8051 CROSS ASSEMBLER

USER S MANUAL

Met aLi nk Cor porati on
Chandl er, Arizona

Met aLi nk 8051 Cross Assenbl er User Manual

Met aLi nk Cor porati on
Chandl er, Arizona USA
WWW. Iret ai ce. com

NOT1 CE

Met aLi nk Corp. reserves the right to nake inprovenents in the software
product described in this manual as well as the manual itself at any
time and without notice.

DI SCLAI MER OF ALL WARRANTI ES AND LI ABI LI TY

METALI NK CORP. MAKES NO WARRANTI ES, EI THER EXPRESSED OR | MPLIED, WTH
RESPECT TO TH'S MANUAL OR WTH RESPECT TO THE SOFTWARE DESCRI BED I N
TH'S MANUAL, |ITS QUALITY, PERFORVMANCE, MERCHANTABILITY, OR FITNESS FOR
ANY PARTI CULAR PURPOSE. METALI NK CORP. SOFTWARE IS SCLD, LICENSED OR

DI STRI BUTED "AS | S". IN NO EVENT SHALL METALINK CORP. BE LIABLE FOR
I NCl DENTAL OR CONSEQUENTI AL DAMAGES RESULTI NG FROM ANY DEFECT IN THE
SOFTWARE.

Copyright (c) 1984, 1985, 1986, 1987, 1988, 1989 by MetalLink Corp.
Al rights are reserved.

M5-DOS is a trademark of Mcrosoft, Inc.
IBMis a registered trademark of |BM Corp.
Intel is a registered trademark of Intel Corp.

Met aLink is a trademark of MetalLi nk Corp.

Met aLi nk

8051 Cross Assenbl er User

Manual

TABLE OF CONTENTS

1 8051 OVERVI EW. . . .o e 1-1
1.1 IntroduCti ON e e 1-1
1.2 8051 ArchitectUure e e e 1-1
1.3 Summary of the 8051 Family of Conponents 1-3
1.4 Ref ereNCeS e 1-4
2 8051 CROSS ASSEMBLER OVERVI EW. e e s 2-1
2.1 IntroduCti ON e 2-1
2.2 SynbOol s .. 2-1
2.3 Label s ... e 2-2
2.4 Assenbler Control s e 2-2
2.5 Assenbl er DireCtiVeS e 2-3
2.6 8051 Instruction MIENMDNICS .. .ottt i i e e e e 2-3
2.7 Bit AdAressiNg 2-4
2.8 ASCII Literal s ... e 2-5
2.9 COMMEBNL S e 2-5
2.10 The Location Counter e e 2-5
2.11 Syntax SUNMTBIY e e e e e 2-5
2.12 Nunmbers and Operatorst 2-6
2.13 Source File Listing e 2-8
2.14 Qoject File ... e 2-9
3 RUNNI NG THE 8051 CROSS ASSEMBLER ON PC- DOS/ MS-DOS SYSTEMS. 3-1
3.1 Cross Assenbler Files e 3-1
3.2 Mnimum System Requi rement s 3-1
3.3 Running the Cross Assenbler i, 3-1
3.4 Exanmple Running the Cross Assenbler 3-2
3.5 DOS Hints and Suggesti ONS it e 3-3
3.6 RefBrenCeS e 3-4
4 8051 INSTRUCTI ON SETttt e e e e e 4-1
4.1 NOtati ON ..t e 4-1
4.2 8051 Instruction Set SUMTAIY 4-3
4. 3 NOL BS . ot 4-7
4.4 Ref ereNCeS . . . o e 4-7
5 8051 CROSS ASSEMBLER DI RECTIVES.o e s 5-1
5.1 IntroduCti ONo e 5-1
5.2 Synbol Definition Directivesy 5-1
5.3 Segment Selection Directivesy 5-3
5.4 Menory Reservation and Storage Directives 5-4
5.5 Mscellaneous DireCtiVes e e e 5-5
5.6 Conditional Assenmbly Directives 5-7
6 8051 CROSS ASSEMBLER CONTROLS. e e 6-1
6.1 IntroduCti ON e 6-1
6.2 Assenbler Control Descriptions, 6-1
7 8051 CROSS ASSEMBLER MACRO PROCESSOR. ...ttt i i e e e i 7-1
7.1 IntroduCti ON e e 7-1
7.2 NMacro Definition e e 7-1
7.3 Special Macro Qperatorst 7-3
7.4 UsSinNg MACIOS . ..ot e e e 7-3
7.4.1 NESTI NG MACROS o e e e e e 7-3
7.4.2 LABELS IN MACROS e e 7-4
8 8051 CROSS ASSEMBLER ERROR CODES. oo e e e i 8-1

Met aLi nk 8051 Cross Assenbl er User Manual

8.1 INtroduCtiOn 8-1
8.2 Explanation of Error Messages, 8-2
9 APPENDI CES . . . it 9-1
APPENDI X A - SAMPLE PROGRAM AND LISTING 9-1
Al Source File. 9-1
A2 Source File Listing...... 9-3
APPENDI X B - PRE-DEFI NED BYTE AND BIT ADDRESSES 9-4
B.1 Pre-defined Byte Addresses. 9-4
B.2 Pre-defined Bit Addresses. 9-13
APPENDI X C - RESERVED SYMBOLS e 9-21
APPENDI X D - CROSS ASSEMBLER CHARACTER SET oo .. 9-22

LI'ST OF TABLES

Table 1-1: 8051 Family of Conmponents 1-3
Table 2-1: Summary of Cross Assenbler Controls 2-2
Tabl e 2-2: Summary of Cross Assenbler Directives 2-3
Tabl e 2-3: 8051 Instructions and Menmonics 2-3
Table 2-4: Cross Assenbler Radices 2-6
Table 2-5: Assenbly Tinme Qperations 2-6
Tabl e 2-6: Operators Precedence, 2-7

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 1

1 8051 OVERVI EW

1.1 Introduction

For new users of MetaLink's ASMb1l Cross Assenbler, please take a nonent to fill out
and return postage-prepaid User Registration Card. This card will be found with
the system diskette in the vinyl jacket at the front of this manual. MetaLink will
use this information to send out, free of charge, any software updates occurring
during the warranty period. Respondents will also be notified of any new products
or product enhancenents.

The 8051 series of m crocontrollers are highly integrated single chip

m croconputers with an 8-bit CPU, nenory, interrupt controller, timers, serial 1/0
and digital 1/O on a single piece of silicon. The current nenbers of the 8051
famly of components include:

80C152JA/JB/JC/ JD, 83C152JA/JC, 80C157
80C154, 83Cl154, 85C154

8044, 8344, 8744

80C451, 83C451, 87C451

80C452, 83C452, 87CA52

8051, 8031, 8751, 80C51, 80C31, 87Csk1
80512, 80532

80515, 80535, 80C535, 80C515

80C517, 80C537

80C51FA, 83C51FA, 87C51FA, 83C51FB, 87C51FB, 83C51FC, 87C51FC
8052, 8032, 8752

80C321, 800521, 87C521, 80C541, 87C541
8053, 9761, 8753

800552, 83C552, 87Ch52

80C652, 83C652, 87C652

83C654, 87C654

83Cr51, 87Cr51

83Cr752, 87Cr52

80C851, 83C851

Al menbers of the 8051 series of mcrocontrollers share a common architecture.
They all have the same instruction set, addressing nodes, addressing range and
nmenory spaces. The primary differences between different 8051 based products are
the anpbunt of menory on chip, the amount and types of 1/0O and peripheral functions,
and the component's technol ogy (see Table 1-1).

In the brief summary of the 8051 architecture that follows, the term 8051 is used
to mean collectively all available nmenbers of the 8051 famly. Pl ease refer to
reference (1) for a conplete description of the 8051 architecture and the
specifications for all the currently avail able 8051 based products.

1.2 8051 Architecture

The 8051 is an 8-bit machine. |Its nmenory is organized in bytes and practically all
its instruction deal with byte quantities. It uses an Accunul ator as the prinmary
register for instruction results. Oher operands can be accessed using one of the
four different addressing nodes avail abl e: register inmplicit, direct, indirect or
i medi ate. Operands reside in one of the five nmenory spaces of the 8051.

Met aLi nk 8051 Cross Assenbl er User Manual

The five nmenory spaces of the 8051 are: Program Menory, External Data Menory,
Internal Data Menory, Special Function Registers and Bit Menory.

The Program Menory space contains all the instructions, imredi ate data and constant

tables and strings. It is principally addressed by the 16-bit Program Counter
(PC, but it can also be accessed by a few instructions using the 16-bit Data
Poi nter (DPTR). The nmaxi mum size of the Program Menory space is 64K bytes.

Several 8051 famly nenbers integrate on-chip sone anount of either masked
programed ROM or EPROM as part of this nmenory space (refer to Table 1-1).

The External Data Menory space contains all the variables, buffers and data
structures that can't fit on-chip. It is principally addressed by the 16-bit Data
Pointer (DPTR), although the first two general purpose register (RO,Rl) of the
currently selected register bank can access a 256-byte bank of External Data
Menory. The maxi mum size of the External Data Menmory space is 64Kbytes. External
data menory can only be accessed using the indirect addressing node with the DPTR
RO or R1.

The Internal Data Menory space is functionally the nost inportant data nenory
space. In it resides up to four banks of general purpose registers, the program
stack, 128 bits of the 256-bit nmenmory, and all the variables and data structures
that are operated on directly by the program The maxi mum size of the Internal
Data Menory space is 256-bytes. However, different 8051 fam |y nenbers integrate
di fferent anpbunts of this nenory space on chip (see AiMt of RAMin Table 1-1). The
register inmplicit, indirect and direct addressing mpbdes can be used in different
parts of the Internal Data Menory space.

The Special Function Register space contains all the on-chip peripheral 1/0
registers as well as particular registers that need program access. These
registers include the Stack Pointer, the PSW and the Accumulator. The maximum
nunber of Special Function Registers (SFRs) is 128, though the actual nunber on a
particular 8051 famly nmenber depends on the nunber and type of peripheral

functions integrated on-chip (see Table 1-1). The SFRs all have addresses greater
than 127 and overlap the address space of the upper 128 bytes of the Internal Data
Menory space. The two nmenory spaces are differentiated by addressing node. The

SFRs can only be accessed using the Direct addressing node while the upper 128
bytes of the Internal Data Menory (if integrated on-chip) can only be accessed
using the Indirect addressing node.

The Bit Menory space is used for storing bit variables and flags. There are
specific instructions in the 8051 that operate only in the Bit Menory space. The
maxi mum si ze of the Bit Menory space is 256-bits. 128 of the bits overlap with 16-
bytes of the Internal Data Menory space and 128 of the bits overlap with 16 Speci al
Function Registers. Bits can only be accessed using the bit instructions and the
Di rect addressi ng node.

The 8051 has a fairly conplete set of arithnetic and |ogical instructions. It
includes an 8X8 nultiply and an 8/8 divide. The 8051 is particularly good at
processing bits (sometines called Boolean Processing). Using the Carry Flag in the
PSW as a single bit accunulator, the 8051 can nove and do |ogical operations
between the Bit Menory space and the Carry Flag. Bits in the Bit Menory space can
al so be used as general purpose flags for the test bit and junp instructions.

Except for the MOVE instruction, the 8051 instructions can only operate on either
the Internal Data Menory space or the Special Function Registers. The MOVE
instruction operates in all nmenory spaces, including the External Menory space and
Program Menory space.

Program control instructions include the usual wunconditional calls and junps as
well as conditional relative junps based on the Carry Flag, the Accumul ator's zero

1-2

Met aLi nk 8051 Cross Assenbl er User Manual

state, and the state of any bit in the Bit Menory space. Also available is a
Compare and Junp if Not Equal instruction and a Decrenent Counter and Junmp if Not
Zero loop instruction. See Chapter 4 for a description of the conplete 8051

instruction set.

1.3 Summary of the 8051 Fam |y of Conponents

Table 1-1: 8051 Famly of Components

Component Technol ogy | Amt of ROM | Type of ROM | Amt of RAM | No. of SFRs Serial 1/0 Type
8031 HMOS 0 -- 128 bytes 21 Start/ Stop Async
8051 HMOS 4Kbyt es Masked 128 bytes 21 Start/ Stop Async
8751 HMOS 4Kbyt es EPROM 128 bytes 21 Start/ Stop Async
8053 HMOS 8Kbyt es Masked 128 bytes 21 Start/ Stop Async
9761 HMOS 8Kbyt es EPROM 128 bytes 21 Start/ Stop Async
8751 HMOS 8Kbyt es EPROM 128 bytes 21 Start/ Stop Async
80C31 CMOS 0 -- 128 bytes 21 Start/ Stop Async
80C51 CMOS 4Kbyt es Masked 128 bytes 21 Start/ Stop Async
87C51 CMOS 4Kbyt es EPROM 128 bytes 21 Start/ Stop Async
8032 HMOS 0 -- 256 bytes 26 Start/ Stop Async
8052 HMOS 8Kbyt es Masked 256 bytes 26 Start/ Stop Async
8752 HMOS 8Kbyt es EPROM 256 bytes 26 Start/ Stop Async
80C32 CMOS 0 -- 256 bytes 26 Start/ Stop Async
80C52 CMOS 8Kbyt es Masked 256 bytes 26 Start/ Stop Async
87C52 CMOS 8Kbyt es EPROM 256 bytes 26 Start/ Stop Async
8044 HMOS 4Kbyt es Masked 192 bytes 34 HDLC/ SDLC
8344 HMOS 0 -- 192 bytes 34 HDLC/ SDLC
8744 HMOS 4Kbyt es EPROM 192 bytes 34 HDLC/ SDLC
80535 HMOS 0 -- 256 bytes 41 Start/ Stop Async
80515 HMOS 8Kbyt es Masked 256 bytes 41 Start/ Stop Async
80C535 CHMOS 0 -- 256 bytes 41 Start/ Stop Async
80C515 CHVOS 8Kbyt es Masked 256 bytes 41 Start/ Stop Async
80532 HMOS 0 -- 128 bytes 28 Start/ Stop Async
80512 HMOS 4Kbyt es Masked 128 bytes 28 Start/ Stop Async
80C152 CHMOS 0 -- 256 bytes 56 CsSmy/ CD
83C152 CHMOS 8Kbyt es Masked 256 bytes 56 CsSmy/ CD
80C154 CMOS 0 -- 256 bytes 27 Start/ Stop Async
83C154 CMOS 16Kbyt es Masked 256 bytes 27 Start/ Stop Async
85C154 CMOS 16Kbyt es EPROM 256 bytes 27 Start/Stop Async

80C51FA CHMOS 0 -- 256 bytes 47 Start/ Stop Async
83C51FA CHMOS 8Kbyt es Masked 256 bytes 47 Start/ Stop Async
87C51FA CHMOS 8Kbyt es EPROM 256 bytes 47 Start/ Stop Async
83C51FB CHMOS 16Kbyt es Masked 256 bytes 47 Start/ Stop Async
87C51FB CHMOS 16Kbyt es EPROM 256 bytes 47 Start/ Stop Async
83C51FB CHMOS 32Kbyt es Masked 256 bytes 47 Start/ Stop Async
87C51FB CHMOS 32Kbyt es EPROM 256 bytes 47 Start/ Stop Async
80C537 CHMOS 0 -- 256 bytes 41 Start/ Stop Async
80C517 CHMOS 8Kbyt es Masked 256 bytes 82 Start/ Stop Async
80C451 CMOS 0 -- 128 bytes 24 Parallel I/F
83C451 CcMos 4Kbyt es Masked 128 bytes 24 Parallel 1/F
87C451 CMOS 4Kbyt es EPROM 128 bytes 24 Parallel I/F
80C452 CHMOS 0 -- 256 bytes 55 UPI.
83C452 CHMOS 8Kbyt es -- 256 bytes 55 UPI.
87C452 CHMOS 8Kbyt es -- 256 bytes 55 UPI.
80C552 CMOS 0 -- 256 bytes 54 Start/ Stop Async
83C552 CcMos 8Kbyt es Masked 256 bytes 54 Start/ Stop Async
87C552 CMOS 8Kbyt es EPROM 256 bytes 54 Start/ Stop Async
80C652 CcMos 0 -- 256 bytes 24 Start/ Stop Async
83C652 CMOS 8Kbyt es Masked 256 bytes 24 Start/ Stop Async
87C652 CcMos 8Kbyt es EPROM 256 bytes 24 Start/ Stop Async
83C654 CMOS 16Kbyt es Masked 256 bytes 24 Start/ Stop Async

1-3

Met aLi nk 8051 Cross Assenbl er User Manual
Conponent Technol ogy | Amt of ROM | Type of ROM | Amt of RAM | No. of SFRs Serial 1/0 Type

87C654 CMOS 16Kbyt es EPROM 256 bytes 24 Start/ Stop Async
83C752 CcMOS 2Kbyt es Masked 64 bytes 25 12C
87Cr752 CcMOS 2Kbyt es EPROM 64 bytes 25 12C
83C751 CcMOS 2Kbyt es Masked 64 bytes 20 12C
87Cr51 CcMOS 2Kbyt es EPROM 64 bytes 20 12C
80C521 CMOS 0 -- 256 bytes 26 Start/ Stop Async
80C321 CMOS 8Kbyt es Masked 256 bytes 26 Start/ Stop Async
87C521 CMOS 8Kbyt es EPROM 256 bytes 26 Start/ Stop Async
80C541 CMOS 16Kbyt es Masked 256 bytes 26 Start/ Stop Async
87C541 CMOS 16Kbyt es EPROM 256 bytes 26 Start/ Stop Async
80C851 CMOS 0 -- 128 bytes 21 Start/ Stop Async
83C851 CMOS 4Kbyt es Masked 128 bytes 21 Start/ Stop Async

1. Ref er ences

1. Intel Corp., 8-Bit Enbedded Controllers, 1990.

2. Sienmens Corp., Mcrocontroller Conmponent 80515, 1985.

3. AVMD Corp., Eight-Bit 80C51 Enbedded Processors, 1990.

4. Signetics Corp., Mcrocontroller Users' Guide, 1989.

1-4

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 2

2 8051 CROSS ASSEMBLER OVERVI EW

2.1 Introduction

The 8051 Cross Assenbler takes an assenbly |anguage source file created with a text
editor and translates it into a machine |anguage object file. This translation

process is done in two passes over the source file. During the first pass, the
Cross Assenbler builds a synbol table from the synbols and labels used in the
source file. It's during the second pass that the Coss Assenbler actually
translates the source file into the nachine |anguage object file. It is also

during the second pass that the listing is generated.

The following is a discussion of the syntax required by the Cross Assenbler to
generate error free assenblies.

2.2 Synbols

Synbol s are al phanuneric representations of nuneric constants, addresses, nacros,
etc. The | egal character set for synbols is the set of letters, both upper and
lower case (A .Za..z), the set of decimal nunbers (0..9) and the special
characters, question mark (?) and underscore (_). To ensure that the Cross
Assenbl er can distinguish between a synbol and a nunber, all synbols nust start
with either a letter or special character (? or _). The follow ng are exanples of
| egal synbol s:

Pl
Serial Port Buffer
LOC 4096
??27?
In using a synbol, the Cross Assenbler converts all letters to upper case. As a

result, the Cross Assenbler makes no distinction between upper and |ower case
letters. For exanple, the following two synmbols would be seen as the sane synbol
by the Cross Assenbl er:

Serial Port Buffer
SERI AL_PORT_BUFFER

Synbol s can be defined only once. Synbol s can be up to 255 characters in |length,
though only the first 32 are significant. Therefore, for synbols to be unique,
they nust have a unique character pattern within the first 32 characters. In the
followi ng exanple, the first two synbols would be seen by the Cross Assenbler as
duplicate synbols, while the third and fourth synbol s are uni que.

BEG NNI NG_ADDRESS OF CONSTANT TABLE_1
BEG NNI NG_ADDRESS_OF _CONSTANT_TABLE_2

CONSTANT_TABLE_1_BEG NNI NG_ADDRESS
CONSTANT_TABLE_2_BEG NNI NG_ADDRESS

There are certain synbols that are reserved and can't be defined by the user.
These reserved synbols are listed in Appendix C and include the assenbler
directives, the 8051 instruction menonics, inplicit operand synbols, and the
followi ng assenbly time operators that have al phanurmeric synbols: EQ N, GI, GCE
LT, LE, HHGH LOWN MOD, SHR SHL, NOT, AND, OR and XOR

2-1

Met aLi nk 8051 Cross Assenbl er User Manual

The reserved inplicit operands include the synmbols A, AB, C, DPTR PC, RO, Rl, R2,
R3, R4, R5, R6, R7, ARO, ARl, AR2, AR3, AR4, AR5, AR6 and AR/. These synbols are
used primarily as instruction operands. Except for AB, C, DPTR or PC, these
synbol s can al so be used to define other synbols (see EQU directive in Chapter 5).

The following are exanples of illegal synbols with an explanation of why they are
illegal:

1ST_VARI ABLE (Synmbol s can not start with a nunber.)

ALPHA# (I'l'legal character "#" in synbol.)

MOV (8051 instructi on nmenoni c)

LOW (Assenbl y operator)

DATA (Assenbly directive)
2.3 Labels
Label s are special cases of synbols. Label s are used only before statenments that
have physical addresses associated with them Exanpl es of such statenents are
assenbly |anguage instructions, data storage directives (DB and DW, and data
reservation directives (DS and DBIT). Labels must follow all the rules of synbol
creation with the additional requirenent that they be followed by a colon. The

follow ng are | egal exanples of |abel uses:

TABLE_OF_CONTROL_CONSTANTS:

DB 0,1,2,3,4,5 (Dat a storage)
MESSAGE: DB ' HELP (Dat a storage)
VARI ABLES: DS 10 (Data reservation)
Bl T_VARI ABLES: DBIT 16 (Data reservation)
START: MOV A #23 (Assenbly | anguage instruction)

2.4 Assenbler Controls

Assenbl er controls are used to control where the Cross Assenbler gets its input
source file, where it puts the object file, and how it formats the listing file.
Table 2-1 summarizes the assenbler controls avail able. Refer to Chapter 6 for a
detail ed expl anation of the controls.

Table 2-1: Summary of Cross Assenbler Controls

Contr ol Descri ption Contr ol Descri ption
$DATE(dat e) Pl aces date in page header $EJECT Places a formfeed in listing
$I NCLUDE(fil e) Inserts file in source program $LI ST Allows listing to be output
$NCLI ST Stops outputting the listing $MOD51 Uses 8051 predefined synbols
$MOD52 Uses 8052 predefined synbols $MOD44 Uses 8044 predefined synbols
$NOMOD No predefined synbols used $OBIECT(file) Pl aces object output in file
$NOOBJECT No object file is generated $PAG NG Break output listing into pages
$NOPAG NG Print listing w o page breaks $PACELENGTH(n) No. of lines on a listing page
$PACGEW DTH(n) No. of columms on a listing page | $PRINT(file) Places listing output in file
$NOPRI NT Listing will not be out put $SYMBOLS Append synbol table to listing
$NOSYMBOLS Synmbol table will not be output $TI TLE(string) Pl aces string in page header

As can be seen in Table 2-1, all assenbler controls are prefaced with a dollar sign
($). No spaces or tabs are allowed between the dollar sign and the body of the
control. Also, only one control per line is pernmtted. However, coments can be
on the sane line as a control. The follow ng are exanples of assenbler controls:

2-2

Met aLi nk 8051 Cross Assenbl er User Manual

$TI TLE(8051 Program Ver. 1.0)
$LI ST
$PAGEW DTH(132)

2.5 Assenbler Directives

Assenbl er directives are used to define synbols, reserve nenory space, store val ues
in program nenory and switch between different nenory spaces. There are also
directives that set the location counter for the active segnent and identify the
end of the source file. Table 2-2 sunmarizes the assenbler directives avail able.
These directives are fully explained in Chapter 5.

Tabl e 2-2: Summary of Cross Assenbler Directives

Directive Description Directive Descri ption
EQU Defi ne synbol DATA Define internal nmermory synbol
| DATA Define indirectly addressed XDATA Define external nenmory synbol
internal menory synbol BIT Define internal bit nenory synbol
CODE Define program nmenmory synbol DS Reserve bytes of data nenory
DBI T Reserve bits of bit nenory DB Store byte val ues in program nenory
DW Store word val ues in program nenory | ORG Set segnent | ocation counter
END End of assenbly | anguage source CSEG Sel ect program nmenory space
file XSEG Sel ect external nenory data space
DSEG Sel ect internal nmenory data space BSEG Sel ect bit addressabl e nenory space
| SEG Sel ect indirectly addressed US| NG Sel ect register bank
internal menory space ELSE Alternative conditional assenbly
I F Begi n conditional assenbly block bl ock
ENDI F End conditional assenbly bl ock
Only one directive per line is allowed, however comments may be included. The

foll owi ng are exanpl es of assenbler directives:

TEN EQU 10
RESET CODE 0
CRG 4096

2.6 8051 Instruction Menonics
The standard 8051 Assenbly Language Instruction menonics plus the generic CALL and

JMP instructions are recogni zed by the Cross Assenbler and are summarized in Table
2-3. See Chapter 4 for the operation of the individual instructions.

Tabl e 2-3: 8051 Instructions and Menoni cs

Mhenoni ¢ Descri ption Mhenoni ¢ Descri ption Mhenoni ¢ Descri ption

ACALL Absol ute call ADD Add ADDC Add with carry

AIVP Absol ute junp ANL Logi cal and CINE Conpare, junp if not equal
CLR Cl ear CPL Conpl enent DA Deci mal adj ust

DEC Decr enent DV Di vi de DINZ Decrenent, junp if not zero
I NC I ncr enent JB Junp if bit set JBC Junp & clear bit if bit set
JC Junp if carry set JWP Junp JNB Junmp if bit not set

JNC Junp if carry not set INZ Junp if accum not zero Jz Junp if accumul ator zero
LCALL Long call LIMP Long junp MoV Move

MovC Move code MOVX Move ext er nal MJUL Ml tiply

NOP No operation ORL I ncl usive or POP Pop stack

PUSH Push st ack RET Return RETI Return frominterrupt

RL Rotate |eft RLC Rotate left through carry RR Rotate right

RRC Rotate right through carry SETB Set bit SIMP Short junp

SUBB Subtract w th borrow SWAP Swap ni bbl es XCH Exchange bytes

XCHD Exchange digits XRL Excl usi ve or CALL Ceneric call

2-3

Met aLi nk 8051 Cross Assenbl er User Manual

VWhen the Cross Assenbler sees a generic CALL or JWMP instruction, it will try to
translate the instruction into its nost byte efficient form The Cross Assenbl er
will translate a CALL into one of two instructions (ACALL or LCALL) and it wll
translate a generic JMP into one of three instructions (SIJMP, AJWMP or LIMP). The
choice of instructions is based on which one is nost byte efficient. The generic
CALL or JMP instructions saves the programrer the trouble of determ ning which form
i s best.

However, generic CALLs and JWMPs do have their Ilimtations. VWhile the byte
efficiency algorithm works well for previously defined |ocations, when the target
|ocation of the CALL or JMP is a forward location (a location later on in the
program, the assenbler has no way of determning the best formof the instruction.
In this case the Cross Assenbler sinply puts in the long version (LCALL or LIJMP) of
the instruction, which may not be the nost byte efficient. NOTE that the generic
CALLs and JMPs nust not be used for the 751/752 device as LCALL and LJMP are not
| egal instructions for those devices. Instead use ACALL and AJMP explicitly.

For instructions that have operands, the operands nust be separated from the
mmemoni ¢ by at |east one space or tab. For instructions that have multiple
oper ands, each operand must be separated fromthe others by a conma.

Two addressing nodes require the operands to be preceded by special synbols to
designate the addressing node. The AT sign (@ is used to designate the indirect
addr essi ng node. It is used primarily with Register 0 and Register 1 (RO, R1),
but is can also be used with the DPTR in the MOVX and the Accunulator in MOWC and
JMP @A+DPTR i nstructi ons. The POUND sign (#) is used to designate an imediate
oper and. It can be used to preface either a nunber or a synbol representing a
numnber .

A third synmbol used with the operands actually specifies an operation. The SLASH
(/) is used to specify that the contents of a particular bit address is to be
conpl emented before the instruction operation. This is used with the ANL and ORL
bit instructions.

Only one assenbly |anguage instruction is allowed per |ine. Comments are all owed
on the same line as an instruction, but only after all operands have been
specified. The followi ng are exanples of instruction statenments:

START: LIMP INIT
MoV @0, Serial _Port Buffer
CINE RO , #TEN, I NC_TEN
ANL C, / START_FLAG
CALL GET_BYTE
RET

2.7 Bit Addressing

The period (.) has special neaning to the Cross Assenbler when used in a synbol.
It is used to explicitly specify a bit in a bit-addressable synbol. For exanpl e,
it you wanted to specify the nost significant bit in the Accumulator, you could
wite ACC. 7, where ACC was previously defined as the Accunul ator address. The sane
bit can also be selected using the physical address of the byte it's in. For
exanpl e, the Accunul ator's physical address is 224. The nost significant bit of
the Accunul ator can be selected by specifying 224.7. |If the synbol ON was defined
to be equal to the value 7, you could also specify the sane bit by either ACC ON or
224. ON.

2-4

Met aLi nk 8051 Cross Assenbl er User Manual

2.8 ASCII Literals

Printable characters from the ASCIlI character set can be used directly as an
i medi ate operand, or they can used to define synbols or store ASCI|I bytes in

Program Menory. Such use of the ASCII character set is called ASCII literals.
ASCIl literals are identified by the apostrophe (') delimter. The apostrophe
itself can be used as an ASCII literal. In this case, use two apostrophes in a
row. Below are exanples of using ASCII literals.

MOV A #n ;Load A with 06DH (ASCII m)
QUOTE EQU "' ; QUOTE defined as 27H (ASCI 1 single quote)

DB ' 8051 ; Store in Program Menory

2.9 Coments

Comments are user defined character strings that are not processed by the Cross

Assenbl er. A comrent begins with a semcolon (;) and ends at the carriage
return/line feed pair that termnates the line. A comrent can appear anywhere in a
line, but it has to be the last field. The following are exanples of conment
li nes:

; Begin initialization routine here

$TI TLE(8051 Program Vers. 1.0) ; Pl ace version nunber here
TEN EQU 10 ; Const ant

; Comment can begin anywhere in a line

MOV A, Serial Port Buffer ; Get character

2.10 The Location Counter

The Cross Assenbler keeps a location counter for each of the five segnents (code,
internal data, external data, indirect internal data and bit data). Each |ocation
counter is initialized to zero and can be nodified using Assenbler Directives
described in Chapter 5.

The dollar sign ($) can be used to specify the current value of the |ocation
counter of the active segnent. The follow ng are exanples of how this can be used:

JNB FLAG $;Junp on self until flag is reset
CPYRGHT: DB ' Copyright, 1983
CPYRGHT_LENGTH

EQU $- CPYRGHT-1 ; Cal cul ate I ength of copyright nmessage

2.11 Syntax Summary

Since the Cross Assenbler essentially translates the source file on a line by line
basis, certain rules nust be followed to ensure the translation process is done
correctly. First of all, since the Cross Assenbler's line buffer is 256 characters
deep, there nust always be a carriage return/line feed pair within the first 256
colums of the |ine.

A legal source file line nust begin with either a control, a synbol, a label, an
instruction menonic, a directive, a comment or it can be null (just the carriage
return/line feed pair). Any other beginning to aline will be flagged as an error.

VWile a legal source file line nmust begin with one of the above itenms, the item
doesn't have to begin in the first colum of the line. It only nmust be the first
field of the line. Any nunber (including zero) of spaces or tabs, up to the
maxi mum | ine size, may precede it.

2-5

Met aLi nk 8051 Cross Assenbl er User Manual

Comment s can be placed anywhere, but they nust be the last field in any |ine.

2.12 Nunbers and Operators

The Cross Assenbler accepts nunbers in any one of four radices: binary, octal,
deci mal and hexadeci mal . To specify a nunber in a specific radix, the nunber nust
use the correct digits for the particular radix and inmediately following the
nunber with its radix designator. Decimal is the default radix and the use of its
designator is optional. An hexadecinmal nunber that would begin with a letter digit
must be preceded by a O (zero) to distinguish it from a synbol. The internal
representation of nunbers is 16-bits, which limts the maxi num nunber possible.
Tabl e 2-4 summarizes the radi ces avail abl e.

Tabl e 2-4: Cross Assenbl er Radi ces

MAXI MUM LEGAL DESI GNATOR LEGAL DIA TS NUMBER
RADI X
Bi nary B 0,1 1111111111111212112
B
Cct al 0Q 0,1,2,3,4,5,6,7 1777770
177777Q
Deci mal D, (default) |0,1,2,3,4,5,6,7,8,9 65535D
65535
Hexadeci nal H 0,1,2,3,4,5,6,7,8,9, OFFFFH
A B CDEF
No spaces or tabs are allowed between the nunmber and the radi x designator. The

letter digits and radi x designators can be in upper or |lower case. The follow ng
exanpl es list the deci mal nunber 2957 in each of the avail abl e radices:

101110001101B (Bi nary)
56150 or 5615Q (Cctal)

2957 or 2957D (Deci mal)
0B8DH, 0b8dh (Hexadeci mal)

VWhen using radices with explicit bit synbols, the radi x designator follows the byte
portion of the address as shown in the foll ow ng exanpl es:

OEOH. 7 Bit seven of hexadeci mal address OEO
200Q ON Bit ON of octal address 200

The Cross Assenbler also allows assenbly tine evaluation of arithnetic expressions

up to thirty-two levels of enbedded parentheses. Al calculations use integer
nunbers and are done in sixteen bit precision.

Tabl e 2-5: Assenbly Tine Qperations

OPERATOR SYMBOL OPERATI ON
+ Addi ti on
Unary positive
- Subt racti on
Unary negation (2's conpl enent)
* Mul tiplication

2-6

Met aLi nk 8051 Cross Assenbl er User Manual

OPERATOR SYMBOL OPERATI ON
/ I nt eger division (no remai nder)
MOD Modul us (remai nder of integer division)
SHR Shift right
SHL Shift left
NOT Logi cal negation (1's conpl enent)
AND Logi cal and
oR I ncl usi ve or
XOR Excl usi ve or
LOwW Low order 8-bits
H GH H gh order 8-bits
EQ = Rel ati onal equal
NE, <> Rel ati onal not equal
Gr, > Rel ati onal greater than
GE, >= Rel ati onal greater than or equal
LT, < Rel ati onal |ess than
LE, <= Rel ational |ess than or equal
() Par ent heti cal st atenent

The relational operators test the specified values and return either a True or
Fal se. False is represented by a zero value, True is represented by a non zero
value (the True condition actually returns a 16-bit value with every bit set; i.e.,
OFFFFH). The relational operators are used primarily with the Conditional Assenbly
capability of the Cross Assenbler.

Table 2-5 lists the operations available while Table 2-6 lists the operations
precedence in descendi ng order. Operations with higher precedence are done first.
Qperations with equal precedence are evaluated fromleft to right.

Tabl e 2-6: Operators Precedence

OPERATI ON PRECEDENCE
(,) H GHEST
H GH, LOW
* |, MOD, SHR, SHL
+’ -
EQ LT, GT, LE, GE, NE, =, <, >, <=, >=, <>
NOT
AND
OR, XOR LONEST

The following are exanples of all the available operations and their result:

H GH(0AADDH) will return a result of OAAH
LOWN OAADDH) will return a result of ODDH
74 wll return a result of 28

714 wll return a result of 1

7 MOD 4 wll return a result of 3
1000B SHR 2 wll return a result of 0010B
1010B SHL 2 wll return a result of 101000B
10+5 wll return a result of 15

2-7

Met aLi nk 8051 Cross Assenbl er User Manual

+72 wll return a result of 72

25-17 wll return a result of 8

-1 wll return a result of 1111111111111111B
NOT 1 wll return a result of 1111111111111110B
7 EQ4, 7 =4 wWll return a result of 0O

7 LT 4, 7 < 4 wll return a result of O

7 Gl 4, 7 > 4 wll return a result of OFFFFH

7 LE 4, 7 <=4 wll return a result of O

7 GE 4, 7 >= 4 wll return a result of OFFFFH

7 NE 4, 7 <> 4 wll return a result of OFFFFH

1101B AND 0101B wll return a result of 0101B

1101B OR 0101B wll return a result of 1101B

1101B XOR 0101B wll return a result of 1000B

2.13 Source File Listing

The source file listing displays the results of the Cross Assenbler translation.
Every line of the listing includes a copy of the original source line as well as a
i ne nunber and the Cross Assenbler translation.

For exanple, in translating the following line taken from the mddle of a source
file:

TRANS: MV R7, #32 ; Set up poi nter

the listing will print:

002F 7920 152 TRANS: MOV R1, #32 ; Set up pointer

The 'O002F is the current value of the |ocation counter in hexadecinal. The
'7920' is the translated instruction, also in hexadecimal. The '152' is the
decimal line nunber of the current assenbly. After the line nunber is a copy of

the source file |line that was transl at ed.

Anot her exanple of aline in the listing file is as foll ows:

015B 13 =1 267 +2 RRC A

Here we see two additional fields. The '=1' before the line nunber gives the
current nesting of include files. The '+2' after the line nunber gives the
current macro nesting. This line essentially says that this line comes from a

second | evel nesting of a macro that is part of an include file.

Another line format that is used in the listing is that of symbol definition. In
this case the location counter value and translated instruction fields described
above are replaced with the definition of the synbol. The follow ng are exanples
of this:

O00FF 67 MAX_NUM EQU 255

REG 68 COUNTER EQU R7

The 'OOFF is the hexadecinmal value of the synbol MAX_NUM Again, '67'is the
decimal line nunmber of the source file and the remainder of the first line is a
copy of the source file. In the second line above, the 'REG shows that the

synbol COUNTER was defined to be a general purpose register.

Optionally, a listing can have a page header that includes the nanme of the file
bei ng assenbled, title of program date and page nunber. The header and its fields
are controlled by specific Assenbler Controls (see Chapter 6).

2-8

Met aLi nk 8051 Cross Assenbl er User Manual

The default case is for a listing to be output as a file on the default drive with
the same nane as the entered source file and an extension of .LST. For exanple, if
the source file nane was PROGRAM ASM the listing file would be call ed PROGRAM LST.
O if the source file was called MODULEl, the listing file would be stored as
MODULEL. LST. The default can be changed using the $NOPRI NT and $PRINT() Assenbl er
Controls (see Chapter 6).

2.14 bject File

The 8051 Cross Assenbler also creates a machi ne | anguage object file. The for mat
of the object file is standard Intel Hexadecinal. This Hexadecinmal file can be
used to either program EPROVs using standard PROM Programmers for prototyping, or
used to pattern masked ROVt for production.

The default case is for the object file to be output on the default drive with the
same nanme as the first source file and an extension of .HEX For exanple, if the
source file nane was PROGRAM ASM the object file would be called PROGRAM HEX. O
if the source file was called MODULElL, the object file would be stored as
MODULE1. HEX. The default can be changed using the $NOOBJECT and $OBJECT()
Assenbl er Controls (see Chapter 6).

2-9

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 3

3 RUNNING THE 8051 CROSS ASSEMBLER ON PC- DOS/ Ms- DOS SYSTEMS

3.1 Cross Assenbler Files

The floppy disk you receive with this manual is an 8 sector, single-sided, double
density disk. This distribution disk will contain the following files:

ASMb1. EXE The Cross Assenbl er programitself
MOD152 Source file for the $MOD152 control
MOD154 Source file for the $MOD154 control
MOD252 Source file for the $MOD252 control
MOD44 Source file for the $MOD44 control
MOD451 Source file for the $MOD451 control
MOD452 Source file for the $MOD452 control
MOD51 Source file for the $MOD61 control
MOD512 Source file for the $MOD512 control
MOD515 Source file for the $MOD515 control
MOD517 Source file for the $MOD517 control
MOD52 Source file for the $MOD52 control
MOD521 Source file for the $MOD521 control
MOD552 Source file for the $MOD552 control
MOD652 Source file for the $MOD652 control
MOD751 Source file for the $MOD751 control
MOD752 Source file for the $MOD752 control
MOD851 Source file for the $MOD851 control
There will also be one or nore files with an extension of .ASM These are sanple

progranms. Listings of these prograns can be found in Appendix A

DON' T USE THE D STRI BUTION DI SK MAKE WORKING AND BACKUP COPIES FROM THE
DI STRI BUTI ON DI SK AND THEN STORE THE DI STRI BUTI ON DI SK | N A SAFE PLACE.

3.2 M nimum Syst em Requi renent s

Wth DOS 2.0 or later - 96K RAM
1 Fl oppy Disk Drive

3.3 Running the Cross Assenbl er

Once you've created an 8051 assenbly | anguage source text file in accordance wth
the guidelines in Chapter 2, you are now ready to run the Cross Assenbler. Make
sure your systemis booted and the DOS pronpt (A>) appears on the screen. Place
the disk with the 8051 Cross Assenbler on it in the drive and sinply type (in all
the follow ng exanples, the synmbol <CR> is used to show where the ENTER key was
hit):

ASMb1<CR>

If the 8051 Cross Assenbler disk was placed in a drive other than the default
drive, the drive nane would have to be typed first. For exanple, if the Adrive is
the default drive, and the 8051 Cross Assenbler is in the B drive, you would then

type:
B: ASMb1<CR>

Met aLi nk 8051 Cross Assenbl er User Manual

After loading the program from the disk, the programis name, its version nunber
and general copyright information wll be displayed on the screen. The Cross
Assenbl er then asks for the source file nane to begin the assenbly process.

Source file drive and nanme [.ASM:

At this point, if you have only one floppy disk drive and the 8051 Cross Assenbl er
and source files are on separate disks, remove the disk with the 8051 Cross
Assenbler on it and replace it with your source file disk.

Next, enter the source file nane. If no extension is given, the Cross Assenbler
wi Il assume an extension of .ASM If no drive is given, the Cross Assenmbler will
assune the default drive. Since in every case where no drive is given, the Coss
Assenbl er assumes the default drive, it is generally a good practice to change the
default drive to the drive with your source files.

An alternative method for entering the source file is in the command line. |In this
case, after typing in ASMbl, type in a space and the source file nane (again if no
extension is given, source file on the conmand |i ne:

A>ASMb1 B: CONTRCL. A51<CR>

After the source file nane has been accepted, the Cross Assenbler wll begin the
translation process. As it starts the first pass of its two pass process, it wll
print on the screen:

First pass

At the conpletion of the first pass, and as it starts its second pass through the
source file, the Cross Assenbler w |l display:

Second pass

VWhen second pass is conpleted, the translation process is done and the Cross
Assenbler will print the foll ow ng nessage:

ASSEMBLY COWPLETE, XX ERRORS FOUND

XX is replaced with the actual nunmber of errors that were found. Disk 1/0 may
continue for a while as the Cross Assenbl er appends the synbol table to the listing
file.

3.4 Exanple Running the Cross Assenbl er

The following is an example of an actual run. The Cross Assenbler will take the
source file SAVPLE. ASM from Drive A (default drive).

Agai n, the synbol <CR> is used to show where the ENTER key was hit.

3-2

Met aLi nk 8051 Cross Assenbl er User Manual

>ASMb1<CR>

8051 CROSS ASSEMBLER

Version 1.2
(c) Copyright 1984, 1985, 1986, 1987, 1988, 1989, 1990

Met aLi nk Cor por ati on

Source file drive and nanme [.ASM: sanpl e<CR>
First pass
Second pass

ASSEMBLY COVPLETE, 0 ERRORS FOUND

3.5 DCS Hints and Suggesti ons

If you are using DOS 2.0 or later, you may want to use the BREAK ON command before

you run the Cross Assenbler. This will allow you to abort (Cirl-Break) the Cross
Assenbler at any tine. O herwise, you will only be able to abort the Cross
Assenbl er after it conpletes a pass through the source file. |If you are assenbling

a large file, this could cause you a several mnute wait before the Cross Assenbl er
aborts.

The reason for this it that the default condition for DOS to recognizes a CQrl-
Break is when the program (in this case the Cross Assenbl er) does keyboard, screen
or printer 1/0O Unfortunately, the assenbler does this very rarely (once each
pass). By using the BREAK ON command, DOS will recognize a CGrl-Break for all 1/0Q
i ncluding disk I/Q Since the Cross Assenbler is constantly doing disk I/O wth
BREAK ON you can abort al nost inmediately by hitting the Crl-Break keys.

So much for the good news. However, aborting a program can cause sone undesirable

si de-effects. Aborting a program while files are open causes DOS to drop sone
i nformati on about the open files. This results in disk sectors being allocated
when they are actually free. Your total available disk storage shrinks. You

should nmake the practice of running CHKDSK with the /F switch periodically to
recover these sectors.

The Cross Assenbler run under DOS 2.0 or later supports redirection. You can
specify the redirection on the command line. Use the following form

ASMb1 <infile >outfile

"infile" and "outfile" can be any legal file designator. The Cross Assenbler wll
take its input fromthe "infile" instead of the keyboard and will send its output
to "outfile" instead of the screen.

Note that redirection of input in ASMbl is redundant since the assenbler is an
absolute assenbler and has no command line options other than the file nane
ar gument .

3-3

Met aLi nk 8051 Cross Assenbl er User Manual

Qutput redirection is wuseful for speeding up the assenbly process. Because
assenbly-time errors are directed to std err in DOS, an error listing cannot be
redirected to a file.

To nmake the .lst file serve as an error-only file, use the Cross Assenbl er
Controls $PRINT (create a list file) $NOLIST (turn the listing off). Use the
Cross Assenbler Controls $NOSYMBOLS to further conpress the error-only listing
resulting fromthe manipulation of the list file controls. See Chapter 6 for nore
information. The errors will be listed in the .Ist file, as usual.

If the control $NOPRINT (see Chapter 6) is active, all error nessages are send to
t he screen.
3.6 References

1. I1BM Corp., Disk Qperating System Version 1.10, My 1982.
2. IBM Corp., Disk Operating System Version 2.00, January 1983.

3-4

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 4

4 8051 I NSTRUCTI ON SET

4.1 Notation

Below is an explanation of the columm headings and colum contents of the 8051
Instruction Set Summary Table that follows in this chapter.

MNEMONI C

The MNEMONIC columm contains the 8051 Instruction Set WMenmnic and a brief
description of the instruction's operation.

OPERATI ON

The OPERATI ON column describes the 8051 Instruction Set in unanbi guous synbol ogy.
Foll owing are the definitions of the synbols used in this col um.

<n: e Bits of a register inclusive. For exanpl e,
PC<10: 0> neans bits O through 10 inclusive of
the PC. Bit 0 is always the least significant
bit.

+ Bi nary addition

- Bi nary 2s conpl ement subtraction

/ Unsi gned i nteger division

X Unsi gned integer multiplication

~ Bi nary conpl enent (1s conpl enent)

A Logi cal And

\% I nclusive Or

\% Excl usive O

> G eater than

<> Not equal to

= Equal s

-> Is witten into. For example, A + SQper -> A
means the result of the binary addition between
A and the Source Qperand is witten into A

A The 8-bit Accunul at or Regi ster.

AC The Auxiliary Carry Flag in the Program Status
Wor d

CF The Carry Flag in the Program Status Wrd

DQOper The Destination Oper and used in t he
i nstruction.

DPTR 16-bit Data Pointer

Intrupt Active Flag Internal Flag that holds off interrupts until

the Flag is cleared.

Jump Rel ative to PC A Junp that can range between -128 bytes and
+127 bytes from the PC value of the next
i nstruction.

Paddr A 16-bit Program Menory address

PC The 8051 Program Counter. This 16-bit register
points to the byte in the Program Menory space
that is fetched as part of the instruction

stream

PM addr) Byte in Program Menory space pointed to by
addr.

Remai nder I nt eger remai nder of unsigned integer division

4-1

Manual

Met aLi nk 8051 Cross Assenbl er User
Soper The Source Operand used in the instruction.

SP 8-bit Stack Pointer

STACK The Last In First Qut data structure that is

controlled by the 8-bit Stack Pointer (SP).
Sixteen bit quantities are pushed on the stack
| ow byte first.

DEST ADDR MODE/ SOURCE ADDR MODE

These two col umms specify the Destination and Source Addressing
Modes, respectively, that are available for each instruction.

AB The Accunul ator-B Regi ster pair.

Accumul at or Operand resides in the accumul at or

Bit Direct Qperand is the state of the bit specified by
the Bit Menory address.

Carry Fl ag Qperand is the state of the 1-bit Carry flag in
the Program Status Word (PSW.

Dat a Poi nt er perand resides in the 16-bit Data Pointer
Regi ster.

Direct perand is the contents of the specified 8-bit

Internal Data Menory address from O (OOH) to
127 (7FH) or a Special Function Register

address.

I ndi r ect Qperand is the contents of the address
contained in the register specified.

| mredi at e Operand is the next sequential byte after the
instruction in Program Menory space

Prog Direct 16-bit address in Program Menory Space.

Prog Indir Qperand in Program Menory Space is the address
contained in the register specified.

Regi st er perand is the contents of the register
speci fi ed.

St ack Qperand is on the top of the Stack.

ASSEMBLY LANGUAGE FORM

This colum contains the correct format of the instructions that
are recogni zed by the Cross Assenbl er.

A Accunul at or

AB Accumul ator-B Regi ster pair.

C Carry Fl ag

Baddr Bit Menory Direct Address.

Daddr I nt er nal Data Menory or Special Functi on
Regi ster Direct Address.

Dat a 8-bit constant data.

dat al6 16-bit constant data.

DPTR 16-bit Data Pointer Register.

PC 16-bit Program Counter.

Paddr 16-bit Program Menory address

Ri Indirect Register. RO or RL are the only
i ndirect registers.

Rof f 8-bit offset for Relative Junp.

Rn Implicit Register. Each register bank has 8

general purpose registers, designated RO, Ri,
R2, R3, R4, R5, R6, R7.

4-2

Met aLi nk 8051 Cross Assenbl er User Manual

HEX OPCODE

This colum gives the nmachine |anguage hexadecimal opcode for each 8051
i nstruction.

BYT

This columm gives the nunber of bytes in each 8051 instruction.

CyC

This colum gives the nunber of cycles of each 8051 instruction. The tinme value of
a cycle is defined as 12 divided by the oscillator frequency. For exanple, if
runni ng an 8051 fam |y conponent at 12 MHz, each cycle takes 1 m crosecond.

PSW

This columm identifies which condition code flags are affected by the operation of
the individual instructions. The condition code flags available on the 8051 are
the Carry Flag, CF, the Auxiliary Carry Flag, AC, and the Overfl ow Fl ag, OV.

It should be noted that the PSWis both byte and bit directly addressable. Should
the PSW be the operand of an instruction that nodifies it, the condition codes
could be changed even if this colum states that the instruction doesn't affect
t hem

0 Condition code is cleared

1 Condition code is set

* Condition code is nodified by instruction

- Condition code is not affected by instruction

4.2 8051 Instruction Set Sunmary

B C PSW
IMNEMONI C OPERATI ON DEST ADDR SOURCE ADDR ASSEMBLY LANGUAGE HEX Y Y CAO
MODE MCDE FORM OPCODE T C FCV
ACALL
2K in Page (11 bits) PC + 2 -> STACK Prog Direct ACALL Paddr see 212
Absol ute Call SP+2 ->8SP note 1
Paddr <10: 0> -> PC<10: 0>
PC<15: 11> -> PC<15: 11>
ADD
Add Operand to A + SOper -> A Accunul at or | medi at e ADD A #data 24 2 1 kX
Accunul at or " Direct ADD A, Daddr 25 2 1
I ndi rect ADD A @R 26, 27 1 1
Regi st er ADD A Rn 28-2F 1 1
ADDC
Add Operand with Carry A + SOper + C-> A Accunul at or | medi at e ADDC A, #data 34 2 1 kX
to Accunul at or " Direct ADDC A, Daddr 35 2 1
I ndi rect ADDC A @R 36, 37 1 1
Regi ster ADDC A Rn 38- 3F 1 1
AIMP
2K in Page (11 bits) Paddr <10: 0> -> PC<10: 0> Prog Direct AIVMP Paddr see 2 2
Absol ute Junp PC<15: 11> -> PC<15: 11> note 2
ANL
Logi cal AND of Source SOper ™ DOper -> DOper Direct Accunul at or ANL Daddr, A 52 2 1
Operand with " | medi at e ANL Daddr, #data 53 3|2
Destination Qperand Accunul at or | medi at e ANL A #data 54 2|1
. Di rect ANL A Daddr 55 2 i
I ndi rect ANL A @R 56,57 1 1
Regi ster ANL A Rn 58-5F 1
Logi cal AND of Source SOper N CF -> CF Carry Flag Bit Direct ANL C, Baddr 82 2 2 *
Operand with Carry
Fl ag

4-3

Met aLi nk 8051 Cross Assenbl er User Manual
B C PSW
IMNEMONI C OPERATI ON DEST ADDR SOURCE ADDR ASSEMBLY LANGUAGE HEX Y Y CAO
MODE MCDE FORM OPCODE T C FCV
Logi cal AND of Source
Oper and Conpl enent ed
Wth Carry Flag ~SOper » CF -> CF Carry Flag Bit Direct ANL C, / Baddr BO 2 2 ¥ - o
CINE
Conpar e Operands and Junp Relative to PCif Accunul at or | medi at e CINE A, #dat a, Rof f B4 3 2 * .-
Junp Relative if not DOper <> SQper " Di rect CINE A, Daddr, Rof f B5 312 see
Equal I ndi rect I mredi at e CINE @, #dat a, Rof f B6, B7 3| 2] note 2
Regi st er " CINE Rn, #dat a, Rof f B8- BF 312
CLR
Cl ear Accunul at or 0->A Accumnul at or CLR A E4 1 1 - - -
Clear Carry Flag 0 ->CF Carry Flag CLR C C3 1 1 0 - -
Clear Bit Operand 0 -> DQOper Bit Direct CLR Baddr 2 2 |1 - - -
CPL
Conpl ement Accunul at or ~A -> A Accunul at or CPL A F4 1 1 - - -
Conpl ement Carry Flag ~CF -> CF Carry Flag CPL C B3 1 1 ¥ - o
Conpl ement Bit Operand ~DQper - > DQper Bit Direct CPL Baddr B2 2 |1 - - -
DA
Deci mal Adj ust If (A<3:0> > 9) v AC Accunul at or DA A D4 1 1 ¥ .-
Accumul ator for then A<3:0>+6 -> A<3:0> see
Addi tion If (A<7:4> > 9) v CF note 4
then A<7:4>+6 -> A<7: 4>
DEC
Decrenent Oper and DOper - 1 -> DOper Accunul at or DEC A 14 1 1 - - -
Direct DEC Daddr 15 2 1
I ndi rect DEC @i 16, 17 1 1
Regi ster DEC Rn 16, 17 1 1
DV
Di vi de Accunul ator by A/l B->A AB DV AB 84 1 4 0 - *
B Regi ster Renami nder -> B see
note 5
DINZ
Decrenent Operand and DOper - 1 -> DOper Direct DINZ Daddr, Rof f D5 3 2 - - -
Junp Relative if Not If DOper <> 0 then Junp Regi st er DINZ Rn, Rof f D8- DF 2|2
Zero Rel ative to PC
I NC
I ncrenment Oper and DOper + 1 -> DOper Accunul at or INC A 04 1 1 - - -
Direct INC Daddr 05 2 2
I ndi rect INC @i 06, 07 1 1
Regi ster INC Rn 08- OF 1)1
Data Pointer INC DPTR A3 112
JB
Junp Relative if Bit If DOper = 1 then Junp Bit Direct JB Baddr, Rof f 20 3 2 - - -
Qperand is Set Rel ative to PC
JBC
Junp Relative if Bit If DOper = 1 then Bit Direct JBC Baddr, Rof f 10 3 2 *ok o
Operand is Set and Bit Direct see
Clear Bit Operand 0 -> Doper and Junp note 6
Rel ative to PC
JC
Junp Relative if Carry If CF =1 then Junp Carry Flag JC Rof f 40 2 2 - - -
Flag is Set Rel ative to PC
JWP
Junp I ndirect DPTR<15: 0> + A<7: 0> Prog Indir JMP @\+DPTR 73 1 2 - - -
-> PC<15: 0>
JNB
Junp Relative if Bit If DOper = 0 then Junp Bit Direct JNB Baddr, Rof f 30 3 2 - - -
Qperand is O ear Rel ative to PC
JINC
Junp Relative if Carry If CF =0 then Junp Carry Flag JNC Roff 50 2 2 - - -
Flag is Oear Rel ative to PC
INZ
Junp Relative if the If A<7:0> <> 0 then Accunul at or INZ Rof f 70 2 2 - - -
Accunul ator is Not Junp Rel ative to PC
Zer o
Jz
Junp Relative if the If A<7:0> = 0 then Accunul at or Jz Rof f 60 2 2 - - -
Accunul ator is Zero Junp Rel ative to PC
LCALL
Long (16 bits) Call PC + 3 -> STACK Prog Direct LCALL Paddr 12 3 2 - - -
SP + 2 ->SP
Paddr <15: 0> -> PC<15: 0>
LIMP
Long (16 bits) Paddr <15: 0> -> PC<15: 0> Prog Direct LIMP Paddr 02 3 2 - - -
Absol ute Junp

4-4

Met aLi nk 8051 Cross Assenbl er User Manual
B C PSW
IMNEMONI C OPERATI ON DEST ADDR SOURCE ADDR ASSEMBLY LANGUAGE HEX Y Y CAO
MODE MCDE FORM OPCODE T C FCV
MoV
Move Source Operand To SOper -> Doper Accunul at or | medi at e MOV A #data 74 2 1 - - -
Destination Operand " Direct MOV A, Daddr E5 2 1
I ndi rect MOV A @R E6, E7 1 1
Regi ster MOV A Rn E8- EF 1 1
Direct Accunul at or MOV Daddr, A F5 2 1
" | medi at e MOV Daddr , #dat a 75 3 2
Direct MOV Daddr , Daddr 85 2 2
I ndi rect MOV Daddr, @Ri 86, 87 2 2
I ndi rect Regi st er MOV Daddr, Rn 88- 8F 2 2
SOper -> DQOper " Accunul at or MOV @i, A F6, F7 1 1
| medi at e MOV @R, #data 76,77 2 1
Direct MOV @Ri , Daddr A6, A7 2 2
Regi st er Accunul at or MOV Rn, A F8- FF 1 1
" | medi at e MOV Rn, #dat a 78-7F 2 1
Direct MOV Rn, Daddr A8- AF 2 2
Dat a Poi nter | medi at e MOV DPTR, #dat al6 90 3 2
Move Carry Flag to Bit CF -> Doper Bit Direct Carry Flag MOV Baddr, C 92 2 2 - - -
Destination Operand
Move Bit Destination
Operand to Carry Flag DOper -> CF Carry Flag Bit Direct MOV C, Baddr A2 2 |1 * ..
MovC
Move byte from Program PM DPTR<15: 0> + A<7:0>) Accunul at or Prog I nd MOVC A, @GADPTR 93 1 2 - - -
Menory to the -> A<7:0>
Accunul at or PM PC<15: 0> + A<7:0>) Accunul at or Prog I nd MOVC A, @\+PC 83 1] 2 - - -
-> A<7:0>
MOVX
Move byte from SOper -> A Accunul at or I ndi rect MWVX A @R E2, E3 1 2 - - -
External Data Menory " " MOVX A @PTR EO 1 2
to the Accunul ator
ﬁ\éﬁnglyta?oirnt ghe A -> DOper I ndi rect Accunul at or MWVX @R, A F2, F3 1|2 -
External Data Menory MVX - @PTR A Fo 1 2
MJL
Ml tiply Accunul at or A XB->BA AB ML AB A4 1 4 0 - *
by B Register (see note 7)
NOP
No Operation NOP 00 1 1 - - -
ORL
Logi cal Inclusive OR SOper v DOper -> DOper Direct Accunul at or ORL Daddr, A 42 2 1 - - -
of Source Operand with " | medi at e ORL Daddr, #dat a 43 3|2
Destination Qperand Accunul at or | medi at e ORL A #data 44 2 1
. Di rect ORL A Daddr 45 21
I ndi rect ORL A @R 46, 47 1 1
Logi cal Inclusive OR Regi ster R AR 48-4F
- - "
of Source Cperand with SOper v CF -> CF Carry Flag Bit Direct ORL C, Baddr 72 2 2 - -
Carry Flag
Logi cal Inclusive OR ~SQper v CF -> CF Carry Flag Bit Direct ORL C, / Baddr A0 2 2 ¥ .-
of Source Operand
Conpl emented with
Carry Flag
POP
Pop Stack and Place in ~SOper v CF -> CF Direct St ack POP Daddr DO 2 2 - - -
Destination Operand
PUSH
Push Source Operand SP+1->8SP St ack Direct PUSH Daddr (04} 2 2 - - -
onto Stack SOper -> STACK
RET
Return from Subroutine STACK -> PC<15: 8> RET 22 1 2 - - -
SP-1->8SP
STACK -> PC<7:0
SP-1->8SP
RETI
Return from Interrupt STACK -> PC<15: 8> RETI 32 1 2 - - -
Rout i ne SP- 1->SP
STACK -> PC<7: 0>
SP-1->8SP
0 -> Intrupt Active Flag
RL
Rot at e Accunul at or A<6: 0> -> A<7:1> Accumnul at or RL A 23 1 1 - - -
Left One Bit A<T7> -> A<O>
RLC
Rot at e Accunul at or A<6: 0> -> A<7:1> Accunul at or RLC A 33 1 1 * .-
Left One Bit Thru the CF -> A<0>
Carry Flag A<7> -> CF
RR
Rot at e Accunul at or A<7:1> -> A<6: 0> Accunul at or RR A 03 1 1 - - -
Right One Bit A<0> -> A<T7>
RLC
Rot at e Accunul at or A<7:1> -> AB: 0> Accunul at or RRC A 13 1 1 * .-
Right One Bit Thru the CF -> A<7>

4-5

Met aLi nk 8051 Cross Assenbl er User Manual
B C PSW
IMNEMONI C OPERATI ON DEST ADDR SOURCE ADDR ASSEMBLY LANGUAGE HEX Y Y CAO
MODE MCDE FORM OPCODE T C FCV
Carry Flag A<0> -> CF
SETB
Set Bit Operand 1->CF Carry Flag SETB C D3 1 1 1- -
1 -> DOper Bit Direct SETB Baddr D2 2 1 - - -
SIMP
Short (8 bits) Junp Relative to PC SIMP Rof f 80 2 2 - - -
Rel ative Junp
SUBB
Subtract Operand with A - SOper - CF -> A Accunul at or | medi at e SUBB A, #dat a 94 2 1 *Fokox
Borrow fromthe " Direct SUBB A, Daddr 95 2|1
Accumul at or I'ndi r ect SUBB A @R 96, 97 101
Regi ster SUBB A, Rn 98- 9F 1 1
SWAP
Swap Ni bbles within A<7: 4> -> A<3: 0> Accunul at or SWAP A c4 1 1 - - -
the Accumul at or A<3: 0> -> A<T7: 4>
XCH
Exchange bytes of the SQOper <7: 0> -> A<7:0> Accunul at or Direct XCH A Daddr c5 2 1 - - -
Accunul ator and the A<7: 0> -> SQper<7: 0> " I ndi rect XCH A @R Cs, C7 101
Source Operand Regi st er XCH A Rn c8-of 1)1
XCHD
Exchange the Least SOper <3: 0> -> A<3: 0> Accunul at or I ndi rect XCHD A @R D6, D7 1 1 - - -
Significant Nibble of A<3: 0> -> S(per <3: 0>
the Accunul ator and
the Source Operand
XRL
Logi cal Exclusive OR SOper v DOper -> DOper Direct Accunul at or XRL Daddr, A 62 2 1 - - -
of Source Qperand with " | medi at e XRL Daddr, #data 63 3|2
Destination Qperand Accunul at or | medi at e XRL A #data 64 2|1
" Direct XRL A, Daddr 65 2 1
I ndi rect XRL A @R 66, 67 1 1
Regi st er XRL A, Rn 68- 6F 1 1

4-6

Met aLi nk 8051 Cross Assenbl er User Manual

4.3 Notes

There are 8 possible opcodes. Starting with 11H as the opcode base, the
final opcode is forned by placing bits 8 9 and 10 of the target address in
bits 5, 6 and 7 of the opcode. The 8 possible opcodes in hexadecimal are
then: 11, 31, 51, 71, 91, B1, D1, F1.

There are 8 possible opcodes. Starting with 0l1H as the opcode base, the
final opcode is forned by placing bits 8 9 and 10 of the target address in
bits 5, 6 and 7 of the opcode. The 8 possible opcodes in hexadecimal are
then: 01, 21, 41, 61, 81, A1, Cl, El.

The Carry Flag is set if the Destination Operand is less than the Source
Qperand. O herwise the Carry Flag is cl eared.

The Carry Flag is set if the BCD result in the Accunulator is greater than
deci mal 99.

The COverflow Flag is set if the B Register contains zero (flags a divide by
zero operation). Oherwise the Overflow Flag is cleared.

If any of the condition code flags are specified as the operand of this
instruction, they will be reset by the instruction if they were originally
set.

The high byte of the 16-bit product is placed in the B Register, the |ow byte
in Accunul at or.

4.4 References

1.

Intel Corp., Mcrocontroller Handbook, 1984.

4-7

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 5

5 8051 CROSS ASSEMBLER DI RECTI VES

5.1 Introduction

The 8051 Cross Assenbler Directives are used to define synbols, reserve nenory
space, store values in program menory, sel ect various nenory spaces, set the
current segment's | ocation counter and identify the end of the source file.

Only one directive per line is allowed, however comments may be included. The
remai ning part of this chapter details the function of each directive.

5.2 Synbol Definition D rectives
EQU Directive

The EQUate directive is used to assign a value to a synbol. It can also be used to
specify user defined nanmes for the inplicit operand synbols predefined for the
Accurul ator (i.e., A) and the eight General Purpose Registers (i.e., RO thru R7).

The format for the EQU directive is: synbol, followed by one or nore spaces or
tabs, followed by EQU, followed by one or nore spaces or tabs, followed by a
nunber, arithnetic expression, previously defined synbol (no forward references
allowed) or one of the allowed inplicit operand synbols (e.g., A RO, Rl, R2, R3
R4, R5, R6, R7), followed by an optional comment.

Bel ow are exanples of using the EQU Directive:

TEN EQU 10 ; Synbol equated to a nunber
COUNTER EQU R7 ; User defined synbol for the inplicit
;operand synbol R7. COUNTER can now
; be used wherever it is legal to use
; R7. For exanple the instruction
7 INC R7 could now be witten | NC COUNTER

ALSO TEN EQU TEN ; Synbol equated to a previously defined
; synbol .

FI VE EQU TEN 2 ; Synbol equated to an arithmetic exp.

A REG EQU A ; User defined synbol for the inplicit
; operand synbol A

ASCI |1 _D EQU 'D ; Synbol equated to an ASCII literal

SET Directive

Simlar to the EQU directive, the SET directive is used to assign a value or

inplicit operand to a user defined synbol. The difference however, is that with
the EQU directive, a synbol can only be defined once. Any attenpt to define the
synmbol again will cause the Cross Assenbler to flag it as an error. On the other

hand, with the SET directive, synbols may be redefined. There is no Iimt to the
nunber of times a synbol can be redefined with the SET directive.

The format for the SET directive is: synbol, followed by one or nore spaces or
tabs, followed by SET, followed by one or nore spaces or tabs, followed by a
nunber, arithnmetic expression, previously defined synbol (no forward references
allowed) or one of the allowed inplicit operand synbols (e.g., A RO, Rl, R2, R3
R4, R5, R6, R7), followed by an optional coment.

Met aLi nk 8051 Cross Assenbl er User Manual

Bel ow are exanples of using the SET Directive:

PO NTER SET RO ; Synbol equated to register O
PO NTER SET Rl ; PONTER redefined to register 1
COUNTER SET 1 ; Synbol initialized to 1
COUNTER SET COUNTER+1 ; An i ncrementing synbol

BIT Directive

The BIT Directive assigns an internal bit menory direct address to the synbol. If
the numeric value of the address is between 0 and 127 decimal, it is a bit address
mapped in the Internal Menory Space. If the nunmeric value of the address is
between 128 and 255, it is an address of a bit located in one of the Special
Function Registers. Addresses greater than 255 are illegal and will be flagged as
an error.

The format for the BIT Directive is: synbol, followed by one or nore spaces or
tabs, followed by BIT, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional commrent.

Bel ow are exanples of using the BIT Directive:

CF BIT OD7H ; The single bit Carry Flag in PSW
OFF_FLAG BIT 6 ; Menory address of single bit flag
ON_FLAG BIT OFF_FLAG+1 ; Next bit is another flag

CODE Directive

The CODE Directive assigns an address located in the Program Menory Space to the
synmbol . The numeric value of the address cannot exceed 65535.

The format for the CODE Directive is: synbol, followed by one or nore spaces or
tabs, followed by CODE, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional commrent.

Bel ow are exanpl es of using the CODE Directive:

RESET CODE O

EXTI 0 CODE RESET + (1024/16)

DATA Directive

The DATA Directive assigns a directly addressable internal nenory address to the

synbol . If the nuneric value of the address is between 0 and 127 decimal, it is an
address of an Internal Data Menory | ocation. If the nuneric value of the address
is between 128 and 255, it is an address of a Special Function Register. Addresses
greater than 255 are illegal and will be flagged as an error.

The format for the DATA Directive is: synbol, followed by one or nore spaces or
tabs, followed by DATA, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional comment.

5-2

Met aLi nk 8051 Cross Assenbl er User Manual

Bel ow are exanpl es of using the DATA Directive:

PSW DATA ODOH ; Defining the Program Status address
BUFFER DATA 32 ;Internal Data Menory address
FREE SPAC DATA BUFFER+16 ; Arithmetic expression.

| DATA Directive

The | DATA Directive assigns an indirectly addressable internal data nenory address
to the synbol. The nuneric value of the address can be between 0 and 255 deci nal.
Addresses greater than 255 are illegal and will be flagged as an error.

The format for the |IDATA Directive is: synbol, followed by one or nore spaces or
tabs, followed by I|IDATA, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional comment.

Bel ow are exanpl es of using the | DATA Directive:

TOKEN | DATA 60
BYTE_CNT | DATA TOKEN + 1
ADDR | DATA TOKEN + 2

XDATA Directive

The XDATA Directive assigns an address located in the External Data Menory Space to
the synbol. The nuneric value of the address cannot exceed 65535.

The format for the XDATA Directive is: synbol, followed by one or nore spaces or
tabs, followed by XDATA, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional commrent.

Bel ow are exanpl es of using the XDATA Directive:

USER BASE XDATA 2048
HOST_BASE XDATA USER_BASE + 1000H

5.3 Segnent Sel ection Directives

There are five Segment Selection Directives: CSEG BSEG DSEG |SEG XSEG one for
each of the five nenory spaces in the 8051 architecture. The CSEG Directive is
used to select the Program Menory Space. The BSEG Directive is used to select the
Bit Menory Space. The DSEG Directive is used to select the directly addressable
Internal Data Menory Space. The ISEG is used to select the indirectly addressable
Internal Data Menory Space. The XSEG is used to select the External Data Menory
Space.

Each segnent has its own l|ocation counter that is reset to zero during the Cross
Assenbl er program initialization. The contents of the location counter can be
overridden by using the optional AT after selecting the segnent.

The Program Menory Space, or CSEG is the default segnment and is selected when the
Cross Assenbler is run.

The format of the Segnent Selection Directives are: zero or nore spaces or tabs,
followed by the Segnment Selection Directive, followed by one or nobre spaces or

5-3

Met aLi nk 8051 Cross Assenbl er User Manual

tabs, followed by the optional segment |ocation counter override AT command and
val ue, followed by an optional coment.

The value of the AT command can be a nunber, arithnmetic expression or previously
defined synbol (forward references are not allowed). Care should be taken to
ensure that the | ocation counter does not advance beyond the limt of the selected
segnent .

Bel ow are exanpl es of the Segment Sel ection Directives:

DSEG ; Sel ect direct data segnent using
;current location counter val ue.
BSEG AT 32 ; Sel ect bit data segnment forcing

;location counter to 32 decinal.

XSEG AT (USER BASE * 5) MOD 16 ; Arithnetic expressions can be
;used to specify |ocation.

5.4 Menory Reservation and Storage Directives

DS Directive

The DS Directive is used to reserve space in the currently selected segnment in byte

units. It can only be used when |ISEG DSEG or XSEG are the currently active
segnent s. The location counter of the segment is advanced by the value of the
directive. Care should be taken to ensure that the location counter does not

advance beyond the limt of the segnent.

The format for the DS Directive is: optional |abel, followd by one or nore spaces
or tabs, followed by DS, followed by one or nore spaces or tabs, followed by a
nunber, arithmetic expression, or previously defined synbol (no forward references
al l owed), followed by an optional commrent.

Below is an exanple of using the DS Directive in the internal Data Segnent. I f,
for exanple, the Data Segment |ocation counter contained 48 decimal before the
exanpl e below, it would contain 104 decimal after processing the exanple.

DSEG ; Sel ect the data segnent

DS 32 ; Label is optional

SP_BUFFER: DS 16 ; Reserve a buffer for the serial port
| O BUFFER. DS 8 ; Reserve a buffer for the 1/0O

DBIT Directive

The DBIT Directive is used to reserve bits within the BIT segment. It can only be
used when BSEG is the active segnent. The location counter of the segnent is
advanced by the value of the directive. Care should be taken to ensure that the
| ocation counter does not advance beyond the limt of the segnent.

The format for the DBIT Directive is: optional |abel, followed by one or nore
spaces or tabs, followed by DBIT, followed by one or nore spaces or tabs, followed
by a nunber, arithmetic expression, or previously defined synbol (no forward
references allowed), followed by an optional comrent.

Below is an exanple of using the DBIT Directive:

BSEG ; Sel ect the bit segment
DBIT 16 ; Label is optional
| O_MVAP: DBIT 32 ; Reserve a bit buffer for 1/0

5-4

Met aLi nk 8051 Cross Assenbl er User Manual

DB Directive

The DB Directive is used to store byte constants in the Program Menory Space. It
can only be used when CSEG is the active segment.

The format for the DB Directive is: optional |abel, followd by one or nore spaces
or tabs, followed by DB, followed by one or nore spaces or tabs, followed by the
byte constants that are separated by conmas, followed by an optional commrent.

The byte constants can be nunbers, arithnetic expressions, synbol values or ASClI
literals. ASCII literals have to be delimted by apostrophes ('), but they can
be strung together up to the Iength of the line.

Bel ow are exanples of using the DB Directive. If an optional label is used, its
value will point to the first byte constant |isted.

COPYRGHT_MSG

DB "(c) Copyright, 1984 ; ASCI I Literal

RUNTI ME_CONSTANTS:
DB 127, 13, 54, 0, 99 ; Tabl e of constants
DB 17, 32, 239, 163, 49 ; Label is optional

M XED: DB 2*8,' MPG , 2*16,"'abc' ;Can mx literals & no.

DWDirective

The DW Directive is used to store word constants in the Program Menory Space. It
can only be used when CSEG is the active segment.

The format for the DWDirective is: optional |abel, followd by one or nore spaces
or tabs, followed by DW followed by one or nore spaces or tabs, followed by the
word constants that are separated by conmas, followed by an optional comrent.

The word constants can be nunbers, arithnmetic expressions, synbol values or ASClI

literals. ASCII literals nust be delinmted by apostrophes ('), but unlike the DB
Directive, only a maximum of two ASCI|I characters can be strung together. The
first character is placed in the high byte of the word and the second character is
placed in the |ow byte. If only one character is enclosed by the apostrophes, a

zero will be placed in the high byte of the word.

Bel ow are exanples of using the DW Directive. If an optional label is used, its
value will point to the high byte of the first word constant |isted.

JUVP_TABLE: DW RESET, START, END ; Tabl e of addresses
DW TEST, TRUE, FALSE ; Optional | abel
RADI X: DwW "H , 1000H ; 1st byte contains O
;2nd byte contains 48H (H)
;3rd byte contains 10H
;4th byte contains 0O

5.5 M scellaneous Directives

ORG Directive

The ORG Directive is used to specify a value for the currently active segnent's
| ocation counter. It cannot be used to select segnents like the directives above.
It can only be used within a segnent when the | ocation counter needs to be changed.

5-5

Met aLi nk 8051 Cross Assenbl er User Manual

Care should be taken to ensure that the location counter does not advance beyond
the imt of the selected segnent.

The format of the ORG Directive is: zero or nore spaces or tabs, followed by ORG
followed by one or nore spaces or tabs, followed by a nunber, arithnetic
expression, or previously defined synbol (no forward references are allowed),
foll owed by an optional coment.

Bel ow are exanpl es of the ORG directive.

ORG 1000H ; Location counter set at 4096 deci nal
ORG RESET ; Previously defined synbol
ORG BASE + MODULE_NO ; Arithmetic expression

USING Directive

The USING Directive is used to specify which of the four General Pur pose Regi ster

banks is used in the code that follows the directive. It allows the use of the
predefined register synbols ARO through AR7 instead of the register's direct
addr esses. It should be noted that the actual register bank switching nust still
be done in the code. This directive sinplifies the direct addressing of a

speci fied regi ster bank.

The format of the USING Directive is: zero or nore spaces or tabs, followed by
USING followed by one or nore spaces or tabs, followed by a nunber, arithnetic
expression, or previously defined synbol (no forward references are allowed),
foll owed by an optional coment.

The nunber, arithnetic expression, or previously defined synbol nmust result in a
nunber between 0 and 3 in order to specify one of the four register banks in the
8051.

The followi ng table maps the specified value in the USING directive with the direct
addresses of the predefined synbols.

Pr edef i ned USI NG Val ue
Synbol 0 1 2 3
ARO 0 8 16 24
AR1 1 9 17 25
AR2 2 10 18 26
AR3 3 11 19 27
AR4 4 12 20 28
AR5 5 13 21 29
ARG 6 14 22 30
AR7 7 15 23 31

Bel ow are exanpl es of the USING Directive:

USI NG 0 : Sel ect addresses for Bank O
USI NG 1+1+1 ; Arithmetic expressions

END Directive

5-6

Met aLi nk 8051 Cross Assenbl er User Manual

The END Directive is used to signal the end of the source program to the Cross
Assenbl er. Every source program nmust have one and only one END Directive. A
mssing END Directive, as well as text beyond the occurrence of the END Directive
are not allowed and will be flagged as errors.

The format of the END Directive is: zero or nore spaces or tabs, followed by END,
foll owed by an optional commrent. Al text mnust appear in the source program before
the occurrence of the END Directive.

Bel ow i s an exanple of the END Directive:

END :This is the End

5.6 Conditional Assenmbly Directives
IF, ELSE and ENDIF Directive

The I'F, ELSE and ENDIF directives are used to define conditional assenbly bl ocks.
A conditional assenbly block begins with an IF statement and nmust end with the
ENDI F directive. 1In between the IF statenent and ENDI F directive can be any nunber
of assenbly |anguage statenments, including directives, controls, instructions, the
ELSE directive and nested | F-END F conditional assenbly bl ocks.

The IF statenent starts with the keyword |IF, followed by one or nobre spaces or
tabs, followed by a number, arithnetic expression, or previously defined synbol (no
forward references are allowed), followed by an optional coment. The nunber,
arithmetic expression or synbol is evaluated and if found to be TRUE (nonzero),
the assenbly |anguage statements are translated up to the next ELSE or ENDF
directives. If the IF statenent was evaluated FALSE (zero), the assenbly |anguage
statements are considered null up to the next ELSE or ENDI F directives.

If an optional ELSE appears in the conditional assenbly block, the assenbly
| anguage statenents following are handled oppositely from the assenbly |anguage

statenments following the IF statenent. In other words, if the IF statement was
evaluated TRUE, the statenments following it are translated, while the statenents
following the ELSE will be handled as if they were null. On the other hand, if the

| F statenent was evaluated FALSE, only the assenbly |anguage statenments follow ng
the ELSE directive would be transl ated.

| F- ELSE- ENDI F conditional assenbly blocks can be nested up to 255 |evels deep.
The following are sone exanples of conditional assenbly blocks. This first
conditional assenbly block simply checks the synbol DEBUG If DEBUG is non-zero,
the MOV and CALL instructions will be translated by the Cross Assenbler.

| F (DEBUG
MoV A #25
CALL QuTPUT
ENDI F
The next exanple used the optional ELSE directive. If SMALL_ MODEL is zero, only

the statenents following the ELSE directive will be transl ated.

| F (SMALL_MODEL)
MOV RO, #BUFFER

MOV A @RO

ELSE
MOV RO, #EXT_BUFFER
MOVX A, @RO

ENDI F

5-7

Met aLi nk 8051 Cross Assenbl er User Manual

The | ast exanple shows nested conditional assenbly bl ocks. Condi ti onal assenbly
bl ocks can be nested up to 255 |evels deep. Every level of nesting nust have
bal anced | F- ENDI F st at enents.

| F (VERSI ON > 10) \
CALL DOUBLE PRECI SI ON |
CALL UPDATE STATUS |
| F (DEBUG) \ |
CALL DUMP_REQ STERS > Nested |
ENDI F | Bl ock |
ELSE > CQuter Block

CALL SI NGLE_PRECI SI ON
CALL UPDATE STATUS _
| F (DEBUG) \
CALL DUVP_REG STERS > Nested
ENDI F / Bl ock
ENDI F

~—————

5-8

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 6

6 8051 CROSS ASSEMBLER CONTRCLS

6.1 Introduction

Assenbl er controls are used to control where the Cross Assenbler gets its input
source file, where it stores the object file, how it formats and where it outputs
the listing.

Al'l Assenbler controls are prefaced with a dollar sign, ($) . No spaces or tabs
are allowed between the dollar sign and the body of the control. Al so, only one
control per line is permtted. Conments are allowed on the same line as an

Assenbl er control.

There are two types of controls, Primary controls and General controls. Primary
controls can be invoked only once per assenbly. |If an attenpt is made to change a
previously invoked primary control, the attenpt is ignored. For exanple, if
SNOPRINT is put on line 1 of the source file and $PRINT is put on line 2, the
$PRINT control will be ignored and the listing will not be output. Gener al
controls can be invoked any nunber of times in a source program

There are two legal forns for each Assenbler control, the full form and the
abbreviated form The two forns can be used interchangeable in the source program

Bel ow is a description of each Assenbler control. Assenbl er controls with comon
functionality are grouped together.

6.2 Assenbler Control Descriptions

$DATE(dat e)

Places the ASCII string enclosed by parenthesis in the date field of the page
header. The ASCII| string can be fromO to 9 characters |ong.

CONTROL: $DATE(dat e)

ABBREV: $DA(dat e)

TYPE: Primary

DEFAULT: No date in page header

EXAVPLES: $DATE(1- JUL- 84)
$DA(7/ 22/ 84)

$DEBUG(f i | €)
$NODEBUG

These controls determ ne whether or not a Metalink Absolute Object Mdule fornmat
file is created. The MetalLink Absolute Object Mdule format file is used in
conjunction with MetalLink's MetalCE series of in-circuit-emul ators. Among ot her
advantages, it provides powerful synbolic debug capability in the enulator debug
envi ronnent. $NODEBUG

specifies that a MetalLink Absolute Object Mdule file will not be created. $DEBUG
specifies that a MetalLink Absolute Cbject Mdule file will be created. The $DEBUG
control allows any legal file name to be specified as the Metalink Absolute hject
Modul e filename. If no filenanme is specified, a default name is used. The default
name used for the file is the source file name root with a .DBG extension. [If the
$DEBUG control is used, both a MetaLink Absolute Object Mdule file and a standard

6-1

Met aLi nk 8051 Cross Assenbl er User Manual

Intel Hexadeci mal format object file can be generated at the sane tine. Refer to
the $OBJECT control description later in this chapter for information on
controlling the Hexadeci mal format object file output.

CONTROL: $DEBUG(fi | €)
$NODEBUG

ABBREV: $DB(file)
$NCDB

DEFAULT: $NODEBUG

TYPE: Primary

EXAMPLES: $DB(A: NEWNAME. | CE)
$DEBUG
$NOOBJECT

$EJECT

Places a form feed (ASCII OCH) in the listing output. The $NOPAG NG control will
override this control.

CONTROL: $EJECT
ABBREV: $EJ
DEFAULT: No formfeeds in |isting output
TYPE: Gener al
EXAMPLES: $EJECT
$EJ

$I NCLUDE(fi | e)

Inserts a file in source program as part of the input source program The file
field in this control can be any legal file designator. No extension is assumed, so
the whole file nane nust be specified. Any nunber of files can be included in a

source program |Includes can be nested up to 8 level deep. It is inportant to note
that this control inserts files, it does not chain or concatenate files.

CONTROL: $I NCLUDE(fi | e)

ABBREV: $IC(file)

DEFAULT: No file included in source program

TYPE: Cener al

EXAMPLES: $! NCLUDE(B: COMMON. EQU

$I C(TABLES. ASM ; Uses default drive

$LI ST
$NCLI ST

These control s determ ne whether or not the source program

listing is output or not. $LIST will allow the source program

listing to be output. $NOLIST stops the source program

listing frombeing output. The $NOPRI NT control overrides the
$LI ST control .

CONTROL: $LI ST

$NOLI ST

ABBREV: $LI
$NOLI

DEFAULT: $LI ST

TYPE: Cener al

EXANMPLES: $NOLI ST ; This will cause the included
$1 NCLUDE(COMMON. TBL) ;file not to be listed
$LI ; Li sting continues

6-2

Met aLi nk 8051 Cross Assenbl er User Manual

$MOD51

$MOD52

$MOD44

$MOD515

$MOD512

$MOD517

$MOD152

$MOD451

$MOD452

$MOD751

$MOD752

$MOD154

$MOD252

$MOD521

$MOD552

$MOD652

$MODB51

$NOMOD
Recogni zes predefined special function register synmbols in the source program
This saves the user from having to define all the registers in the source program
Appendix B lists the synbols that are defined by these controls. $NOMOD di sabl es
the recognizing function. These controls access files of the same nanme that are
included with the Metalink 8051 CROSS ASSEMBLER distribution diskette. Wen a $MOD
control is wused in a source program it is inportant that the $MOD file be
available to the Cross Assenbler. The Cross Assenbler first |ooks for the $MOD
file on the default drive, if it isn't found there, the Cross Assenbler |ooks for
it on the A: drive. The conmponents supported by each switch are:

$MOD51: 8051, 8751, 8031, 80C51, 80C31, 87C51, 9761, 8053

$MOD52: 8052, 8032, 8752

$MOD44: 8044, 8344, 8744

$MOD515: 80515, 80535, 80C515, 80C535

$MOD512: 80512, 80532

$MOD517: 80C517, 80C537

$MOD152: 80Cl52, 83Cl52, 80Cl57

$MOD451: 80C451. 83C451, 87C451

$MOD452: 80C452, 83C452, 87C452

$MOD752: 83Cr52, 87Cr52

$MOD751: 83Cr51, 87Cr51

$MOD154: 83C514, 80Cl54, 85Cl54

$MOD252: 80C252, 83C252, 87C252, 80C51FA, 83C51FA, 87C51FA,
83C51FB, 87C51FB

$MOD521: 80C521, 80C321, 87C521, 80C541, 87C541

$MOD552: 80C552, 83C552, 87C552

$MOD652: 800652, 83C652

$MODB51: 80C851, 83C851

CONTROL: $MOD51
$MOD52
$MOD44
$MOD152
$MOD515
$MOD512
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521

6-3

Met aLi nk 8051 Cross Assenbl er User Manual

$MOD552
$MOD652
$MOD517
$MOD851
$NOMOD
ABBREV:
DEFAULT: $NOMOD
TYPE: Primary
EXAMPLES: $MOD51
$MOD52
$MOD44
$MOD152
$MOD515
$MOD512
$MOD451
$MOD452
$MOD751
$MOD752
$MOD154
$MOD252
$MOD521
$MOD552
$MOD652
$MOD517
$MOD851
$NOMOD

$OBJECT(fi | €)
$NOOBJECT

These controls determne whether or not a standard Intel Hexadecimal fornmat object
file is created. $NOOBJECT specifies that an object file will not be created.
$OBJECT specifies that an object file will be created. If other than the default
name is to be used for the object file, the $OBJECT control allows any legal file
nane to be specified as the object filename. The default name used for the object
file is the source file name root with a . HEX extension.

CONTROL: $OBIECT(file)
$NOOBJECT
ABBREV: $QAI(file)
$NOQU
DEFAULT: $OBJIECT(sour ce. HEX)
TYPE: Primary
EXAMPLES: $QI(A: NEWNAME. OBJ)
$NOOBJECT
$PAG NG
$NOPAG NG
These controls specify whether or not the output listing will be broken into pages
or will be output as one continuous listing. Wen the $NOPAG NG control is used,

the $EJECT and $PACELENGTH controls are ignored. Wth the $PAA NG control, a form
feed and header line is inserted into the output |isting whenever an $EJECT control
is nmet, or whenever the nunber of lines output on the current page exceeds the
val ue specified by the $PAGELENGIH control. The header |ine contains source file
nanme, title (if $TITLE control was used), date (if $DATE control was used) and page
numnber .
CONTROL: $PAG NG
$NOPAG NG

6-4

Met aLi nk 8051 Cross Assenbl er User Manual

ABBREV: $PI
$NOPI
DEFAULT: $PAG NG
TYPE: Primary
EXAMPLES: $PAG NG
$NOPI

$PAGELENGTH(n)

Sets the maxi mum nunber of lines, (n), on a page of the output Ilisting. If the
maxi mum i s exceeded, a formfeed and page header is inserted in the output |isting.
This control allows the nunber of lines per page to be set anywhere between 10 and

255. If the nunber of lines specified is less than 10, pagelength will be set to
10. If the nunber of lines specified is greater than 255, pagelength will be set
to 255.
The $NOPAG NG control will override this control.

CONTROL: $PAGELENGTH(n)

ABBREV: $PL(n)

DEFAULT: $PAGELENGTH(60)

TYPE: Primary

EXAMPLES: $PAGELENGTH(48)

$PL(58)

$PAGEW DTH(n)

Sets the maxi num nunber of characters, (n), on a line of the output listing. This
control allows the nunmber of characters per line to be set anywhere between 72 and
132. If the nunber specified is less than 72, the pagewidth is set at 72. [If the
nunber specified is greater than 132, the pagewidth is set at 132. If the
pagewidth is specified between 72 and 100 and the line being output exceeds the
pagewi dth specification, the line is truncated at the specified pagewi dth and a
carriage return/line feed pair is inserted in the I|isting. If the pagewidth is
specified to be greater than 100 and the line being output exceed the pagew dth
specification, a carriage return/line feed pair is inserted at the specified

pagewidth and the line will continue to be listed on the next |ine beginning at
col um 80.

CONTROL: $PAGEW DTH(n)

ABBREV: $PW n)

DEFAULT $PAGEW DTH(72)

TYPE: Primary

EXAMPLES: $PAGEW DTH(132)

$PW 80)

$PRINT(file)
$NOPRI NT
These controls determine whether or not a listing file is created. $NOPRI NT
specifies that a listing file will not be created. $PRINT specifies that an listing
file will be created. If other than the default nane is to be used for the listing

file, the $PRINT control allows any legal file name to be specified as the listing
filenanme. The default nanme used for the listing file is the source file nane root
with a .LST extension.

CONTROL: $PRINT(fil €)
$NOPRI NT

ABBREV: $PR
$NOPR

DEFAULT: $PRI NT(sour ce. LST)

6-5

Met aLi nk 8051 Cross Assenbl er User Manual

TYPE: Primary
EXAMPLES: $PRI NT(A: CONTROL. QUT)
$NOPR
$SYMBOLS
$NOSYMBOLS

Selects whether or not the synbol table is appended to the listing output.
$SYMBOLS causes the symbol table to be sorted al phabetically by symbol, fornmatted
and output to the listing file. Along with the synbol name, its value and type are
out put . Values are output in hexadecinal. Types include NUMB (nunber), ADDR
(address), REG (register synbol) and ACC (accunul ator synbol). If a synbol was of
type ADDR, it segnment is also output as either C (code), D (data) or X (external).
O her information listed with the synbols is NOI USED (synbol defined but never
referenced), UNDEFINED (synbol referenced but never defined) and REDEFI NEABLE
(synmbol defined using the SET directive). The type and value listed for a
REDEFI NABLE synbol is that of its last definition in the source program $NOSYMBOLS
does not output the synbol table.

CONTROL: $SYMBOLS
$NOSYMBOLS
ABBREV: $SB
$NCSB
DEFAULT: $SYMBOLS
TYPE: Primary
EXAMPLES: $SB
$NOSYMBOLS

$TI TLE(st ri ng)

Pl aces the ASCII string enclosed by the parenthesis in the title field of the page

header . The ASCI1 string can be from O to 64 characters | ong. If the string is
greater than 64 characters or if the wdth of the page will not support such a |ong
title, the title will be truncated. If parentheses are part of the string, they
nmust be bal anced.

CONTROL: $TI TLE(string)

ABBREV: $TT(string)

DEFAULT: No title in page header

TYPE: Primary

EXAMPLES: $TI TLE(SAMPLE PROGRAM V1. 2)
$TT(METALI NK (TM CROSS ASSEMBLER)

6-6

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 7

7 8051 CROSS ASSEMBLER MACRO PRCOCESSOR

7.1 Introduction

Macros are useful for code that is used repetitively throughout the program It
saves the programer the time and tedium of having to specify the code every tine
it is used. The code is witten only once in the macro definition and it can be
used anywhere in the source program any nunber of times by sinply using the macro
name.

Sonetines there is confusion between macros and subroutines. Subroutines are
common routines that are witten once by the progranmer and then accessed by
CALLi ng them Subroutines are usually used for longer and nore conplex routines
where the call/return overhead can be tolerated. Macros are comonly used for
sinmpler routines or where the speed of in-line code is required.

7.2 NMNacro Definition

Before a macro can be used, it first nust be defined. The macro definition
specifies a tenplate that is inserted into the source program whenever the nacro
nane is encountered. Macro definitions can not be nested, but once a macro is
defined, it can be used in other macro definitions. Macros used this way can be
nested up to nine |evels deep.

The macro definition has three parts to it: 1) the macro header which specifies the
macro nane and its paranmeter list, 2) the macro body which is the part that is
actually inserted into the source program and 3) the nmacro termnator.

The macro header has the follow ng form
Nane MACRO <paraneter |ist>

The name field contains a unique synbol that it used to identify the nmacro.
VWhenever that synbol is encountered in the source program the Cross Assenbler wll
automatically insert the macro body in the source program at that point. The name
must be a unique synbol that follows all the rules of synbol formation as outlined
in Chapter 2.

The MACRO field of the nacro header contains the keyword MACRO This is used to
notify the Cross Assenbler that this is the beginning of a macro definition.

The <paraneter list> field of the macro header lists anywhere from zero to 16
paranmeters that are used in the macro body and are defined at assenbly time. The
synbols used in the paraneter list are only used by the Cross Assenbler during the
storing of the macro definition. As a result, while synbols used in the paraneter
list nust be unique synmbols that follow all the rules of synbol formation as
outlined in Chapter 2, they can be reissued in the paraneter |ist of another macro
definition

wi thout conflict. Parameter list itenms are separated from one another by a comma.
The followi ng are exanples of macro definition headers:

MJULT_BY_16 MACRO (no paraneters)
DI RECT_ADD MACRO DESTI NATI ON, SOURCE (two paraneters)

Met aLi nk 8051 Cross Assenbl er User Manual

The macro body contains the tenplate that will replace the macro nane in the source
program The macro body can contain instructions, directives, conditional assenbly
statenments or controls. As a matter of fact, the macro body can contain any |egal
Cross Assenbl er construct as defined in Chapters 2, 4, 5 and 6.

There are two macro definition term nators: ENDM and EXITM Every nacro definition
must have an ENDM at the end of its definition to notify the Cross Assenbler that
the macro definition is conplete. The EXITMterm nator is an alternative ending of
the macro that is useful with conditional assenbly statenents. VWen a EXITM is
encountered in a program all remaining statements (to the ENDM are ignored.

The following is an exanple of a macro definition that multiplies
t he Accunul ator by 16:

MULT BY 16 MACRO

RL A y* 2
RL A x4
RL A ;* 8
RL A ;* 16

ENDM

The following is an exanple of a macro that adds two nunbers
together. This could be used by the programrer to do direct
menory to nenory adds of external variables (create a virtual
i nstruction).

DI RECT_ADDX MACRO DESTI NATI ON, SOURCE (two paraneters)
MOV RO, #SOURCE
MOVX A @RO
MOV RL A
MOV RO, #DESTI NATI ON
MOVX A @RO
ADD ARL
MOVX @R0, A
ENDM

A final macro definition exanple shows the use of the EXITM
macro termnator. |If CMOS is non-zero, the MOV and only the MOV
instruction will be translated by the Cross Assenbl er.

| DLE MACRO
I F (CMOS)
MOV PCON, #| DL
EXI' TM
ENDI F
JWw $
ENDM

7-2

Met aLi nk 8051 Cross Assenbl er User Manual

7.3 Special Macro Qperators
There are four special macro operators that are defined bel ow

% when the PERCENT sign prefaces a synmbol in the paraneter list,
the synbol's value is passed to the macro's body instead of the
synmbol itself.

! when the EXCLAMATI ON PO NT precedes a character, that character
is handled as a literal and is passed to the macro body with the
EXCLAMATI ON PO NT renoved. This is useful when it is necessary
to pass a delimter to the macro body. For exanple, in the
following paraneter list, the second parameter passed to the
macro body would be a COMWA (,):

GENERATE_| NST 75,!,, STK_VALUE
& when the AMPERSAND is used in the macro body, the synbols on both
sides of it are concatenated together and the AWMPERSAND is
renoved.

s when double SEM-COLONS are used in a macro definition, the
comment preceded by the double SEM _COLONS will not be saved and
thus will not appear in the listing whenever the macro is
i nvoked. Using the double SEM-COLONS Ilowers the nmenory
requirenent in storing the macro definitions and should be used
whenever possi bl e.

Exampl es of using the above special macro operators follow in the "Using Macros”
secti on.

7.4 Using Macros

This section section discusses several situations that arise using macros and how
to handl e them In general the discussion uses exanples to get the point across.
First the macro definition is listed, then the source line programthat wll invoke
the macro and finally how the macro was expanded by the Cross Assenbl er.

7.4.1 NESTI NG MACRCS

The following shows a macro nested to a depth of three.

Rermenber, definitions cannot be nested. Macros nust be defined

before they are used in other macro definitions.

; MACRO DEFI NI TI ONS

GET_EXT_BYTE MACRO EXT_ADDR
MOV RO, #EXT_ADDR
MVX A, @0
ENDM

ADD_EXT_BYTES MACRO EXT_DEST, EXT_SRC
GET EXT_BYTE EXT_DEST
MV RL, A
GET EXT_BYTE EXT_SRC
ADD A RL
ENDM

7-3

Met aLi nk 8051 Cross Assenbl er User Manual

ADD_ DI RECT_BYTES MACRO DESTI NATI ON, SOURCE

| F (SMALL_MODEL)
MOV A, SOURCE
ADD A, DESTI NATI ON
MOV DESTI NATI ON

ELSE
ADD_EXT_BYTES DESTI NATI ON, SOURCE
ENDI F

ENDM

; USAGE | N PROGRAM
ADD DI RECT_BYTES 127,128

; TRANSLATED MACRO

30 +1 ADD DI RECT_BYTES 127, 128

31 +1 | F (SMALL_MODEL)

32 +1 MOV A 128

33 +1 ADD A 127

34 +1 MOV 127

35 +1 ELSE

36 +2 ADD_EXT_BYTES 127, 128

37 +3 GET_EXT BYTE 127
0100 787F 38 +3 MV RO, #127
0102 E2 39 +3 MVX A @O
0103 F9 40 +2 MV Rl A

41 +3 GET_EXT_BYTE 128
0104 7880 42 +3 MOV RO, #128
0106 E2 43 +3 MVX A @O
0107 29 44 +2 ADD A RL
0108 F2 45 +1 MOVX @0, A

46 +1 ENDI F

48

Two things should be pointed out from the above exanple. First, the order of the
paranmeter list is inportant. You nust maintain the order of paranmeters from the
macro definition if the Cross Assenbler is to translate the macro correctly.

Secondly, in order to pass parameters to nested macros, sinply use the sane
paranmeter synbol in the paraneter list of the definition. For exanple, the
par amet er DESTI NATI ON was passed properly to the nested nacros ADD EXT_BYTES and
CET_EXT _BYTE. This occurred because in the macro definition of ADD DI RECT BYTES,
the parameter DESTINATION was specified in the paraneter |Ilists of Dboth
ADD_EXT_BYTES and GET_EXT_BYTE.

7.4.2 LABELS I N MACRCS

You have two choices for specifying labels in a macro body. A label can either be
passed to the body as a parameter or it can be generated within the body. The
foll ow ng exanpl e shows both ways.

; MACRO DEFI NI TI ON

MULTI PLE_SHI FT MACRO LABEL, LABEL_SUFFI X, COUNTER, N
COUNTER SET COUNTER+1 ; NCREMENT SUFFI X FOR NEXT USAGE

7-4

Met aLi nk 8051 Cross Assenbl er User Manual

LABEL: MOV RO, #N
SHI FT&LABEL_SUFFI X: RL A
DINZ RO, SHI FT&LABEL_SUFFI X
ENDM

; USAGE | N PROGRAM

MULTI PLE_SHI FT LOOP_SHI FT, %C0UNT, COUNT, 4

; TRANSLATED MACRO

15 +1 MULTI PLE_SH FT LOOP_SHI FT, %C0UNT, COUNT, 4

0006 16 +1 COUNT SET COUNT+1
17 +1

0100 7804 18 +1 LOOP_SHI FT: MOV RO, #4

0102 23 19 +1 SH FT5: RL A

0103 D8FD 20 +1 DINZ RO, SHI FT5
22

Points to note in the above exanple: 1) the double sem -colon caused the comment
not to be listed in the translated macro; 2) the percent sign caused the val ue of
COUNT (in this case the value 5) to be passed to the macro body instead of the
symbol ; and 3) the anpersand allowed two synbols to be concatenated to form the
| abel SHI FT5.

7-5

Met aLi nk 8051 Cross Assenbl er User Manual

CHAPTER 8

8 8051 CROSS ASSEMBLER ERRCOR CODES

8.1 Introduction

VWhen the Cross Assenbl er encounters an error in the source program it will emt an
error nessage in the listing file. If the $NOPRINT control has been invoked, the
error nmessage will be output to the screen.

There are basically tw types of errors that are encountered by the Coss
Assenbl er, translation errors and /O errors. 1/Oerrors are usually fatal errors.
However, whenever an error is detected, the Cross Assenbler makes every effort
possible to continue with the assenbly.

If it is possible to recover from the error and continue assenbling, the Cross

Assenmbler will report the error, use a default condition and continue on its way.
However, when a fatal error is encountered, it is inpossible for the Cross
Assenbler to proceed. 1In this case, the Cross Assenbler reports the error and then

aborts the assenbly process.
Fatal 1/0O error messages are di splayed on the screen and are of the form
FATAL ERROR openi ng <fil enanme>

where <filename> would be replaced with the file designator initially entered or
read from the source program The cause of this error is usually obvious,
typically a typographical error or the wong drive specification.

Anot her fatal 1/O error nessage is:
FATAL ERROR witing to <type> file

where <type> would be replaced with either "listing" or "object". The cause of
this error is usually either a wite protected disk or a full disk.

Translation error reports contain at least three |ines. The first line is the
source line in which the error was detected, the second line is a pointer to the
character, synbol, expression or line that caused the error. The final line is the
error nessage itself. There may be nore than one error nessage, depending on the
nunber of errors in the source line. An exanple of a source line with two errors
init follows:

0100 2323 26 START: MOV AB, @5

****ERROR #20: 11
****ERROR #20: 11

egal operand
egal operand

The errors are pointed out by the up-arrows (~). For every up-arrow there wll
be an error message. FErrors are ordered left to right, so the first error nessage
corresponds to the left-nmobst up-arrow and so on. The error message includes an
error nunmber and an description of the error. The error nunber can be used as an

index to the nore detailed error explanations that followin this chapter.

After the Cross Assenbler has conpleted its translation process, it will print an
assenbly conpl ete nessage:

ASSEMBLY COVPLETE, nn ERRORS FOUND

Met aLi nk 8051 Cross Assenbl er User Manual

If it was an error free assenbly, in place of the "nn" above the word "NO'" wll be
out put . However, if errors were encountered during the assenbly process, the "nn"
will be replaced with the nunber of errors that were found (up to a maxi mum of 50).
In this case, an error summary will followin the listing file with all the errors
that were reported during the assenbly. An error summary | ooks |like the foll ow ng:

ERROR SUMVARY:
Li ne #26, ERROR #20: 111l egal operand
Li ne #26, ERROR #20: 111l egal operand

The sane error nessage that occurred after the source line

appears again prefaced by the source line nunber to aid in
tracking down the error in the source listing.

8.2 Explanation of Error Messages

ERROR #1: 111l egal character

This error occurs when the Cross Assenbler encounters a character that is not part
of its legal character set. The Cross Assenbler character set can be found in
Appendi x D.

ERROR #2: Undefined synbol

This error occurs when the Cross Assenbler tries to use a synbol that hasn't been
defi ned. The two nost comon reasons for this error are typographical errors and
forward references.

ERROR #3: Duplicate synbol

This error occurs when a previously defined synbol or a reserved synbol is
attenpted to be defined again. Refer to Appendix C for the reserved words. Also
i nspect the synbol in the synbol table Ilisting. If the synbol doesn't appear
there, you are using a reserved word. If the synbol does appear, its original

definition will be |isted.

ERROR #4: I1llegal digit for radix A digit was encountered that is not part of the
legal digits for the radix specified. Chapter 2 lists the legal digits for each
radi x avail abl e. Oten this error occurs because a synbol was started with a

nunber instead of a letter, question mark, or underscore.

ERROR #5: Number too |arge
The nunber specified, or the returned value of the expression, exceeds 16-bit
precision. The |argest value allowed is 65, 535.

ERROR #6: M ssing END directive
The source program nust end with one and only one END directive. The END is placed
after all the assenbly |ine statenents.

ERROR #7: 11l egal opcode/directive after | abel
The synbol after a label is not an opcode nor a directive that allows |abels. The
only thing pernmitted on a line after a label is an instruction, the DS, DB or DW

directives, or a cooment. |If none of these are found, this error will be reported.
ERROR #8: |1l egal assenbly line

The assenbly Iline doesn't begin with a synbol, Ilabel, instruction menonic,
control, directive, coment or null |ine. No attenpt is made to translate such a
line.

ERROR #9: Text beyond END directive

8-2

Met aLi nk 8051 Cross Assenbl er User Manual

The END directive nmust be the last line of the source program Any text beyond the
END line will cause this error. Any such text is ignore. Text here is defined as
any printable ASCI1 characters.

ERROR #10: 11l egal or mssing expression
A nunber, synbol or arithnmetic expression was expected, but it was either found to
be m ssing or the Cross Assenbler was unable to evaluate it properly.

ERROR #11: 11l egal or mssing expression operator
An arithmetic operator was expected but it is either mssing or it is not one of
the | egal operators specified in Chapter 2.

ERROR #12: Unbal anced parent heses
In evaluating an expression, the parentheses in the expression were found not to
bal ance.

ERROR #13: 11l egal or m ssing expression val ue

In evaluating an expression, the Cross Assenbler expected to find either a nunber
or a synbol, but it was either mssing or illegal.

ERROR #14: 1llegal literal expression

This error occurs when a null ASCII literal string is found. A null ASCII literal
is nothing nore than two apostrophes together ('') and is illegal.

ERROR #15: Expression stack overfl ow

The expression stack has a depth of 32 val ues. The expression being eval uated
exceeds this depth. This is a very rare error. However, if you ever get it,
divide the expression into two or nore expressions using the EQUJ directive.

ERROR #16: Division by zero
The expression being evaluated includes an attenpt to divide by zero.

ERROR #17: 11l egal bit designator
A bit designator address was specified in the source program and it points to an
illegal bit address. A bit designator contains a byte address, followed by a

PERI OD, followed by the bit index into the byte address (e.g., ACC 7) as discussed
in Chapter 2. This error can occur for one of two reasons. First, if the nunber
or a synbol that is used to specify the byte address part of the bit designator is
not a legal bit addressable address, ERROR #17 w |l occur. Second, if the bit
i ndex into the byte address exceeds the nunber 7, again ERROR #17 will be output.

ERROR #18: Target address exceeds rel ative address range

A Program Counter relative junp instruction (e.g., SIMP, JZ, JNC, etc.) was decoded
with the target address of the junp exceeding the maxi num possible forward junp of
127 bytes or the maxi mum possi bl e backward junp of 128 bytes.

ERROR #20: 111 egal operand
The operand specified is not a |l egal operand for the instruction. Review the |egal
operands allowed for the instruction.

ERROR #21: 1llegal indirect register

RO and Rl are the only primary legal indirect register. This error occurs when the
i ndirect addressing node designator (@ is not followed by either RO, RL or synbols
that were defined to be equivalent to either RO or Rl. This error can al so occur
in the MOVC A @+DPTR, MVC A @\+PC, MWX A @PTR, MVX @PTR, A and the JM
@\+DPTR instructions if the operands after the indirect addressing node designator
(@) aren't specified properly.

ERROR #22: M ssing operand delinmter
A COWA operand delimter is mssing fromthe operand fields of the instruction.

8-3

Met aLi nk 8051 Cross Assenbl er User Manual

ERROR #23: Illegal or missing directive
This error occurs when the Cross Assenbler cannot find a legal directive. The nost
common cause of this error is due to leaving the COLON off a label. As a result,

the foll owi ng opcode menonic is attenpted to be decoded as a directive.

ERROR #24: Attenpting to EQUate a previously SET symbol Once a synbol is defined
using the SET directive, it cannot be later redefined using the EQU directive.

ERROR #25: Attenpting to SET a previously EQUated synbol
Once a synbol is defined using the EQU directive, it cannot be redefined. If you
want the synbol to be redefineable, use the SET directive.

ERROR #26: 111 egal SET/EQU expression

The expression following the SET or EQUJ directive is illegal. This typically
occurs when an attenpt is made to define a synbol to be equivalent to an inplicit
regi ster other than A, RO, Rl, R2, R3, R4, R5, R6 or RY.

ERROR #27: 11l egal expression with forward reference
This error occurs when an expression contains a synbol that hasn't been defined
yet. Move the synbol definition earlier in the source file.

ERROR #28: Address exceeds segnent range
The address specified exceeds 255 and you are in the DSEG BSEG or |SEG

ERROR #29: Expecting an ECL or COMVENT

The Cross Assenbler has conpleted processing a |egal assenbly |anguage |ine and
expected the line to be terminated with either a COMWENT or a carriage return/line
feed pair.

ERROR #30: Illegal directive with current active segnent

The specified directive is not legal in the active segnent. This can happen by
trying to use the DBIT directive in other than the BSEG or using the DS directive
in the BSEG

ERROR #31: Only two character string all owed
This error occurs using the DWdirective. The maxinmum ASCI1 literal allowed in a
DWspecification is a two character string.

ERROR #32: Byte definition exceeds 255
This error occurs wusing the DB directive. The value specified in the DB
specification cannot fit into a byte.

ERROR #33: Premature end of string
An ASCIIl literal string was not term nated properly with an apostrophe.

ERROR #34: 11l egal register bank numnber
This error occurs when the nunber specified with the USING directive exceed 3.
Legal register bank nunbers are: 0, 1, 2, 3.

ERROR #35: Include file nesting exceeds 8
The maxi mum nunber of nested include files is eight. You will get this error if you
exceed this limt.

ERROR #36: 111 egal or mssing argunent
This error occurs when the syntax of a Cross Assenbler control requires an argunent
and it was either incorrectly specified or is mssing all together.

ERROR #37: 11l egal control statenent

8-4

Met aLi nk 8051 Cross Assenbl er User Manual

The Cross Assenbl er does not recognize the specified control. The legal controls
are detailed in Chapter 6.

ERROR #38: Unable to open file
The Cross Assenbler is unable to open the file as specified. This is a fatal error
which will abort the assenbly process.

ERROR #39: Illegal file specification
The file specification is not a legal file designator. Refer to your DOS manual
for a description of legal file designators. This is a fatal error which wll

abort the assenbly process.

ERROR #40: Program synchronization error

This error occurs when the Cross Assenbler is generating the object hex file and
finds that the code segnment |ocation counter is not advancing properly. There are
two cases where this can happen. First, if the source program uses ORG directives
and they are not placed in ascending order. Second, if a generic CALL or JMP is
made to a forward reference that is actually defined later in the programto be a
backward reference. For exanple, the follow ng code sequence will cause this error
due to the second reason:

BACK_REF: NOP
CALL FORWARD REF
FORWARD REF EQU BACK_REF

During the first pass, the generic CALL will be replaced with a 3-byte LCALL
i nstruction. During the second pass, the generic CALL will be replaced with a 2-
byte ACALL instruction. To prevent this kind of problem use the generic CALLs and
JWPs with | abeled targets, not EQU or SET defined synbol s.

ERROR #41: Insufficient menory
This error occurs when there isn't enough nmenory to hold all the synbols that have

been generated by the source program If you have 96 Kbytes or nore of RAM this
will be a very rare error. Only a nassive source program or nunerous |arge macros
could potentially cause this error. However, if this error does occur, your best

bet is to either buy nore nmenory or to break up your program into snaller pieces
and share conmmon synbols with a conmon $I NCLUDE fil e.

ERROR #42: Mdre errors detected, not |isted
The internal error buffer can hold 50 errors. If nmore than 50 errors occur, only
the first 50 will be reported.

ERROR #43: ENDIF without IF
The terminator of a conditional assenbly block (ENDF) was recognized w thout
seeing a matching IF.

ERROR #44: M ssing ENDI F
A conditional assenbly block was begun with an IF statement, but no matching END F
was det ect ed.

ERROR #45: 11l egal or mssing macro nane
The MACRO keyword was recognized, but the symbol that is supposed to precede the
MACRO keyword was nmissing, an illegal synbol or a duplicate synbol.

ERROR #46: Macro nesting too deep
Macros can be nested to a depth of 9 levels. Exceeding this Iimt will cause this
error.

ERROR #47: Nunber of paraneters doesn't match definition

8-5

Met aLi nk 8051 Cross Assenbl er User Manual

In attenpting to use a macro, the nunber of parameters in the paraneter |ist does
not equal the nunber of paranmeters specified in the macro definition. They nust
mat ch.

ERROR #48: 111 egal paraneter specification
This error typically occurs when a previously defined synbol is wused in the
paranmeter |ist of the macro definition.

ERROR #49: Too many paraneters
The maxi mum nunber of paraneters in a macro paraneter list is sixteen. This error
occurs when you exceed that limt.

ERROR #50: Line exceeds 255 characters

The maxi mum | ength of a source line is 255 characters. If a carriage return/line
feed pair is not detected in the first 256 characters of a line, this error is
reported and the line is truncated at 255 characters.

8-6

Met aLi nk 8051 Cross Assenbl er User

Manual

9

APPENDI CES

APPENDI CES

APPENDI X A - SAMPLE PROGRAM AND LI STI NG

Al

Source File

; 8-bit by 8-bit signed multiply--byte signed nultiply

This routine takes the signed byte in nmultiplicand and
multiplies it by the signed byte in nultiplier and pl aces
the signed 16-bit product in product_hi gh and product_I| ow

This routine assunes 2s conpl enent representation of signed
nunbers. The maxi num nunbers possible are then -128 and
+127. Ml tiplying the possible maxi mum nunbers toget her
easily fits into a 16-bit product, so no overflow test is
done on the answer.

Regi sters altered by routine: A B, PSW

; Primary controls

$MOD51

$TI TLE(BYTE SI GNED MULTI PLY)
$DATE(JUL- 30- 84)
$PAGEW DTH(132)
$OBJECT(B: BMULB. OBJ)

: Variabl e declarations

éign_flag BIT OFOH ; sign of product

mul tiplier DATA 030H ;8-bit multiplier

mul ti plicand DATA 031H ;8-bit multiplicand

pr oduct _hi gh DATA 032H ; high byte of 16-bit answer

product _| ow DATA 033H ;1 ow byte of answer

ORG 100H ;arbitrary start

byte signed_nultiply:
CLR sign_flag ;reset sign
MOV A multiplier ;put multiplier in accumul ator
JNB ACC. 7, positive ;test sign bit of nmultiplier
CPL A ; negati ve--conpl enrent and
I NC A ;add 1 to convert to positive
SETB sign_flag ;and set sign flag

positive: MOV B,multiplicand ;put multiplicand in B register
JNB B.7,multiply ;test sign bit of multiplicand
XRL B, #0FFh ; negati ve--conpl enrent and
I NC B ;add 1 to convert to positive
CPL sign_flag ; conpl ement sign flag

mul tiply: MUL AB ;do unsigned nultiplication

9-1

Met aLi nk 8051 Cross Assenbl er User Manual
sign_test: JNB sign_fl ag, byte_signed_exit ;1 f positive, done
XRL B, #0FFh ; el se have to conpl ement both
CPL A ; bytes of the product and inc
ADD A #1 ;add here because inc doesn't
JNC byte_signed_exit ;set the carry flag
I NC B ;if add overflowed A, inc the
; hi gh byte
byte_signed_exit:
MOV product _high, B ;save the answer
MOV product _I ow, A
RET ;and return
END

9-2

Met aLi nk 8051 Cross Assenbl er User Manual
A 2 Source File Listing
BMULB BYTE SI GNED MULTI PLY JUL- 30- 84 PACGE 1
1)
2 ; 8-bit by 8-bit signed multiply--byte signed nmultiply
3)
4 H This routine takes the signed byte in nultiplicand and
5 H multiplies it by the signed byte in nultiplier and places
6 H the signed 16-bit product in product_high and product_| ow.
7)
8 H This routine assunes 2s conpl enent representation of signed
9 ; nunbers. The maxi mum nunbers possible is then -128 and +127.
10 H Ml tiplying the possible maxi mum nunbers together easily fits
11 ; in a 16-bit product, so no overflow test is done on the answer.
12 H
13 ; Regi sters altered by routine: A B, PSW
14 H
15 H
16 ; Primary controls
17 $MOD51
18 $TI TLE(BYTE SI GNED MULTI PLY)
19 $DATE(JUL- 30- 84)
20 $PAGEW DTH(132)
21 $OBJECT(B: BMULB. 0BJ)
22 H
23 H
24 ; Variable declarations
25 H
00FO0 26 sign_flag BIT OFOH ;sign of product
0030 27 mul tiplier DATA 030H ;8-bit nultiplier
0031 28 mul tiplicand DATA 031H ;8-bit nultiplicand
0032 29 product _hi gh DATA 032H ;high byte of 16-bit answer
0033 30 product _| ow DATA 033H ;low byte of answer
31 H
32 H
33 H
0100 34 ORG 100H ;arbitrary start
35 H
0100 36 byte_signed_nul tiply:
0100 C2F0 37 CLR sign_flag ;reset sign
0102 E530 38 MoV A multiplier ;put nultiplier in accunul ator
0104 30E704 39 JNB ACC. 7, positive ;test sign bit of multiplier
0107 F4 40 CPL A ;negati ve--conpl enent and
BMULB BYTE SI GNED MULTI PLY JUL- 30- 84 PACE 2
0108 04 41 I NC A ;add 1 to convert to positive
0109 D2FO 42 SETB sign_flag ;and set sign flag
43 H
010B 8531F0 44 positive: MoV B,nultiplicand ;put nultiplicand in B register
010E 30F707 45 JNB B.7, multiply ;test sign bit of nultiplicand
0111 63FOFF 46 XRL B, #0FFh ;negati ve- - conpl enent and
0114 0O5F0 47 I NC B ;add 1 to convert to positive
0116 B2FO0 48 CPL sign_flag ;conpl enent sign flag
49 H
0118 A4 50 mul tiply: ML AB ;do unsigned nultiplication
51 H
0119 30F00A 52 sign_test: JNB sign_flag, byte_signed_exit ;if positive, done
011C 63FOFF 53 XRL B, #0FFh ;el se have to conpl ement both
011F F4 54 CPL A ;bytes of the product and inc
0120 2401 55 ADD A #1 ;need add here because inc doesn't set
0122 5002 56 JNC byt e_signed_exit ;the carry flag
0124 05F0 57 I NC B ;if add overflowed A, inc the high byte
58 H
0126 59 byte_signed_exit:
0126 85F032 60 product _high,B ;save the answer
0129 F533 61 MoV product _| ow, A
62 H
012B 22 63 RET ;and return
64 END
ASSEMBLY COWVPLETE, 0 ERRORS FOUND
BMULB BYTE SI GNED MULTI PLY JUL- 30- 84 PACE 3
ACC D ADDR O00EOH PREDEFI NED
B D ADDR O00FOH PREDEFI NED

BYTE_SI GNED_EXI T

BYTE_SI GNED_MULTI PLY

MULTI PLI CAND

MULTI PLI ER
MULTI PLY
PCSI TI VE

PRODUCT_HI GH
PRCDUCT_LOW
SIGN_
SIGN_

FLAG
TEST

C ADDR 0126H
C ADDR 0100H NOT USED
D ADDR 0031H
D ADDR 0030H
C ADDR 0118H
C ADDR 010BH
D ADDR 0032H
D ADDR 0033H
B ADDR O0OFOH
C ADDR 0119H NOT USED

9-3

Met aLi nk 8051 Cross Assenbl er User Manual

APPENDI X B - PRE-DEFI NED BYTE AND BI T ADDRESSES

The following tables detail the pre-defined byte and bit addresses for the
8051/8031 microcontrollers supported by the MetaLink famly of enulators.
Proliferation parts are delimted from the standard MCS-51 definitions by asterisk
("*") boxes.

This |ist covers these microcontrollers:

8044 8031 8032 8051 8052 8053 80C154 80C321

8344 80C31 80C32 8751 8752 8753 83Cl154 80C521

8744 80C51 80C52 85C154 87C521
87C51

80C321 B8OC51FA(80C252) 80C452 80C152JA/JB/JCJD 80C851
80C541 83C51FA(83C252) 83C452 83Cl152JA/JC 83C851
87C541 87C51FA(87C252) 87C452

80C451 80C652 80C552 83Cr51 83Cr52 80512 80515 80C515 80C517

83C451 83C652 83C552 87Cr51 87Cr52 80532 80535 80C535 80C537
87C451 87C652 87C552

B. 1 Pre-defined Byte Addresses

PO DATA 080H ; PORT O

SP DATA 081H ; STACK PA NTER

DPL DATA 082H ; DATA PO NTER - LOW BYTE
DPH DATA 083H ; DATA PO NTER - H GH BYTE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*

for the 80C321/80C521

DPL1 DATA 084H ; DATA PO NTER LOW 1
DPH1 DATA 085H ; DATA PO NTER HGH 1
DPS DATA 086H ; DATA PO NTER SELECTI ON

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x
khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhdddrxdx*x

for the 83Cl152/80C152
GvVOD DATA 084H ; GSC MODE
TFI FO DATA 085H ; GSC TRANSM T BUFFER

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80C517/80C537

WDTREL DATA 086H ; WATCHDOG T1 MER RELOAD REG
khhkkkhhhkkhhhhkkhhhhhhhdhhhhhhddhhdhdxddhhdhdxddhddhdxddhddhdxddh*ddxddhx*xddx*d,*x*%x
PCON DATA 087H ; PONER CONTRCL

TCON DATA 088H ; TI MER CONTRCL

TMOD DATA 089H ; TI VER MODE

TLO DATA 08AH ; TIMER O - LOWBYTE

TL1 DATA 08BH ; TIMER 1 - LOWBYTE

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 83Cr51/83Cr52

RTL DATA 08BH y TIMER O - LOWBYTE RELQAD
hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x
THO DATA 08CH ; TIMER O - H GH BYTE

TH1 DATA 08DH ; TIMER 1 - H GH BYTE

9-4

Met aLi nk 8051 Cross Assenbl er

User

Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x

for the 83Cr51/83Cr52
RTH DATA 08DH ; TEIMER O - H GH BYTE RELOAD

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhdhddhddhrrdrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddhrddrxd*x

for the 83Cr52
PWM DATA O8EH : PULSE W DTH MODULATI ON

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

P1 DATA 090H ; PORT 1

khkhkkhkhkhhkhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhdhhdhhhdhhhdhhhhhhdhhhdhhhdrhddhrddrxdx*x

for the 83Cl152/80C152

P5 DATA 091H ; PORT 5

DCONO DATA 092H ; DVA CONTRCOL O

DCON1 DATA 093H ; DVA CONTRCL 1

BAUD DATA 094H ; GSC BAUD RATE

ADRO DATA 095H ; GSC MATCH ADDRESS 0

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrrdrxdx*x
khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 80C452/83C452
DCONO DATA 092H ; DVA CONTRCOL O
DCON1 DATA 093H ; DVA CONTRCL 1

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

for the 80C517/80C537
DPSEL DATA 092H ; DATA PO NTER SELECT REQ STER

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

SCON DATA 098H ; SERI AL PORT CONTROL
SBUF DATA 099H ; SERI AL PORT BUFFER

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

for the 83C751/83Cr52
| 2CON DATA 098H ; 1 2C CONTROL
| 2DAT DATA 099H ;1 2C DATA

khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhdddrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhdhhhdhhhhhhdhhhdhhhddhdddhdddrxdx*x

for the 80C517/80C537

| EN2 DATA 09AH ; | NTERRUPT ENABLE REG STER 2
S1CON DATA 09BH ; SERI AL PORT CONTRCOL 1

S1BUF DATA 09CH ; SERI AL PORT BUFFER 1

S1REL DATA 09DH ; SERI AL RELOAD REG 1

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

P2 DATA OAOH ; PORT 2
I E DATA 0A8H ; | NTERRUPT ENABLE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)
SADDR DATA 0A9H ; SLAVE | NDI VI DUAL ADDRESS

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 80515/80535 and 80C517/80C537
| PO DATA 0A9H ; | NTERRUPT PRI ORI TY REG STER O

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 80C321/80C521
WDS DATA 0A9H ; WATCHDOG SELECTI ON
VDK DATA 0AAH ; WATCHDOG KEY

9-5

Met aLi nk

8051 Cross Assenbl er

User

Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*x

for the 83Cl152/80C152

P6
SARLO
SARHO
I FS
ADR1

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x

DATA
DATA
DATA
DATA
DATA

OAl1H
0A2H
0A3H
0A4H
0A5H

for the 80C452/83C452

SARLO
SARHO

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x
khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

DATA
DATA

0A2H
0A3H

for the 80C552/83C552

CMLO
CcMl
CcM.2
CTLO
CTL1
CTL2
CTL3

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhhddhdddhdrdrxdx*x

P3

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

DATA
DATA
DATA
DATA
DATA
DATA
DATA

DATA

0A9H
0AAH
OABH
OACH
OADH
OAEH
OAFH

0BOH

for the 83Cl152/80C152

SARL1
SARH1

SLOTT™M

ADR2

DATA
DATA
DATA
DATA

0B2H
0B3H
0B4H
0B5H

; PORT 6

: DVA SOURCE ADDR 0 (LOW
' DVA SOURCE ADDR 0 (HI GH)
. GSC | NTERFRAME SPACI NG

: GSC MATCH ADDRESS 1

: DVA SOURCE ADDR 0 (LOW
' DVA SOURCE ADDR 0 (HI GH)

; COMPARE 0 - LOW BYTE
; COMPARE 1 - LOW BYTE
; COMPARE 2 - LOW BYTE
; CAPTURE 0 - LOW BYTE
; CAPTURE 1 - LOW BYTE
; CAPTURE 2 - LOW BYTE

; CAPTURE 3 - LOW BYTE

; PORT 3

 DVA SOURCE ADDR 1 (LOW
' DVMA SOURCE ADDR 1 (H GH)

; GSC SLOT TI ME

; GSC MATCH ADDRESS 2

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdrhdddhdddrxdx*x
hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhdddhrddrxdx*x

for the 80C452/83C452
SARL1 DATA 0B2H ; DMA SOURCE ADDR. 1 (LOW
SARH1 DATA 0B3H ; DMA SOURCE ADDR. 1 (H GH)

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

I P DATA 0B8H ; | NTERRUPT PRIORITY

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)
SADEN DATA 0B9H ; SLAVE ADDRESS ENABLE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrrdrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhddrdrxdx*x

for the 80515/80535 and 80C517/80C537

| P1 DATA 0B9H ; | NTERRUPT PRIORITY REG STER 1

| RCON DATA 0COH ; | NTERRUPT REQUEST CONTROL

CCEN DATA O0C1H ; COVPARE/ CAPTURE ENABLE

CCL1 DATA 0C2H ; COWARE/ CAPTURE REG STER 1 - LOW BYTE
CCH1 DATA 0C3H ; COWARE/ CAPTURE REGA STER 1 - HI GH BYTE
CCL2 DATA 0C4H ; COWPARE/ CAPTURE REG STER 2 - LOW BYTE
CCH2 DATA 0C5H ; COWPARE/ CAPTURE REGA STER 2 - HI GH BYTE
CCL3 DATA 0C6H ; COWPARE/ CAPTURE REG STER 3 - LOW BYTE
CCH3 DATA 0C7H ; COWPARE/ CAPTURE REA STER 3 - HI GH BYTE
T2CON DATA 0C8H ; TEVER 2 CONTROL

CRCL DATA 0CAH ; COWPARE/ RELOADY CAPTURE - LOW BYTE

CRCH DATA 0CBH ; COWPARE/ RELOADY CAPTURE - HI GH BYTE

9-6

Met aLi nk 8051 Cross Assenbl er

User

Manual

TL2 DATA 0CCH y TIMER 2 - LOWBYTE
TH2 DATA 0CDH y TIMER 2 - H GH BYTE

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrxrdrxdx*x

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhdhddhddhrrdrxdx*x

for the 80C517/80C537

CCAEN DATA 0COH ; COVPARE/ CAPTURE 4 ENABLE
CCL4 DATA O0CEH ; COWARE/ CAPTURE REG STER 4 - LOW BYTE
CcCH4 DATA OCFH ; COWPARE/ CAPTURE REG STER 4 - HI GH BYTE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x

for the RUPI-44

STS DATA 0C8H ; SI U STATUS REG STER
SMD DATA 0COH ; SERI AL MCDE

RCB DATA 0CAH ; RECEI VE CONTROL BYTE
RBL DATA 0CBH ; RECElI VE BUFFER LENGIH
RBS DATA 0CCH ; RECElI VE BUFFER START
RFL DATA 0CDH ; RECEI VE FI ELD LENGTH
STAD DATA O0CEH ; STATI ON ADDRESS
DVA_CNT DATA OCFH ; DMA COUNT

;

khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 8052/8032, 80C51FA/ 83C51FA(83C252/80C252), 80C154/83C154
T2CON DATA 0C8H ; TIVER 2 CONTROL

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)
T2MOD DATA 0COH ; TEVER 2 MODE CONTROL

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 8052/8032, 80C51FA/ 83C51FA(83C252/80C252), 80C154/83C154

RCAP2L DATA 0CAH ; TIMER 2 CAPTURE REGQ STER, LOW BYTE
RCAP2H DATA 0CBH ; TIMER 2 CAPTURE REGQ STER, H GH BYTE
TL2 DATA 0CCH TIMER 2 - LOWBYTE

TH2 DATA 0CDH ; TIMER 2 - H GH BYTE

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhdddhrddrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 83Cl152/80C152

P4 DATA OCOH ; PORT 4

DARLO DATA 0C2H ; DMA DESTI NATI ON ADDR. 0 (LOW
DARHO DATA 0C3H ; DMA DESTI NATI ON ADDR. 0 (HI GH)
BKOFF DATA 0C4H ; GSC BACKOFF TI MER

ADR3 DATA 0C5H ; GSC MATCH ADDRESS 3

| EN1 DATA 0C8H ; | NTERRUPT ENABLE REG STER 1

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80C452/83C452

P4 DATA 0COH ; PORT 4
DARLO DATA 0C2H ; DMA DESTI NATI ON ADDR. 0 (LOW
DARHO DATA 0C3H ; DMA DESTI NATI ON ADDR. 0 (HI GH)

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80C451/83C451
P4 DATA 0COH ; PORT 4
P5 DATA 0C8H ; PORT 5

khkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrdrdrxdx*x
hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x

for the 80512/ 80532
| RCON DATA 0COH ; | NTERRUPT REQUEST CONTROL

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhddhrrdrxdx*x

9-7

Met aLi nk 8051 Cross Assenbl er User Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x

for the 80C552/83C552

P4 DATA 0COH ; PORT 4

P5 DATA 0C4H ; PORT 5

ADCON DATA 0C5H ; Al D CONVERTER CONTRCL
ADCH DATA 0C6H ; A/ D CONVERTER H GH BYTE
TM2I R DATA 0C8H ; T2 | NTERRUPT FLAGS
CMHO DATA 0COH ; COVPARE 0 - HI GH BYTE
CvH1 DATA 0CAH ; COMPARE 1 - HI GH BYTE
CMH2 DATA 0CBH ; COVPARE 2 - HI GH BYTE
CTHO DATA 0CCH ; CAPTURE 0 - HI GH BYTE
CTH1 DATA 0CDH ; CAPTURE 1 - HI GH BYTE
CTH2 DATA O0CEH ; CAPTURE 2 - HI GH BYTE
CTH3 DATA OCFH ; CAPTURE 3 - HI GH BYTE

khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

PSW DATA ODOH ; PROGRAM STATUS WORD

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrrdrxdx*x

for the RUPI-44

NSNR DATA OD8H ; SEND COUNT/ RECElI VE COUNT
SI UST DATA OD9H ; SI U STATE COUNTER

TCB DATA ODAH ; TRANSM T CONTRCOL BYTE
TBL DATA ODBH ; TRANSM T BUFFER LENGTH
TBS DATA ODCH ; TRANSM T BUFFER START

FI FGO DATA ODDH ; THREE BYTE FI FO

Fl FOL DATA ODEH

FlI FC2 DATA ODFH

khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhhhhdhhhdhhhhhhdhhhdhhhddhdrdhrrdrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)

CCON DATA OD8H ; CONTROL COUNTER

CvOoD DATA OD9H ; COUNTER MODE

CCAPMD DATA ODAH ; COWPARE/ CAPTURE MODE FOR PCA MCODULE 0O
CCAPML DATA ODBH ; COWPARE/ CAPTURE MODE FOR PCA MODULE 1
CCAPM? DATA ODCH ; COWPARE/ CAPTURE MODE FOR PCA MODULE 2
CCAPMB DATA ODDH ; COWPARE/ CAPTURE MODE FOR PCA MCODULE 3
CCAPMA DATA ODEH ; COWPARE/ CAPTURE MODE FOR PCA MCODULE 4

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x
hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80515/80535

ADCON DATA OD8H ; Al D CONVERTER CONTRCL
ADDAT DATA OD9H ; Al D CONVERTER DATA
DAPR DATA ODAH ; DY A CONVERTER PROGRAM REGQ STER

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrrdrxdx*x

for the 83Cl152/80C152

DARL1 DATA 0D2H ; DMA DESTI NATI ON ADDR. 1 (LOW
DARH1 DATA OD3H ; DMA DESTI NATI ON ADDR. 1 (HI GH)
TCDCNT DATA 0D4H ; GSC TRANSM T COLLI SI ON COUNTER
AMSKO DATA OD5H ; GSC ADDRESS MASK 0

TSTAT DATA OD8H ; TRANSM T STATUS (DVA & GSC)

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhddrdrxdx*x

for the 80C452/83C452
DARL1 DATA 0D2H ; DMA DESTI NATI ON ADDR. 1 (LOW
DARH1 DATA OD3H ; DMA DESTI NATI ON ADDR. 1 (HI GH)

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

9-8

Met aLi nk 8051 Cross Assenbl er

User

Manual

for the 80C451/83C451
P6 DATA OD8H ; PORT 6

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrxrdrxdx*x

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhdhddhddhrrdrxdx*x

for the 80512/80532

ADCON DATA OD8H ; Al D CONVERTER CONTRCL

ADDAT DATA OD9H ; Al D CONVERTER DATA

DAPR DATA ODAH ; DY A CONVERTER PROGRAM REGQ STER
P6 DATA ODBH ; PORT 6

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhrddrxdx*x

for the 83Cr51/
| 2CFG DATA OD8H ;1 2C CONFI GURATI ON

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x
khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80C552/83C552 and 80C652/ 83C652

S1CON DATA OD8H ; SERIAL 1 CONTRCL

S1STA DATA OD9H ; SERIAL 1 STATUS

S1DAT DATA ODAH ; SERIAL 1 DATA

S1ADR DATA ODBH ; SERIAL 1 SLAVE ADDRESS

khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x
khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 80C517/80C537

CMLO DATA 0D2H ; COMPARE REG STER 0 - LOWBYTE
CMHO DATA OD3H ; COMPARE REG STER 0 - HI GH BYTE
CcM1 DATA 0D4H ; COMPARE REG STER 1 - LOWBYTE
CvH1 DATA OD5H ; COMPARE REG STER 1 - HI GH BYTE
CcM.2 DATA OD6H ; COMPARE REG STER 2 - LOWBYTE
CMH2 DATA OD7H ; COMPARE REG STER 2 - HI GH BYTE
ADCONO DATA OD8H ; A/ D CONVERTER CONTROL 0

ADDAT DATA OD9H ; Al D CONVERTER DATA

DAPR DATA ODAH ; DY A CONVERTER PROGRAM REGQ STER
P7 DATA ODBH ; PORT 7

ADCON1 DATA ODCH ; A/ D CONVERTER CONTRCL 1

P8 DATA ODDH ; PORT 8

CTRELL DATA ODEH ; COM TI MER REL REG - LOW BYTE
CTRELH DATA ODFH ; COM TI MER REL REG - HI GH BYTE

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhdhhhdhhhhhhdhhhdhhhddhdddhdddrxdx*x

ACC DATA OEOH ; ACCUMULATOR

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 83Cl152/80C152

BCRLO DATA OE2H ; DMA BYTE COUNT 0 (LOW
BCRHO DATA OE3H ; DMA BYTE COUNT 0 (H GH)
PRBS DATA OE4H ; GSC PSEUDO- RANDOM SEQUENCE
AMSK1 DATA OES5H ; GSC ADDRESS MASK 1

RSTAT DATA OE8H ; RECEI VE STATUS (DVA & GSC)

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

for the 80C452/83C452

BCRLO DATA OE2H ; DMA BYTE COUNT 0 (LOW
BCRHO DATA OE3H ; DMA BYTE COUNT O (H GH)
HSTAT DATA OE6GH ; HOST STATUS

HCON DATA OE7H ; HOST CONTROL

SLCON DATA OE8H ; SLAVE CONTRCL

SSTAT DATA OE9H ; SLAVE STATUS

I WPR DATA OEAH ; | NPUT WRI TE PO NTER

| RPR DATA OEBH ; NPUT READ PO NTER

CBP DATA OECH ; CHANNEL BOUNDARY PO NTER

9-9

Met aLi nk 8051 Cross Assenbl er

User

Manual

FI' N DATA OEEH FIFO I'N
CI'N DATA OEFH ; COWAND | N

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrxrdrxdx*x

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhdhddhddhrrdrxdx*x

for the 80515/80535
P4 DATA OE8H ; PORT 4

hkhkhkkhkhkhkhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhdhhhhdhhhdhhhdhhhdhhhdhhhddhddhrdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80C451/83C451
CSR DATA OE8H ; CONTROL STATUS

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhrddrxdx*x
khkhkkhkhkhhkhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhdhhdhhhdhhhdhhhhhhdhhhdhhhdrhddhrddrxdx*x

for the 80512/80532
P4 DATA OE8H ; PORT 4

khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhddhhdhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80C552/83C552

| EN1 DATA OE8H ; | NTERRUPT ENABLE REG STER 1
TM2CON DATA OEAH ; T2 COUNTER CONTRCL

CTCON DATA OEBH ; CAPTURE CONTROL

T™M.2 DATA OECH y TIMER 2 - LOWBYTE

TMH2 DATA OEDH TIMER 2 - H GH BYTE

STE DATA OEEH ; SET ENABLE

RTE DATA OEFH ; RESET/ TOGGLE ENABLE

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x
hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhddhrddrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)

CL DATA OE9H ; CAPTURE BYTE LOW

CCAPOL DATA OEAH ; COWPARE/ CAPTURE 0 LOW BYTE
CCAP1L DATA OEBH ; COWPARE/ CAPTURE 1 LOW BYTE
CCAP2L DATA OECH ; COWPARE/ CAPTURE 2 LOW BYTE
CCAP3L DATA OEDH ; COWPARE/ CAPTURE 3 LOW BYTE
CCAP4L DATA OEEH ; COWPARE/ CAPTURE 4 LOW BYTE

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdrhdddhdddrxdx*x
hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhdddhrddrxdx*x

for the 80C517/80C537

CTCON DATA OE1H ; COM TI MER CONTROL REG

CM.3 DATA OE2H ; COMPARE REG STER 3 - LOWBYTE
CMH3 DATA OE3H ; COMPARE REG STER 3 - HI GH BYTE
cML4 DATA OE4H ; COMPARE REG STER 4 - LOWBYTE
M4 DATA OES5H ; COMPARE REG STER 4 - HI GH BYTE
CML5 DATA OE6GH ; COMPARE REG STER 5 - LOWBYTE
CMH5 DATA OE7H ; COMPARE REG STER 5 - HI GH BYTE
P4 DATA OE8H ; PORT 4

VDO DATA OE9H ; MUL/ DIV REG 0

MD1 DATA OEAH ; MUL/ DIV REG 1

MD2 DATA OEBH ; MUL/ DIV REG 2

MD3 DATA OECH ; MUL/ DIV REG 3

M4 DATA OEDH ; MUL/ DIV REG 4

VD5 DATA OEEH ; MUL/ DIV REG 5

ARCON DATA OEFH ; ARI THVETI C CONTROL REG

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

B DATA OFOH ; MULTI PLI CATI ON REQ STER

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x

for the 80Cl154/83Cl54
| OCON DATA OF8H ; 1/ O CONTROL REG STER

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhddhrrdrxdx*x
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

9-10

Met aLi nk 8051 Cross Assenbl er User Manual
for the 83Cl152/80C152

BCRL1 DATA OF2H ; DMA BYTE COUNT 1 (LOW

BCRH1 DATA OF3H ; DMA BYTE COUNT 1 (H GH)

RFI FO DATA OF4H : GSC RECEI VE BUFFER

MYSLOT DATA OF5H : GSC SLOT ADDRESS

| PN1 DATA OF8H ;I NTERRUPT PRI ORI TY REAQ STER 1

hkhkhkkhkhkhkhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhdhhhhdhhhdhhhdhhhdhhhdhhhddhddhrdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 83C851/80C851

EADRL DATA OF2H ; EEPROM Addr ess Regi ster - Low Byte
EADRH DATA OF3H ; EEPROM Addr ess Regi ster - Hi gh Byte
EDAT DATA OF4H ; EEPROM Dat a Regi st er

ETIM DATA OF5H ; EEPROM Ti ner Regi ster

ECNTRL DATA OF6H ; EEPROM Cont r ol Regi ster

khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhddhhdhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80C452/83C452

BCRL1 DATA OF2H ; DMA BYTE COUNT 1 (LOW
BCRH1 DATA OF3H ; DMA BYTE COUNT 1 (H GH)
| THR DATA OF6H ; NPUT FI FO THRESHOLD
OTHR DATA OF7H ; QUTPUT FI FO THRESHOLD
| EP DATA OF8H ; | NTERRUPT PRIORITY
MCDE DATA OF9H ; MODE

ORPR DATA OFAH ; OUTPUT READ PO NTER
ONPR DATA OFBH ; OUTPUT WRI TE PO NTER
IMN DATA OFCH ; | MVEDI ATE COWWAND | N

| MOUT DATA OFDH ; | MVEDI ATE COMMAND QUT
FOUT DATA OFEH ; FI FO QUT

cadtr DATA OFFH ; COWAND OUT

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhhhhdhhhdhhhhhhdhhhdhhhddhdrdhrrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*

for the 80515/80535
P5 DATA OF8H ; PORT 5

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdrhdddhdddrxdx*x
hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhdddhrddrxdx*x

for the 80512/ 80532
P5 DATA OF8H ; PORT 5

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhdhhhdhhhdhhhhhhdhhhdhhhddhdddhdddrxdx*x

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

for the 83Cr51/83Cr52
| 2STA DATA OF8H ;1 2C STATUS

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x

for the 80C552/83C552

| P1 DATA OF8H ; | NTERRUPT PRIORITY REG STER 1
PWWD DATA OFCH ; PULSE W DTH REG STER 0O

PVWWML DATA OFDH ; PULSE W DTH REG STER 1

PVWWP DATA OFEH ; PRESCALER FREQUENCY CONTROL
T3 DATA OFFH ; T3 - WATCHDOG TI MER

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for

CMEN DATA
CML6 DATA
CMVH6 DATA
CML7 DATA
CVH7 DATA
CMVSEL DATA
P5 DATA
P6 DATA

t he 80C517/80C537

OF6H
OF2H
OF3H
OF4H
OF5H
OF7H
OF8H
OFAH

; COVPARE
; COVPARE
; COVPARE
; COVPARE
; COVPARE
; COVPARE
; PORT 5

; PORT 6

ENABLE

REGQ STER 6
REGQ STER 6
REQ STER 7
REQ STER 7

LOW BYTE
H GH BYTE
LOW BYTE
H GH BYTE

I NPUT REQ STER

9-11

Met aLi nk 8051 Cross Assenbl er

User

Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x
hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)

CH DATA OF9H ; CAPTURE HI GH BYTE

CCAPOH DATA OFAH ; COWPARE/ CAPTURE 0 HI GH BYTE
CCAP1H DATA OFBH ; COWPARE/ CAPTURE 1 H GH BYTE
CCAP2H DATA OFCH ; COWPARE/ CAPTURE 2 H GH BYTE
CCAP3H DATA OFDH ; COWPARE/ CAPTURE 3 HI GH BYTE
CCAP4H DATA OFEH ; COWPARE/ CAPTURE 4 H GH BYTE

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhddhddhrddrxdx*x

for the 83Cr52
PVENA DATA OFEH : PULSE W DTH ENABLE

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

9-12

Met aLi nk 8051 Cross Assenbl er User

Manual

B. 2 Pre-defined Bit Addresses

khkhkkhkhkhhkhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhdrhdrhrddrxdx*x

for the 83Cr51/83Cr52
SCL BIT 080H ; PO.0 - 12C SERI AL CLOCK
SDA BIT 081H ; PO.1 - 12C SERI AL DATA

hkhkhkkhkhkhkhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhdhhhhdhhhdhhhdhhhdhhhdhhhddhddhrdrdrxdx*x

| TO BIT 088H ; TGON. O - EXT. | NTERRUPT 0 TYPE
| EO BIT 089H ; TGON. 1 - EXT. | NTERRUPT 0 EDGE FLAG
I T1 BIT 08AH ; TGON. 2 - EXT. | NTERRUPT 1 TYPE
| E1 BIT 08BH ; TGON. 3 - EXT. | NTERRUPT 1 EDGE FLAG
TRO BIT 08CH ; TCON.4 - TIMER O OV OFF CONTROL
TFO BIT 08DH ; TGON. 5 - TIMER O OVERFLOW FLAG
TR1 BIT O8EH ; TCON.6 - TIMER 1 OV OFF CONTROL
TF1 BIT 08FH ; TGON. 7 - TIMER 1 OVERFLOW FLAG

khkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhdxdrxdx*x

for the 83Cr51/83Cr52
aT BIT O08EH ; TCON. 6 - COUNTER OR Tl MER OPERATI ON
GATE BIT 08FH ; TGON. 7 - GATE TI MER

khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x
khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 80515/80535

I NT3 BIT 090H ;P1L.0 - EXT. I NTERRUPT 3/ CAPT & COWP O

| NT4 BIT 091H ;P1L.1 - EXT. | NTERRUPT 4/ CAPT & COW 1

I NT5 BIT 092H ;P1.2 - EXT. I NTERRUPT 5/ CAPT & COWP 2

| NT6 BIT 093H ;P1.3 - EXT. | NTERRUPT 6/ CAPT & COWP 3

I NT2 BIT 094H yP1.4 - EXT. | NTERRUPT 2

T2EX BIT 095H ;PL.5 - TIMER 2 EXT. RELOAD TRI GGER I NP
CLKQUT BIT 096H ; P1.6 - SYSTEM CLOCK QUTPUT

T2 BIT 097H ;PL.7 - TIMER 2 | NPUT

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhdhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdrhdddhdddrxdx*x

for the 83Cl152/80C152

GRXD BIT 090H ; P1.0 - GSC RECEI VER DATA | NPUT

GI'XD BIT 091H ; P1.1 - GSC TRANSM TTER DATA QUTPUT

DEN BIT 092H ; P1.2 - DRIVE ENABLE TO ENABLE EXT DRI VE
TXC BIT 093H ; P1.3 - GSC EXTERNAL TRANSM T CLOCK | NPU
RXC BIT 094H ; P1.4 - GSC EXTERNAL RECEI VER CLOCK | NPU

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

CT0I BIT 090H ;P1.0 - CAPTURE/ TI MER | NPUT 0O

CT1l BIT 091H ;P1.1 - CAPTURE/ TI MER | NPUT 1

Cr2| BIT 092H ; P1.2 - CAPTURE/ TI MER | NPUT 2

CT3lI BIT 093H ; P1.3 - CAPTURE/ TI MER | NPUT 3

T2 BIT 094H y P1.4 - T2 EVENT | NPUT

RT2 BIT 095H ;PL.5 - T2 TI MER RESET SI GNAL

SCL BIT 096H ; P1.6 - SERI AL PORT CLOCK LINE | 2C
SDA BIT 097H ; P1.7 - SERI AL PORT DATA LINE | 2C

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

for the 80C517/80C537

I NT3 BIT 090H ;P1L.0 - EXT. I NTERRUPT 3/ CAPT & COWP O

| NT4 BIT 091H ;P1L.1 - EXT. | NTERRUPT 4/ CAPT & COW 1

I NTS BIT 092H ;P1.2 - EXT. I NTERRUPT 5/ CAPT & COWP 2

| NT6 BIT 093H ; P1.3 - EXT. | NTERRUPT 6/ CAPT & COWP 3

I NT2 BIT 094H yP1.4 - EXT. | NTERRUPT 2

T2EX BIT 095H ;PL.5 - TIMER 2 EXT. RELOAD TRI GGER | NPU
CLKQUT BIT 096H ; P1.6 - SYSTEM CLOCK QUTPUT

9-13

Met aLi nk 8051 Cross Assenbl er

User

Manual

T2 BIT 097H ;PL.7 - TIMER 2 | NPUT

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrxrdrxdx*x

for the 80C452/83C452 and 80Cl152/83C152
HLD BIT 095H ;P1L.5 - DVA HOLD REQUEST 1/0O
HLDA BIT 096H ; P1.6 - DVMA HOLD ACKNOW.EDGE QUTPUT

hkhkhkkhkhkhkhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhdhhdhhhhdhhhdhhhdhhhdhhhdhhhddhddhrdrdrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 83Cr51/83Cr52

I NTO BIT 095H ; P1.5 - EXTERNAL | NTERRUPT O | NPUT
I NT1 BIT 096H ; P1.6 - EXTERNAL | NTERRUPT 1 | NPUT
T0 BIT 096H ;PL.7 - TIMER O COUNT | NPUT
khhkkkhhhkkhkhhhkkhhhkhhhhddhhhhhhddhhdhdxddhhdhdxddhhdhdxddhdddhdxddh*dddx*dk*x*dx***x*%x
Rl BIT 098H ; SCON. 0 - RECEI VE | NTERRUPT FLAG

TI BIT 099H ; SCON. 1 - TRANSM T | NTERRUPT FLAG
RB8 BIT 09AH ; SCON. 2 - RECEIVE BIT 8

TB8 BIT 09BH ; SCON.3 - TRANSMT BIT 8

REN BIT 09CH ; SCON. 4 - RECEI VE ENABLE

SM BIT 09DH ; SCON. 5 - SERIAL MODE CONTROL BIT 2
SML BIT 09EH ; SCON. 6 - SERIAL MODE CONTROL BIT 1
SMD BIT 09FH ; SCON. 7 - SERIAL MODE CONTROL BIT O

hkhkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhdhdhhhdhhhdhhhdhhhdhhhdhhddhdddhdrdrxdx*x

for the 83Cr51/83Cr52

MASTER Bl T(READ) 099H ;12CON.1 - MASTER

STP Bl T(READ) 09AH ;12CON. 2 - STOP

STR Bl T(READ) 09BH ; 12CON. 3 - START

ARL Bl T(READ) 09CH ; 12CON. 4 - ARBI TRATI ON LGSS

DRDY Bl T(READ) 09DH ; 12CON. 5 - DATA READY

ATN Bl T(READ) 09EH ; 12CON. 6 - ATTENTI ON

RDAT Bl T(READ) 09FH ; 1 2CON. 7 - RECEI VE DATA

XSTP Bl T(WRI TE) 098H ;12CON. O - TRANSM T STOP

XSTR Bl T(WRI TE) 099H ;12CON. 1 - TRANSM T REPEATED START
CSTP Bl T(\WRI TE) 09AH ;12CON. 2 - CLEAR STOP

CSTR Bl T(WRI TE) 09BH ; 12CON. 3 - CLEAR START

CARL Bl T(WRI TE) 09CH 7 12CON. 4 - CLEAR ARBI TRATI ON LCSS
CDR Bl T(WRI TE) 09DH ; 12CON. 5 - CLEAR DATA READY

| DLE Bl T(WRI TE) 09EH 7 12CON. 6 - GO | DLE

CXA Bl T(WRI TE) 09FH 7 12CON. 7 - CLEAR TRANSM T ACTI VE

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

EXO BIT 0A8H ;1 E. 0 - EXTERNAL | NTERRUPT O ENABLE
ETO BIT 0A9H y1E.1 - TIMER O | NTERRUPT ENABLE

EX1 BIT 0AAH ;1 E.2 - EXTERNAL | NTERRUPT 1 ENABLE
ET1 BIT OABH y1E.3 - TIMER 1 | NTERRUPT ENABLE

ES BIT OACH ;1 E.4 - SERI AL PORT | NTERRUPT ENABLE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x

for the 83Cr51/83Cr52
El 2 BIT OACH ;1 E.4 - SERI AL PORT | NTERRUPT ENABLE

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 8052/8032, 80Cl154/83Cl54, 80C252(80C51FA), 80515/ 80535
ET2 BIT OADH ; TIMER 2 | NTERRUPT ENABLE

hkhkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrrdrxdx*x
khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 80C652/83C652
ES1 BIT OADH ;1E.5 - SERIAL PORT 1 | NTERRUPT ENABLE

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

9-14

Met aLi nk 8051 Cross Assenbl er

User

Manual

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 80C252(80C51FA)
EC BIT OAEH 1E.6 - ENABLE PCA | NTERRUPT

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhdddhddhrddrxd*x
hkhkkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhhhhdhhhdhdhhhhhhhhdhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80515/80535
WDT BIT OAEH ; 1ENO. 6 - WATCHDOG Tl MER RESET

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x

for the 83C552/80C552
ES1 BIT OADH ;1ENO. 5 - SERIAL PORT 1 | NTERRUPT ENABLE
EAD BIT OAEH ; 1 ENO. 6 - ENABLE A/ D | NTERRUPT

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x
khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 80C517/80C537
ET2 BIT OADH ; 1ENO. S5 - TIMER 2 | NTERRUPT ENABLE
WDT BIT OAEH ; 1ENO. 6 - WATCHDOG Tl MER RESET

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrrdrxdx*x

EA BIT OAFH ;1 E.7 - GLOBAL | NTERRUPT ENABLE

RXD BIT O0BOH ; P3.0 - SERI AL PORT RECEI VE | NPUT

TXD BIT O0B1H ; P3.1 - SERI AL PORT TRANSM T OQUTPUT

I NTO BIT 0B2H ; P3.2 - EXTERNAL | NTERRUPT O | NPUT

I NT1 BIT 0B3H ; P3.3 - EXTERNAL | NTERRUPT 1 | NPUT

T0 BIT 0B4H ; P3.4 - TIMER O COUNT | NPUT

T1 BIT 0B5H ; P3.5 - TIMER 1 COUNT | NPUT

VR BIT 0B6H ; P3.6 - WRITE CONTROL FOR EXT. MEMORY
RD BIT 0B7H ; P3.7 - READ CONTROL FOR EXT. MEMORY
PXO0 BIT 0B8H ;1 P.0 - EXTERNAL | NTERRUPT O PRIORITY
PTO BIT 0B9H ;1P.1 - TTIMER O PRRORITY

PX1 BIT 0BAH ;1 P.2 - EXTERNAL | NTERRUPT 1 PRIORITY
PT1 BIT 0BBH ;1P.3 - TTIMER 1 PRORITY

PS BIT O0BCH ;1 P.4 - SERIAL PORT PRIORITY

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 80Cl154/83Cl54
PT2 BIT OBCH ;1P.5 - TIMER 2 PRRORITY
PCT BIT OBFH ;1 P.7 - INTERRUPT PRI ORITY DI SABLE

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80C652/
PS1 BIT OBDH :IP.5 - SERIAL PORT 1 PRORITY

hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x
hkhkhkkhkhkhhhhhhkhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhhhhdhhhdhhhdhhhdhhhdhhhddhdddhdrdrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)
PT2 BIT 0BDH ;1P.5 - TIMER 2 PRORITY
PPC BIT OBEH ;1P.6 - PCA PRORTY

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x
khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

for the 80515/80535 and 80C517/80C537

EADC BIT 0B8H ;1ENL1.O0 - A/ D CONVERTER | NTERRUPT EN
EX2 BIT 0B9H ; 1EN1. 1 - EXT. | NTERRUPT 2 ENABLE

EX3 BIT 0BAH ;1ENL. 2 - EXT. INT 3/CAPT/COWP INT 0 EN
EX4 BIT 0BBH 7 1ENL.3 - EXT. INT 4/ CAPT/COWP INT 1 EN
EX5 BIT 0BCH ;1 ENL. 4 - EXT. INT 5/ CAPT/COWP INT 2 EN
EX6 BIT 0BDH ;1ENL.5 - EXT. INT 6/ CAPT/COWP INT 3 EN
SWOT BIT OBEH ; 1EN1. 6 - WATCHDOG Tl MER START

EXEN2 BIT OBFH ; 1ENL. 7 T2 EXT. RELOAD | NTER START

| ADC BIT 0COH ; 1 RCON. O - A/ D CONVERTER | NTER REQUEST

9-15

Met aLi nk 8051 Cross Assenbl er User Manual
| EX2 BIT O0C1H ;1 RCON. 1 - EXT. | NTERRUPT 2 EDGE FLAG

| EX3 BIT 0C2H ;1 RCON. 2 - EXT. | NTERRUPT 3 EDGE FLAG

| EX4 BIT 0C3H ;1 RCON. 3 - EXT. | NTERRUPT 4 EDGE FLAG

| EX5 BIT 0C4H ;1 RCON. 4 - EXT. | NTERRUPT 5 EDGE FLAG

| EX6 BIT 0C5H ;1 RCON. 5 - EXT. | NTERRUPT 6 EDGE FLAG
TF2 BIT 0C6H ;1 RCON. 6 - TIMER 2 OVERFLOW FLAG

EXF2 BIT OC7H ;I RCON.7 - TIMER 2 EXT. RELOAD FLAG

T21 O BIT 0C8H :T2CON. O - TIMER 2 I NPUT SELECT BIT O
T211 BIT 0C9H :T2CON.1 - TIMER 2 I NPUT SELECT BIT 1
T2CM BIT O0CAH : T2CON. 2 - COVPARE MODE

T2RO BIT 0CBH :T2CON. 3 - TIMER 2 RELOAD MODE SEL BIT 0O
T2R1 BIT OCCH :T2CON. 4 - TIMER 2 RELOAD MODE SEL BIT 1
| 2FR BIT OCDH : T2CON. 5 - EXT. INT 2 F/R EDGE FLAG

| 3FR BIT OCEH : T2CON. 6 - EXT. INT 3 F/R EDGE FLAG

T2PS BIT OCFH : T2CON. 7 - PRESCALER SELECT BIT

EIE I I I I I I I I I I I I I b I b I b I I I I I I b I I b I b I I I I I I b I b I I b I b I b I b I b b b I I I
EIE I I I I I b I b I I I I b I b b b I I I I I I b I I b I I b I I I I I I b I b b b b I I b I I b I b b b I I I b
for the 83C552/80C552

PS1 BIT OBDH :1P0O.5 - SICOL

PAD BIT OBEH 1 P0O.6 - A/ D CONVERTER

CVSRO BIT 0OCOH :P4.0 - T2 COWARE AND SET/ RESET QUTPUTS
CMVBR1 BIT O0C1H :P4.1 - T2 COVWARE AND SET/ RESET QUTPUTS
CMVBR2 BIT 0C2H :P4.2 - T2 COWARE AND SET/ RESET QUTPUTS
CVBR3 BIT 0C3H :P4.3 - T2 COWARE AND SET/ RESET QUTPUTS
CVSR4 BIT 0C4H :P4.4 - T2 COVWARE AND SET/ RESET QUTPUTS
CVBR5 BIT 0C5H :P4.5 - T2 COVWARE AND SET/ RESET QUTPUTS
CMI0 BIT 0C6H :P4.6 - T2 COVWARE AND TOGGLE QUTPUTS
CMI1 BIT OC7H :P4.7 - T2 COVWARE AND TOGGLE QUTPUTS
CTIO BIT 0C8H :TMRIR O - T2 CAPTURE O

BIT 0C9H :TMIR 1 - T2 CAPTURE 1

CTI 2 BIT O0CAH :TM2IR 2 - T2 CAPTURE 2

CTI 3 BIT 0CBH :TM2IR 3 - T2 CAPTURE 3

CM 0 BIT 0OCCH :TM2IR 4 - T2 COVPARATOR O

CM 1 BIT OCDH :TM2IR 5 - T2 COWARATOR 1

CM 2 BIT OCEH :TM2IR 6 - T2 COVWPARATOR 2

T20V BIT OCFH :TMIR 7 - T2 OVERFLOW

EIE I I I I I I I I I I b I b I b I b I I I I I I I I I b I I I I I I I I b I b I b b I b I b I b I b I b b b I S b
EIE I I I I I I I I I I I b I I b I I I I I I b I I b I I I I I I I I b I b I b I I b I b I b I b I b b b I I I I
for the RUPI-44

RBP BIT 0C8H : STS. 0 - RECEI VE BUFFER PROTECT

AM BIT 0C9H : STS. 1 - AUTO ADDRESSED MODE SELECT

OoPB BIT O0CAH :STS. 2 - OPTIONAL POLL BIT

BOV BIT 0CBH : STS. 3 - RECElI VE BUFFER OVERRUN

Sl BIT 0OCCH :STS. 4 - Sl U | NTERRUPT FLAG

RTS BIT OCDH ; STS. 5 - REQUEST TO SEND

RBE BIT OCEH : STS. 6 - RECElI VE BUFFER EMPTY

TBF BIT OCFH :STS. 7 - TRANSM T BUFFER FULL

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x

for the 8052/8032, 80Cl154/83C154, 80C51FA/ 83C51FA(83C252/ 80C252)

CAP2
CNT2
TR2
EXEN2
TCLK
RCLK
EXF2
TF2

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

0C8H
0COH
0CAH
0CBH
0CCH
0CDH
O0CEH
OCFH

; T2CON.
; T2CON.
; T2CON.
; T2CON.
; T2CON.
; T2CON.
; T2CON.
; T2CON. 7 -

OO WNEO
1

CAPTURE OR RELOAD SELECT

TI MER OR COUNTER SELECT
TIMER 2 ON OFF CONTRCL

TI MER 2 EXTERNAL ENABLE FLAG
TRANSM T CLOCK SELECT

RECEI VE CLOCK SELECT
EXTERNAL TRANSI TI ON FLAG

TI MER 2 OVERFLOW FLAG

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhddhrrdrxdx*x

9-16

Met aLi nk

8051 Cr

oss Assenbl er User

Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x

for the 83Cl152/80C152

EGSRV BIT 0C8H ; 1EN1. 0 - GSC RECEI VE VALI D
EGSRE BIT 0COH ; 1EN1. 1 - GSC RECElI VE ERROR
EDVAO BIT 0CAH s 1EN1. 2 - DMA CHANNEL REQUEST O
EGSTV BIT 0CBH ;1EN1.3 - GSC TRANSM T VALI D
EDVAL BIT 0CCH ; 1EN1. 4 - DMA CHANNEL REQUEST 1
EGSTE BIT 0CDH ;1EN1. 5 - GSC TRANSM T ERROR

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhddhrddrxdx*x

for the 80512/80532

| ADC

BIT

0COH

; 1 RCON. 0

- A/ D CONVERTER | NTERRUPT REQ

khkhkkhkhkhhhhhhhhhhhhhhdhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

P

BIT

ODOH

; PSWO -

ACCUMULATOR PARI TY FLAG

khkkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhddrdrxdx*x

for the 83C552/80C552
F1 BIT OD1H y PSW1 - FLAG 1

khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x
khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

for the 80512/ 80532

F1 BIT OD1H y PSW1 - FLAG 1

MXO0 BIT OD8H ; ADCON. 0 - ANALOG I NPUT CH SELECT BIT O
MX1 BIT OD9H ; ADCON. 1 - ANALOG I NPUT CH SELECT BIT 1
MX2 BIT ODAH ; ADCON. 2 - ANALOG I NPUT CH SELECT BIT 2
ADM BIT ODBH ; ADCON. 3 - A/ D CONVERSI ON MCDE

BSY BIT ODCH ; ADCON. 4 - BUSY FLAG

BD BIT ODFH ; ADCON. 7 - BAUD RATE ENABLE

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhdhdhhhhhdhhhdhhhhhhdhhhdhhhddhdrdhrrdrxdx*x

ov BIT 0D2H ; PSW 2 - OVERFLOW FLAG

RSO BIT OD3H ; PSW3 - REG STER BANK SELECT 0O
RS1 BIT 0D4H ; PSW 4 - REGQ STER BANK SELECT 1
FO BIT OD5H PSW5 - FLAG 0O

AC BIT OD6H ; PSW6 - AUXI LI ARY CARRY FLAG
Cy BIT OD7H PSW7 - CARRY FLAG

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrddrxdx*x

for the 80C51FA/ 83C51FA(83C252/ 80C252)

CCFO BIT OD8H ; CCON. 0 - PCA MODULE O | NTERRUPT FLAG
CCF1 BIT OD9H ; CCON. 1 - PCA MODULE 1 | NTERRUPT FLAG
CCF2 BIT ODAH ; CCON. 2 - PCA MODULE 2 | NTERRUPT FLAG
CCF3 BIT ODBH ; CCON. 3 - PCA MODULE 3 | NTERRUPT FLAG
CCF4 BIT ODCH ; CCON. 4 - PCA MODULE 4 | NTERRUPT FLAG
CR BIT ODEH ; CCON. 6 - COUNTER RUN

CF BIT ODFH ; PCA COUNTER OVERFLOW FLAG

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhdhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhdddrxdx*x

for the RUPI-44

SER BIT OD8H ; NSNR. 0 - RECEI VE SEQUENCE ERROR

NRO BIT OD9H ; NSNR. 1 - RECEI VE SEQUENCE COUNTER-BIT O
NR1 BIT ODAH ; NSNR. 2 - RECEI VE SEQUENCE COUNTER-BIT 1
NR2 BIT ODBH ; NSNR. 3 - RECEI VE SEQUENCE COUNTER-BIT 2
SES BIT ODCH ; NSNR. 4 - SEND SEQUENCE ERROR

NSO BIT ODDH ; NSNR. 5 - SEND SEQUENCE COUNTER-BI T 0O
NS1 BIT ODEH ; NSNR. 6 - SEND SEQUENCE COUNTER-BIT 1
NS2 BIT ODFH ; NSNR. 7 - SEND SEQUENCE COUNTER-BI T 2

khkhkkhkhkhhhkhhhhhhhhhhhhhhhhhhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrhddhrrdrxdx*x

9-17

Met aLi nk 8051 Cross Assenbl er User Manual

khkhkkhkhkkhkdhhkdhhkdhhdhdhhkhkhhkdhhdhhdhdhhdhhkhkhhkdhhkdhdhdhhdhhokhkdhhkdhkddhddhddhdhkhkdhhkdhkddddddkh*xk*x*%

for the 80515/ 80535

MX0 BIT OD8H : ADCON. 0 - ANALOG I NPUT CH SELECT BIT 0

Mx1 BIT OD9H : ADCON. 1 - ANALOG I NPUT CH SELECT BIT 1

Mx2 BIT ODAH : ADCON. 2 - ANALOG I NPUT CH SELECT BIT 2

ADM BIT ODBH : ADCON. 3 - A/ D CONVERSI ON MODE

BSY BIT ODCH : ADCON. 4 - BUSY FLAG

CLK BIT ODEH : ADCON. 5 - SYSTEM CLOCK ENABLE

BD BIT ODFH : ADCON. 7 - BAUD RATE ENABLE

EIE I I I I I I I b I I I I b I b b I b I I I I I I I I I b I I I I I I I b I b R b I I I b I b I b b b b I I I

EIE I I I I I I I b I I I I b I b I b I b I I I I I I b I I b I I I I I I I I b I b S b I b e b I b I b I b b I I I b

for the 800652/ 83C652

CRO BIT OD8H :SICON. 0 - CLOCK RATE O

CR1 BIT OD9H :SICON. 1 - CLOCK RATE 1

AA BIT ODAH : SICON. 2 - ASSERT ACKNOW.EDGE

Sl BIT ODBH :SICON. 3 - SIOL | NTERRUPT BI T

STO BIT ODCH : SICON. 4 - STOP FLAG

STA BIT ODDH : SICON. 5 - START FLAG

ENS1 BIT ODEH : SICON. 6 - ENABLE SI OL

EIE I I I I I I I I I I I I I I b I I I I I I b I I b I b I I I b I I b I b b b b I I b I I b b b I I I I

EIE I I I I I I I I I I I I I I b I I I I I I b I I b I b I I I b I I b I b b b b I I b I I b b b I I I I

for the 83Cl152/80C152

DVA BIT OD8H : TSTAT. 0 - DMA SELECT

TEN BIT OD9H : TSTAT.1 - TRANSM T ENABLE

TENF BIT ODAH : TSTAT. 2 - TRANSM T FI FO NOT FULL

TDN BIT ODBH : TSTAT. 3 - TRANSM T DONE

TCDT BIT ODCH : TSTAT. 4 - TRANSM T COLLI SI ON DETECT

UR BIT ODDH : TSTAT. 5 - UNDERRUN

NOACK BIT ODEH : TSTAT. 6 - NO ACKNOW.EDGE

LN BIT ODFH : TSTAT.7 - LINE | DLE

HBAEN BIT OE8H : RSTAT. 0 - HARDWARE BASED ACKNOW.EDGE EN

GREN BIT OE9H : RSTAT. 1 - RECElI VER ENABLE

RFNE BIT OEAH : RSTAT. 2 - RECEI VER FI FO NOT EMPTY

RDN BIT OEBH : RSTAT. 3 - RECEI VER DONE

CRCE BIT OECH : RSTAT. 4 - CRC ERROR

AE BIT OEDH : RSTAT. 5 - ALI GNVENT ERROR

RCABT BIT OEEH : RSTAT. 6 - RCVR CCOLLI SI ONV ABORT DETECT

OoR BIT OEFH : RSTAT. 7 - OVERRUN

PGSRV BIT OF8H ;1 PN1. 0 - GSC RECEI VE VALID

PGSRE BIT OF9H ;1 PN1.1 - GSC RECElI VE ERROR

PDVAO BIT OFAH ;1 PN1. 2 - DVA CHANNEL REQUEST O

PGSTV BIT OFBH ;1 PN1.3 - GSC TRANSM T VALID

PDIVAL BIT OFCH ;1 PN1. 4 - DMA CHANNEL REQUEST 1

PGSTE BIT OFDH ;I PN1L.5 - GSC TRANSM T ERROR

EIE I I I I I b I I I I I b I b b I b I I I I I I I I I b I I b I I I I I I b I b R b b b b b I b I b I b b I I b

EIE I I I I I I I b I I I I b b b I b I I I I I I b I I b I I I I I I I I b I b R b b b b I b I b I b b I b I

for the 80C452/ 83C452

OFRS BIT OE8H ; SLCON. 0 - QUTPUT FI FO CH REQ SERVI CE

| FRS BIT OE9H ; SLCON. 1 - I NPUT FI FO CH REQ SERVI CE

FRz BIT OEBH : SLCON. 3 - ENABLE FI FO DMA FREEZE MODE

| ca BIT OECH :SLCON. 4 - GEN I NT WHEN | MVEDI ATE COMVAN
: QUT REA STER | S AVAI LABLE

1 C BIT OEDH :SLCON. 5 - GEN I NT WHEN A COWAND | S
:V\RI TTEN TO | MVEDI ATE COWAND | N REG

OFI BIT OEEH : SLCON. 6 - ENABLE QUTPUT FI FO | NTERRUPT

| FI BIT OEFH : SLCON. 7 - ENABLE | NPUT FI FO | NTERRUPT

EFI FO BIT OF8H :1EP.O0 - FIFO SLAVE BUS I/F I NT EN

PDIVAL BIT OF9H ;1EP.1 - DVA CHANNEL REQUEST 1

PDVAO BIT OFAH ; 1EP. 2 - DVA CHANNEL REQUEST 0

EDVAL BIT OFBH ;1 EP.3 - DVMA CHANNEL 1 | NTERRUPT ENABLE

9-18

Manual

Met aLi nk 8051 Cross Assenbl er User
EDVAO BIT OFCH ;1 EP. 4 - DVMA CHANNEL O | NTERRUPT ENABLE
PFI FO BIT OFDH :1EP.5 - FIFO SLAVE BUS I/F INT PRRORI TY

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdddhrxrdrxdx*x

khkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhdhhhhhhdhhhdhhhdhhhdhhhdhdhddhddhrrdrxdx*x

for the 80C451/83C451

| BF BIT OE8H ; CSR. 0 - | NPUT BUFFER FULL

OBF BIT OE9H ; CSR 1 - QUTPUT BUFFER FULL

| DSM BIT OEAH ; CSR. 2 - | NPUT DATA STROBE

OGBFC BIT OEBH ; CSR. 3 - QUTPUT BUFFER FLAG CLEAR
MAO BIT OECH ; CSR. 4 - AFLAG MODE SELECT

MAL BIT OEDH y CSR 5 - AFLAG MODE SELECT

MBO BIT OEEH ; CSR. 6 - BFLAG MODE SELECT

MB1 BIT OEFH ; CSR 7 - BFLAG MODE SELECT

khkhkkhkhkhhhkhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhdddhrddrxdx*x
khkkhkkhkhkhhhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhddhhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrddrxdx*x

for the 83Cr51/83Cr52

CTo Bl T(READ) OD8H 7 12CFG 0 - CLOCK TIMNG 0

CT1 Bl T(READ) OD9H ;12CFG1 - CLOCK TIMNG 1

T1IRUN Bl T(READ) ODCH ;12CFG 4 - START/ STOP TIMER 1
MASTRQ Bl T(READ) ODEH ;12CFG 6 - MASTER | 2C

SLAVEN Bl T(READ) ODFH ; 12CFG 7 - SLAVE | 2C

CT10 Bl T(WRI TE) OD8H ;12CFG. 0 - CLOCK TIMNG 0

CT1 Bl T(WRI TE) OD9H ;12CFG 1 - CLOCK TIMNG 1

TI RUN Bl T(\WRI TE) ODCH ;12CFG 4 - START/ STOP TIMER 1
CLRTI Bl T(\WRI TE) ODDH ;12CFG 5 - CLEAR TIMER 1 | NTERRUPT FLAG
MASTRQ Bl T(WRI TE) ODEH ;12CFG. 6 - MASTER | 2C

SLAVEN Bl T(\WRI TE) ODFH ; 12CFG 7 - SLAVE |2C

RSTP Bl T(READ) OF8H ; 12STA.0 - XM T STOP CONDI TI ON
RSTR Bl T(READ) OF9H 7 12STA.1 - XM T REPEAT STCP COND.
MAKSTP Bl T(READ) OFAH ; 12STA. 2 - STOP CONDI TI ON

MAKSTR Bl T(READ) OFBH ; 1 2STA. 3 - START CONDI Tl ON

XACTV Bl T(READ) OFCH ;12STA.4 - XM T ACTI VE

XDATA Bl T(READ) OFDH ; 12STA.5 - CONTENT OF XM T BUFFER
RI DLE Bl T(READ) OFEH ;1 2STA. 6 - SLAVE | DLE FLAG

hkhkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhhhhdhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhdrdhdddhrddrxdx*x
khkhkkhkhkhhhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhhhdhhhdhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhdddrxdx*x

for the 83C552/80C552

CRO BIT OD8H ; SICON. 0 - CLOCK RATE O

CR1 BIT OD9H ; SICON. 1 - CLOCK RATE 1

AA BIT ODAH ; SICON. 2 - ASSERT ACKNOW.EDGE

Sl BIT ODBH ; SICON. 3 - SERIAL 1/ O | NTERRUPT
STO BIT ODCH ; SICON. 4 - STOP FLAG

STA BIT ODDH ; SICON. 5 - START FLAG

ENS1 BIT ODEH ; SICON. 6 - ENABLE SERIAL 1/0O
ECTO BIT OE8H ; 1EN1. 0 - ENABLE T2 CAPTURE O
ECT1 BIT OE9H ; 1EN1. 1 - ENABLE T2 CAPTURE 1
ECT2 BIT OEAH ; 1EN1. 2 - ENABLE T2 CAPTURE 2
ECT3 BIT OEBH ; 1EN1. 3 - ENABLE T2 CAPTURE 3
ECMD BIT OECH ; 1EN1. 4 - ENABLE T2 COVPARATOR O
ECML BIT OEDH ; 1EN1. 5 - ENABLE T2 COVPARATOR 1
EC\VR BIT OEEH ; 1EN1. 6 - ENABLE T2 COVPARATOR 2
ET2 BIT OEFH ; 1EN1. 7 - ENABLE T2 OVERFLOW
PCTO BIT OF8H ;1 PL.O0 - T2 CAPTURE REG STER O
PCT1 BIT OF9H ;1 PL.1 - T2 CAPTURE REGQ STER 1
PCT2 BIT OFAH ;1 PL.2 - T2 CAPTURE REGQ STER 2
PCT3 BIT OFBH ;1 PL.3 - T2 CAPTURE REG STER 3
PCVD BIT OFCH ;1 PL.4 - T2 COVMPARATCR 0O

PCML BIT OFDH ;1 PL.5 - T2 COMPARATOR 1

PC\VR BIT OFEH ;1 PL.6 - T2 COMPARATOR 2

PT2 BIT OFFH ;1 PL.7 - T2 OVERFLOW

9-19

Met aLi nk

8051 Cross Assenbl er User

Manual

hkhkkhkkhkhkhhhhhhhhhkhhhhhhhhhhhdhhhdhhhdhdhhhhhhhhhdhhhdhhhhhhdhhhdhhhddhddhrrdrxdx*x

hkhkhkkhkhkhhhhhhhhhhhhhhhhhhhhdhhhdhhhdhdhhhhhhdhhhdhhhdhhhdhhhdhhhdhhhdddhdddhrddrxdx*x

for the 80C517/80C537

F1
MXO0
MX1
MX2
ADM
BSY
CLK
BD

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

OD1H
OD8H
OD9H
ODAH
ODBH
ODCH
ODEH
ODFH

; PSW 1

O~ wNEFO
1

FLAG 1

LT

khkhkkhkhkhhkhhhhkhhhhhhhhhhhhhhdhhhdhhhdhdhhddhdhhdhhhdhhhdhhhhhhdhhhdhhhdrhddhrddrxdx*x

ANALCG | NPUT CH SELECT BIT O
ANALCG | NPUT CH SELECT BIT 1
ANALCG | NPUT CH SELECT BIT 2
A/ D CONVERSI ON MODE

BUSY FLAG

SYSTEM CLOCK ENABLE

BAUD RATE ENABLE

khkhkkhkhkhhhhhhhhhhhhhhdhhhhhhdhhhdhhhdhdhhhdhdhhdhhhdhhhdhhhdhhhdhhhdhhhddhddhrrdrxdx*x

for the 80Cl154/83Cl54

ALF
P1F
P2F
P3F
| ZC
SERR
T32
WDT

BIT
BIT
BIT
BIT
BIT
BIT
BIT
BIT

OF8H
OF9H
OFAH
OFBH
OFCH
OFDH
OFEH
OFFH

; 1 OCON.
; 1 OCON.

| OCON.
; 1 OCON.
; 1 OCON.
; 1 OCON.
; 1 OCON.
; 1 OCON.

~NO O~ WNEO

CPU PONER DOWN MCDE CONTROL
PORT 1 H GH | MPEDANCE

PORT 2 H GH | MPEDANCE

PORT 3 H GH | MPEDANCE

10K TO 100 K OHM SW TCH (P1-3)
SERI AL PORT RCV ERROR FLAG

32 BIT TI MER SWTCH

WATCHDOG TI MER CONTRCL

khkhkkhkhkhhkhkhhhhhhhhhhhhhhhhhdhhhdhhhdhdhdhddhhddhhhdhhhdhhhdhhhdhhhdhhhdrhdrdhrddrxdx*x

9- 20

Met aLi nk 8051 Cross Assenbl er User Manual
APPENDI X C - RESERVED SYMBOLS
The following is a list of reserved synbols used by the Cross Assenbler. These

synbol s cannot

be redefi ned.

AR4
BIT
CINE
CSEG
DBIT
DPTR
END

| SEG
JwP
Jz
LOW
MovVC

R4
RET

SHL
SWAP
XDATA

BSEG
CLR
DA
DEC

EQ

HI GH
JB
INB
LCALL
LT

PC

R5
RETI

SHR
USI NG
XOR

ACALL
AND

C

DATA
DIV
DSEG
EQU

| DATA
JBC
JNC
LE

MUL

PCP

SET
SIwP
XCH
XRL

LIMP

PUSH

R7
RLC
SETB
SUBB
XCHD
XSEG

9-21

Met aLi nk

8051 Cross Assenbl er

User

Manual

APPENDI X D -

CROSS ASSEMBLER CHARACTER SET

CHARACTER NAME PRI NTABLE ASCI | CCDE
FORM
HEX DECI MAL
Hori zontal Tab 09 9
Li ne Feed 0A 10
Carriage Return 0D 13
Space 20 32
Excl amati on Poi nt ! 21 33
Pound Si gn # 23 35
Dol l ar Sign $ 24 36
Percent Sign % 25 37
Amper sand & 26 38
Apost rophe ' 27 39
Left Parenthesis (28 40
Ri ght Parent hesi s) 29 41
Ast eri sk * 2A 42
Pl us sign + 2B 43
Conma , 2C 44
Hyphen - 2D 45
Peri od . 2E 46
Sl ash / 2F 47
Nurmber O 0 30 48
" 1 1 31 49
" 2 2 32 50
" 3 3 33 51
" 4 4 34 52
" 5 5 35 53
" 6 6 36 54
" 7 7 37 55
" 8 8 38 56
" 9 9 39 57
Col on : 3A 58
Semi - col on ; 3B 59
Left Angl e Bracket < 3C 60
Equal Sign = 3D 61
Ri ght Angl e Bracket > 3E 62
Question Mark ? 3F 63
At Sign @ 40 64
Upper Case A A 41 65
" " B B 42 66
" " C C 43 67
" " D D 44 68
" " E E 45 69
" " F F 46 70
" " G G 47 71
)) H H 48 72

9-22

Met aLi nk

8051 Cross Assenbl er

User

Manual

CHARACTER NANE PRI NTABLE ASCl | CODE
FORM
HEX DECI MAL

Upper Case | I 49 73
" " J J 4A 74
" " K K 4B 75
" " L L 4C 76
" " M M 4D 77
" " N N 4E 78
" " O O 4F 79
" " P P 50 80
" " Q Q 51 81
" " R R 52 82
" " S S 53 83
" " T T 54 84
" " U U 55 85
" " \% \% 56 86
" " W W 57 87
" " X X 58 88
" " Y Y 59 89
" " 4 4 5A 90
Under score _ 5F 95
Lower Case A a 61 97
" " B b 62 98
" " C c 63 99
" " D d 64 100
" " E e 65 101
" " F f 66 102
" " G g 67 103
" " H h 68 104
" " I I 69 105
" " J j 6A 106
" " K k 6B 107
" " L I 6C 108
" " M m 6D 109
" " N n 6E 110
" " O 0 6F 111
" " P p 70 112
" " Q a 71 113
" " R r 72 114
" " S S 73 115
" " T t 74 116
" " U u 75 117
" " \% \Y 76 118
" " W w 77 119
" " X X 78 120
" " Y y 79 121
" " Z z 7A 122

9-23

Met aLi nk

8051 Cross Assenbl er

User

Manual

ASCI| Literals, 2-5

Assenbl er
Comments, 2-5
Control Description ($), 6-1
Controls, 2-2
Directives, 2-3
Error codes/ messages, 8-1
Label s, 2-2
Location Counter, 2-5
Nunbers, 2-6
Qperators, 2-6
Running it, 3-1
Synbol s, 2-1
Syntax Summary, 2-5

Bit Addressing, 2-4
Conpl ermenti ng, 2-4

Carry Flag, 1-2

Character Set, 1

Comments, 2-5

Control Desciption ($), 6-1
DATE, 6-1
DEBUG, 6-1
EJECT, 6-2
| NCLUDE, 6-2
LI ST, 6-2
MOD154, 6-3
MOD252, 6-3
MOD44, 6-3
MOD451, 6-3
MOD452, 6-3
MOD51, 6-3
MOD512, 6-3
MOD515, 6-3
MOD517, 6-3
MOD52, 6-3
MOD521, 6-
MOD552,
MOD652,
MOD751,
MOD752,
MOD851, 6-
NODEBUG, 6-1
NOLI ST, 6-2
NOVOD, 6-3
NOCBJECT, 6-4
NOPAG NG, 6-4
NOPRI NT, 6-5
NOSYMBCLS, 6-6
OBJECT, 6-4
PACELENGTH, 6-5
PACEW DTH, 6-5
PAG NG 6-4
PRI NT, 6-5
SYMBOLS, 6-6
TITLES, 6-6

Control s

(eNe)NerNer)Nerie))
WWwWwwww

I NDEX

Descri pti on,

I nt roducti on,

Directive

6-1
2-2, 6-1

Assenmbl er, 2-3

Condi ti onal

I ntroducti on,
Menory Reservati on,
M scel | aneous,
Segnent Sel ecti on,

Storage, 5-4

Synbol, 5-1
Directives
BIT, 5-2
BSEG 5-3
CCODE, 5-2
CSEG, 5-3
DATA, 5-2
DB, 5-5
DBIT, 5-4
DS, 5-4
DSEG 5-3
DW 5-5
ELSE, 5-7
END, 5-7
ENDI F, 5-7
EQU, 5-1
| DATA, 5-3
IF, 5-7
| SEG 5-3
ORG, 5-6
SET, 5-1
USI NG 5-6
XDATA, 5-3
XSEG, 5-3
Error Codes

ERROR #1, 8-2

ERROR #10,
ERROR #11,
ERROR #12,
ERROR #13,
ERROR #14,
ERROR #15,
ERROR #16,
ERROR #17,
ERROR #18,

ERROR #2, 8-2

ERROR #20,
ERROR #21,
ERROR #22,
ERROR #23,
ERROR #24,
ERROR #25,
ERROR #26,
ERROR #27,
ERROR #28,
ERROR #29,

00 00 00 00 00 0O OO0 OO0 O

00 00 00 00 00 00 0O OO0 OO0 OO

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
WWWWWwwwww

AR RADMPLOW

Assenbl y,

5-1

5-5

®
N

9-24

Met aLi nk

8051 Cross Assenbl er

User

ERROR #3, 8-2

ERROR #31, 8-4
ERROR #32, 8-4
ERROR #33, 8-4
ERROR #34, 8-4
ERROR #35, 8-4
ERROR #36, 8-4
ERROR #37, 8-5
ERROR #38, 8-5
ERROR #39, 8-5
ERROR #4, 8-2

ERROR #40, 8-5
ERROR #41, 8-5
ERROR #42, 8-5
ERROR #43, 8-5
ERROR #44, 8-5
ERROR #45, 8-5
ERROR #46, 8-5
ERROR #47, 8-6
ERROR #48, 8-6
ERROR #49, 8-6

ERROR #5, 8-2

ERROR #50, 8-6

ERROR #6, 8-

ERROR #7,

ERROR #8,

ERROR #9, 8-

Expl ai nation, 8-2

I ntroduction, 8-1

Nunerical Listing, 8-2
Error Codes/ Messages, 8-1

0 00
NNN

Executi ng
Assembler, 3-1
Assenbl er Exanple, 3-2
File
ASMb1 Cross Assenbl er D skette,
Intel HEX 2-9
oj ect, 2-9

Source listing, 2-8
Source Listing Sanple, 8-3
Har dwar e
Requi renents, 3-1
I nstruction Set
Assenbly | anguage form 4-2
Byte Length, 4-3
Cyl ce Count, 4-3
Dest/ Sour ce ADDR Mbde, 4-2
Ceneric
CALL, 2-4
JMP, 2-4
HEX Opcode, 4-3
Mhemoni c, 2-3, 4-1
Not ation, 4-1
Qper ands, 2-4
Qperation, 4-1
Program Status Wrd (PSW,
Summary, 4-3
I ntroduction
Controls, 6-1
Cross Assenbler, 2-1

4-3

3-1

Directives, 5-1
Macro Processor, 7-1
Label s, 2-2
Li sting
Include file nesting, 2-8
Li ne nunbers, 2-8
Macro nesting, 2-8
Source file, 2-8
Location Counter, 2-5
Macr o
Definition, 7-1
Label s, 7-4
Nesting, 7-3
Speci al COperators, 7-3
Using, 7-3
Macro Processor
I ntroduction, 7-1
M crocontrol l er MCS-51
Architecture, 1-1
Background, 1-1
Menmory Space
Bit, 1-2
External Data, 1-2
Internal Data, 1-2
Program 1-2
Speci al Function Reg (SFR), 1-2
Supported, 1-3
Mhenoni cs
MCS-51, 2-3
Not ati on, 4-1
Summary, 4-3
Nunbers, 2-6
hject File
Absol ute hj ect
Intel HEX, 2-9
Qperators, 2-6
Fal se return value, 2-7
Precedence, 2-7
True return value, 2-7
Overvi ew
Cross Assenbler, 2-1
Synbol s, 2-1
Program Sanple, 8-1
Radi x
Bi nary, 2-6
Decimal, 2-6
Hexadeci nal, 2-6
Cctal, 2-6
Reserved Synbols, 2-1
Sanpl e Program 8-1
Synbol s
Directive Definition, 5-1
Label s, 2-2
Overview, 2-1
Reserved, 2-1
Reserved List, 1
Synt ax
Comments (, 2-5
Bit Addressing (.), 2-4
Bit Conplenenting (/), 2-4

Modul e, 6-1

Manual

Met aLi nk 8051 Cross Assenbl er User Manual

| mredi ate Operand (#), 2-4 Syntax Sunmmary, 2-5
I ndirect Addressing Mbde (@, 2-4 System
Qper ands, 2-4 DOS Hints, 3-3

9- 26

