choose j such that x ∈ Nδ(xj).
For n ≥ N we then have

|fn(x) − f(x)| ≤ |fn(x) − fn(xj)| + |fn(xj) − f(xj)| + |f(xj) − f(x)|
< 1

4ε + 1
4ε + 1

4ε = 3
4ε.

Since x is arbitrary, this shows that ‖fn − f‖∞ ≤ 3
4ε < ε.

Problem 7.20: Let f ∈ C([0, 1]), and suppose that∫ 1

0

f(x)xn dx = 0
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for all n ∈ N. Prove that f = 0.
Hint: The hypotheses imply that∫ 1

0

f(x)p(x) dx = 0

for every polynomial p. Use the Weierstrass Theorem to show that∫ 1

0

|f(x)|2 dx = 0.

Note: As is clear from Rudin’s hint, which suggested showing that∫ 1

0

f(x)2 dx = 0,

Rudin tacitly assumed that f is real, while I have assumed that f is complex.

Solution (Sketch): It is clear that the hypotheses imply that∫ 1

0

f(x)p(x) dx = 0

for every polynomial p. Use the Weierstrass Theorem to choose polynomials pn

such that limn→∞ ‖pn − f‖∞ = 0. Using Theorem 7.16 of Rudin, we get∫ 1

0

|f(x)|2 dx =
∫ 1

0

ff = lim
n→∞

∫ 1

0

fpn = 0.

Since f is continuous, it is easy to show that this implies f = 0. (See Problem 6.2
of Rudin, solved in an earlier solution set.)

Problem 7.21: Let S1 = {z ∈ C : |z| = 1} be the unit circle in the complex plane.
Let A ⊂ C(S1) be the subalgebra consisting of all functions of the form

f(eiθ) =
N∑

n=0

cneinθ

for θ ∈ R, with arbitrary N ∈ N and c0, c1, . . . , cN ∈ C. Then A separates the
points of S1 and vanishes at no point of S1, but A is not dense in C(S1).

Hint: For every f ∈ A we have∫ 2π

0

f(eiθ)eiθ dθ = 0,

and this is also true for every f ∈ A.

Solution (Sketch): It is easy to check that A is a subalgebra. (Anyway, the problem
is worded in such a way that you are to assume this is true.) The subalgebra A
separates the points of S1 because it contains the function f(z) = z, and vanishes
nowhere because it contains the constant function 1. The verification of the hint
for f ∈ A is direct from the computation, valid for any n ≥ 0,∫ 2π

0

einθ · eiθ dθ =
∫ 2π

0

ei(n+1)θ dθ =
1

i(n + 1)

(
ei(n+1)·2π − ei(n+1)·0

)
= 0.

The case f ∈ A now follows from Theorem 7.16 of Rudin.
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To complete the proof, it suffices to find f ∈ C(S1) such that
∫ 2π

0

f(eiθ)eiθ dθ 6= 0.

The function f(z) = z (that is, f(eiθ) = e−iθ) will do.

Problem 7.22 (with α(x) = x for all x): Let f : [a, b] → C be bounded and
Riemann integrable on [a, b]. Prove that there are polynomials pn such that

lim
n→∞

∫ b

a

|f − pn|2 = 0.

(Compare with Problem 6.12 of Rudin.)

Solution (Sketch): In the notation of Problem 6.11 of Rudin (see an earlier solu-
tion set), the conclusion is that limn→∞ ‖f − pn‖2

2 = 0. We prove the equivalent
statement limn→∞ ‖f − pn‖2 = 0.

Taking real and imaginary parts, without loss of generality f is real. (This
reduction uses the triangle inequality for ‖ · ‖2, Problem 6.11 of Rudin, which is
solved in an earlier solution set.) Further, it is enough to find, for every ε > 0, a
polynomial p such that ‖f − p‖2 < ε.

Use Problem 6.12 of Rudin (solved in an earlier solution set) to find g ∈ CR([0, 1])
such that ‖f − g‖2 < 1

2ε. Use the Weierstrass theorem to find a polynomial p such
that

‖g − p‖∞ <
ε√

2[b − a]
.

Then check that ‖g − p‖2 < 1
2ε, so that triangle inequality for ‖ · ‖2, Problem 6.11

of Rudin, implies that ‖f − p‖2 < ε.

Problem 7.24: Let X be a metric space, with metric d. Fix a ∈ X. For each
p ∈ X, define fp : X → C by

fp(x) = d(x, p) − d(x, a)

for x ∈ X. Prove that |fp(x)| ≤ d(a, p) for all x ∈ X, that f ∈ Cb(X), and that
‖fp − fq‖ = d(p, q) for all p, q ∈ X.

Define Φ: X → Cb(X) by Φ(p) = fp for p ∈ X. Then Φ is an isometry, that is,
a distance preserving function, from X to a subset of Cb(X).

Let Y be the closure of Φ(X) in Cb(X). Prove that Y is complete. Conclude
that X is isometric to a dense subset of a complete metric space.

Solution (Sketch): That |fp(x)| ≤ d(a, p) follows from two applications of the
triangle inequality for d, namely

d(x, p) ≤ d(x, a) + d(a, p) and d(x, a) ≤ d(x, p) + d(a, p).

This shows that f is bounded.
To prove continuity of fp, we observe that the map x 7→ d(x,w) is continuous

for every w ∈ X. Indeed, an argument using two applications of the triangle
inequality and very similar to the above shows that |d(x,w)− d(y, w)| ≤ d(x, y) for
all x, y ∈ X. This implies that x 7→ d(x,w) is continuous (in fact, Lipschitz with
constant 1).
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The inequality |d(x,w) − d(y, w)| ≤ d(x, y) for all w, x, y ∈ X gives

|fx(w) − fy(w)| = |d(w, x) − d(w, y)| ≤ d(x, y)

for all w ∈ X, whence ‖fx − fy‖ ≤ d(x, y). Also,

fx(y) − fy(y) = d(y, x) − d(y, a) − [d(y, y) − d(y, a)] = d(x, y),

whence ‖fx − fy‖ ≥ d(x, y). It follows that ‖fx − fy‖ = d(x, y), which says exactly
that Φ is isometric.

Define Y = Φ(X). The space Cb(X) is complete by Theorem 7.15 of Rudin, so
Y is complete by the discussion after Definition 3.12 of Rudin. It follows that X is
isometric to a dense subset of the complete metric space Y .
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 8.2: Define

ajk =

 0 j < k
−1 j = k
2k−j j > k

That is, ajk is the number in the j-th row and k-th column of the array:

−1 0 0 0 . . .
1
2 −1 0 0 . . .
1
4

1
2 −1 0 . . .

1
8

1
4

1
2 −1 . . .

...
...

...
...

. . .

Prove that
∞∑

j=1

∞∑
k=1

ajk = −2 and
∞∑

k=1

∞∑
j=1

ajk = 0.

Solution (Sketch): It is immediate from the formula for the sum of a geometric
series that the column sums (which are clearly all the same) are all 0. Using the
formula for the sum of a finite portion of a geometric series, one sees that the row
sums are −1, − 1

2 , − 1
4 , − 1

8 , . . . , and the sum of these is −2.

Problem 8.3: Prove that
∞∑

j=1

∞∑
k=1

ajk =
∞∑

k=1

∞∑
j=1

ajk

if aj,k ≥ 0 for all j and k. (The case +∞ = +∞ may occur.)

Comment: We give a solution which combines the finite and infinite cases. This is
shorter than a solution using a case breakdown.

Solution: We show that
∞∑

j=1

∞∑
k=1

ajk = sup

 ∑
(j,k)∈S

ajk : S ⊂ N×N finite

 .

Since the right hand side is unchanged when j and k are interchanged, this will
prove the result.

Date: 18 Feb. 2002.
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It is clear that if S ⊂ N×N is finite, then
∞∑

j=1

∞∑
k=1

ajk ≥
∑

(j,k)∈S

ajk.

This implies

∞∑
j=1

∞∑
k=1

ajk ≥ sup

 ∑
(j,k)∈S

ajk : S ⊂ N×N finite

 .

For the reverse inequality, let s ∈ R be an arbitrary number satisfying

s <
∞∑

j=1

∞∑
k=1

ajk;

we prove that

sup

 ∑
(j,k)∈S

ajk : S ⊂ N×N finite

 > s.

Choose ε > 0 such that

s + ε <
∞∑

j=1

∞∑
k=1

ajk.

Choose m ∈ N such that
m∑

j=1

∞∑
k=1

ajk > s + ε.

If for some j0 with 1 ≤ j ≤ m, the sum
∑∞

k=1 aj0k is infinite, choose n such that∑n
k=1 aj0k > s. Then clearly S = {j0} × {1, 2, . . . , n} is a subset of N ×N such

that
∑

(j,k)∈S ajk > s, and we are done. Otherwise, for 1 ≤ j ≤ m choose nj ∈ N
such that

nj∑
k=1

ajk >
∞∑

k=1

ajk −
ε

m
.

Set
n = max(n1, n2, . . . , nm) and S = {1, 2, . . . ,m} × {1, 2, . . . , n}.

Then ∑
(j,k)∈S

ajk >
m∑

j=1

( ∞∑
k=1

ajk −
ε

m

)
=

m∑
j=1

∞∑
k=1

ajk − ε > s.

This proves the desired inequality.

Note: We can even avoid the case breakdown in the last paragraph, as follows.
Choose b1, b2, . . . , bm such that b1 + b2 + · · · + bm > s and bj <

∑∞
k=1 ajk for

1 ≤ j ≤ m. Then choose nj ∈ N such that
∑nj

k=1 ajk > bj . However, at this point
the case breakdown seems easier.

Problem 8.4: Prove the following limit relations:

(a) lim
x→0

bx − 1
x

= log(b) for b > 0.

Solution (Sketch): Set f(x) = bx = exp(x log(b)). The desired limit is by definition
f ′(0), which can be gotten from the second expression for f using the chain rule.
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(b) lim
x→0

log(1 + x)
x

= 1.

Solution (Sketch): This limit is f ′(0) with f(x) = log(1 + x).

(c) lim
x→0

(1 + x)1/x = e.

Solution (Sketch): By Part (b), we have

lim
x→0

log
(
(1 + x)1/x

)
= 1.

Apply exp to both sides, using continuity of exp.

(d) lim
n→∞

(
1 +

x

n

)n

= ex.

Solution (Sketch): Write (
1 +

x

n

)n

=
[(

1 +
x

n

)n/x
]x

,

note that x
n → 0 as n →∞, and apply Part (c) (using continuity at the appropriate

places).

Problem 8.5: Find the following limits:

(a) lim
x→0

e− (1 + x)1/x

x
.

Comment: We first do a calculation, which shows what the answer is, and then
give a sketch of a solution in the correct logical order.

Calculation (Sketch): Rewrite and then use L’Hospital’s Rule to get

lim
x→0

e− (1 + x)1/x

x
= lim

x→0

e− exp
(

1
x log(1 + x)

)
x

= − lim
x→0

(x + 1)1/x
(

1
x(x+1) −

log(x+1)
x2

)
1

.

Rewrite:

− lim
x→0

(x + 1)1/x

(
1

x(x + 1)
− log(x + 1)

x2

)
= −

(
lim
x→0

(x + 1)1/x
)(

lim
x→0

x
x+1 − log(x + 1)

x2

)
= −e lim

x→0

x
x+1 − log(x + 1)

x2
.

Use L’Hospital’s rule to get

−e lim
x→0

x
x+1 − log(x + 1)

x2
= e lim

x→0

1
x+1 −

1
(x+1)2

2x
= e lim

x→0

1
2(x + 1)2

=
e

2
.

Solution (Sketch): We observe that

lim
x→0

1
x+1 −

1
(x+1)2

2x
= lim

x→0

1
2(x + 1)2
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exists (and is equal to 1
2 ). Since the other hypotheses of L’Hospital’s Rule are also

verified, we can use it to show that

− lim
x→0

x
x+1 − log(x + 1)

x2
= lim

x→0

1
x+1 −

1
(x+1)2

2x
=

1
2
.

Therefore

− lim
x→0

(x + 1)1/x

(
1

x(x + 1)
− log(x + 1)

x2

)
=

e

2
.

Since the other hypotheses of L’Hospital’s Rule are also verified, we can use it again
to show that

lim
x→0

e− (1 + x)1/x

x
= − lim

x→0

(x + 1)1/x
(

1
x(x+1) −

log(x+1)
x2

)
1

=
e

2
.

(b) lim
n→∞

n

log(n)

(
n1/n − 1

)
.

Solution: Rewrite the limit as

lim
n→∞

n

log(n)

(
n1/n − 1

)
= lim

n→∞

exp
(

1
n log(n)

)
− 1

1
n log(n)

Now limn→∞
1
n log(n) = 0, so

exp
(

1
n log(n)

)
− 1

1
n log(n)

= lim
h→0

exp(h)− 1
h

= exp′(0) = 1.

(c) lim
x→0

tan(x)− x

x[1− cos(x)]
.

Solution 1 (Sketch): Write

tan(x)− x

x[1− cos(x)]
=
(

1
cos(x)

)(
sin(x)− x cos(x)

x− x cos(x)

)
.

Since limx→0 cos(x) = 1, we get

lim
x→0

tan(x)− x

x[1− cos(x)]
= lim

x→0

sin(x)− x cos(x)
x− x cos(x)

.

Now apply L’Hospital’s rule three times (being sure to check that the hypotheses
are satisfied!):

lim
x→0

sin(x)− x cos(x)
x− x cos(x)

= lim
x→0

x sin(x)
1− cos(x) + x sin(x)

= lim
x→0

x cos(x) + sin(x)
x cos(x) + 2 sin(x)

= lim
x→0

2 cos(x)− x sin(x)
3 cos(x)− x sin(x)

=
2
3
.

(See the solution to Part (a) for the logically correct way to write this.)
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Solution 2 (Sketch; not recommended): Apply L’Hospital’s rule three times to the
original expression (being sure to check that the hypotheses are satisfied!):

lim
x→0

tan(x)− x

x[1− cos(x)]
= lim

x→0

[sec(x)]2 − 1
1− cos(x) + x sin(x)

= lim
x→0

2[sec(x)]2 tan(x)
x cos(x) + 2 sin(x)

= lim
x→0

2[sec(x)]4 + 4[sec(x)]2[tan(x)]2

3 cos(x)− x sin(x)
=

2
3
.

(See the solution to Part (a) for the logically correct way to write this.)
This solution is not recommended because of the messiness of the differentiation.

(The results given here were obtained using Mathematica.)

Solution 3 (Sketch; the mathematical justification for the power series manipula-
tions is easy but is not provided here): We compute the limit by substitution of
power series. We check easily that the usual power series

sin(x) = x− 1
3!x

3 + 1
5!x

5 − 1
7!x

7 + · · · and cos(x) = 1− 1
2!x

2 + 1
4!x

4 − 1
6!x

6 + · · ·

follow from the definitions of sin(x) and cos(x) in terms of exp(ix) and from the
definition of exp(z). Start from the equivalent limit given in Solution 1. We have

sin(x)− x cos(x)
x− x cos(x)

=

(
x− 1

3!x
3 + 1

5!x
5 − · · ·

)
− x

(
1− 1

2!x
2 + 1

4!x
4 − · · ·

)
x− x

(
1− 1

2!x
2 + 1

4!x
4 − · · ·

)
=

(
1
2! −

1
3!

)
x3 +

(
1
5! −

1
4!

)
x5 + · · ·

1
2!x

3 − 1
4!x

5 + · · ·

=

(
1
2! −

1
3!

)
+
(

1
5! −

1
4!

)
x2 + · · ·

1
2! −

1
4!x

2 + · · ·
.

The last expression defines a function of x which is continuous at 0, so

lim
x→0

tan(x)− x

x[1− cos(x)]
= lim

x→0

sin(x)− x cos(x)
x− x cos(x)

=

(
1
2! −

1
3!

)(
1
2!

) =
2
3
.

(d) lim
x→0

x− sin(x)
tan(x)− x

.

Solution 1 (Sketch): Write

x− sin(x)
tan(x)− x

= cos(x)
(

x− sin(x)
sin(x)− x cos(x)

)
.

Since limx→0 cos(x) = 1, we get

lim
x→0

x− sin(x)
tan(x)− x

= lim
x→0

x− sin(x)
sin(x)− x cos(x)

.
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Now apply L’Hospital’s rule three times (being sure to check that the hypotheses
are satisfied!):

lim
x→0

x− sin(x)
sin(x)− x cos(x)

= lim
x→0

1− cos(x)
x sin(x)

= lim
x→0

sin(x)
x cos(x) + sin(x)

= lim
x→0

cos(x)
2 cos(x)− x sin(x)

=
1
2
.

(See the solution to Part (a) for the logically correct way to write this.)

Solution 2 (Sketch): Apply L’Hospital’s rule twice to the original expression (being
sure to check that the hypotheses are satisfied!):

lim
x→0

x− sin(x)
tan(x)− x

= lim
x→0

1− cos(x)
[sec(x)]2 − 1

= lim
x→0

sin(x)
2[sec(x)]2 tan(x)

= lim
x→0

1
2[sec(x)]3

=
1
2
.

(See the solution to Part (a) for the logically correct way to write this.)

Solution 3 (Sketch): Use the same method as Solution 3 to Part (c). Details are
omitted.

Problem 8.6: Let f : R → R be a nonzero function satisfying f(x+y) = f(x)f(y)
for all x, y ∈ R.

(a) Suppose f is differentiable. Prove that there is c ∈ R such that f(x) =
exp(cx) for all x ∈ R.

Solution (nearly complete): Since f(0)f(x) = f(x) for all x, and since there is some
x such that f(x) 6= 0, it follows that f(0) = 1. The computation

lim
h→0

f(x + h)− f(x)
h

= f(x) lim
h→0

f(h)− f(0)
h

= f(x)f ′(0)

shows that f ′(x) = f(x)f ′(0) for all x ∈ R. Now let g(x) = f(x) exp(−xf ′(0))
for x ∈ R. Differentiate g using the product rule and the formula above, getting
g′(x) = 0 for all x. So g is constant. Since f(0) = 1, we get g(0) = 1. Therefore
f(x) = exp(xf ′(0)) for all x ∈ R.

Alternate solution: Use the solution to Part (b).

(b) Suppose f is continuous. Prove that there is c ∈ R such that f(x) = exp(cx)
for all x ∈ R.

Solution (nearly complete): We have f(0) = 1 for the same reason as in the first
solution to Part (a). By continuity, there is a > 0 such that f(a) > 0. Next,
define g(x) = f(x) exp(−a−1x log(f(a))) for x ∈ R. Then g is continuous, satisfies
g(x + y) = g(x)g(y) for all x, y ∈ R, and g(a) = 1. Set

S = inf{x > 0: g(x) = 1} and x0 = inf S.

We have S 6= ∅ because a ∈ S.
First suppose that x0 > 0. Then g(x0) = 1 by continuity. We have g

(
1
2x0

)2 =
g(x0) = 1 but g

(
1
2x0

)
6= 1, so g

(
1
2x0

)
= −1. Then g

(
1
4x0

)2 = g
(

1
2x0

)
= −1,

contradicting the assumption that g
(

1
4x0

)
is real. So x0 = 0.

We can now show that g(x) = 1 for all x ∈ R. Let ε > 0. Choose δ > 0 such
that whenever y ∈ R satisfies |y − x| < δ, then |g(y)− g(x)| < ε. By the definition
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of S and because x0 = 0, there is z ∈ S such that 0 < z < δ. Choose n ∈ Z such
that |nz − x| < δ. Then g(nz) = g(z)n = 1, so |g(x) − 1| < ε. This shows that
g(x) = 1.

So f(x) = exp(cx) with c = a−1 log(f(a)).

Alternate solution (Sketch): We have f(0) = 1 for the same reason as in the first
solution to Part (a). Furthermore, x ∈ R implies

f(x) = f
(

1
2x
)2 ≥ 0

since f
(

1
2x
)
∈ R. Moreover, if f(x) = 0 then f

(
1
2x
)

= 0, and by induction
f (2−nx) = 0 for all n. Since f is continuous and limn→∞ 2−nx = 0, this contradicts
f(0) = 1. Therefore f(x) > 0 for all x.

Define g(x) = exp(x log(f(1))) for x ∈ R. For n ∈ N,

f
(

1
n

)n = f(1) and g
(

1
n

)n = g(1) = f(1).

Since both f
(

1
n

)
and g

(
1
n

)
are positive, and positive n-th roots are unique, it

follows that f
(

1
n

)
= g

(
1
n

)
for all n ∈ N. An easy argument now shows that

f(x) = g(x) for all x ∈ Q. Since f and g are continuous, and since Q is dense in
R, it follows that f = g. So f(x) = exp(cx) with c = log(f(1)).
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 8.7: Prove that
2
π

<
sin(x)

x
< 1

for 0 < x < 1
2π.

Solution (Sketch): The inequality sin(x)
x < 1 is the same as sin(x) < x. This is

proved by noting that sin(0) = 0 and that the derivative 1− cos(x) of x− sin(x) is
strictly positive for 0 < x < 1

2π.
This also implies that sin(x)

x < 1 for x = 1
2π, so that 2

π < 1.
For the other inequality, suppose there is x0 with 0 < x0 < 1

2π such that

2
π

≥ sin(x0)
x0

.

Using the Intermediate Value Theorem and limx→0
sin(x)

x = 1, there is x0 with
0 < x0 < 1

2π such that

2
π

=
sin(x0)

x0
.

Set f(x) = sin(x)− 2
π ·x. For 0 < x ≤ 1

2π, we have f ′′(x) = − sin(x) < 0, so that f ′

is strictly decreasing on
[
0, 1

2π
]
. The Mean Value Theorem gives z ∈ (0, x0) such

that f ′(z) = 0, so f ′(x) < 0 for x0 ≤ x ≤ 1
2π. Since f(x0) = 0, we get f

(
1
2π

)
< 0,

a contradiction.

Alternate solution 1 (Sketch): Suppose f : [0, a] → R is a continuous function such
that:

(1) f(0) = 0.
(2) f ′(x) exists for x ∈ (0, a).
(3) f ′ is strictly decreasing on (0, a).

We claim that the function g(x) = x−1f(x) is strictly decreasing on (0, a].
To see that the claim implies the result, take f(x) = sin(x) and a = 1

2π. We
conclude that g is strictly decreasing on

(
0, 1

2π
]
. We get the result by observing

that

lim
x→0+

sin(x)
x

= sin′(0) = cos(0) = 1.

Date: 27 Feb. 2002.
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To prove the claim, let 0 < x1 < x2 ≤ b. Use the Mean Value Theorem to choose
c1 ∈ (0, x1) and c2 ∈ (x1, x2) such that

f(x1)
x1

=
f(x1) − f(0)

x1 − 0
= f ′(c1) and

f(x2) − f(x1)
x2 − x1

= f ′(c2).

Then c1 < c2, so f ′(c1) > f ′(c2), whence

f(x1)
x1

>
f(x2) − f(x1)

x2 − x1
.

Multiply both sides of this inequality by x1(x2 − x1) > 0 to get

(x2 − x1)f(x1) > x1(f(x2) − f(x1)).

Multiply out and cancel −x1f(x1) to get x2f(x1) > x1f(x2), and divide by x1x2

to get g(x1) > g(x2).

Alternate solution 2 (Sketch): Since

sin
(

1
2π

)
1
2π

=
2
π

and lim
x→0+

sin(x)
x

= sin′(0) = cos(0) = 1,

it suffices to prove that the function g(x) = x−1 sin(x) is strictly decreasing on(
0, 1

2π
)
. We do this by showing that g′(x) < 0 on this interval.

Begin by observing that the function h(x) = x cos(x) − sin(x) satisfies h(0) = 0
and h′(x) = − sin(x) for all x. Therefore h′(x) < 0 for x ∈ (

0, 1
2π

]
, and from

h(0) = 0 we get h(x) < 0 for x ∈ (
0, 1

2π
]
. Now calculate, for x ∈ (

0, 1
2π

)
,

g′(x) =
x cos(x) − sin(x)

x2
=

h(x)
x2

< 0.

This is the required estimate.

Alternate solution 3 (Sketch): As in the second alternate solution, we set g(x) =
x−1 sin(x) and show that g′(x) < 0 for x ∈ (

0, 1
2π

)
. Define

q(x) =
sin(x)
cos(x)

− x

for x ∈ [
0, 1

2π
)
. Then the quotient rule and the relation sin2(x) + cos2(x) = 1 give

q′(x) =
1

cos2(x)
− 1.

For x ∈ (
0, 1

2π
)

we have 0 < cos(x) < 1, from which it follows that q′(x) > 0.
Since q is continuous on

[
0, 1

2π
)

and q(0) = 0, we get q(x) > 0 for x ∈ (
0, 1

2π
)
. It

follows that sin(x) > x cos(x) for x ∈ (
0, 1

2π
)
. As in the second alternate solution,

this implies that g′(x) < 0 for x ∈ (
0, 1

2π
)
.

Problem 8.8: For n ∈ N ∪ {0} and x ∈ R, prove that

| sin(nx)| ≤ n| sin(x)|.
Note that this inequality may be false for n not an integer. For example,∣∣sin (

1
2xm

)∣∣ > 1
2 |sin(x)| .
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Solution (Sketch): Combining the formula exp(i(x + y)) = exp(ix) exp(iy) with
either the result

cos(x) = Re(exp(ix)) and sin(x) = Im(exp(ix))

(for x real) or the definitions

cos(x) = 1
2 [exp(ix) + exp(−ix)] and sin(x) = 1

2i [exp(ix) − exp(−ix)],

prove the addition formula

sin(x + y) = sin(x) cos(y) + cos(x) sin(y).

(Using the first suggestion gives this only for real x and y, but that is all that is
needed here.)

Now prove the result by induction on n. For n = 0 the desired inequality says
0 ≤ 0 for all x, which is certainly true. Assuming it is true for n, we have (using the
addition formula in the first step and the induction hypothesis and the inequality
| cos(a)| ≤ 1 for all real a in the second step)

| sin((n + 1)x)| ≤ | sin(x)| · | cos(nx)| + | cos(x)| · | sin(nx)|
≤ | sin(x)| + n| sin(x)| = (n + 1)| sin(x)|

for all x ∈ R.

Alternate solution (Sketch): We first prove the inequality for 0 ≤ x ≤ 1
2π. If

x ∈ [
0, 1

2π
]

satisfies sin(x) ≥ 1
n , then since | sin(nx)| ≤ 1 there is nothing to prove.

Otherwise, x < π
2n by Problem 8.7. Since t 7→ cos(t) is nonincreasing on

[
0, 1

2π
]

(its
derivative − sin(t) is nonpositive there), we get cos(nx) ≤ cos(x) for x ∈ [

0, π
2n

]
.

With f(x) = n sin(x) − sin(nx), we therefore have f(0) = 0 and

f ′(x) = n[cos(x) − cos(nx)] ≤ 0

for x ∈ [
0, π

2n

]
. Since also sin(nx) ≥ 0 on this interval, the inequality is proved for

0 < x ≤ π
2n and hence 0 ≤ x ≤ 1

2π.
For − 1

2π ≤ x ≤ 0, the inequality follows from the fact that t 7→ sin(t) is an odd
function. (This is easily seen from the definition.) For 1

2π ≤ x ≤ 3
2π, reduce to

− 1
2π ≤ x ≤ 1

2π using the identity sin(k(x + π)) = (−1)k sin(kx) (which is easily
derived from the definition and exp(iπ) = −1). The inequality now follows for all
x by periodicity.

Problem 8.9: (a) For n ∈ N set

sn = 1 + 1
2 + 1

3 + · · · + 1
n .

Prove that

γ = lim
n→∞[sn − log(n)]

exists. (This limit is called Euler’s constant. Numerically, γ ≈ 0.5772. It is not
known whether γ is rational or not.)

Solution: We have

1
n − [log(n + 1) − log(n)] = 1

n −
∫ n+1

n

1
t dt =

∫ n+1

n

(
1
n − 1

t

)
dt.

for n ∈ N. Since the integrand is between 0 and 1
n − 1

n+1 , it follows that

0 ≤ 1
n − [log(n + 1) − log(n)] ≤ 1

n − 1
n+1 .
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Since
n∑

k=1

(
1
k − [log(k + 1) − log(k)]

)
= sn − log(n + 1),

we get by adding up terms

sn − log(n + 1) ≤ 1 − 1
n+1 < 1

for all n; also,

sn − log(n + 1) = sn−1 − log(n) + 1
n − [log(n + 1) − log(n)] ≥ sn−1 − log(n).

Therefore (sn − log(n + 1)) is a bounded nondecreasing sequence, hence converges.
Next observe that

log(n + 1) − log(n) =
∫ n+1

n

1
t dt,

so that

0 ≤ log(n + 1) − log(n) ≤ 1
n .

It follows that limn→∞[log(n + 1) − log(n)] = 0, whence

lim
n→∞[sn − log(n)] = lim

n→∞[sn − log(n + 1)].

Alternate solution 1: Let Pn be the partition Pn = (1, 2, . . . , n) of [1, n]. Set
f(x) = x−1. Since f is nonincreasing, we have

L(Pn, f) =
n∑

k=2

1
k

and U(Pn, f) =
n−1∑
k=1

1
k

.

Therefore

sn − log(n) = 1 + L(Pn, f) −
∫ n

1

f = 1
n + U(Pn, f) −

∫ n

1

f.

We prove that (sn − log(n)) is nonincreasing. We have

[sn − log(n)] − [sn+1 − log(n + 1)]

=
[
1 + L(Pn, f) −

∫ n

1

f

]
−

[
1 + L(Pn+1, f) −

∫ n+1

1

f

]

=
∫ n+1

n

f − [L(Pn+1, f) − L(Pn, f)] =
∫ n+1

n

f − 1
n+1 .

The last expression is nonnegative because f(x) ≥ 1
n+1 for all x ∈ [n, n + 1]. So

(sn − log(n)) is nonincreasing.
We prove that (sn − log(n)) is bounded below (by 0). Indeed,

0 ≤ U(Pn, f) −
∫ n

1

f ≤ 1
n + U(Pn, f) −

∫ n

1

f = sn − log(n)

for all n.
Since (sn − log(n)) is nonincreasing and bounded below, limn→∞(sn − log(n))

exists.

Alternate solution 2: First prove the following lemma.

Lemma. For every x ≥ 0, we have 0 ≤ x − log(1 + x) ≤ 1
2x2.
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Proof: Set g(x) = x − log(1 + x) and h(x) = 1
2x2 for x ∈ (−1, ∞). Then g(0) =

h(0) = 0. Furthermore, for all x ≥ 0 we have

g′(x) = 1 − 1
1 + x

=
x

1 + x
≥ 0 and h′(x) − g′(x) = x − x

1 + x
=

x2

1 + x
≥ 0.

Therefore 0 ≤ g(x) ≤ h(x) for all x ≥ 0.

Now define

bk = 1
k − [log(k) − log(k + 1)] = 1

k − log
(
1 + 1

k

)
for k ≥ 1. (That the two expressions are equal follows from the algebric properties of
the function log. See Equation (40) on Page 181 of Rudin’s book.) Since log(1) = 0,
we have

sn − log(n + 1) =
n∑

k=1

bk.

By the lemma, we have 0 ≤ bk ≤ 1
2k−2 for k ≥ 1. Since

∑∞
k=1 k−2 converges, the

Comparison Test shows that
∑∞

k=1 bk converges, whence limn→∞[sn − log(n + 1)]
exists.

Now show that limn→∞[log(n + 1) − log(n)] = 0 as in the first solution, and
conclude as there that limn→∞[sn − log(n)] exists.

Alternate solution 3 (Outline): This solution differs from the previous one only in
the method of proof of the lemma. Instead of comparing derivatives, we use the
derivative form of the remainder in Taylor’s Theorem (see Theorem 5.15 of Rudin’s
book) to compare log(1 + x) with the Taylor polynomials of degrees 1 and 2.

(b) Roughly how large must m be so that n = 10m satisfies sn > 100?

Solution (Sketch): The proof above gives 0 < sn−log(n+1) < 1 for all n. Therefore
sn ∈ (log(n + 1), 1 + log(n + 1)). We have log(n + 1) ≥ 100 if and only if n >
exp(100) − 1. So it suffices to take

m = log10(exp(100)) = 100 log10(e) ≈ 43.43.

Problem 8.10: Prove that ∑
p prime

1
p

diverges.
Hint: Given N , let p1, p2, . . . , pk be those primes that divide at least one integer

in {1, 2, . . . , N}. Then

N∑
n=1

1
n
≤

k∏
j=1

(
1 +

1
pj

+
1
p2

j

+ · · ·
)

=
k∏

j=1

(
1 − 1

pj

)−1

≤ exp


 k∑

j=1

1
pj


 .

The last inequality holds because (1 − x)−1 ≤ exp(2x) for 0 ≤ x ≤ 1
2 .

Solution (Sketch): It suffices to verify the inequalities because
∑∞

n=1
1
n diverges.

For the first inequality, let m be the largest power of any prime appearing in the
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prime factorization of any integer in {1, 2, . . . , N}. Then one checks that
k∏

j=1

(
1 +

1
pj

+
1
p2

j

+ · · · + 1
pm

j

)
=

∑
n∈S

1
n

,

where S is the set of all integers whose prime factorization involves only the primes
p1, p2, . . . , pk, and in which no prime appears with multiplicity greater than m.
Moreover, {1, 2, . . . , N} ⊂ S. For the other inequality, since 0 ≤ 1

p ≤ 1
2 for all

primes p, it suffices to check that (1 − x)−1 ≤ exp(2x) for 0 ≤ x ≤ 1
2 . Now

1 + 2x ≤ exp(2x) for all x ≥ 0 by any of a number of arguments. The inequality
(1 − x)−1 ≤ 1 + 2x for 0 ≤ x ≤ 1

2 is easily verified by multiplying both sides by
1 − x.

Problem 8.11: Let f : [0,∞) → R be a function such that limx→∞ f(x) = 1 and
f is Riemann integrable on every interval [0, a] for a > 0. Prove that

lim
t→0+

t

∫ ∞

0

e−txf(x) dx = 1.

Solution (Sketch): Let ε > 0. Choose a > 0 such that |f(x) − 1| < 1
2ε for x ≥ a.

Since f is Riemann integrable on [0, a], it is bounded there. Choose M such that
|f(x)| ≤ M for all x ∈ [0, a]. Choose δ so small that δ(M +1) < 1

2ε. Then 0 < t < δ
implies

t

∫ ∞

0

e−tx · 1 dx = 1.

and

t

∫ ∞

0

e−tx|f(x) − 1| dx ≤ δ

∫ a

0

e−tx(M + 1) dx + t

∫ ∞

a

e−tx 1
2ε dx

≤ δ(M + 1) + 1
2εe−at < ε.
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 5.27: Let R = [a, b] × [α, β] ⊂ R2 be a rectangle in the plane, and let
ϕ : R → R be a function. A solution of the initial value problem y′ = ϕ(x, y) and
y(a) = c (with c ∈ [α, β]) is, by definition, a differentiable function f : [a, b] → [α, β]
such that f(a) = c and such that f ′(t) = ϕ(t, f(t)) for all t ∈ [a, b].

Assume that there is a constant A such that

|ϕ(x, y2) − ϕ(x, y1)| ≤ A|y2 − y1|
for all x ∈ [a, b] and y1, y2 ∈ [α, β]. Prove that such a problem has at most one
solution.

Hint: Apply Problem 5.26 to the difference of two solutions.
Note that this uniqueness theorem does not hold for the initial value problem

y′ = y1/2 and y(0) = 0, which has two solutions f1(x) = 0 for all x and f2(x) = 1
4x20

for all x. Find all other solutions to this initial value problem.

Solution (Sketch): Let f1 and f2 be two solutions to the initial value problem
y′ = ϕ(x, y) and y(a) = c. Then for all t ∈ [a, b] we have

|f ′
2(t) − f ′

1(t)| = |ϕ(t, f(t)) − ϕ(t, f(t))| ≤ A|f ′
2(t) − f ′

1(t)|,
and also f2(c) − f1(c) = 0, so Problem 5.26 shows that f2 − f1 = 0.

Now we investigate the solutions to y′ = y1/2 and y(0) = 0. The intervals are
not specified, but it seems reasonable to assume that [0,∞) × [0,∞) is intended.

First, for r ∈ [0,∞) define gr : [0,∞) → [0,∞) by

gr(t) =
{

0 0 ≤ t ≤ r
1
4 (t − r)2 t > r

,

and define g∞(t) = 0 for all t. Check that gr is in fact a solution. (This is
trivial everywhere except at t = r, where one must calculate g′r(t) directly from the
definition.) We are going to show that these are all solutions.

We claim that if t0 ∈ R and c > 0, then the initial value problem y′ = y1/2

and y(t0) = c has the solution f(t) = 1
4 (t − r)2 for t ≥ t0, where r is chosen to be

r = t0 − 2
√

c. Applying the uniqueness result in the first part of the problem on
[t0, b]× [α, β], with α ≤ c ≤ 1

4 (b− r)2 ≤ β, and letting b → ∞, α → 0, and β → ∞,
we find that there are no other solutions f : [t0,∞) → (0,∞). (Be sure to check
that the hypotheses hold!)

Date: 5 March 2002.
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Now suppose g : [0,∞) → [0,∞) is a solution satisfying g(0) = 0. We claim that
there is r ∈ [0,∞] such that g = gr. Without loss of generality g 6= g∞, so there
exists s > 0 such that g(s) > 0. Let

r = inf({s ∈ [0,∞) : g(s) > 0}).
By continuity, we must have g(r) = 0. We will show that g = gr.

Suppose not. There are three cases to consider. First, suppose there is t ≤ r
such that g(t) > 0. Apply the claim above with t0 = t to obtain

g(r) = 1
4

(
r − t + 2

√
g(t)

)2

6= 0,

a contradiction. Next, suppose there is t > r such that g(t) = 0. Choose s ∈ (r, t)
such that g(s) 6= 0, and apply the claim above with t0 = t to obtain

g(t) = 1
4

(
t − s + 2

√
g(s)

)2

6= 0,

a contradiction. Finally, suppose there is t > r such that g(t) 6= gr(t) and g(t) 6= 0.
Repeated use of the claim, with t0 running through a sequence decreasing monoton-

ically to t− 2
√

g(t), shows that g(s) = 1
4

(
s − t + 2

√
g(t)

)2

for all s > t− 2
√

g(t).

If t − 2
√

g(t) > r, then continuity gives g
(
t − 2

√
g(t)

)
= 0, and we obtain a con-

tradiction as in the second case. If t − 2
√

g(t) < r, then we obtain a contradiction
as in the first case. If t − 2

√
g(t) = r, then one checks that g = gr.

Comment: The techniques for finding solutions found in nonrigorous differential
equations courses (such as Math 256 at the University of Oregon) are not proofs of
anything, and therefore have no place in a formal proof in this course. (They can,
of course, be used to find solutions in scratchwork.) One sees this from the fact
that these methods do not find most of the solutions gr given above. Such methods
may be used in scratchwork to find solutions, but the functions found this way must
be verified to be solutions, and can only be expected to be the only solutions when
the hypotheses of the first part of the problem are satisfied.

Problem 8.20: The following simple computation yields a good approximation to
Stirling’s formula.

Define f, g : [1,∞) → R by

f(x) = (m + 1 − x) log(m) + (x − m) log(m + 1)

for m = 1, 2, . . . and x ∈ [m, m + 1], and

g(x) =
x

m
− 1 + log(m)

for m = 1, 2, . . . and x ∈ [
m − 1

2 , m + 1
2

)
(x ∈ [

1, m + 1
2

)
if m = 1). Draw the

graphs of f and g. Prove that f(x) ≤ log(x) ≤ g(x) for x ≥ 1, and that∫ n

1

f(x) dx = log(n!) − 1
2 log(n) > − 1

8 +
∫ n

1

g(x) dx.

Integrate log(x) over [1, n]. Conclude that
7
8 < log(n!) − (

n + 1
2

)
log(n) + n < 1
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for n = 2, 3, 4, . . . . Thus

e7/8 <
n!

(n/e)n
√

n
< e.

Solution (Sketch): Note: No graphs are included here.
We need the following lemma, which is essentially a concavity result.

Lemma. Let [a, b] ⊂ R be a closed interval, and let f : [a, b] → R be a continuous
function such that f ′′(x) exists for all x ∈ (a, b) and f ′′(x) ≤ 0 on (a, b). Then

f(x) ≥ f(a) +
f(b) − f(a)

b − a
· (x − a)

for all x ∈ [a, b].

Proof (Sketch): Let

q(x) = f(x) − f(a) +
f(b) − f(a)

b − a
· (x − a)

for x ∈ [a, b]. Then q satisfies the same hypotheses as f (note that q′′ = f ′′), and
q(a) = q(b) = 0. It suffices to prove that q(x) ≥ 0 for all x ∈ (a, b).

Suppose x0 ∈ (a, b) and q(x0) < 0. Use the Mean Value Theorem to choose
c1 ∈ (a, x0) and c2 ∈ (x0, b) such that q′(c1) < 0 and q′(c2) > 0. Then c1 < c2,
so the Mean Value Theorem, applied to q′, gives d ∈ (c1, c2) such that q′′(d) > 0.
This is a contradiction.

Alternate Proof (Sketch): As in the first proof, let

q(x) = f(x) − f(a) +
f(b) − f(a)

b − a
· (x − a),

which satisfies q′′(x) ≤ 0 on (a, b) and q(a) = q(b) = 0; it suffices to prove that
q(x) ≥ 0 for all x ∈ (a, b).

Use the Mean Value Theorem to choose c ∈ (a, b) such that q′(c) = 0. Since
q′′(x) ≤ 0 for all x ∈ (a, b), it follows that q′ is nonincreasing. Therefore q′(x) ≥ 0
for x ∈ [a, c] and q′(x) ≤ 0 for x ∈ [c, b]. It follows that q is nondecreasing on [a, c],
so for x ∈ [a, c] we have q(x) ≥ q(a) = 0. It also follows that q is nonincreasing on
[c, b], so for x ∈ [c, b] we have q(x) ≥ q(b) = 0.

The lemma can be used directly to show that f(x) ≤ log(x).
To show g(x) ≥ log(x), show that g(m) = log(m), that g′(x) ≤ log′(x) for

m − 1
2 ≤ x ≤ m, and that g′(x) ≥ log′(x) for m ≤ x ≤ m + 1

2 .
Next, use the inequality f(x) ≤ log(x) ≤ g(x) for x ≥ 1 to get∫ n

1

f(x) dx ≤
∫ n

1

log(x) dx ≤
∫ n

1

g(x) dx.

This inequality is actually strict (as is required to solve the problem). To see this,
use the fact that there are x1 and x2 such that f is continuous at x1, such that g is
continuous at x2, such that f(x1) < log(x1), and such that log(x2) < g(x2). (This
needs proof!)

To calculate
∫ n

1
f(x) dx, calculate

∫ m+1

m

f(x) dx = 1
2 [log(m + 1) − log(m)],
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and add these up. To estimate
∫ n

1
g(x) dx, calculate

∫ m+ 1
2

m− 1
2

g(x) dx = log(m) and
∫ 3/2

1

g(x) dx = 1
8 ,

and estimate ∫ n

n− 1
2

g(x) dx ≤ 1
2g(n) = 1

2 log(n).

(The exact answer for the last one is 1
2 log(n)− 1

8n .) Then add these up. Substituting
the resulting values in the strict version of the inequality above, and rearranging,
yields

7
8 < log(n!) − (

n + 1
2

)
log(n) + n < 1,

as desired. Then exponentiate.

Problem 8.23: Let γ : [a, b] → C \ {0} be a continuously differentiable closed
curve. Define the index of γ to be

Ind(γ) =
1

2πi

∫ b

a

γ′(t)
γ(t)

dt.

Prove that Ind(γ) ∈ Z.
Compute Ind(γ) for γ(t) = exp(int) and [a, b] = [0, 2π].
Explain why Ind(γ) is often called the winding number of γ about 0.
Hint for the first part: Find ϕ : [a, b] → C such that

ϕ′ =
γ′

γ
and ϕ(a) = 0.

Show that ϕ(b) = 2πiInd(γ). Show that γ exp(−ϕ) is constant, so that γ(a) = γ(b)
implies exp(ϕ(b)) = exp(ϕ(a)) = 1.

Solution (Sketch): The function ϕ of the hint exists by the Fundamental Theorem
of Calculus (Theorem 6.20 of Rudin; not Theorem 6.21 of Rudin). That ϕ(b) =
2πiInd(γ) is clear from the construction of ϕ and the definitions. That γ exp(−ϕ)
is constant follows by differentiating it and using the formula for ϕ′ to simplify the
derivative to zero. That exp(ϕ(b)) = exp(ϕ(a)) = 1 is now clear. So ϕ(b) ∈ 2πiZ,
whence Ind(γ) ∈ Z.

The second statement is a simple computation; the answer is n.
Why Ind(γ) is often called the winding number: In the case considered in the

second statement, it counts the number of times the curve goes around 0 in the
positive sense. (This is true in general. See the comment in the solution to Prob-
lem 8.24.)

Problem 8.24: Let γ and Ind(γ) be as in Problem 8.23. Suppose the range of γ
does not intersect the negative real axis. Prove that Ind(γ) = 0.

Hint: The function c 7→ Ind(γ + c), defined on [0,∞), is a continuous integer
valued function such that limc→∞ Ind(γ + c) = 0.

Solution (Sketch): One checks that

c 7→ (γ + c)′

γ + c
=

γ′

γ + c
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is a continuous function from [0,∞) to C([a, b]), for example, by checking that
cn → c implies

(γ + cn)′

γ + cn
→ (γ + c)′

γ + c

uniformly. Theorem 7.16 of Rudin and the sequential criterion for continuity then
imply that c 7→ Ind(γ + c) is continuous. Furthermore,

(γ + c)′

γ + c
→ 0

uniformly as c → ∞. Therefore limc→∞ Ind(γ + c) = 0. Since Ind(γ + c) ∈ Z for all
c and since [0,∞) is connected, we must have Ind(γ + c) = 0 for all c, in particular
for c = 0.

Alternate solution (Sketch): We can give a direct proof of continuity, which is in
principle nicer than what was done above.

The first step is to show that

r = inf
t∈[a,b], c∈[0,I)

|γ(t) + c| > 0.

Since [a, b] is compact, M = supt∈[a,b] |γ(t)| < ∞. Therefore c ≥ 2M implies

inf
t∈[a,b]

|γ(t) + c| ≥ M.

Define f : [a, b] × [0, 2M ] → C by f(t, c) = |γ(t) + c|. Then f is continuous and
never vanishes on [a, b] × [0, 2M ], so compactness of [a, b] × [0, 2M ] implies that

inf
t∈[a,b], c∈[0, 2M ]

|γ(t) + c| > 0.

So

inf
t∈[a,b], c∈[0,I)

|γ(t) + c| ≥ min
(

M, inf
t∈[a,b], c∈[0, 2M ]

|γ(t) + c|
)

> 0.

Now let ε > 0. Set

δ =
2πr2ε

1 + (b − a) sups∈[a,b] |γ′(s)| > 0.

Note that sups∈[a,b] |γ′(s)| is finite, because γ′ is continuous and [a, b] is compact.
Let c, d ∈ [0,∞) satisfy |c − d| < δ. Then t ∈ [a, b] implies∣∣∣∣ γ′(t)

γ(t) + c
− γ′(t)

γ(t) + c

∣∣∣∣ =
∣∣∣∣ γ′(t)(d − c)
(γ(t) + c)(γ(t) + d)

∣∣∣∣
≤ δ sups∈[a,b] |γ′(s)|

r2
<

2πε

b − a
.

Therefore

|Ind(γ + d) − Ind(γ + c)| ≤ 1
2πi

∫ b

a

∣∣∣∣ γ′(t)
γ(t) + c

− γ′(t)
γ(t) + c

∣∣∣∣ dt < ε.

We give a solution which uses a different method to get a lower bound on |γ(t)+c|
and also makes explicit the use of the fact that the composite of two continuous
functions is continuous. It is possible to combine parts of this solution with parts
of the previous solution to obtain two further arrangements of the proof.
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Second alternate solution (Sketch): Define F : [0,∞) → C([a, b]) by

F (c)(t) =
γ′(t)

γ(t) + c
,

that is, F (c) is the function

t 7→ γ′(t)
γ(t) + c

which is in C([a, b]). Further define I : C([a, b]) → C by

I(f) =
1

2πi

∫ b

a

f.

Then Ind(γ + c) = I ◦F (c). We prove that c 7→ Ind(γ + c) is continuous by proving
that I and F are continuous.

We prove that F is continuous. Let c0 ∈ [0,∞) and let ε > 0. Set M =
sups∈[a,b] |γ′(s)|, which is finite because γ′ is continuous and [a, b] is compact. Set
r = infs∈[a,b] |γ(s) + c0|, which is strictly positive because [a, b] is compact, γ is
continuous, and γ(s) + c0 6= 0 for all s ∈ [a, b]. Choose

δ = min
(

r

2
,

r2ε

2(1 + M)

)
> 0.

Suppose c ∈ [0,∞) satisfies |c − c0| < δ. Since |γ(s) + c0| > r for all s ∈ [a, b],
and since |c − c0| < 1

2r, it follows that |γ(s) + c0| > 1
2r for all s ∈ [a, b]. Therefore

1
[γ(s) + c0][γ(s) + c]

<
2
r2

for all s ∈ [a, b]. So

‖F (c) − F (c0)‖∞ = sup
s∈[a,b]

∣∣∣∣ γ′(s)
γ(s) + c

− γ′(s)
γ(s) + c0

∣∣∣∣ = sup
s∈[a,b]

∣∣∣∣ γ′(s)(c0 − c)
[γ(s) + c0][γ(s) + c]

∣∣∣∣
≤

(
sup

s∈[a,b]

|γ′(s)|
)
|c − c0|

(
sup

s∈[a,b]

1
[γ(s) + c0][γ(s) + c]

)

≤ M |c − c0| · 2
r2

< ε.

This proves continuity of F at c0.
Now we prove continuity of I. Let ε > 0. Choose

δ =
2πε

b − a
> 0.

Let f, g ∈ C([a, b]) satisfy ‖f − g‖∞ < δ. Then (using Theorem 6.25 of Rudin at
the first step)

|I(f) − I(g)| ≤ 1
2π

∫ b

a

|f − g| ≤ ‖f − g‖∞(b − a)
2π

<
δ(b − a)

2π
= ε.

So I is continuous.

Problem 8.25: Let γ1 and γ2 be closed curves as in Problem 8.23. Suppose that

|γ1(t) − γ2(t)| < |γ1(t)|
for t ∈ [a, b]. Prove that Ind(γ1) = Ind(γ2).
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Hint: Put γ(t) = γ1(t)/γ2(t). Then |1 − γ(t)| < 1 for all t, so Problem 8.23
implies that Ind(γ) = 0. Also,

γ′(t)
γ(t)

=
γ′
2(t)

γ2(t)
− γ′

1(t)
γ1(t)

for all t ∈ [a, b].

Comment: In fact, Ind(γ) can be defined for arbitrary continuous closed curves in
C \ {0}, and Ind(γ) is a homotopy invariant of the curve. (Problem 8.26 contains
enough to prove this.) Since Ind(γ) ∈ Z, it follows that two homotopic curves in
C\{0} have the same index. Therefore the map [γ] 7→ Ind(γ) defines a function from
π1(C \ {0}) to Z. It is easy to check that this map is a surjective homomorphism.
(Injectivity is harder, I think, unless of course you already know the fundamental
group.)

Solution (Sketch): The first part of the hint is proved by writing

|1 − γ(t)| =
∣∣∣∣γ2(t)
γ2(t)

− γ1(t)
γ2(t)

∣∣∣∣ .

It follows that the range of γ does not intersect the negative real axis. So Ind(γ) = 0
by Problem 8.23. The equation (gotten from the quotient rule)

γ′(t)
γ(t)

=
γ′
2(t)

γ2(t)
− γ′

1(t)
γ1(t)

shows that Ind(γ) = Ind(γ2) − Ind(γ1).
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Generally, a “solution” is something that would be acceptable if turned in in
the form presented here, although the solutions given are usually close to minimal
in this respect. A “solution (sketch)” is too sketchy to be considered a complete
solution if turned in; varying amounts of detail would need to be filled in. A
“solution (nearly complete)” is missing the details in just a few places; it would be
considered a not quite complete solution if turned in.

Problem 8.12: Let δ ∈ (0, π), and let fδ : R → C be the 2π-periodic function
given on [−π, π] by

fδ(x) =
{

1 |x| ≤ δ
0 δ < |x| ≤ π

.

(a) Compute the Fourier coefficients of fδ.

Solution (Sketch): This is a computation, and gives cn = 1
πn sin(nδ) for n 6= 0, and

c0 = 1
π δ.

(b) Conclude from Part (a) that
∞∑

n=1

sin(nδ)
n

=
π − δ

2
.

Solution (Sketch): Apply Theorem 8.14 of Rudin to the function fδ at x = 0 to get

1 =
δ

π
+ 2

∞∑
n=1

sin(nδ)
πn

,

and rearrange.

(c) Deduce from Parseval’s Theorem that
∞∑

n=1

[sin(nδ)]2

n2δ
=

π − δ

2
.

Solution (Sketch): Applying Parseval’s Theorem to the result of Part (a) gives(
δ

π

)2

+ 2
∞∑

n=1

(
sin(nδ)

πn

)2

=
(

1
2π

) ∫ π

−π

|fδ|2 =
δ

π
.

Now multiply by π2δ−1 and rearrange.

(d) Let δ → 0 and prove that
∫ ∞

0

(
sin(x)

x

)2

dx =
π

2
.

Date: 15 March 2002.

1
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Solution (Sketch): Essentially, we want to interpret the sum in Part (c) as a Rie-
mann sum for the improper integral. To to this, we must effectively interchange
limit operations.

Let ε > 0. Choose an integer M such that M > 4ε−1. Note that

0 ≤
∫ ∞

M

(
sin(x)

x

)2

dx ≤
∫ ∞

M

(
1
x

)2

dx =
1
M

< 1
4ε

and, for any integer n > 0,

0 ≤ 1
n

∞∑
k=nM+1

(
sin

(
k
n

)
(

k
n

)
)2

≤ 1
n

∞∑
k=nM+1

(
1(
k
n

)
)2

≤
∫ ∞

M

(
1
x

)2

dx =
1
M

< 1
4ε.

Using uniform continuity and the Riemann sum interpretation, choose an integer
N so large that if n ≥ N then∣∣∣∣∣∣

1
n

nM∑
k=1

(
sin

(
k
n

)
(

k
n

)
)2

−
∫ M

0

(
sin(x)

x

)2

dx

∣∣∣∣∣∣ < 1
4ε.

Also require that 1
2N < 1

4ε. Using the triangle inequality several times, this gives,
when n ≥ N , ∣∣∣∣∣∣

1
n

∞∑
k=1

(
sin

(
k
n

)
(

k
n

)
)2

−
∫ ∞

0

(
sin(x)

x

)2

dx

∣∣∣∣∣∣ < 3
4ε.

Part (c) (with δ = 1
n ) therefore gives, when n ≥ N ,∣∣∣∣∣

π

2
−

∫ ∞

0

(
sin(x)

x

)2

dx

∣∣∣∣∣ < ε.

(e) Put δ = 1
2π in Part (c). What do you get?

Solution (Sketch): Only the terms with odd n appear. Therefore we get
∞∑

n=0

1
(2n + 1)2

=
(π

2

) (π

4

)
=

π2

8
.

Problem 8.13: Let f : R → C be the 2π-periodic function given on [0, 2π) by
f(x) = x. Apply Parseval’s Theorem to f to conclude that

∞∑
n=1

1
n2

=
π2

6
.

Solution (Sketch): A computation (integration by parts) shows that f has the
Fourier coefficients cn = i

n for n 6= 0. Also, c0 = π. So Parseval’s Theorem gives

π2 + 2
∞∑

n=1

1
n2

=
1
2π

∫ 2π

0

x2 dx = 4
3π2.

Now solve for
∑∞

n=1
1

n2 .
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Problem 8.14: Define f : [−π, π] → R by f(x) = (π − |x|)2. Prove that

f(x) =
π2

3
+

∞∑
n=1

4
n2

cos(nx)

for all x, and deduce that
∞∑

n=1

1
n2

=
π2

6
and

∞∑
n=1

1
n4

=
π4

90
.

Solution (Sketch): We take f to be the 2π periodic function defined on all of R by
f(x) = (π − |x − 2πn|)2 for n ∈ Z and x ∈ [(2n − 1)π, (2n + 1)π]. This formula
gives two different definitions at each point (2n + 1)π with n ∈ Z, but both agree;
it is then easy to check that f is continuous, and in particular Riemann integrable
over any interval of length 2π.

Next, we find the Fourier coefficients cn. For this, observe that f(x) = (π − x)2

for all x ∈ [0, 2π]. For n 6= 0, set

gn(x) =
i

n
e−inx(π − x)2 − 2

n2
e−inx(π − x) − 2i

n3
e−inx

for x ∈ R. Then a calculation shows that g′n(x) = e−inx(π − x)2 for all n and x.
(The formula can be found by integrating by parts twice. However, that isn’t part
of the proof of the problem.) So the Fundamental Theorem of Calculus gives

cn =
1
2π

∫ π

−π

e−inxf(x) dx =
1
2π

∫ 2π

0

e−inx(π − x)2 dx =
1
2π

[gn(2π) − gn(0)] =
2
n2

.

(When calculating gn(2π) − gn(0), most of the terms cancel out.) Similarly,

c0 =
1
2π

∫ π

−π

f(x) dx =
1
2π

∫ 2π

0

(π − x)2 dx =
π2

3
.

It follows that the partial sum sn(f ;x) (in the notation of Section 8.13 of Rudin’s
book) is given by

sn(f ;x) =
n∑

k=−n

ckeikx =
π2

3
+

n∑
k=1

2
k2

[eikx + e−ikx] =
π2

3
+

n∑
k=1

4
k2

cos(kx).

We now verify the hypotheses of Theorem 8.14 of Rudin’s book, for every x ∈ R.
For x 6∈ 2πZ, this is easy from the differentiability of f at x. (For x ∈ (2n + 1)πZ,
use f(x) = [(2n+1)π−x]2 for x ∈ [2πn, 2π(n+2)].) For x = 0 we estimate directly.
If |t| < 2π, then

f(t) − f(0) = (π − |t|)2 − π2 = |t|(|t| − 2π)

and −2π ≤ |t| − 2π ≤ 0, so |f(t)− f(0)| ≤ 2π|t|. This is the required estimate. For
other values of x ∈ 2πZ, the required condition follows from periodicity.

It now follows from Theorem 8.14 of Rudin’s book that limn→∞ sn(f ;x) = f(x)
for all x ∈ R. That is,

f(x) =
π2

3
+

∞∑
n=1

4
n2

cos(nx)

for all x ∈ R.
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Putting x = 0 gives

π2 =
π2

3
+

∞∑
n=1

4
n2

,

from which it follows that
∞∑

n=1

1
n2

=
π2

6
.

To get the formula for
∑∞

n=1
1

n4 , compute ‖f‖2
2 two ways: directly and using

Parseval’s Theorem. Then compare the results.

Problem 8.15: With

DN (x) =
N∑

n=−N

einx =
sin((N + 1

2 )x)
sin(1

2x)

as in Section 8.13 of Rudin’s book, define

KN (x) =
1

N + 1

N∑
n=0

Dn(x).

Prove that

KN (x) =
(

1
N + 1

)(
1 − cos((N + 1)x)

1 − cos(x)

)

for x ∈ R \ 2πZ.

Solution (Sketch): This may not be the best way, but it will work. Write

KN (x) =
(

1
N + 1

)(
1

sin(1
2x)

) N∑
n=0

1
2i

(
exp(i(n + 1

2 )x) − exp(−i(n + 1
2 )x)

)

and use the formula for the sum of a geometric series. Then do a little rearranging.

a. Prove that KN (x) ≥ 0.

Solution (Sketch): In the formula above, both the numerator and denominator are
nonnegative.

b. Prove that
1
2π

∫ π

−π

KN (x) dx = 1.

Solution (Sketch): This is immediate from the relations

KN (x) =
1

N + 1

N∑
n=0

Dn(x) and
1
2π

∫ π

−π

Dn(x) dx = 1.

c. If δ > 0, then

KN (x) ≤
(

1
N + 1

)(
2

1 − cos(δ)

)
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for δ ≤ |x| ≤ π.

Solution (Sketch): Since KN is an even function, it suffices to prove this for δ ≤
x ≤ π. Use

1 − cos(x) ≥ 1 − cos(δ) and 1 − cos((N + 1)x) ≤ 2.

Now let sn(f ;x) be as in Section 8.13 of Rudin’s book, and define

σN (f ;x) =
1

N + 1

N∑
n=0

sn(f ;x).

Prove that

σN (f ;x) =
1
2π

∫ π

−π

f(x − t)KN (t) dt,

and use this to prove Fejér’s Theorem: If f : R → C is continuous and 2π periodic,
then σN (f ;x) converges uniformly to f(x) on [−π, π].

Hint: Use (a), (b), and (c) to proceed as in the proof of Theorem 7.26 of Rudin’s
book.

Solution (Sketch): The formula

σN (f ;x) =
1
2π

∫ π

−π

f(x − t)KN (t) dt

follows from the definitions of σN (f ;x) and KN (x) and the formula

sn(f ;x) =
1
2π

∫ π

−π

f(x − t)Dn(t) dt.

This last formula was proved in Section 8.13 of Rudin’s book.
Now assume f is not the zero function. (The result is trivial in this case, and

I want to divide by ‖f‖∞.) Let ε > 0. Since f is continuous and periodic, it is
uniformly continuous. (Check this!) So there is δ0 > 0 such that whenever |t| < δ0

then |f(x − t) − f(x)| < 1
2ε. Set δ = 1

2δ0. Choose N so large that(
2π‖f‖∞
n + 1

) (
2

1 − cos(δ)

)
< ε.

For any n ≥ N and x ∈ R, write

|σn(f ;x) − f(x)| =
∣∣∣∣ 1
2π

∫ π

−π

f(x − t)Kn(t) dt − 1
2π

∫ π

−π

f(x)Kn(t) dt

∣∣∣∣
=

1
2π

∫ π

−π

|f(x − t) − f(t)| dt

=
1
2π

(∫ −δ

−π

|f(x − t) − f(t)|Kn(t) dt +
∫ δ

−δ

|f(x − t) − f(t)|Kn(t) dt

+
∫ π

δ

|f(x − t) − f(t)|Kn(t) dt

)

≤ 1
2π

(
2‖f‖∞

∫ −δ

−π

Kn(t) dt +
ε

2

∫ δ

−δ

Kn(t) dt + 2‖f‖∞
∫ π

δ

Kn(t) dt

)
.
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The estimates at the last step are obtained as follows. For the first and third terms,

|f(x − t) − f(t)| ≤ |f(x − t)| + |f(t)| ≤ 2‖f‖∞.

For the middle term, |f(x − t) − f(x)| < 1
2ε because δ < δ0.

Now ∫ −δ

−π

Kn(t) dt ≤ (π − δ)
(

1
n + 1

) (
2

1 − cos(δ)

)
<

ε

2‖f‖∞ .

Similarly ∫ π

δ

Kn(t) dt <
ε

2‖f‖∞ .

Also, ∫ δ

−δ

Kn(t) dt ≤ 2π.

Inserting these estimates, we get

|σn(f ;x) − f(x)| ≤ 1
2π

(
2‖f‖∞

∫ −δ

−π

|Kn(t) dt +
ε

2

∫ δ

−δ

Kn(t) dt + 2‖f‖∞
∫ π

δ

Kn(t) dt

)

≤ 1
2π

(
ε + 2π · 1

2ε + ε
)

=
(

2 + π

2π

)
ε < ε.

This proves uniform convergence.

Problem B:
(1) Let X be a complete metric space, let x0 ∈ X, let r > 0, and let C < 1.

Let f : Nr(x0) → X be a function such that d(f(x), f(y)) ≤ Cd(x, y) for all x, y ∈
Nr(x0) and d(f(x0), x0) < (1−C)r. Prove that f has a unique fixed point z, that
is, there is a unique z ∈ Nr(x0) such that f(z) = z. Further prove that

d(z, x0) ≤ df(x0), x0)
1 − C

.

Solution (sketch): This is essentially the same as Problem A(2). Uniqueness follows
easily from the condition C < 1.

We prove by induction on n the combined statement:
(1) fn(x0) is defined.
(2) d(fn(x0), fn−1(x0)) ≤ Cn−1d(f(x0), x0)).

(3) d(fn(x0), x0) ≤ 1 − Cn−1

1 − C
d(f(x0), x0).

For n = 1, this is immediate. Suppose it is true for n. Condition (3) for n shows
that

d(fn(x0), x0) <

(
1 − Cn

1 − C

)
(1 − C)r = (1 − Cn−1)r < r,

so fn(x0) ∈ Nr(x0) and fn+1(x0) = f(fn(x0)) is defined. This is Condition (1) for
n + 1. Then Condition (2) for n and the hypotheses imply

d(fn+1(x0), fn(x0)) ≤ Cd(fn(x0), fn−1(x0))

≤ C · Cn−1d(f(x0), x0)) = Cnd(f(x0), x0)),
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which is Condition (2) for n + 1. Finally

d(fn+1(x0), x0) ≤ d(fn+1(x0), fn(x0)) + d(fn(x0), x0)

≤ Cnd(f(x0), x0)) +
1 − Cn−1

1 − C
d(f(x0), x0))

=
1 − Cn

1 − C
d(f(x0), x0)).

This is Condition (3) for n + 1.
It follows as in previous similar problems that the sequence (fn(x0)) is Cauchy,

and hence has a limit z. Moreover,

d(z, x0) ≤ sup
n∈N

d(fn(x0), x0) ≤ sup
n∈N

1 − Cn

1 − C
d(f(x0), x0))

≤
(

1
1 − C

)
d(f(x0), x0)) < r,

so z ∈ Nr(x0) and f(z) is defined. It now follows from continuity, as in previous
similar problems, that f(z) = z.

(2) Let I, J ⊂ R be open intervals, let x0 ∈ I, and let y0 ∈ J . Let ϕ : I×J → R
be a continuous function and assume that there is a constant M such that.

|ϕ(x, y2) − ϕ(x, y1)| ≤ M |y2 − y1|
for all x ∈ I and y1, y2 ∈ J . Prove that there is δ > 0 such that there is a unique
function f : (x0 − δ, x0 + δ) → J satisfying f(x0) = y0 and f ′(x) = ϕ(x, f(x)) for
all x ∈ (x0 − δ, x0 + δ).

In this problem, you may assume the standard properties of
∫ b

a
f when a ≤ b,

including the correct version of the Fundamental Theorem of Calculus.
Hint: For a suitable δ > 0 and a suitable subset N ⊂ CR([x0 − δ, x0 + δ]), define

a function F : N → CR([x0 − δ, x0 + δ]) by

F (g)(x) = y0 +
∫ x

x0

ϕ(t, g(t)) dt.

If δ and N are chosen correctly, the first part will imply that F has a unique fixed
point f . Prove that this fixed point solves the differential equation.

Solution (Sketch): Choose r > 0 such that [y0 − r, y0 + r] ⊂ J . Choose δ0 > 0 such
that [x0 − δ0, x0 + δ0] ⊂ I. Set

K = sup
t∈[x0−δ0, x0+δ0]

|ϕ(t, y0)|.

Let δ > 0 be any number satisfying

δ ≤ min
(

1
2M

,
r

3K

)
.

In the metric space CR([x0 − δ, x0 + δ]), let g0 be the constant function g0(x) = y0

for all x ∈ [x0 − δ, x0 + δ], and set N = Nr(g0). Following the hint, define F : N →
CR([x0 − δ, x0 + δ]) by

F (g)(x) = y0 +
∫ x

x0

ϕ(t, g(t)) dt.
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One needs to check that F (g)(x) is defined, that is, that (t, g(t)) is in the domain
of ϕ and that t 7→ ϕ(t, g(t)) is Riemann integrable. Both are easy; in fact, t 7→
ϕ(t, g(t)) is continuous. One also needs to observe that F (g) is in fact a continuous
function.

We now verify the hypotheses of Part (1) for this function. Let g1, g2 ∈ N . For
x ∈ [x0 − δ, x0 + δ], we then have

|F (g1)(x) − F (g2)(x)| =
∣∣∣∣
∫ x

x0

[ϕ(t, g1(t)) − ϕ(t, g2(t))] dt

∣∣∣∣
≤ |x − x0| sup

t∈[x0−δ, x0+δ]

|ϕ(t, g1(t)) − ϕ(t, g2(t))|

≤ δM sup
t∈[x0−δ, x0+δ]

|g1(t) − g2(t)| = δM‖g1 − g2‖∞.

Therefore

‖F (g1) − F (g2)‖∞ ≤ δM‖g1 − g2‖∞ ≤ 1
2‖g1 − g2‖∞.

Thus, F is a contraction with constant C = 1
2 . Moreover, for x ∈ [x0 − δ, x0 + δ]

we have

|F (g0)(x) − g0(x)| =
∣∣∣∣
∫ x

x0

ϕ(t, y0) dt

∣∣∣∣
≤ |x − x0|

(
sup

t∈[x0−δ, x0+δ]

|ϕ(t, y0)|
)

≤ δK ≤ 1
3r < (1 − C)r.

We can now apply Part (1) to conclude that there is a unique g ∈ CR([x0 −
δ, x0 + δ]) such that F (g) = g, that is,

g(x) = y0 +
∫ x

x0

ϕ(t, g(t)) dt

for all x ∈ [x0 − δ, x0 + δ]. Since t 7→ ϕ(t, g(t)) is continuous, the Fundamental
Theorem of Calculus shows that the right hand side of this equation is differentiable
as a function of x, with derivative x 7→ ϕ(x, g(x)). Thus g′(x) = ϕ(x, g(x)) for all
x ∈ [x0 − δ, x0 + δ]. That g(x0) = y0 is immediate.

We have proved existence of a solution on (x0 − δ, x0 + δ) with

δ = min
(

1
2M

,
r

3K

)
.

Since g′(x) = ϕ(x, g(x)) and g(x0) = y0 imply

g(x) = y0 +
∫ x

x0

ϕ(t, g(t)) dt,

we have also proved uniqueness among all continuous functions g : (x0−δ, x0+δ) →
R satisfying in addition |g(x) − y0| < r for all x.

We now show that this implies uniqueness among all continuous functions g : (x0−
δ, x0 + δ) → J . Suppose that, with δ as above, there is some solution h : (x0 −
δ, x0 + δ) → J , with |h(x) − y0| ≥ r for some x. Set

ρ = inf({x ∈ (x0 − δ, x0 + δ) : |h(x) − y0| ≥ r}).
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Then 0 < ρ < δ, and at least one of |h(x0 + ρ) − y0| = r and |h(x0 − ρ) − y0| = r
must hold. Uniqueness as proved above applies on the interval (x0 − ρ, x0 + ρ), so
that g(x) = h(x) for all x ∈ (x0 − ρ, x0 + ρ). By continuity,

h(x0 + ρ) = g(x0 + ρ) and h(x0 − ρ) = g(x0 − ρ).

Since |g(x0 + ρ) − y0| < r and |g(x0 − ρ) − y0| < r, this is a contradiction.


