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PREFACE TO
THE INSTRUCTOR

It is a curious fact that people who write thousand-page textbooks still seem to
find it necessary to write prefaces to explain their purposes. Enough is enough,
one would think. However, every textbook—and this one is no exception—is
both an expression of dissatisfaction with existing books and a statement by the
author of what he thinks such a book ought to contain, and a preface offers one
last chance to be heard and understood. Furthermore, anyone who adds to the
glut of introductory calculus books should be called upon to justify his action (or
perhaps apologize for it) to his colleagues in the mathematics community.

I borrow this phrase from my old friend Paul Halmos as a handy label for the THE CALCULUS
noise and confusion that have agitated the calculus community for the past dozen TURMOIL
years or so. Regardless of one’s attitude toward these debates and manifestoes,
it seems reasonably clear that two opinions lie at the center of it all: first, too
many students fail calculus; and second, our calculus textbooks are so bad that
it's natural for these students to fail.

About the books, I completely—or almost completely—disagree. By and
large, our calculus textbooks are written by excellent teachers who love their sub-
ject and write clear expository English. Naturally, each author has a personal
agenda, and this is what separates their books from one another and provides di-
versity and choice for a healthy marketplace. Some writers prefer to emphasize
the theoretical parts of calculus. Others are technology buffs. Yet others (like my-
self ) want a modest amount of biography and history, and believe that interest-
ing and substantial applications from other parts of mathematics and other sci-
ences are highly desirable.

But let there be no misunderstanding: textbooks are servants of teachers, and
not their masters. Any group of ten calculus teachers gathered together in a room
will have ten very different views of what should be in their courses and how it
should be taught. They will differ on the proper amount of theory; on how much
numerical calculation is desirable; on whether or not to make regular use of graph-
ing calculators or computer software; on whether some of the more elaborate ap-
plications to science are too difficult; on whether biography and history are in-
teresting or boring for their students; and so on. But the bottom line is that only
the teachers themselves are in a position to decide what goes on in their own
classrooms—and certainly not textbook writers who are completely ignorant of
local conditions.

XVI
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Those of us who write these books try to provide everything we can think of
that a teacher might want or need, in full awareness that some parts of what we
offer have no place in the course plans of many teachers. Every teacher omits
some sections (and even some chapters) and amplifies others, in accordance with
individual judgment and personal taste. It is my hope that this book will be use-
ful and agréeable for many diverse tastes and interests. [ want it to be a conve-
nient tool for teachers that offers help when help is wanted, and gets out of the
way when it is not wanted.

As for the fact that too many of our students fail—if indeed it is a fact—what
are the reasons for this? To understand these reasons, let us consider for a mo-
ment what is needed for success in calculus. There are clearly three main re-
quirements: a decent background in high school algebra and geometry, some of
which is remembered and understood; the ability to read closely and carefully;
and tenacity of purpose.

In the matter of preparation in algebra and geometry, our students are in deep
trouble. This is suggested by the fact that a few years ago the United States ranked
last among the thirteen industrialized nations for the mathematics achievement
of its high school graduates. As for reading skills and tenacity of purpose, some
of our young people have these qualities, but the great majority do not. Unfor-
tunately, tenacity of purpose is especially important for genuine success in cal-
culus, because this is a subject in which almost every stage depends on having
areasonable command of all that went before, and which therefore requires steady
application day after day, week after week, for many months.

We know from our own experience as teachers that calculus is very difficult
for most students, and we fully understand the reasons why this is so. But im-
proving our high school mathematics education, and arresting the decline of se-
rious reading and instilling tenacity of purpose among the majority of our young
people, are only remote possibilities. Obviously help from outside is not com-
ing, so we must look within ourselves for better ways of doing our jobs.

Most of these ways are familiar to us. Regular class meetings over periods of
many months, with frequent quizzes, are intended to encourage steady applica-
tion to the task of learning. We praise (whenever possible), plead, cajole, and
warn. We constantly review the elementary mathematics our students either never
learned or have forgotten. We do today’s homework problems for them in class,
continually thinking out loud and welcoming questions, in the hope that some of
the useful ways of thought will rub off to smooth the path for their efforts on to-
morrow's homework. However, there is one big thing we can do but rarely do.

Most calculus courses concentrate on the technical details, on developing in
students the ability to differentiate and integrate lots of functions. We turn out
many students who can perform these somewhat routine tasks. However, if we
regularly pause to ask these successful differentiators and integrators just what
derivatives and integrals actually are, and what they are for, we rarely get a sat-
isfactory answer— by which I mean an answer that reveals genuine understand-
ing on the part of the student. Many can give the standard limit definitions, but
we should expect more than parroted formal definitions. I believe we ought to
do a better job of conveying a solid sense of what calculus is really about, what
its purpose is, why we need the elaborate machinery of methods for computing
derivatives and integrals, and why the Fundamental Theorem of Calculus is truly
“fundamental.” In a word, we need to communicate what calculus is for. More
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generally, we ought to do more toward encouraging students to learn why things
are true, rather than merely memorizing ways of solving a few problems to pass
examinations. It is clear to us, but not to them, that the only way to learn calcu-
lus is to understand it—it is much too massive and complex for mere memoriz-
ing to be more than a temporary stopgap—and we have an obligation to help
students get this message.

If we can give more attention to these matters, we have a good chance of mak-
ing calculus less frightening and more relevant for many more students than we have
in the past. One of the main purposes of this book is to help us move our teach-
ing in this direction, to convey more light to our students—and less mystery.

1. Early Trig. In the First Edition, I thought it preferable to place trigonometry
just before methods of integration. I still agree with myself, but most users think
otherwise. I have therefore inserted an account of sines and cosines in Chapter 1,
with the calculus of these functions at appropriate places in the following chap-
ters. Since a solid command of trigonometry is so essential for methods of inte-
gration, a full review is still given just before the chapter on these methods (Chap-
ter 10).

2. Homework Problems. I have added many new problems, mostly of the
routine drill type, raising the total to well over 7,000. This is an increase of more
than 15 percent and provides about four times as many as most instructors will
want to use for their class assignments.

3. Chapter Summaries. It seems to help students in their efforts to review
and pull things together if they have the ideas and methods of each chapter boiled
down to a few pregnant phrases. I have tried to provide this assistance in the sum-
maries at the ends of the chapters.

4. Appendices. The first edition had several massive appendices totaling hun-
dreds of pages and containing enrichment material that I thought was so inter-
esting that others would be interested, too. Many were, but I failed to realize that
students barely keeping their heads above water in the regular work of the course
would take a dim view of any unnecessary burdens. The first two of these long
appendices were a collection of material that [ thought of as “miscellaneous fun
stuff,” and a biographical history of calculus. These have been removed, aug-
mented, and published separately in a little paperback book called Calculus Gems:
Brief Lives and Memorable Mathematics (McGraw-Hill, 1992). However, I have
retained some of this material in greatly abbreviated form and placed it in un-
obtrusive locations throughout the present book.

5. Theory. The third of the long appendices in the first edition was on the the-
ory of calculus. I have retained this appendix with a few additions because many
colleges and universities offer honors sections that use this material to provide
greater theoretical depth than is appropriate for regular sections. Most instruc-
tors seem to agree with me in my desire to avoid cluttering our regular courses
with any more theory than is absolutely necessary. This approach says: Do not
try to prove what no one doubts. However, a number of people have asked me
to expand my very condensed discussion of limits and continuous functions and
also to give an informal descriptive treatment of the Mean Value Theorem, point-
ing out its practical uses as they arise. This new material can be found at the end
of Chapter 2.

CHANGES FROM THE
FIRST EDITION
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6. Infinite Series. My idea for handling this subject in the first edition was
not a good one. Most students moving from the first chapter of informal overview
into the second of detailed systematic treatment were impatient because they
thought they were wasting their time by studying the same concepts all over
again. I have therefore completely reorganized these two chapters into a tradi-
tional treatment, with series of constants developed first, and then power series.

7. Vector Analysis. In the first edition I closed my discussion of vector analy-
sis with Green's Theorem. However, there seems to be general agreement these
days that multivariable calculus should go a bit further, and include Gauss’s The-
orem (the divergence theorem) and Stokes’ Theorem. I have rewritten Chapter
21 accordingly.

8. The Workman Logo. I thought it would be useful for students if there were
some way to signal passages in the text that always cause trouble, because most
students are not accustomed to the very slow and careful reading these passages
require. The logo I chose for this purpose is copied from a European road sign:

B

It suggests that hard work is necessary to get through the adjoining passage. |
have tried to use it sparingly.

9. Simplify, Simplify! When writing this book the first time, 1 thought I was
aiming at the middle of my target, but many users thought I aimed too high. Dur-
ing the preparation of this revision, I kept a poster with these words on it directly
in my line of sight as I sat at my work, and of course I looked at this message
thousands of times. I hope it worked.

These marvelous tools are great fun to use and can make many contributions to
the teaching and learning of calculus. But like all tools they should be used wisely,
and this means very different things to different people. A scythe can harvest
grain or cut off a foot, depending on the skill and judgment of the user.

Some of those in the calculus reform movement believe that the role of num-
bers and numerical computations should be greatly increased to reach a parity
with symbolic (algebraic) and geometric ways of thinking. But I believe we should
stop far short of this. In my opinion, there are five subject areas of calculus in
which calculators are clearly of great value:

graphing;

calculation of limits;
Newton’s method;
numerical integration;

computations using Taylor’s formula.

In the last four of these areas, our calculators do heavy computational labor for
us, and we are all grateful. But there are dangers, and one of these is an increasing
tendency to replace mathematical thinking and learning by button-pushing.
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The most surprising examples of this that I've seen involve teachers whose stu-
dents use graphing calculators—instead of factoring or the quadratic formula—
to solve quadratic equations as simple as x> — 2x — 3 = (. The procedure is to
“plot” the function y = x> — 2x — 3 on the calculator by pushing suitable buttons
and then look at the graph the calculator produces to see where it crosses the
x-axis. These students are enthusiastic about their calculators and enjoy experi-
menting with them, and I applaud the teachers who take advantage of this natural
interest. But unfortunately, in many cases these students do not know how to sketch
simple graphs, or how to factor or use the quadratic formula, and are not learning
these basic methods of elementary algebra. More generally, sketching the graphs
of functions by thinking is a fundamental part of learning mathematics. Let us use
calculators in our classes to supplement this thinking—but not to replace it. Let
us remember that the action that matters takes place in the mind of the student.

These wonderful graphing calculators are superb instruments when used in the
right way. It is sobering to reflect that Leibniz himself would perhaps have given
a year of his life to possess one— Leibniz who not only (along with Newton)
created calculus, but also invented the first calculating machine that could mul-
tiply and divide as well as add and subtract.

The many problems in this book that require the use of a calculator are sig-
naled by the standard symbol =]

This book is intended to be a mainstream calculus text that is suitable for every
kind of course at every level. It is designed particularly for the standard course
of three semesters for students of science, engineering, or mathematics. Students
are expected to have a background of high school algebra and geometry, and
hopefully, some trigonometry as well.

The text itself —that is, the 21 chapters without considering Appendix A—is
traditional in subject matter and organization. I have placed great emphasis on
motivation and intuitive understanding, and the refinements of theory are down-
played. Most students are impatient with the theory of the subject, and justifi-
ably so, because the essence of calculus does not lie in theorems and how to
prove them, but rather in tools and how to use them. My overriding purpose has
been to present calculus as a problem-solving art of immense power that is in-
dispensable in all the quantitative sciences. Naturally, I wish to convince students
that the standard tools of calculus are reasonable and legitimate, but not at the
expense of turning the subject into a stuffy logical discipline dominated by ex-
tra-careful definitions, formal statements of theorems, and meticulous proofs. It
is my hope that every mathematical explanation in these chapters will seem to
the thoughtful student to be as natural and inevitable as the fact that water flows
downhill (rather than uphill) along a canyon floor. The main theme of our work
is what calculus is good for—what it enables us to do and understand—and not
what its logical nature is as seen from the specialized (and limited ) point of view
of the modern pure mathematician.

There are several additional features of the book that it might be useful for me
to comment on.

Precalculus Material Because of the great amount of calculus that must be cov-
ered, it is desirable to get off to a fast start and introduce the derivative quickly,

THE PURPOSE
OF THIS BOOK



THE FAR SIDE By GARY LARSON

e e

THE FAR SIDE ©1987 FARWORKS,

INC./Dist. by UNIVERSAL PRESS
SYNDICATE. Reprinted with permis-
sion. All rights reserved.

PREFACE TO THE INSTRUCTOR XxI

and to spend as little time as possible reviewing precalculus material. However,
college freshmen constitute a very diverse group, with widely different levels of
mathematical preparation. For this reason I have included a first chapter on pre-
calculus material, which I urge teachers to skim over as lightly as they think ad-
visable for their particular students. This chapter is written in enough detail so
that individual students who need to spend more time on the preliminaries should
be able to absorb most of it on their own with a little extra effort.”

Problems For students, the most important parts of their calculus book may well
be the problem sets, because this is where they spend most of their time and en-
ergy. There are more than 7,000 problems in this book, including many old stand-
bys familiar to all calculus teachers and dating back to the time of Euler and even
earlier. I have tried to repay my debt to the past by inventing new problems when-
ever possible. The problem sets are carefully constructed, beginning with routine
drill exercises and building up to more complex problems requiring higher lev-
els of thought and skill. The most challenging problems are marked with an as-
terisk (*). In general, each set contains approximately twice as many problems
as most teachers will want to assign for homework, so that a large number will
be left over for students to use as review material.

Most of the chapters conclude with long lists of additional problems. Many of
these are intended only to provide further scope and variety to the problems sets
at the ends of the sections. However, teachers and students alike should treat these
additional problems with special care, because a few are quite subtle and diffi-
cult and should be attacked only by students with ample reserves of drive and
tenacity.

I should also mention that there are several sections scattered throughout the
book with no corresponding problems at all. Sometimes these sections occur in
small groups and are merely convenient subdivisions of what I consider a single
topic and intend as a single assignment, as with Sections 6.1, 6.2, 6.3, and 6.4,
6.5. In other cases (e.g., Sections 15.5 and 19.4), the absence of problems is a
tacit suggestion that the subject matter of these sections should be touched upon
only lightly and briefly.

There are a great many so-called “story problems” spread through the entire
book. All teachers know that students shudder at these problems, because they
usually require nonroutine thinking. However, the usefulness of mathematics in
the various sciences demands that we try to teach our students how to penetrate
into the meaning of a story problem, how to judge what is relevant to it, and how
to translate it from words into sketches and equations. Without these skills—
which are equally valuable for students who will become doctors, lawyers, fi-
nancial analysts, or thinkers of any kind—there is no mathematics education
worthy of the name."

*A more complete exposition of high school ics that is still bly concise can be found
in my little book, Precalculus Mathematics in a Nutshell (Janson Publications, Dedham, MA, 1981),
119 pages.

*I cannot let the opportunity pass without quoting a classic story problem that appeared in The New
Yorker magazine many years ago. “You know those terrible arithmetic problems about how many
peaches some people buy. and so forth? Well, here's one we [ike, made up by a third-grader who was
asked to think up a problem similar to the ones in his book: “My father is forty-four years old. My
dog is eight. If my dog was a human being, he would be fifty-six years old. How old would my fa-
ther plus my dog be if they were both human beings?”
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Differential Equations and Vector Analysis Each of these subjects is an impor-
tant branch of mathematics in its own right. They should be taught in separate
courses, after calculus, with ample time to explore their distinctive methods and
applications. One of the main responsibilities of a calculus course is to prepare
the way for these more advanced subjects and take a few preliminary steps in
their direction, but just how far one should go is a debatable question. Some
writers on calculus try to include mini-courses on these subjects in large chap-
ters at the ends of their books. I disagree with this practice and believe that
few teachers make much use of these chapters. Instead, in the case of differen-
tial equations I prefer to introduce the subject as early as possible (Section 5.4)
and return to it in a low-key way whenever the opportunity arises (Sections 5.5,
7.7, 8.5, 9.6, 17.7, 19.9); and in vector analysis | have responded to review-
ers by including a discussion of Gauss’s Theorem and Stokes’ Theorem in
Chapter 21.

Appendix A One of the major ways in which this book is unique and different
from all its competitors can be understood by examining Appendix A, which I
will now comment on very briefly. Before doing so, | emphasize that this mate-
rial is entirely separate from the main text and can be carefully studied, dipped
into occasionally, or completely ignored, as each individual student or instructor
desires.

In the main text, the level of mathematical rigor rises and falls in accordance
with the nature of the subject under discussion. It is rather low in the geometri-
cal chapters, where for the most part I rely on common sense together with in-
tuition aided by illustrations; and it is rather high in the chapters on infinite se-
ries, where the substance of the subject cannot really be understood without
careful thought. I have constantly kept in mind the fact that most students have
very little interest in purely mathematical reasoning for its own sake, and I have
tried to prevent this type of material from intruding any more than is absolutely
necessary. Some students, however, have a natural taste for theory, and some in-
structors feel as a matter of principle that all students should be exposed to a cer-
tain amount of theory for the good of their souls. This appendix contains virtu-
ally all of the theoretical material that by any stretch of the imagination might
be considered appropriate for the study of calculus. From the purely mathemat-
ical point of view, it is possible for instructors to teach courses at many differ-
ent levels of sophistication by using—or not using— material selected from this
appendix.

Supplements The following supplements have been developed to accompany
this Second Edition of Calculus with Analytic Geometry.

A Student Solutions Manual is available for students and contains detailed so-
lutions to the odd-numbered problems. An Instructor’s Solutions Manual is avail-
able for instructors and contains detailed solutions to the even-numbered prob-
lems. Also available to instructors adopting the text are a Print Test Bank and an
algorithmic Computerized Test Bank.

There are a variety of texts available from McGraw-Hill that support the use
of specific graphing calculators and mathematical software programs for calcu-
lus. Please contact your local McGraw-Hill representative for more information
on these titles.
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As to the flaws and errors that undoubtedly remain—for there are always a
pesky few that manage to hide no matter how fervently we try to find them—
there is no one to blame but myself. I will consider it a great kindness if col-
leagues and student users will take the trouble to inform me of any blemishes
they detect, for correction in future printings and editions. As Confucius said, “A
man who makes a mistake and doesn’t correct it is making two mistakes.”

George F. Simmons



TO THE STUDENT

Appearances to the contrary, no writer deliberately sets out to produce an un-
readable book; we all do what we can and hope for the best. Naturally, I hope
that my language will be clear and helpful to students, and in the end only they
are qualified to judge. However, it would be a great advantage to all of us—
teachers and students alike—if student users of mathematics textbooks could
somehow be given a few hints on the art of reading mathematics, which is a very
different thing from reading novels or magazines or newspapers.

In high school mathematics courses, most students are accustomed to tackling
their homework problems first, out of impatience to have the whole burdensome
task over and done with as soon as possible. These students read the explana-
tions in the text only as a last resort, if at all. This is a grotesque reversal of rea-
sonable procedure, and makes about as much sense as trying to put on one’s
shoes before one’s socks. I suggest that students should read the text first, and
when this has been thoroughly assimilated, then and only then turn to the home-
work problems. After all, the purpose of these problems is to nail down the ideas
and methods described and illustrated in the text.

How should a student read the text in a book like this? Slowly and carefully,
and in full awareness that a great many details have been deliberately omitted.
If this book contained every detail of every discussion, it would be five times as
long, which God forbid! There is a saying of Voltaire: “The secret of being a
bore is to tell everything.” Every writer of a book of this kind tries to walk a nar-
row path between saying too much and saying too little.

The words “clearly,” “it is easy to see,” and similar expressions are not in-
tended to be taken literally, and should never be interpreted by any student as a
putdown on his or her abilities. These are code-phrases that have been used in
mathematical writing for hundreds of years. Their purpose is to give a signal to
the careful reader that in this particular place, the exposition is somewhat con-
densed, and perhaps a few details of calculations have been omitted. Any phrase
like this amounts to a friendly hint to the student that it might be a good idea to
read even more carefully and thoughtfully in order to fill in omissions in the ex-
position, or perhaps get out a piece of scratch paper to verify omitted details of
calculations. Or better yet, make full use of the margins of this book to empha-
size points, raise questions, perform little computations, and correct misprints.

George F. Simmons
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NUMBERS,
FUNCTIONS,
AND GRAPHS

Everyone knows that the world in which we live is dominated by motion and
change. The earth moves in its orbit around the sun; a rock thrown upward slows 1 . 1
and stops, and then falls back to earth with increasing speed; the population of
India grows each year at an increasing rate; and radioactive elements decay. These
are merely a few items in the endless array of phenomena for which mathemat-
ics is the most natural medium of communication and understanding. As Galileo
said more than 300 years ago, “The Great Book of Nature is written in math-
ematical symbols.”

Calculus is that branch of mathematics whose primary purpose is the study of
motion and change. It is an indispensable tool of thought in almost every field
of pure and applied science—in physics, chemistry, biology, astronomy, geol-
ogy, engineering, and even some of the social sciences. It also has many impor-
tant uses in other parts of mathematics, especially geometry. By any standard,
the methods and applications of calculus constitute one of the greatest intellec-
tual achievements of civilization, and to become acquainted with these ideas is
to open many doors that lead to a broader and richer life of the mind.

The main objects of study in calculus are functions. But what is a function?
Roughly speaking, it is a rule or law that tells us how one variable quantity de-
pends upon another. This is the master concept of the exact sciences. It offers us
the prospect of understanding and correlating natural phenomena by means of
mathematical machinery of great and sometimes mysterious power. The concept
of a function is so vitally important for all our work that we must strive to clar-
ify it beyond any possibility of confusion. This purpose is the theme of the
present chapter.

The following sections contain a good deal of material that many readers have
studied before. Some will welcome the opportunity to review and refresh their
ideas. Those who already understand this material and find it irksome to tread
the same path over again may discover some interesting sidelights and stimulat-
ing challenges among the Additional Problems at the end of the chapter. This
chapter is intended solely for purposes of review. It can be studied carefully, or
lightly, or even skipped altogether, depending on the reader’s level of prepara-
tion. The actual subject matter of this course begins in Chapter 2, and it would
be very unfortunate if even a single student should come to feel that this pre-
liminary chapter is more of an obstacle than a source of assistance—for its only
purpose is to smooth the way.

INTRODUCTION
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Most of the variable quantities we study—such as length, area, volume, posi-
tion, time, and velocity—are measured by means of real numbers, and in this
sense calculus is based on the real number system. It is true that there are other
important and useful number systems—for instance, the complex numbers. It is
also true that two- and three-dimensional treatments of position and velocity re-
quire the use of vectors. These ideas will be examined in due course, but for a
long time to come the only numbers we shall be working with are the real num-
bers.”

It is assumed in this book that students are familiar with the elementary alge-
bra of the real number system. Nevertheless, in this section we give a brief de-
scriptive survey that may be helpful. For our purposes this is sufficient, but any
reader who wishes to probe more deeply into the nature of real numbers will find
a more precise discussion in Appendix A.1 at the back of the book.

The real number system contains several types of numbers that deserve spe-
cial mention: the positive integers (or natural numbers)

1,2,3,4,5,...;
the integers
s sas — 0 <& =10 12 354 o3

and the rational numbers, which are those real numbers that can be represented
as fractions (or quotients of integers), such as

1 14,0, -5 387 2%

A real number that is not rational is said to be irrational; for example,
V2, V3, V2 + V3, V5 V5, and ™

are irrational numbers."

We take this opportunity to remind the reader that for any positive number a,
the symbol V@ always means its positive square root. Thus, V4 is equal to 2
and not —2, even though (—2)* = 4. If we wish to designate both square roots
of 4, we must write +V/4. Similarly, Va always means the positive nth root of
a.

THE REAL LINE

The use of the real numbers for measurement is reflected in the very convenient
custom of representing these numbers graphically by points on a horizontal
straight line (Fig. 1.1).

This representation begins with the choice of an arbitrary point as the origin
or zero point, and another arbitrary point to the right of it as the point 1. The dis-

*The adjective “real” was originally used to distinguish these numbers from numbers like V' —1,
which were once thought to be “unreal” or “imaginary.”

*Our aims in the present book are almost entirely practical. Nevertheless, our discussions often give
rise to certain “impractical” questions that some readers may find interesting and appealing. As an
example, how do we know that the number /2 is irrational? For readers with the time and inclina-
tion to pursue such questions —and also because we consider the answers to be worth knowing about
for their own sake—we offer food for further thought in a little paperback book entitled Calculus
Gems: Brief Lives and Memorable Mathematics (McGraw-Hill, 1992). Some of the facts about irra-
tional numbers, with proofs, are discussed in Section B.2 of this book.
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tance between these two points (the unit distance) then serves as a scale by means
of which we can assign a point on the line to every positive and negative inte-
ger, as illustrated in the figure, and also to every rational number. Notice that all
positive numbers lie to the right of 0, in the “positive direction,” and all negative
numbers lie to the left.” The method of assigning a point to a rational number is
shown in the figure for the number 7 = 23: the segment between 2 and 3 is sub-
divided by two points into three equal segments, and the first of these points is
labeled 25. This procedure of using equal subdivisions clearly serves to deter-
mine the point on the line which corresponds to any rational number whatever.
Furthermore, this correspondence between rational numbers and points can be
extended to irrational numbers; for the decimal expansion of an irrational num-
ber, such as

V2=1414..., V3=1732..., =w=3.14159.._,

can be interpreted as a set of instructions specifying the exact position of the cor-
responding point. For example, by looking at the expansion we see that the point
corresponding to V2 lies between 1 and 2, between 1.4 and 1.5, between 1.41
and 1.42, and so on, and these requirements uniquely determine the position of
the corresponding point.

‘We have described a one-to-one correspondence between all real numbers and
all points on the line which establishes these numbers as a coordinate system for
the line. This coordinatized line is called the real line. It is convenient and cus-
tomary to merge the logically distinct concepts of the real number system and
the real line, and we shall freely speak of points on the line as if they were num-
bers and of numbers as if they were points on the line. Thus, such mixed ex-
pressions as “irrational point” and *the segment between 2 and 3" are quite nat-
ural and will be used without further comment.

INEQUALITIES

The left-to-right linear succession of points on the real line corresponds to an im-
portant part of the algebra of the real number system, that dealing with inequal-
ities. These ideas play a larger role in calculus than in earlier mathematics courses,
so we briefly recall the essential points.

The geometric meaning of the inequality a << b (read “a is less than b") is sim-
ply that a lies to the left of b; the equivalent inequality b > a (“b is greater than
a”) means that b lies to the right of a. A number a is positive or negative ac-
cording as a > 0 or a < 0. The main rules used in working with inequalities are
the following:

*The arrowhead on the right end of the real line indicates the positive direction and nothing more.

Figure 1.1 The real line.
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1. Ifa>0andb < c, then ab < ac.
2. Ifa<O0and?b <c, then ab > ac.
3. Ifa<b,thena+ c<b + c for any number c.

Rules 1 and 2 are usually expressed by saying that an inequality is preserved on
multiplication by a positive number, and reversed on multiplication by a nega-
tive number; and rule 3 says that an inequality is preserved when any number
(positive or negative) is added to both sides. It is often desirable to replace an
inequality a > b by the equivalent inequality a — b > 0, with rule 3 being used
to establish the equivalence.

If we wish to say that a is positive or equal to 0, we write @ = 0 and read this
“a is greater than or equal to zero.” Similarly, @ = b means thata > bora = b.
Thus, 3 = 2 and 3 = 3 are both true inequalities.

We also recall that a product of two or more numbers is zero if and only if
one of its factors is zero. If none of its factors are zero, it is positive or negative
according as it has an even or an odd number of negative factors.

ABSOLUTE VALUES
The absolute value of a number a is denoted by |a| and defined by

= a ifa=0,
—a ifa<0.

For example, |3| = 3, |=2| = —(—2) = 2, and |0| = 0. It is clear that the opera-
tion of forming the absolute value leaves positive numbers unchanged and re-
places each negative number by the corresponding positive number. The main
properties of this operation are

lab| = |al|b] and la + b = |a| + |b].

In geometric language, the absolute value of a number a is simply the distance
from the point a to the origin. Similarly, the distance from a to b is |a — b).

To solve an equation such as |x + 2| =3, we can write it in the form
|x = (=2)| = 3 and think of it as saying that “the distance from x to —2 is 3.
With Fig. 1.1 in mind, it is evident that the solutions are x = 1 and x = —5. We
can also solve this equation by using the fact that |x + 2| = 3 means that x +
2 =3 or x + 2 = —3; the solutions are x = 1 and x = —35, as before.

INTERVALS

The sets of real numbers we shall be dealing with mosi frequently are intervals.
An interval is simply a segment on the real line. If its endpoints are the numbers
a and b, then the interval consists of all numbers that lie between a and b. How-
ever, we may or may not want to include the endpoints themselves as part of the
interval.

To be more precise, suppose that a and b are numbers, with a < b. The closed
interval from a to b, denoted by [a, b]—using brackets —includes its endpoints,
and therefore consists of all real numbers x such that a = x = b. Parentheses are
used to indicate excluded endpoints. The interval (a, b), with both endpoints
excluded, is called the open interval from a to b; it consists of all x such that
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a < x < b. Sometimes we wish to include only one endpoint in an interval. Thus,
the intervals denoted by [a, b) and (a, b] are defined by the inequalities a = x <
b and a < x = b, respectively. In each of these cases, any number ¢ such that
a < ¢ < b is called an interior point of the interval (Fig. 1.2).

Strictly speaking, the notations @ < x < b and [a, b] have different meanings
—the first represents a restriction imposed on x, while the second denotes a set
—but both designate the same interval. We will therefore consider them to be
equivalent and use them interchangeably, and the reader should become familiar
with both. However, the geometric meaning of the notation a = x = b is more
easily grasped by the eye, and for this reason we usually prefer it to the other.

A half-line is often considered to be an interval extending to infinity in one
direction. The symbol e (read “infinity™) is frequently used in designating such
an interval. Thus, for any real number a the intervals defined by the inequalities
a < x and x = a can be written as @ < x < co and —ee < x = a, or equivalently
as (a, =) and (—oe, a]. Remember, however, that the symbols = and —e- do not
denote real numbers; they are used in this manner only as a convenient way of
emphasizing that x is allowed to be arbitrarily large (in either the positive or neg-
ative direction). As an aid in keeping the notation clear in one’s mind, it may be
helpful to think of —ee and o as “fictitious numbers” located at the left and right
“ends” of the real line, as suggested in Fig. 1.3. Also, it is sometimes convenient
to think of the entire real line itself as an interval, —eo << x << o0 Or (—oo, o),

Sets of numbers described by means of inequalities and absolute values are
often intervals. It is clear, for instance, that the set of all x such that |x| <2 is
the interval =2 <x <2 or (-2, 2).

Example 1 Solve the inequality x> — 2 < x.

Solution To “solve” an inequality like this means to find all numbers x for which
the inequality is true. We begin by writing it as x> — x — 2 < 0, and then we
write it in the factored form

x+Dx—2)<0.

For this to be true, the two factors must have opposite signs: x + 1 > 0 and x —
2<0,orx+ 1<0andx — 2> 0. These conditions are equivalent to x > —1
and x < 2, or x < —1 and x > 2. The second pair of conditions is easily seen to
be impossible. The first pair of conditions means that x lies in the open interval
—1 < x < 2, and these x's constitute the solution of the given inequality.

THE COORDINATE PLANE

Just as real numbers are used as coordinates for points on a line, pairs of real
numbers can be used as coordinates for points in a plane. For this purpose we
establish a rectangular coordinate system in the plane, as follows.

Draw two perpendicular straight lines in the plane, one horizontal and the other
vertical, as shown in Fig. 1.4, These lines are called the x-axis and y-axis, re-
spectively, and their point of intersection is called the origin. Coordinates are as-
signed to these axes in the manner described earlier, with the origin as the zero
point on both and the same unit of distance measurement on both. The positive

Interior point
a € b
‘\ Endpoints
a b

Closed: @ =x <b or [a, b)

a b

Open: a<x<bor (a,b)
Figure 1.2 Intervals.

Figure 1.3



Figure 1.4 The coordinate plane or
xy-plane.
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2nd quadrant y-axis Ist quadrant
x<0,y>0 x>0,y>0
(-4, 3) 32/y
s - 1P=@
|
1 2 }
I |
I 1
| i '
i | "
1 L 1 i L 1 L L 1 15/_|_
-5 -4 -3 -2 -l 12 3 4 5 xaxis
|
Origin (0,00 —If I
|
A ————— 43, -2
_3 —
3rd quadrant 4th quadrant
x=0,y<0 x>0,y<0

x-axis is to the right of the origin and the negative x-axis to the left, as before;
and the positive y-axis is above the origin and the negative y-axis below.

Now consider a point P anywhere in the plane. Draw a line through P paral-
lel to the y-axis, and let x be the coordinate of the point where this line crosses
the x-axis. Similarly, draw a line through P parallel to the x-axis, and let y be the
coordinate of the point where this line crosses the y-axis. The numbers x and y
determined in this way are called the x-coordinate and y-coordinate of P. In re-
ferring to the coordinates of P, it is customary to write them as an ordered pair
(x, y) with the x-coordinate written first; we say that P has coordinates (x, y).”
This correspondence between P and its coordinates establishes a one-to-one cor-
respondence between all points in the plane and all ordered pairs of real num-
bers; for P determines its coordinates uniquely, and by reversing the process we
see that each ordered pair of real numbers uniquely determines a point P with
these numbers as its coordinates. As in the case of the real line, it is customary
to drop the distinction between a point and its coordinates, and to speak of “the
point (x, y)” instead of “the point with coordinates (x, y).” The coordinates x and
y of the point P are sometimes called the abscissa and ordinate of P. Notice par-
ticularly that points (x, 0) lie on the x-axis, that points (0, y) lie on the y-axis,
and that (0, 0) is the origin. Also, the axes divide the plane into four quadrants,
as shown in Fig. 1.4, and these quadrants are characterized as follows by the
signs of x and y: first quadrant, x > 0 and y > 0; second quadrant, x < O and y >
0; third quadrant, x < 0 and y < 0; fourth quadrant, x > 0 and y < 0.

When the plane is equipped with the coordinate system described here, it is
usually called the coordinate plane or the xy-plane.

THE DISTANCE FORMULA

Much of our work involves geometric ideas—right triangles, similar triangles,
circles, spheres, cones, etc.—and we assume that students have acquired a rea-
sonable grasp of elementary geometry from earlier mathematics courses. A ma-

*In practice, the use of the same notation for ordered pairs as for open intervals never leads to con-
fusion, because in any specific context it is always clear which is meant.
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k “ ‘. Figure 1.5 The Pythagorean theorem

b b a and a proof.

jor fact of particular importance is the Pythagorean theorem: In any right trian-
gle, the sum of the squares of the legs equals the square of the hypotenuse (Fig.
1.5). There are many proofs of this theorem, but the following is probably sim-
pler than most. Let the legs be a and b and the hypotenuse ¢, and arrange four
replicas of the triangle in the corners of a square of side @ + b, as shown on the
right in Fig. 1.5. Then the area of the large square equals 4 times the area of the
triangle plus the area of the small square; that is,

(a + b)? = 4(3ab) + %

This simplifies at once to a® + b? = ¢2, which is the Pythagorean theorem.

As the first of many applications of this fact, we obtain the formula for the
distance d between any two points in the coordinate plane. If the points are
Py = (x1, y1) and P> = (x3, y2), then the segment joining them is the hypotenuse

of a right triangle (Fig. 1.6) with legs |x; — x,| and |y, — y3|. By the Pythago- ¥
rean theorem, ; Py = (x5, ¥7)
2
d? = = x2 + [y —
=(x —x2)? + () — ¥ y

S0 - e

d=Vx —x)P+ (- nt m Lo
This is the distance formula.

£ X3 X

Example 2 The distance d between the points (—4, 3) and (3, —2) in Fig. 1.4 Figure 16

15

d=V(—4-32+ (3 +272=V74.

Notice that in applying formula (1) it does not matter in which order the points
are taken.

Example 3 Find the lengths of the sides of the triangle whose vertices are Py =
(_l| '_-3)! P2 = {5! _]-)l P3 = (_2v 10)
By (1), these lengths are

PPy = V(=1 -5+ (=3 + 1y = V40 = 2V10,
PPy = V(=1 +2P + (=3 - 1012 = V170,

PaPy = V(5 + 22 + (=1 — 10)2 = V170.

These calculations reveal that the triangle is isosceles, with P,P; and P,P; as the
equal sides.
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It is often useful to know the coordinates of the midpoint of the segment joining
two given distinct points. If the given points are Py = (xy, y;) and P> = (x3, v32),
and if P = (x, y) is the midpoint, then it is clear from Fig. 1.7 that x is the mid-
point of the projection of the segment on the x-axis, and similarly for y. This tells
us (examine the figure—and think!) that x = x; + +(x> — x;) and y = v, +

x= %(Jn + x3) and y= -;-{y, + ya).

¥y THE MIDPOINT FORMULAS
Py =(x3,¥3)
¥
P=(x,»)
¥
y Py = (xy, ¥1)
. 1 1 %U‘z —~ 35k 38
X X Xy X
Figure 1.7

8. Y5

(a, 0) x

Another way of obtaining these formulas is to notice from Fig. 1.7 that x — x; =
X3 — X, 50 2x = xj + X3 or x = 3(x; + x3), with the same argument applying to
v. Similarly, if P is a trisection point of the segment joining P, and P, its coor-
dinates can be found from the fact that x and y are trisection points of the cor-
responding segments on the x-axis and y-axis.

Example 4 In any triangle, the segment joining the midpoints of two sides is
parallel to the third side and half its length. We know this from elementary geom-
etry; but to prove it by our methods, we begin by noticing that the triangle can
always be placed in the position shown in Fig. 1.8, with its third side along the
positive x-axis and the left endpoint of this side at the origin. We then insert the
midpoints of the other two sides, as shown, and observe that since they have the
same y-coordinate, the segment joining them is parallel to the third side lying
on the x-axis. The length of this segment is simply the difference between the
x-coordinates of its endpoints,

atb
2

R

[S1E-

which is half the length of the third side.

This example illustrates the way in which coordinates can often be used to
give algebraic proofs of geometric theorems. The device employed here, of plac-
ing the figure in a convenient position relative to the coordinate system, has the
purpose of simplifying the algebra.

‘-..i—-?_

B

NOTE ON PYTHAGORAS

=—susa—- Who was this Pythagoras, whose name is
attached to the great theorem of geometry we have just been
using? And why should we care?

The pre-Socratic philosophers of ancient Greece —that is,
those who lived before the time of Socrates (4707-399 B.C.)
—were one of the most remarkable and influential groups
of people in human history. The best known of these was
Pythagoras of Samos (5807-500? B.C.), a mathematician,

scientist, and mystic whose ideas live on today as part of
the bone and flesh of our modern civilization.

Greek geometry was certainly one of the half-dozen
supreme intellectual achievements of all time. Pythagoras’
master Thales (6257-5477 B.C.) had created geometry as
the contemplation of abstract patterns of lines and figures
and constructed the first proofs of the first theorems. But
Pythagoras was the first person to see geometry as an orga-



I.%

-2 THE REAL LINE AND COORDINATE PLANE.

nized system of thought held together by deductive proof,
with one theorem depending on another in a tightly woven
fabric of logic. Also, tradition tells us that he himself dis-
covered many theorems, most notably, the fact that the sum
of the angles in any triangle equals two right angles, and the
famous Pythagorean theorem discussed above.

Pythagoras was born on the beautiful island of Samos, a
mileorm-oofftheAegeanooasmf'lhrkayandagoodday’s
walk along the shore from Thales’ home town of Miletus.
At the age of about 50, he migrated from Samos to the Greek
colony of Crotona in southern Italy, where he established
the famous Pythagorean school, a quasi-religious society
with a solid claim to the honor of being the world’s first uni-
versity. The Pythagoreans were best known for two teach-
ings: the doctrine of transmigration of souls at death from
one body into another, and the theory that numbers consti-
tute the true essence of all things. Believers performed rites
of purification and followed strict moral and dietary rules
(no sex, no meat) to enable their souls to rise to higher lev-
els of spirituality in subsequent lives. Their beliefs also led
them to consider the sexes as equal and to treat animals and
slaves humanely. For who knows? In a subsequent life one
might return as a slave, or one's soul might take up resi-
dence in an animal’s body, or even—alas!—an insect’s.

As a way of achieving purification of the mind, the
Pythagoreans studied geometry, arithmetic, music, and as-
tronomy —arithmetic not in the sense of useful computa-
tional skills but rather as the abstract theory of numbers.
They were particularly fond of the “figurate numbers”
which arise by arranging dots or points in regular geomet-
ric patterns. For example, there are the square numbers 1,
PR L TR

PROBLEMS

Among the words “integer,” “rational,” and “irrational,”
state the ones that apply to

(&) —%; (b) 0;
© & (d) 0.75;
(e) —V49; () U
(g) 9.000 . .. ; (k) 312
W -% iy <

Every integer is either even or odd. The even integers are
those that are divisible by 2, so n is even if and only if
it has the form n = 2k for some integer . The odd inte-
gers are those that have the form n = 2k + 1 for some
integer k.

PYTHAGORAS

As indicated, each square number can be obtained from its
predecessor by adding an L-shaped border called a gnomon,
meaning a carpenter’s square. Since the successive gnomons
are the successive odd numbers, it is immediately clear from
the square arrays that the sum of the first n odd numbers
equals n?:

14345+ +@n-1)=n2

Who would have believed that the common odd numbers
and the relatively rare perfect squares are related in such a
simple yet remarkable way? The Pythagoreans were fasci-
nated, and rightly so, by the grave and beautiful games that
numbers play with each other— games that seemed to them
to take place outside of space and time and to be quite in-
dependent of the human mind itself,

Further, Pythagoras performed the first deliberate scien-
tific experiment, on the relation between positive whole
numbers and the musical notes emitted by a plucked lyre
string. Also, he was the first person to conceive the
supremely daring conjecture that the world is an ordered,
understandable whole, and he applied the word kosmos—
which previously meant order or harmony —to this whole.

In these and other ways Pythagoras was one of the prime
creators of the Western civilization that sustains us all —as
fish are sustained by the water in which they swim.

(a) If n is even, prove that n? is also even.
(b) If n is odd, prove that n? is also odd.

In Problems 3-12, rewrite the given expression without using

the absolute value symbol.

3 [7-18 4 [7]=]|-18].

5 |m—3|. 6 [3- .

7 h=5ifx<s 8 |x—5|ifx>5.
9 |x2+ 10| 10 [—11] = |-10].
1|1 =37ifx=1. 12 V10 - 10].

13 Solve the following inequalities:

(a) x(x - 1) >0,
(b) (x— I)x+2)<0;



10

14

15

16

17

18

19

21

22
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) 2 +4x—21>0;

d) 22 +x<3;

(e) 4> + 10x — 6 <0;

(f) X+ 2x+4=>0.

Recall that Va is a real number if and only if @ = 0, and
find the values of x for which each of the following is a
real number:

(a) V4 — a2 by V2 —09;
1 1
| Eer———— ) —.
© Vi Fp—

Find the values of x for which each of the following is
positive:

X X .

(a) Z1a (b) Z-a
x+1 =1
=9 @ =5

State the values of a for which the following inequali-

ties are valid:

(a) a=a, (b) a<a.

If a = b and b = a, what conclusion can be drawn about

a and b?

(a) If a<b is true, is it also necessarily true that
a=pH?

(b) If a=b is true, is it also necessarily true that
a<h?

State whether each pair of points lies on a horizontal or

a vertical line:

@) (=2, -5), (=2, 3);

(c) (=3,4), (6, 4);

(b) (=2, =5), (7, =5)

(d) (2, —11), (2, 5);

(e) (2,2),(—13,2), ) 7,=ND,7,7T

(8 (3, 5,3, -2 ) (-1, -2), (2, -2).

Three vertices of a rectangle are (—1, 2), (3, —35),
(=1, —5). What is the fourth vertex?

Find the distance between each pair of points:

(a) (1,2),(6,7): (b) (2, 5), (—1,3);

(©) (=7.3), (1, =2);  (d) (a, b), (b, a).

In Problem 21 find the midpoint of the segment joining
each pair of points.

Draw a sketch indicating the points (x, y) in the plane for
which

(a) x<2;

b -1<y=2;

©)0=x=land0=y=1;

d) x=-1;

©y=3

(f) x=y

Use the distance formula to show that the points (—2, 1),
(2, 2), and (10, 4) lie on a straight line.

Show that the point (6, 5) lies on the perpendicular bi-
sector of the segment joining the points (—2, 1) and
(2, —3).

29

31

32

Show that the triangle whose vertices are (3, —3),

(=3, 3), and (3V/3, 3V/3) is equilateral.

The two points (2, —2) and (—6, 5) are the endpoints of

a diameter of a circle. Find the center and radius of the

circle.

Find every point whose distance from each of the two

coordinate axes equals its distance from the point (4, 2).

Find the point equidistant from the three points (—9, 0),

(6, 3), and (—5, 6).

If @ and b are any two numbers, convince yourself that:

(a) the points (a, b) and (a, —b) are symmetric with re-
spect to the x-axis;

(b) (a, b) and (—a, b) are symmetric with respect to the
y-axis;

(c) (a. b) and (—a, —b) are symmetric with respect to
the origin.

What symmetry statement can be made about the points

(a, b) and (b, a)?

In each case, place the figure in a convenient position

relative to the coordinate system and prove the statement

algebraically:

(a) The diagonals of a parallelogram bisect each other.

(b) The sum of the squares of the diagonals of a paral-
lelogram equals the sum of the squares of the sides.

(c) The midpoint of the hypotenuse of a right triangle is
equidistant from the three vertices.

Use the fact stated in (c) to show that when the acute an-

gles of a right triangle are 30° and 60°, the side opposite

the 30° angle is half the hypotenuse.

In an isosceles right triangle, both acute angles are 45°.

If the hypotenuse is h, what is the length of each of the

other sides?

Let Py = (xy, y;) and P = (x3, y2) be distinct points. If

P = (x, y) is on the segment joining P, and P, and one-

third of the way from P, to P, show that

x= -_1.'(21. + x3) and y= ;:(2_v| + y2).

Find the corresponding formulas if P is two-thirds of the
way from P, to Ps.

Consider an arbitrary triangle with vertices (x;, v;), (a2,
v2), and (x3, y3). Find the point on each median which is
two-thirds of the way from the vertex to the midpoint of
the opposite side.” Perform the calculations separately
for each median and verify that these three points are all
the same, with coordinates

o +x+x3)  and 30+ y2 v

This proves that the medians of any triangle intersect at
a point which is two-thirds of the way from each vertex
to the midpoint of the opposite side.

*A median of a triangle is a segment joining a vertex to the midpoint
of the opposite side.



1.3 SLOPES AND EQUATIONS OF STRAIGHT LINES

In this section we use the language of algebra to describe the set of all points
that lie on a given straight line. This algebraic description is called the equation
of the line. First, however, it is necessary to discuss an important preliminary
concept: the slope of a line.

THE SLOPE OF A LINE

Any nonvertical straight line has a number associated with it that specifies its di-
rection, called its slope. This number is defined as follows (Fig. 1.9 illustrates
the definition). Choose any two distinct points on the line, say P, = (x;, y;) and
P> = (x3, y2). Then the slope is denoted by m and defined to be the ratio

mzxz_)'l_ (1
Xz — X1

If we reverse the order of subtraction in both numerator and denominator, then
the sign of each is changed, so m is unchanged:
=N _n—n

m==—=—== :

X2 — X) X — X2
This shows that the slope can be computed as the difference of the y-coordinates
divided by the difference of the x-coordinates—in either order, as long as both
differences are formed in the same order. In Fig. 1.9, where P; is placed to the
right of P and the line rises to the right, it is clear that the slope as defined by
(1) is simply the ratio of the height to the base in the indicated right triangle. It
is necessary to know that the value of m depends only on the line itself and is
the same no matter where the points P, and P> happen to be located on the line.
This is easy to see by visualizing the effect of moving P and P to different po-
sitions on the line; this change gives rise to a similar right triangle and therefore
leaves the ratio in (1) unaltered.

If we choose the position of P; so that x; — x; = 1, that is, if we place P; 1
unit to the right of Py, then m = y, — y,. This tells us that the slope is simply
the change in y as a point (x, ¥) moves along the line in such a way that x in-
creases by 1 unit. This change in y can be positive, negative, or zero, depending
on the direction of the line. We therefore have the following important correla-
tions between the sign of m and the indicated directions:

| .

SLOPES AND
EQUATIONS OF
STRAIGHT LINES

Figure 1.9

11



Figure 1.10 A variety of slopes.

¥y
(x, ¥) lies on line
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Figure 1.11
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Slope x —Xp (x, ¥) lies on line
if and only if
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/
]
Slope =m
- (xg, ¥p)
Figure 1.12
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m=0, line rises to the right;
m<0, line falls to the right;
m=10, line horizontal.

Further, the absolute value of m is a measure of the steepness of the line (Fig.
1.10). It is evident from (1) why a vertical line has no slope, for in this case the
two points have equal x-coordinates and the denominator in (1) is 0—and we
know that division by 0 is undefined.

If the line under discussion crosses the x-axis, then the angle « from the pos-
itive x-direction to the line, measured counterclockwise, is called the inclination
—or sometimes the angle of inclination—of the line. Students who have stud-
ied trigonometry will see from Fig. 1.9 that the slope is the tangent of this an-
gle, m = tan a.

EQUATIONS OF A LINE

A vertical line is characterized by the fact that all points on it have the same
x-coordinate. If the line crosses the x-axis at the point (g, 0), then a point (x, y)
lies on the line if and only if

x=a, (2)

as illustrated in Fig. 1.11. The statement that (2) is the equation of the line means
precisely this: A point (x, y) lies on the line if and only if condition (2) is satis-
fied.

Next consider a nonvertical line, and let it be “given” in the sense that we know
a point (xg, yo) on it and its slope m (Fig. 1.12). If (x, y) is a point in the plane
that does not lie on the vertical line through (xp, yo), then it is easy to see that
this point lies on the given line if and only if the line determined by (xo, yo) and
(x, ¥) has the same slope as the given line:

Y~ Jo _ m. 3)

X = Xp

This would be the equation of our line except for the minor flaw that the coor-
dinates of the point (xg, yo)— which is certainly on the line—do not satisfy the
equation (they reduce the left side to the meaningless expression 0/0). This flaw
is easily removed by writing equation (3) in the form

¥ — ¥o = m(x — xp). 4)

Nevertheless, we usually prefer the form (3), because its direct connection with
the geometric idea illustrated in Fig. 1.12 makes it easy to remember. Either equa-
tion (or both) is called the point-slope equation of a line, since the line is ini-
tially specified by means of a known point on it and its known slope. To grasp
more firmly the meaning of equation (4), imagine a point (x, y) moving along
the given line. As this point moves, its coordinates x and y change; but even
though they change, they are bound together by the fixed relationship expressed
by equation (4).
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If the known point on the line happens to be the point where the line crosses
the y-axis, and if this point is denoted by (0, b), then equation (4) becomes y —
b = mx or

y=mx+b. (5

The number b is called the y-intercept of the line, and (5) is called the slope-
intercept equation of a line. This form is especially convenient because it tells at
a glance the location and direction of a line. For example, if the equation

6x—2y—4=0 (6)

is solved for y, we see that
y=3x—-2 (7
Comparing (7) with (5) shows at once that m = 3 and b = —2, and so (6) and
(7) both represent the line that passes through (0, —2) with slope 3. This infor-
mation makes it very easy to sketch the line. It may seem that (6) and (7) are
different equations, so that (6) should be referred to as “an™ equation of the line

and (7) as “another” equation of the line, but we prefer to regard them as merely
different forms of a single equation. Many other forms are possible, for instance,

y+2=3x, x=3y+3 x-y=2
It is reasonable to cut through appearances and speak of any one of these as “the”

equation of the line.
More generally, every equation of the form

Ax+By+C=0, (8)

where the constants A and B are not both zero, represents a straight line. For if
B = 0, then A # 0, and the equation can be written as

C

xX= -

A
which is clearly the equation of a vertical line. On the other hand, if B # 0, then
A €

YRR
and this equation has the form (5) with m = —A/B and b = —C/B. Equation (8)
is rather inconvenient for most purposes because its constants are not directly re-
lated to the geometry of the line. Its main merit is that it is capable of repre-

senting all lines, without any need for distinguishing between the vertical and
nonvertical cases. For this reason it is called the general linear equation.

PARALLEL AND PERPENDICULAR LINES

Two distinct nonvertical straight lines with slopes m; and m, are evidently par-
allel if and only if their slopes are equal:

m) = mj.
The criterion for perpendicularity is the relation

mymy = —1. 9)

13



Figure 1.13

(a, b)

Figure 1.14

PROBLEMS

1 Plot each pair of points, draw the line they determine, 5

X

NUMBERS, FUNCTIONS, AND GRAPHS

This is not obvious, but can be established quite easily by using similar trian-
gles, as follows (Fig. 1.13). Suppose that the lines are perpendicular, as shown
in Fig. 1.13. Draw a segment of length 1 to the right from their point of inter-
section, and from its right endpoint draw vertical segments up and down to the
two lines. From the meaning of the slopes, the two right triangles formed in this
way have sides of the indicated lengths. Since the lines are perpendicular, the in-
dicated angles are equal and the triangles are similar. This similarity implies that
the following ratios of corresponding sides are equal:

mo_ 1
1 —m"vl

This is equivalent to (9), so (9) is true when the lines are perpendicular. The rea-
soning given here is easily reversed, telling us that if (9) is true, then the lines
are perpendicular. Since equation (9) is equivalent to

my = =rd and my = —L.
ma my
we see that two nonvertical lines are perpendicular if and only if their slopes are
negative reciprocals of one another.
The ideas of this section enlarge our supply of tools for proving geometric the-
orems by algebraic methods.

Example If the diagonals of a rectangle are perpendicular, then the rectangle is
a square. To establish this, we place the rectangle in the convenient position shown
in Fig. 1.14. The slopes of the diagonals are clearly b/a and — b/a. If these di-
agonals are perpendicular, then

a* — b =0, and (@ + b)a—b)=0.

The last equation implies that a = b, so the rectangle is a square.

Plot each of the following sets of three points, and use

and compute the slope of this line:

(a) (=3, 1), 4, —1) (b) (2, 7), (=1, —1);

() (—4,0),(2, 1) (d) (—4, 3), (5, —6);

(e) (—5,2),(7,2) (f) (0, —4), (1, 6).

Plot each of the following sets of three points, and use
slopes to determine in each case whether all three points
lie on a single straight line:

(@) (5, —1), (2, 2), (—4, 6);

(b) (1, 1), (=5, =2), (5, 3);

(c) (4, 3), (10, 14), (=2, —8);

(d) (—1,3), (6, —1), (=9, 7).

Plot the points (—1, —1), (9, 1), (8, 6), and (—2, 4), and
show that they are the vertices of a rectangle.

Plot the points (—3, 8), (3, 5), (0, —1), and (—6, 2), and
show that they are the vertices of a square.

slopes to determine in each case whether the points form
a right triangle:

(a) (2, =3),(5,2), (0, 5);

(b) (10, =5), (5, 4), (=7, —2);

(c) (8,2), (=1, =1),(2, =7

(d) (=2, 6), (3, —4), (8, 11).

Write the equation of each line in Problem 1 using the
point-slope form; then rewrite each of these equations in
the form y = mx + b and find the y-intercept.

Find the equation of the line:

(a) through (2, —3) with slope —4;

(b) through (—4, 2) and (3, —1);

(c) with slope 3 and y-intercept —4;

(d) through (2, —4) and parallel to the x-axis;

(e) through (1, 6) and parallel to the y-axis;
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Sketch the lines 3x + 4y = 7 and x — 2y = 6, and find
their point of intersection. Hint: Their point of intersec-
tion is that point (x, ¥) whose coordinates satisfy both

Find the point of intersection of each of the following

Let F and C denote temperature in degrees Fahrenheit
and degrees Celsius. Find the equation connecting F and
C, given that it is linear and that F = 32 when C = 0,

Find the values of the constant k for which the line
k=3 -4 —k)y+k—-Tk+6=0is

Show that the segments joining the midpoints of adja-
cent sides of any quadrilateral form a parallelogram.

Show that the lines from any vertex of a parallelogram
to the midpoints of the opposite sides trisect a diagonal.

(f) through (4, —2) and parallel to x + 3y = 7, 1
(g) through (5, 3) and perpendicular to y + 7 = 2x;
(h) through (—4, 3) and parallel to the line determined
by (=2, —2) and (1, 0); equations simultaneously.
(i) that is the perpendicular bisector of the segment join- 12
ing (1, —1) and (5, 7); pairs of lines:
(j) through (=2, 3) with inclination 135°. (a x+2y=2,y=x-1;
8 If a line crosses the x-axis at the point (a, 0), the num- (b) I0x+Ty=24,15x—4y =17,
ber a is called the x-intercept of the line. If a line has (€) 3x =5y =7, 15y + 25 = 9x.
x-intercept @ # 0 and y-intercept b # 0, show that its 13
equation can be written as
Loy, F =212 when C = 100.
a b 14
This is called the intercept form of the equation of a line.
Notice that it is easy to put y = 0 and see that the line (a) parallel to the x-axis;
crosses the x-axis at x = a, and to put x = 0 and see that (b) parallel to the y-axis;
the line crosses the y-axis at y = b. (c) through the origin.
9 Put each equation in intercept form and sketch the cor- 15
responding line:
(a) 5x+3y+15=0; (b) 3x=8y—24; 16
(c) y=6—6x; (d) 2x — 3y =09.
10 The set of all points (x, y) that are equally distant from 17

the points Py = (—1, —3) and P, = (5, —1) is the per-

pendicular bisector of the segment joining these points.

Find its equation

(a) by equating the distances from (x, y) to P, and P,
and simplifying the resulting equation;

(b) by finding the midpoint of the given segment and us-
ing a suitable slope.

Let (0, 0), (a, 0), and (b, c¢) be the vertices of an arbi-
trary triangle placed so that one side lies along the pos-
itive x-axis with its left endpoint at the origin. If the
square of this side equals the sum of the squares of the
other two sides, use slopes to show that the triangle is a
right triangle. Thus, the converse of the Pythagorean the-
orem is also true.

The coordinate plane or xy-plane is often called the Cartesian plane, and x and
y are frequently referred to as the Cartesian coordinates of the point P = (x, y).
The word “Cartesian™ comes from Cartesius, the Latinized name of the French
philosopher-mathematician Descartes, who is considered one of the two princi-
pal founders of analytic geometry.” The basic idea of this subject is quite sim-
ple: Exploit the correspondence between points and their coordinates to study
geometric problems—especially the properties of curves—with the tools of al-
gebra. The reader will see this idea in action throughout this book. Generally
speaking, geometry is visual and intuitive, while algebra is rich in computational
machinery, and each can serve the other in many fruitful ways.

Most people who have had a course in algebra have learned that an equation

Flx,y)=0 (n

usually determines a curve (its graph) which consists of all points P = (x, y)
whose coordinates satisfy the given equation. Conversely, a curve defined by
some geometric condition can usually be described algebraically by an equation

*The other (also French) was Fermat, a less well known figure than Descartes but a much greater
mathematician. The names of these two men are pronounced “Fair-MA™ and “Day-CART."

1.4

CIRCLES AND
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(x, ¥)

Figure 1.15 Circle.
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of the form (1). It is intuitively clear that straight lines are the simplest curves,
and our work in Section 1.3 demonstrated that straight lines in the coordinate
plane correspond to linear equations in x and y. We now develop algebraic de-
scriptions of several other curves that will be useful as illustrative examples in
the next few chapters.

CIRCLES

The distance formula of Section 1.2 is often useful in finding the equation of a
curve whose geometric definition depends on one or more distances.

One of the simplest curves of this kind is a circle, which can be defined as the
set of all points at a given distance (the radius) from a given point (the center).
If the center is the point (h, k) and the radius is the positive number r (Fig. 1.15),
and if (x, y) is an arbitrary point on the circle, then the defining condition says
that

Vix—h2+(y—-kr=r
It is convenient to eliminate the radical sign by squaring, which yields
x—hr+(y—k?=r% ()

This is therefore the equation of the circle with center (h, k) and radius . In par-
ticular, if the center happens to be the origin, so that h = k = 0, then

R+y=p2

is the equation of the circle.

Example 1 If the radius of a circle is V' 10 and its center is (—3, 4), then its
equation is

(x+ 32+ (y—a2=10.

Notice that the coordinates of the center are the numbers subtracted from x and
y in the parentheses.

Example 2 An angle inscribed in a semicircle is necessarily a right angle.” To
prove this algebraically, let the semicircle have radius r and center at the origin
(Fig. 1.16), so that its equation is x> + y> = r2 with y = 0. The inscribed angle
is a right angle if and only if the product of the slopes of its sides is —1, that is,

B SR S
x=r x+r s 3)

This is easily seen to be equivalent to x* + ¥? = r2, which is certainly true for
any point (x, ¥) on the semicircle, so (3) is true and the angle is a right angle.

It is clear that any equation of the form (2) is easy to interpret geometrically.
For instance,

“According to tradition, this is one of the theorems discovered and proved by Thales.
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x=5P2+(y+2%=16 )

is immediately recognizable as the equation of the circle with center (5, —2) and
radius 4, and this information enables us to sketch the graph without difficulty.
However, if the equation has been roughly treated by someone who likes to “sim-
plify” things algebraically, then it might have the form

24yl = 10x+4y+13=0. (5)

This is an equivalent but scrambled version of (4), and its constants tell us noth-
ing directly about the nature of the graph. To find out what the graph is, we must
“unscramble” by completing the square.” To do this, we begin by rewriting equa-
tion (5) as

@2=10x+ )+ (P +4y+ )=-13,

with the constant term moved to the right and blank spaces provided for the in-
sertion of suitable constants. When the square of half the coefficient of x is added
in the first blank space and the square of half the coefficient of y in the second,
and the same constants are added to the right side to maintain the balance of the
equation, we get

(2= 10x+25) + (V¥ +4y+4)=—-13+25+4
or
(x— 52+ (y+2)2=16. (6)

Exactly the same process can be applied to the general equation of the form (5),
namely,

2+y¥+Ax+By+C=0, (7

but there is little to be gained by writing out the details in this general case. How-
ever, it is important to notice that if the constant term 13 in (5) is replaced by
29, then (6) becomes

(x—5P+(y+22%=0,

whose graph is the single point (5, —2). Similarly, if this constant term is re-
placed by any number greater than 29, then the right-hand side of (6) becomes
negative and the graph is empty, in the sense that there are no points (x, y) in the
plane whose coordinates satisfy the equation. We therefore see that the graph of
(7) is sometimes a circle, sometimes a single point, and sometimes empty —de-
pending entirely on the constants A, B, and C.

PARABOLAS

The definition we use for a parabola is the following (Fig. 1.17a): It is the curve
consisting of all points that are equally distant from a fixed point F (called the
focus) and a fixed line d (called the directrix). The distance from a point to a line
is always understood to mean the perpendicular distance.

*The form of the equation (x + a)® = x? + 2ax + a? is the key to the process of completing the
square. Notice that the right side is a perfect square—the square of x + a—precisely because its
constant term is the square of half the coefficient of x.

17
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Figure 1.17 Parabola.

Figure 1.18 Various parabolas.
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F=(0, p)

(&)

To find a simple equation for a parabola, we place it in the coordinate system
as shown in Fig. 1.17h, with the focus and directrix equally far above and below
the x-axis. The line through the focus perpendicular to the directrix is called the
axis of the parabola; this is the axis of symmetry of the curve, and is the y-axis
in the figure. The point on the axis halfway between the focus and the directrix
is called the vertex of the parabola; in the figure this point is the origin. If (x, y)
is an arbitrary point on the parabola, the condition expressed in the definition is
stated algebraically by the equation

Ve +(-pP=y+p. (8)
On squaring both sides and simplifying, we obtain
x4y = 2py + pP =y + 2py + p?
or
x* = 4py. 9)

These steps are reversible, so (8) and (9) are equivalent and (9) is the equation
of the parabola whose focus and directrix are located as shown in Fig. 1.17h. No-
tice particularly that the positive constant p in (9) is the distance from the focus
to the vertex, and also from the vertex to the directrix.

If we change the position of the parabola relative to the coordinate axes, we
naturally change its equation. Three other positions are shown in Fig. 1.18, each
with its corresponding equation and with p > 0 in each case. Students should

) y b
1 |
x=—p| lx=p

y=p : :
| F=@,0) |

. —_—

x : x F=(-p,0) | %
| I
F=(0,-p) t :
x2 =—4py y? =dpx y? =—dpx
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verify the correctness of all three equations. We also point out that each of these
four equations can be put in the form

y = ax? (10)
or
x=a_v2.

These forms conceal the constant p, with its geometric significance, but as com-
pensation they are more useful in visualizing the overall appearance of the graph.
For instance, in (10) the variable x is squared but y is not. This tells us that as a
point (x, ¥) moves out along the curve, y increases much faster than x, and so the
curve opens in the y-direction—upward or downward, according as a is positive
or negative. It also tells us that the graph is symmetric with respect to the y-axis,
because x is squared, and therefore we get the same number y for any number x
and its negative.

Example 3 What is the graph of the equation 12x + y? = 0? If this is put in the
form y* = —12x and compared with the equation on the right in Fig. 1.18, it is
clear that the graph is a parabola with vertex at the origin and opening to the left.
Since 4p = 12 and therefore p = 3, the point (—3, 0) is the focus and x = 3 is
the directrix.

Example 4 The graph of y = 2x? is evidently a parabola with vertex at the ori-

gin and opening upward To find its focus and directrix, the equation must be

rewnm:n as x2 = 3y and compared with equation (9). This ylelds 4p=1,s0p=
The focus is therefore (0, 3) and the directrix is y = ~—

We illustrate one last point about parabolas by examining the equation
y=x2—4x+5. (11)
If this is written as
y—5=x2—dx,

and if we complete the square on the terms involving x, then the result is

y=1=(x-2% (12)
If we now introduce the new variables
X=x-2,
(13)
Y=y-1,
then equation (12) becomes
Y=Xx2

The graph of this equation is clearly a parabola opening upward with vertex at
the origin of the XY coordinate system. By equations (13), the origin in the XY
system is the point (2, 1) in the xy system, as shown in Fig. 1.19. What has hap-
pened here is that the coordinate system has been shifted or translated to a new
position in the plane, and the axes renamed, and equations (13) express the re-

21

X
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Figure 1.19
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lation between the coordinates of an arbitrary point with respect to each of the
two coordinate systems. In exactly the same way, any equation of the form

y=ax*+ bx + c, a#0,

represents a parabola with vertical axis which is congruent to y = ax® and opens
up or down according as the number a is positive or negative. Similarly, the equa-
tion

x=ay’+ by +c, a®0,

represents a parabola with horizontal axis which opens to the right or left ac-
cording as a > 0 ora < 0.

In our work up to this stage we have used the static concept of a curve as a
certain set of points or geometric figure. It is often possible to adopt the dynamic
point of view, in which a curve is thought of as the path of a moving point. For
instance, a circle is the path of a point that moves in such a way that it main-
tains a fixed distance from a given point. When this mode of thought is used—
with its advantage of greater intuitive vividness—a curve is often called a locus.
Thus, a parabola is the Jocus of a point that moves in such a way that it main-
tains equal distances from a given point and a given line.

NOTE ON DESCARTES AND FERMAT

that what passes for “knowledge” in our time is an uncriti-
cal mishmash of sense and nonsense, fact and guesswork,
gossip and hearsay and clumsy propaganda—mostly ac-
quired from wishful thinking, lazy reasoning, inadequate
senses, credulous parents, overworked teachers, and self-
serving institutions? This was also the opinion of the 23-
year-old Frenchman René Descartes (1596-1650) on Nov.
10, 1619. For this was the day above all others when the
modem world began, our world of victorious rationality and
triumphant science.

On this day—a famous day in the history of thought—
in a state of exhaustion and feverish excitement, Descartes
found the method he sought for extending the certainty of
mathematics to all other fields of knowledge:

The long chains of simple reasoning which geometers use
to arrive at their most difficult conclusions made me be-
lieve that all things which are the objects of human knowl-
edge are similarly interdependent; and that if we will only
abstain from assuming something to be true which is not,

and always follow the necessary order in deducing one
thing from another, there is nothing so remote that we
cannot reach it, nor so hidden that we cannot discover it.

This is a quotation from Part 2 of his Discourse on Method,
a short and highly readable book published in 1637 which
is commonly considered to mark the birth of modern phi-
losophy. In this work he rejected the sterile scholasticism
prevailing at the time and set himself the task of rebuilding
knowledge from the ground up, on a foundation of reason
and science instead of authority and faith. He provided the
fresh points of view needed for the vigorous development
of the Scientific Revolution, whose influence has been the
dominant fact of modem history. Further, in an appendix to
the Discourse on his ideas about geometry, he foreshadowed
the new forms of mathematics — analytic geometry and cal-
culus—without which this Revolution would have died in
infancy. It was no exaggeration for the great American ju-
rist Oliver Wendell Holmes to write: “Descartes commanded
the future from his study more than Napoleon from his
throne.”
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Descartes was a brilliant man—and enormously influen-
tial with a corresponding ego—but he was not quite as bril-
liant as he thought. His contemporary Pierre Fermat
(1601-1665) was a man of genius and perhaps the greatest
mathematician of the seventeenth century; and when the two
men collided on issues of science or mathematics, it was al-
ways Descartes’s nose that was bloodied.

By profession Fermat was a lawyer and a member of the
provincial supreme court in Toulouse, a city in southwest-
ern France. However, his hobby and private passion was
mathematics, and his casual creativity was one of the won-
ders of the age to the few who knew about it. His letters
suggest that he was a shy and retiring man, courteous and
affable but slightly remote. His outward life was as quiet
and orderly as one would expect of a provincial judge with
a sense of responsibility toward his work. Fortunately this
work was not too demanding, and left ample leisure for the
extraordinary inner life that flourished by lamplight in the
silence of his study at night.

He invented analytic geometry in 1629 and described his
ideas in a short work that circulated in manuscript from early
1637 on, but was not published in his lifetime. The credit
for this achievement has usually been given to Descartes on
the basis of his Geometry, which was published late in 1637
as an appendix to his Discourse on Method. However, noth-
ing that we would recognize as analytic geometry can be
found in Descartes's essay, except perhaps the idea of using
algebra as a language for discussing geometric problems.
Fermat had the same idea but did something important with
it: He introduced perpendicular axes and found the general
equations of straight lines and circles and the simplest equa-
tions of parabolas, ellipses, and hyperbolas; and he further
showed in a fairly complete and systematic way that every
first- or second-degree equation can be reduced to one of
these types. Descartes certainly knew some analytic geom-
etry by the late 1630s; but since he had possession of the
original manuscript of Fermat's short essay (of which Fer-
mat himself did not bother to keep a copy) several months
before the publication of his own Geometry, it is likely that
much of what he knew he learned from Fermat.

The invention of calculus is usually credited to Newton
and Leibniz, whose ideas and methods were not published
until about 20 years after Fermat's death. However, if dif-
ferential calculus is considered to be the mathematics of
finding maxima and minima of functions and drawing tan-
gents to curves, then Fermat was the true creator of this sub-
ject as early as 1629, more than a decade before either New-
ton or Leibniz was born. With his usual honesty in such
matters, Newton stated —in a letter that was discovered only
in 1934 —that his own early ideas about calculus came di-
rectly from “Fermat’s way of drawing tangents.”

CIRCLES AND PARABOLAS. DESCARTES AND FERMAT

Fermat was also the founder of mathematical optics and
the joint founder (in correspondence with Blaise Pascal) of
the theory of probability. But to him all these activities were
of minor importance compared with the consuming passion
of his life, the theory of numbers. It was here that his ge-
nius shone most brilliantly, for his insight into the proper-
ties of the familiar but mysterious positive integers has per-
haps never been equaled. He was the sole and undisputed
founder of the modern era in this important branch of pure
mathematics, without any rivals and with few followers un-
til the next century.

To illustrate the nature of his achievement in number the-
ory, we mention his profound and beautiful four squares the-
orem: Every positive integer is either a square or the sum of
two, three, or four squares. Like many of his discoveries,
this was jotted down in the margin of one of his books, and
his proof went unrecorded and was lost forever when he
died. A proof was found at last in 1772—more than a cen-
tury after Fermat's death—as the culmination of 40 years
of effort by one of the greatest mathematicians of the eigh-
teenth century. As we see, mathematicians are people who
are not only irresistibly attracted by truths of this kind but
also cannot rest until they know why they are true.

Without visibly trying, and as naturally as a hawk sus-
tains itself on the wind, Fermat attained immortal fame
among mathematicians. There are many reasons for this im-
mortality, one of the most interesting being the legacy of
what is now known as Fermat’s last theorem: If n > 2, then
the equation x" + y" = z" has no positive integer solutions
X, ¥ z Again, he wrote this statement in the margin of a
book he was studying, near a passage dealing with the fact
that x* + y2 = 72 has many solutions —3, 4, 5and 5, 12, 13,
among others. He then added the tantalizing remark, “T have
found a truly wonderful proof which this margin is too nar-
row to contain.” Unfortunately no proof has ever been dis-
covered by anyone else, and Fermat’s last theorem remains
to this day one of the most baffling unsolved problems of
mathematics.”

“Late report from the cutting edge: It appears that Fermat's last the-
orem may have been proved by Andrew Wiles of Princeton Uni-
versity. This was announced on June 23, 1993, in the last of three
lectures Wiles gave at Cambridge University, in England. The proof
nsnhmnzwpmcsinngandfolmrsnmtum mmdaboulpada
hrough many led j d pure
The careful checkmgofe\m’y Ime of this proof may take years to
carry out. Iusuumatedrhupemmamnthnflpuumofmﬂh-
ians could und 1 all details of the proof—and this def-
muelydoesnmmc]udemepreumm If Wiles's proof checks
out, the challenge will still in of discovering a one- or two-
page (or even a three- or four-page) proof of Fermat's one-sentence
theorem. For further details, see Newsweek, July 5, 1993, or Scien-
tific American, September 1993.
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PROBLEMS

Find the equation of the circle with the given point as

center and the given number as radius:

(@) 4,6),3; (b) (=3,7), V5;

© (-5, -9,7; (@ (1, —6), V2;

(e) (a, 0), a; (f) (0, a), a.

In each case find the equation of the circle determined

by the given conditions:

(a) Center (2, 3) and passes through (—1, —2).

(b) The ends of a diameter are (—3, 2) and (5, —8).

(c) Center (4, 5) and tangent to the x-axis.

(d) Center (—4, 1) and tangent to the line x = 3.

(e) Center(—2, 3)and tangent to the linedy — 3x + 2 =
0.

(f) Center on the line x + y = 1, passes through (=2, 1)
and (—4, 3).

(g) Center on the line y = 3x and tangent to the line x =
2y at the point (2, 1).

In each of the following, determine the nature of the

graph of the given equation by completing the square:

(@ 2+y —4x—4y=0.

(b) x2 +y* — 18x — 14y + 130 = 0.

(€) x>+ 3y + 8+ 10y +40=0.

(d) 4x +4y* + 12x — 32y + 37 =0.

() X +y*—8x+ 12y + 53 = 0.

() 2+ — Ve + V2y+1=0.

(g) x> + % — 16x + 6y — 48 = 0.

Find the equation of the locus of a point P = (x, y) that

moves in accordance with each of the following condi-

tions, and sketch the graphs:

(a) The sum of the squares of the distances from P to
the points (a, 0) and (—a, 0) is 4, where b=
a/V2>0.

(b) The distance of P from the point (8, 0) is twice its
distance from the point (0, 4).

The guadratic formula for the roots of the quadratic equa-

tionax? + bx +c=0is

=ik b? — dac
e . EE,

Derive this formula from the equation by dividing
through by a, moving the constant term to the right side,
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and completing the square. Under what circumstances
does the equation have distinct real roots, equal real roots,
and no real roots?

At what points does the circle x* + y* — 8x — 6y —
11 = 0 intersect

(a) the x-axis?

(c) the linex +y=17
Sketch the figure, and use this picture to judge whether
your answers are reasonable or not.

Find the equations of all lines that are tangent to the cir-
cle x* + y? = 2y and pass through the point (0, 4). Hint:
The line y = mx + 4 is tangent to the circle if it inter-
sects the circle at only one point.

Find the focus and directrix of each of the following
parabolas, and sketch the curves:

(b) the y-axis?

(a) y* = I12x; (b) y = da;

(c) 2% + 5y = 0; (d) 4x + 92 = 0;
(e) x = —2% (f) 12y = —x%;
(8) 16y = x; (h) 24x2 =y,

(i) 2 +8y—16x=16; (j) x>+ 2x+29=7y.
Sketch the parabola and find its equation if it has

{a) vertex (0, 0) and focus (-3, 0);

(b) vertex (0, 0) and directrix y = —1;

(c) vertex (0, 0) and directrix x = —2;

(d) vertex (0, 0) and focus (0, —1);

(e) directrix x = 2 and focus ( — 4, 0);

(f) focus (3, 3) and directrix y = —1.

Find the focus and directrix of each of the following
parabolas, and sketch the curves:

(@) y=x2+1; b) y=@x-13%
©y=@—1P+1 @ y=x-x

Water squirting out of a horizontal nozzle held 4 ft above
the ground describes a parabolic curve with the vertex at
the nozzle. If the stream of water drops 1 ft in the first
10 ft of horizontal motion, at what horizontal distance
from the nozzle will it strike the ground?

Show that there is exactly one line with given slope m
which is tangent to the parabola x* = 4py, and find its
equation.

Prove that the two tangents to a parabola from any point
on the directrix are perpendicular.

The most important concept in all of mathematics is that of a function. No mat-
ter what branch of the subject we consider—algebra, geometry, number theory,
probability, or any other— it almost always turns out that functions are the pri-
mary objects of investigation. This is particularly true of calculus, in which most

of our work will be concerned with constructing machinery for the study of func-
tions and applying this machinery to problems in science and geometry.
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What is a function? Briefly—and we expand on this below—if x and y are
two variables that are related in such a way that whenever a permissible numer-
ical value is assigned to x, there is determined one and only one corresponding
numerical value for y, then y is called a function of x.

Example 1 (a) If a rock is dropped from the edge of a cliff, and it falls s feet
in t seconds, then s is a function of . It is known from experiment that (approx-
imately) s = 1612,

(b) The area A of a circle is a function of its radius . It is known from geom-
etry that A = 2,

(c) If the manager of a bookstore buys n books from a publisher at $12 per
copy and the shipping charges are $35, then his cost C for these books is a func-
tion of n given by the formula C = 12n + 35.

‘We continue building our understanding of the concept of a function by con-
sidering an example directly related to our work in the preceding section.

Example 2 We examine the equation
y=x

and its corresponding graph, which we know is a parabola that opens upward
and has its vertex at the origin (Fig. 1.20). In Section 1.4 we thought of this equa-
tion as a relation between the variable coordinates of a point (x, y) moving along
the curve. We now shift our point of view, and instead think of it as a formula
that provides a mechanism for calculating the numerical value of y when the nu-
merical value of x is given. Thus, y =1 whenx =1,y =4 when x =2, y = §
when x = %, y =1 when x = —1, and so on. The value of y is therefore said to
depend on, or to be a function of, the value of x. This dependence can be ex-
pressed in functional notation by writing

y=f(x)  where  f(x)=x

The symbol f(x) is read “f of x,” and the letter f represents the rule or process—
squaring, in this particular case—which is applied to any number x to yield the
corresponding number y. The numerical examples just given can therefore be
written as f(1) = 1, f(2) = 4, f(3) = 4, and f(—1) = 1. The meaning of this no-
tation can perhaps be further clarified by observing that

fa+D=@x+1P=x2+2x+1 and fi3) = (32 = x5

that is, the rule f simply produces the square of whatever quantity follows it in
parentheses.

This example suggests the general concept of a function as we shall use it in
most of our work. We formulate this concept as follows.

Let D be a given set of real numbers. A function f defined on D is a formula,
or rule, or law of correspondence that assigns a single real number y to each num-
ber x in D. The set D of allowed values of x is called the domain (or domain of
definition) of the function, and the set of corresponding values of vy is called its
range. The number y that is assigned to x by the function f is usually written f(x)
—so that y = f(x)—and is called the value of f at x. It is customary to call x the

(=1, 1)

(L1

(x, )
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independent variable because it is free to assume any value in the domain, and
to call y the dependent variable because its numerical value depends on the choice
of x.

There is nothing illegal or immoral about using other letters than x and y to
denote the variables. In Example 1, for instance, the independent variables are 1,
r, and n, and the dependent variables are s, A, and C. Also, as we see in the next
example, there is nothing sacred about the letter f; and other letters can be used
to designate functions.

Example 3 (a) If a function f(x) is defined by the formula f(x) = x* — 3x* +
5,then f(2) =2 —-3-22+5=1, f(0) =5, and f(—2) = (—2)° — 3(—-2)* +
5=-15.

(b) If afunction g(x) is defined by the formula g(x) = \/;, then g(1) = V1=
1, g(4) = V4 = 2, and a calculator tells us that g(10) = V10 = 3.16227766017,
approximately. In this case the only allowed values of x are those for which x =
0, because square roots of negative numbers are not real numbers.

(c) If a function h(x) is defined by the formula h(x) = 1/(4 — x), then h(1) =
/(4 — 1) =14, h(2) = 14 — 2) = 4, and h(4) = 1/(4 — 4) = |, does not exist,
because division by zero is not permitted in algebra. Thus, x = 4 is the only value
of x that is not allowed.

‘We point out that a function is not fully known until we know precisely which
real numbers are permissible values for the independent variable x. The domain
is therefore an indispensable part of the concept of a function. In practice, how-
ever, most of the specific functions we deal with are defined only by formulas
like the ones in Example 3, and nothing is said about the domain. Unless we state
otherwise, the domain of such a function is understood to be the set of all real
numbers x for which the formula makes sense. In part (a) of Example 3, this
means all real numbers; in (b), all real numbers x = 0; and in (c), all real num-
bers except x = 4.

The reader is undoubtedly acquainted with the idea of the graph of a function
f: If we imagine the domain D spread out on the x-axis in the coordinate plane
(Fig. 1.21a), then to each number x in D there corresponds a number y = f(x),
and the set of all the resulting points (x, y) in the plane is the graph. Graphs are
pictures of functions that enable us to see these functions in their entirety, and
we will examine many in the next section.

Many people find it helpful to visualize a function by means of a machine di-
agram, as shown in Fig. 1.215. Here a number x in the domain is fed into the
machine, where it is acted upon by the specific instructions built into the func-
tion f; and this action produces the resulting number f(x). The domain is the set
of all permissible inputs x, and the range is the set of all outputs f(x).

Another way to picture a function is by an arrow diagram, in which the do-
main is thought of as a certain set of points on the page and the range as another
set of points (Fig. 1.21¢). The arrow shows that x has f(x) corresponding to it,
and the function fis the complete collection of all these correspondences thought
of as a mapping of the first set onto the second.

We mention machine diagrams and arrow diagrams only to help students who
may be having difficulty grasping the concept of a function. The basic tool for
visualizing functions throughout our work will always be graphs. Also, we will
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flx)

(a) (b)
Figure 1.21

see in Section 2.1 that graphs are essential for formulating the main purposes of
calculus.

Originally, the only functions mathematicians considered were those defined
by formulas. This led to the useful intuitive idea that a function f “does some-
thing” to each number x in its domain to “produce” the corresponding number
y = f(x). Thus, if

y =fx) = (3 + 47,

then y is the result of applying certain specific operations to x: Cube it, add 4,
and square the sum. On the other hand, the following is also a perfectly legiti-
mate function which is defined by a verbal prescription instead of a formula:

if x is a rational number,
if x is an irrational number.

y=f) = {(',

All that is really required of a function is that y be uniquely determined—in any
manner whatever—when x is specified; beyond this, nothing is said about the
nature of the rule f. In discussions that focus on ideas instead of specific func-
tions, such broad generality is often an advantage. We will understand this bet-
ter in Chapter 6, where one of our problems is to discover what conditions must
be imposed on an arbitrary function to guarantee that its integral exists.

An additional remark on usage is perhaps in order. Strictly speaking, the word
“function” refers to the rule of correspondence f that assigns a unique number
y = f(x) to each number x in the domain. Purists are fond of emphasizing the
distinction between the function f and its value f(x) at x. However, once this dis-
tinction is clearly understood, most people who work with mathematics prefer to
use the word loosely and speak of “the function y = f(x),” or even “the function
fx).”

The functions we work with in calculus are often composite (or compound)
functions built up out of simpler ones. As an illustration of this idea, consider
the two functions

flx) = x* + 3x and glx)=x—1.

()
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The single function that results from first applying g to x and then applying f to
g(x) is

fEON =f> = 1) =2 = 1P + 32— 1)
=xt+x2-2

Notice that f(x? — 1) is obtained by replacing x by the entire quantity x ~ 1 in
the formula f(x) = x? + 3x. The symbol f(g(x)) is read “f of g of x” and is called
a function of a function. If we apply the functions in the other order (first f, then
g), we have

g(fx) = g(x? +3x) = (x* + 3x)* — |
=x*+6x3 + 2 -1,

so f(g(x)) and g(f(x)) are different. In special cases it can happen that f(g(x))
and g(f(x)) are the same function of x; for example, if f(x) = 2x — 3 and g(x) =
—x + 6:

flegt) =fl—x+6)=2(—x+6)—3=-2x+09,
gfix)=g2x—3)=—(2x—3)+6=-2x+9.

In each of these examples two given functions are combined into a single com-
posite function. In most practical work we proceed in the other direction, and
dissect composite functions into their simpler constituents. For example, if

y=(@*+ 1),

we can introduce an auxiliary variable u by writing u = x* + 1 and decompose
the above function into the two simpler functions

y=u and u=x+1.
We shall see that decompositions of this kind are often useful in the problems of
calculus.

In practice, functions often arise from algebraic relations between variables.
Thus, an equation involving x and y determines y as a function of x if the equa-
tion is equivalent to one that expresses y uniguely in terms of x. For example, the
equation 4x + 2y = 6 can be solved for y, y = 3 — 2x, and this second equation
defines y as a function of x. However, in some cases it happens that the process
of solving for y leads to more than one value of y. For example, if the equation
is y2 = x, we get y = =Vx. Since this gives two values of y for each positive
value of x, the equation y? = x does not by itself determine y as a function of x.
If we wish, we can split the formula y = +Vx into two separate formulas, y =
Vx and y = —Vx. Each of these formulas defines y as a function of x, so that
out of one equation we obtain two functions.

The number of distinct individual functions is clearly unlimited. However, most
of those appearing in this book are relatively simple and can be classified into a
few convenient categories. It may help students to orient themselves if we give
a rough description of these categories in order of increasing complexity.

POLYNOMIALS

The simplest functions are the powers of x with nonnegative integer exponents,

Lx,x2,x% ..., x" . ...
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If a finite number of these are multiplied by constants and the results are added,
we obtain a general polynomial,

px) = ap + ayx + apx? + ax? + -+ ax"

The degree of a polynomial is the largest exponent that occurs in it; if a, # 0,
the degree of p(x) is n. The following are polynomials of degrees 1, 2, and 3:

y=3x-2, y=1-2x+x22 y=x-—x3

Polynomials can evidently be multiplied by constants, added, subtracted, and
multiplied together, and the results are again polynomials.

RATIONAL FUNCTIONS

If division is also allowed, we pass beyond the polynomials into the more in-
clusive class of rational functions, such as

x x+2 XI-dx2+x+6 1
x2+1 x—2' 2+x+1 =T

The general rational function is a quotient of polynomials,

ag + ayx + ax? + - - - + a,x"
bo + byx + box® + -+ - + bpx™’

and a specific function is rational if it is (or can be expressed as) such a quo-
tient. If the denominator here is a nonzero constant, this quotient is itself a poly-
nomial. Thus, the polynomials are included among the rational functions.

ALGEBRAIC FUNCTIONS

If root extractions are also allowed, we pass beyond the rational functions into
the larger class of algebraic functions, which will be properly defined in a later
chapter. Some simple examples are

1 x+1
y=Vx, y=x+Va2+1, y=——0 y=;}’ .
VI1—x x—1

If we replace the root symbols by fractional exponents in accordance with the
rules of algebra, then these functions can be written

+ 1\
p=x2, y=xdRERE, == _v=(x——),

x=1

TRANSCENDENTAL FUNCTIONS

Any function that is not algebraic is called transcendental. The transcendental
functions studied in calculus are the trigonometric, inverse trigonometric, expo-
nential, and logarithm functions. We do not assume that students have any pre-
vious knowledge of these functions. All will be carefully explained later.

We conclude this section with a brief review of some important functions aris-
ing in geometry. A ready grasp of the geometric formulas given in Fig. 1.22 is
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Figure 1.22 Geometric formulas.
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essential for coping with many examples and problems in the following chap-
ters. These formulas—for the area and circumference of a circle, the volume and
total surface area of a sphere, and the volume and lateral surface area of a cylin-
der and a cone—should be understood if possible, but remembered in any event.
Each of the first four formulas, those for the circle and the sphere, defines a func-
tion of the independent variable r, in which a given positive value of r determines
the corresponding value of the dependent variable.

Most of our attention in this book will be directed at functions of a single in-
dependent variable, as previously defined and discussed. Nevertheless, we point
out that each of the last four formulas in Fig. 1.22 defines a function of the two
variables r and h; these variables are called independent (of each other) because
the value assigned to either need not be related to the value assigned to the other.
In special circumstances a function of this kind can be expressed as a function
of one variable alone. For example, if the height of a cone is known to be twice
the radius of its base so that & = 2r, then the formula for its volume can be writ-
ten as a function of r or as a function of A:

Vv=imP@n=3m* o V=1irx (%)2 h=Lmhd.
The formulas in Fig. 1.22 also illustrate the custom of choosing letters for vari-
ables that suggest the quantities under discussion, such as A for area, V for vol-
ume, r for radius, h for height, and so on.

PROBLEMS
1 If f(x) = 5x* — 3, find: In each of Problems 3-8, compute and simplify the quantity
(a) f(—3) (b) f(2); fx + k) — f(x)
(c) f(0); @ =V h '
(e) fla + 3); (f) f(50). 3 fix)=52—3 4 fx)=3-2x
= = = 9,2
2 1 g = X, find: 5 fay=2. 6 A=+
7 fw =1 8 f)=—.
(a) g(3) (b) g(—3); x 1—x
1, l) 9 If f(x) = x3 — 3x? + 4x — 2, compute f(1), f(2), f(3),
o @ s (a ' £(0), f(~1), and f(~2).

(e) gla + 1); (f) glr—1). 10 If f(x) = 2%, compute f(1), f(3), f(5), f(0), and f(—2).
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If f(x) = 4x — 3, show that f(2x) = 2f(x) + 3.

What are the domains of f(x) = 1/(x — 8) and g(x) = x*?
What is h(x) = f(g(x))? What is the domain of h(x)?
Find the domain of each of the following functions:

(@) Vx b) V—x;

(©) Vx% (d) VxI—4;
1

(e) Z—3 (f) gyl

(g) Vix—1)x+2) (h) 17;

O Vi-un-x% () 5

If fix) = 1 — x, show that f( f(x)) = x.

If f(x) = x/(x — 1), compute f(0), f(1), f(2), f(3), and

fUf(3)). Show that f( f(x)) = x.

If f(x) = (ax + b)/(x — a), show that f( f(x)) = x.

If f(x) = 1/(1 — x), compute f(0), f(1), f(2), f(f(2)), and

SFUfCf(2))). Show that f(f( f(x)) = x.

If f(x) = ax, show that f(x) + f(1 — x) = f(1). Also ver-

ify that f(x; + x2) = f(x;) + f(xz) for all x; and x,.

If f(x) = 2%, use functional notation to express the fact

that 2% - 2% = 2%+,

Find f(x) if f(x + 1) = x2 — 5x + 3. Hint: Let u = x +

1 and find f(u).

A linear function is one that has the form f(x) = ax + b,

where a and b are constants. If g(x) = cx + d is also lin-

ear, is it always true that f(g(x)) = g(f(x))?

If f(x) = ax + b is a linear function with a # 0, show

that there exists a linear function g(x) = ax + B such that

f(g(x)) = x." Also show that for these two functions it is

true that f(g(x)) = g(f(x)).

A quadratic function is one that has the form f(x) =

ax® + bx + ¢, where a, b, ¢, are constants and a # 0.

(a) Find the values of the coefficients a, b, ¢ if f{0) = 3,
f)=2,f2)=9.

(b) Show that, no matter what values may be given to
the coefficients, a, b, ¢, the range of a quadratic func-
tion cannot be the set of all real numbers.

In each case, decide whether or not the equation deter-

mines y as a function of x, and if it does, find a formula

for the function:

(a) 32 +y2 =1,

) 32 +y=1;

“The symbols a and j3 are letters of the Greek alphabet whose names
are “alpha” and “beta.” The letters of this alphabet (see the front end-
paper) are used so frequently in mathematics and science that seri-
ous students should leamn them at the earliest opportunity. Among
other benefits, this will avoid the annoyance of reading printed mat-
ter containing symbols we don't know how to pronounce.
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Split the equation 2x? + 2xy + y*> = 3 into two equa-
tions, each of which determines y as a function of x.

The following problems all involve geometry. In working on
such a problem, always draw a sketch and use this sketch as
a source of ideas.
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If an equilateral triangle has side x, express its area as a

function of x.

The equal sides of an isosceles triangle are 2. If x is the

base, express the area as a function of x.

If the edge of a cube is x, express its volume, its surface

area, and its diagonal as functions of x.

A rectangle whose base has length x is inscribed in a

fixed circle of radius a. Express the area of the rectan-

gle as a function of x.

A string of length L is cut into two pieces, and these

pieces are shaped into a circle and a square. If x is the

side of the square, express the total enclosed area as a

function of x.

(a) Is the area of a circle a function of its circumference?
If s0, what function?

(b) Is the area of a square a function of its perimeter? If
so, what function?

(c) Is the area of a triangle a function of its perimeter?
If so, what function?

The volume of a sphere is a function of its surface area.

Find a formula for this function.

A cylinder is inscribed in a sphere with fixed radius a.

If h is the height and r is the radius of the base of the

cylinder, express its volume and total surface area as

functions of r, and also as functions of h.

A cylinder is circumscribed about a sphere. If their vol-

umes are denoted by C and §, find C as a function of 5.

A cylinder has fixed volume V. Express its total surface

area as a function of the radius r of its base.

A fixed cone has height H and base radius R. If a cylin-

der with base radius r is inscribed in the cone, express

the volume of the cylinder as a function of

(a) A farmer has 100 ft of fencing with which to build
a rectangular chicken pen. If x is the length of one
side of the pen, show that the enclosed area is

A =50x — x? =625 — (x — 25)%

Use this result to find the largest possible area and
the lengths of the sides that yield this largest area.

(b) Suppose the farmer in part (a) decides to build the
pen against a side of the barn so that he will have to
fence only three sides of it. If x is the length of a side
perpendicular to the barn wall, find the enclosed area
as a function of x. Also find the largest possible area
and the lengths of the sides that yield this largest area.
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In the previous section we discussed the concept of a function at some length.
This discussion can be summarized in a few sentences, as follows.

If x and y are two variables that are related in such a way that whenever a suit-
able numerical value is assigned to x there is determined a single corresponding
numerical value for y, then y is called a function of x and this is expressed by
writing y = f(x). The letter f symbolizes the function itself, which is the opera-
tion or rule of correspondence that yields y when applied to x. However, for prac-
tical reasons we prefer to speak of “the function y = f(x)” instead of “the func-
tion £ As a matter of principle, students should clearly understand that a function
is not a formula and need not be specified by a formula—even though most of
Ours are.

Now for graphs.

The Chinese have a well-known proverb that can be interpreted as expressing
a basic truth about the study of mathematics: One picture is worth a thousand
words.” For us, in our study of functions, this means draw graphs! Even more,
cultivate the habit of thinking graphically, to the point where it becomes almost
second nature.

Before getting down to the details of specific functions, we emphasize that it
is often possible to think of the graph of a function y = f(x) very concretely, as
the path of a moving point (Fig. 1.23). The independent variable x can be visu-
alized as a point moving along the x-axis from left to right; each x determines a
value of the dependent variable y, which is the height of the point (x, y) above
the x-axis. The graph of the function is simply the path of the point (x, y) as it
moves across the coordinate plane, sometimes rising and sometimes falling, and
in general varying in height according to the nature of the particular function un-
der consideration. The graph as a whole is intended to provide a clear overall
picture of this variation. The graph shown in Fig. 1.23 happens to be a smooth
curve with two high points and one low point, but many diverse phenomena are
possible.

We now discuss the graphs of a few representative examples of the types of
functions described in Section 1.5.

POLYNOMIALS

We have seen that the simplest polynomials are the powers of x with nonnega-
tive integral exponents,

y=1,xx%

As we know, the graph of y = 1 is the horizontal straight line through the point
(0, 1), and the graph of y = x is the straight line through the origin with slope 1
(Fig. 1.24a). For larger values of the exponent n, the graphs of y = x" are of two
distinct types, depending on whether n is even or odd:

y=x% x4 xb ...

and

“See Bartlett's Familiar Quotations, 16th ed. (Litle, Brown and Co., 1992), fn. 8, p. 782.
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y y ¥y
¥=x", nodd
and n =3
y=x
b=
2 / LD a,n a1
(0, 1) (1, 1)
x x x
y=x",neven
and n =12 =1,-1)
(a) (b) ()

These types are shown in parts b and ¢ of Fig. 1.24. As n increases, these curves
become flatter near the origin and steeper outside the interval [—1, 1].

We already know that the graphs of all first- and second-degree polynomials,
such as

y=2x—1
and
y=3x2 - 2x+ 1,

are straight lines and parabolas. These graphs are easy to draw—without plot-
ting points—on the basis of the ideas in Sections 1.3 and 1.4.

For our next remark we need a bit of new terminology. A zere of a function
v = f(x) is a root of the corresponding equation f(x) = 0. Geometrically, the ze-
ros of this function (if it has any) are the values of x at which its graph crosses
or touches the x-axis; they are the x-intercepts of this graph.

Now consider the general second-degree polynomial

y=ax?+ bx+c, a#0. (1)

As we know, the graph of this function is a parabola for all values of the coef-
ficients. If we assume that a > 0, so that the parabola opens upward, then there
are three possibilities for the zeros of (1), and these are shown in Fig. 1.25. Since
the roots of the quadratic equation ax® + bx + ¢ = 0 are given by the quadratic
formula

—b + Vb — dac
=
2a
¥ ¥ ¥
Two One No zeros
distinct double

LAY B

\J ¥ x *

Figure 1.24 Graphs of y = x".

Figure 1.25
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it is clear that the three possibilities in Fig. 1.25 correspond to the algebraic con-
ditions b?2 — 4ac > 0, b2 — 4ac = 0, b* — d4ac < 0.

The problem of graphing polynomials of degree n = 3 is not easy. Our dis-
cussion of the following example suggests several useful ideas.

Example 1 The graph of
y=x3—-13x (2)

is shown in Fig. 1.26. At present we have no methods available for discover-
ing such important features of this curve as the precise location of the indicated
high and low points. This will come later. Nevertheless, a few observations
can be made, and these provide at least some details and a good enough im-
pression of the shape of the graph so that students should be able to sketch it for
themselves.

We begin by pointing out that if (2) is written in factored form, as

y=x(x = 3) = x(x + V3)x — V3), 3)

then its zeros are obviously 0, —V/3, V/3. These three numbers divide the x-axis
into four intervals, as shown in Fig. 1.27, and a careful inspection of the factors
of (3) tells us that in each interval y has the sign given in this figure. The details
of this determination of the sign of y are important to understand, so we pause
and carefully think it through, as follows:

forx < —\/5, x is negative,
x+V3iis negative, and
x = V3 is negative,
so their product y is negative;
for —V3<x<0, xisnegative,
x+ V3is positive, and
x—V3is negative,
so their product y is positive;
for0 <x<V3, xis positive,
x+V3is positive, and
x—V3is negative,
so their product y is negative;

forx> V3, xis positive,
x+V3is positive, and
x—V3is positive,
so their product y is positive.

‘We therefore know, for each interval, whether the graph of (2) lies above or be-
low the x-axis (see Fig. 1.26). We have described this method of analysis in de-
tail because it will often be useful in other problems of curve sketching.

Our second observation relates to the behavior of the graph of (2) when x is
numerically large, that is, far to the right or far to the left in Fig. 1.26. If (2) is
written in the form

y=x3(1—;3i-), x*0,
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then for large positive or negative values of x the expression in parentheses is
nearly 1, so y is close to x>. In geometric language, when x is large, the graph of
(2) is close to the graph of y = x3, as Fig. 1.26 suggests. In particular, the graph
of (2) rises on the far right and falls on the far left.

Students will notice that they can always sketch a graph by laboriously plot-
ting many points and joining these points by a reasonable curve. Nevertheless,
this rather clumsy procedure should be adopted only as a last resort, when more
imaginative methods fail. The important features of functions and their graphs
are much more clearly revealed by the qualitative approach to curve sketching
that we have tried to suggest in Example 1 and will continue to emphasize.

RATIONAL FUNCTIONS

Example 2 The simplest rational function that is not a polynomial is

y= : “4)

X
On examining (4), we notice the following facts: y is undefined when x = 0; y
is positive when x is positive, and is small when x is large and large when x is
near 0 on the right; y is negative when x is negative, and is small when x is large
and large when x is near 0 on the left. The graph of (4) given in Fig. 1.28 is a
direct pictorial version of these statements. In this particular case the graph is
also easy to sketch by plotting a few points, as shown in the figure. However,
students will profit much more from simply visualizing the behavior of such a
function on the various parts of its domain and drawing what they see in the
mind’s eye.

A straight line is called an asymptote of a curve if, as a point moves out along
an extremity of the curve, the distance from this point to the line approaches 0.
It is clear that both the x-axis and the y-axis are asymptotes of the graph shown

Figure 1.28

a3
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in Fig. 1.28. The behavior of the function (4) at and near the point x = 0, that
is, the fact that y is undefined at x = 0 and “becomes infinite” near x = 0, is de-
scribed by calling this point an infinite discontinuity of the function.

Example 3 In the case of the function

— (5
it is clear that the point x = 1 is particularly significant, since y is undefined at
x =1 and is large in absolute value when x is near 1 (x = 1 is an infinite dis-
continuity). Also, y is near 1 and slightly greater than 1 when x is large and pos-
itive, and is near 1 and slightly less than 1 when x is large and negative.” These
observations suggest drawing the vertical and horizontal guidelines shown in Fig.
1.29a. If we notice that y = 0 when x = 0, and use the method of Example 1 to
find the sign of y in each of the intervals —ee <x <0, 0<x<1,and 1 <x,
then the graph as given in Fig. 1.29a is quite easy to sketch. The lines x = 1 and
y = 1 are both asymptotes.

Example 4 The function

= ] = X
¥2=3x+2 (x-Dx-2)

¥ (6)
is similar to (5) but somewhat more complicated. Here the factored form of the
denominator reveals two infinite discontinuities, x = 1 and x = 2. Again, y = 0
when x = 0, but this time y is small when x is large, since the degree of the de-
nominator is greater than that of the numerator. If we combine these facts with
the observable sign of y in each of the intervals —ee <x<0,0<x<1, 1<
x< 2, and 2 < x (think it through in the manner of Example 1 for each inter-
val!), then it is fairly straightforward to sketch the graph as shown in Fig. 1.295.
There is evidently a high point between 1 and 2, and a low point to the left of
0, but at present we are unable to determine the precise location of these points
(we shall see later that they occur at x = V2 and x = —V2).

"To see this, test with convenient specific values of x; thus, for example, y = % when x = 10 and
y = 1% when x = —10.
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Example 5 The function

1

y=xFT (7N
has an infinite discontinuity at x = 0, and is positive or negative according as x
is positive or negative. For small positive x’s, the first term on the right of (7) is
negligible and the second term is large; and for large positive x's, the second term
is negligible and y is approximately equal to x. We therefore sketch the part of
the graph in the right half-plane as follows: Draw the guideline y = x (Fig. 1.30);
insert the two extremities of the curve, approaching this guideline and the posi-
tive y-axis, as suggested by the behavior previously stated; and connect these ex-
tremities in a reasonable way in the middle, where this part of the graph has an
obvious low point. The function behaves similarly —with a corresponding high
point—for negative values of x. The y-axis and the line y = x are both asymp-
totes.

Example 6 The denominator of

X
Y<a+1 (8)

is positive (in fact = 1) for all x, so y = 0 when x = 0, y is positive when x is
positive, and y is negative when x is negative. Also, y is small when x is large,
because the degree of the denominator is greater than that of the numerator.”
These properties of the function force the graph to have the shape shown in Fig.
1.31, with one high point and one low point.

Example 7 In considering the function

x2 =1
P 9
it is natural to factor the numerator, obtaining
_fx+Dix—-1)
i e e S
%
and then to cancel the common factor, which yields
y=x+ L7 (10)

“Notice that when the numerator x is large, the denominator x> + | is enormous, so y is small.
A word of warning about a point of algebra. To “cancel” a common factor, as in the text, is OK:

L=2 ifcto.
But “canceling” a common term, as in
ate_4a
b+¢ b
is WRONG. Try it: Is
1+2 _ 1,
2+2 2

Of course not.
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This cancellation is valid except when x = 1. At this point the value of (10) is 2,
but (9) has no value (y = 0/0, which is meaningless). To graph (9), we therefore
draw the straight line (10) and delete the single point (1, 2), as shown in Fig.
1.32.

Two functions y = f(x) and y = g(x) are said to be equal if they have the same
domain and if f(x) = g(x) for every x in their common domain. Accordingly, the
functions (9) and (10) are not equal, because they have different domains—the
point x = 1 is in the domain of (10) but is not in the domain of (9). The fact that
the graph of (9) has a gap (or hole) corresponding to x = 1 is expressed by say-
ing that (9) is discontinuous at x = 1, or has a discontinuity at this point.

ALGEBRAIC FUNCTIONS
Example 8 The functions
y=Vx and y=V25-x an

can be obtained by solving the equations
y2=x and x2+y2=125 (12)

for y and choosing the positive square roots. We know that the graphs of equa-
tions (12) are a parabola and a circle, as shown in Fig. 1.33, so the graphs of
(11) are the parts of these curves that lie on or above the x-axis.

y
¥ y=WV25 -2
'’
y=vx
1 L]
\ x \ '(5.01 x
Y \ ’l
. p=—a % /
SN \ /
~. ~ .
S Sa 7N\
- el y=-V25 -«

Example 9 The graph of the absolute value function
y =l

is easy to draw (Fig. 1.34). To see that this function is algebraic, we have only
to notice the fact that |x| = Vx? for every value of x.

As these examples show, many of the basic features of a function are made
transparently clear by sketching its graph. We are interested less in sketches of
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high accuracy than in those that display broad general features: where the graph
is rising and where falling, the presence of gaps, the presence of high points and
low points, and what its approximate shape is. Formulas are obviously important
in the study of functions—indeed, they are indispensable whenever our purposes
require exact calculations yielding quantitative results. But we should never for-
get that the primary aim of mathematics is insight, and graphs are invaluable aids
for gaining visual insight into the individual characteristics of functions.

PROBLEMS

1 Sketch the graphs of the following polynomials, paying
special attention to the location of their zeros and their be-

4 -
(&) y= ,#;T;;

CREN=
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havior for large values of x: 4 In each of the following, sketch the graphs of all three

@y=x>+x-12;
(b) y=x— 3x? + 2x;
© y=(1—x)2—x)3—x)
dy=x*—x%
(e) y=x*—5x2+4.
2 Sketch the graphs of the following rational functions: I

functions on a single coordinate system:
@ y=kly=hl+1Ly=Kl-1
® y=ply=h+1,y=h-1
(© y =l y=2pd, y=aul.
5 Sketch the graphs of the following functions:

@ y=5 () y = @ y="5 ®) =P
# N 3 ) (© y=x+ x () y=2x+ |x;
@y=x+ @ y=x*+-73 e y=x—|x; () y=1+x—|x;
(®y=hk*-1l.
(e) y= —_t f) y= . g():onysiderlfng 01'1I[),|r positive values of x, show that
x2+ 1 x2+1 2‘
0<x<1
- ' g x+1|—|x—-1 !
® = Wy = y:|—|x|u={g .
2 2 4
(i) y= sz—_]; Gy y= %; and sketch the graph.
i w3 Are any of the following pairs of functions equal?
®) y="—— x
YT @ f0) =7, ) = 1.

C (xt2)x = 5)x2 + 2x — 8)

T -2 —3x-10)

Sketch the graphs of the following algebraic functions:
(@ y=VE-1)3-x;

1

My

b) y=——————

Oy e -»

) p=—s @ y= ==
e E=T 4 3-x

(b) flx) =x2 = 1, g(x) = (x + 1)(x — 1).
© f(x) = x, g(x) = Vil
(d) f(x) = x, g(x) = (Vx)%

Periodic phenomena are found everywhere in the world around us—vibrating
springs, alternating currents, swinging pendulums, revolving planets, etc.—and
scientists describe these phenomena by using trigonometric functions. For this
and other reasons, students beginning the study of calculus are often expected to
know something about trigonometry.

Although most users of this book have some familiarity with basic trigonom-
etry, we nevertheless review a few of the fundamental ideas, especially the ra-
dian measure of angles and the definitions and simpler properties of the very im-

i 74
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Figure 1.35

30°

Figure 1.36
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portant functions sin # and cos 6. This review is continued in Section 9.1, where
the discussion is broadened to include the other four trigonometric functions
tan 6, cot 6, sec , csc 6—all of which are indispensable in Chapter 10 but will
not be needed until then.

In high school trigonometry courses the sine and cosine of an acute angle 6
are first defined as ratios of sides in a right triangle, as follows (see Fig. 1.35):

ola = opposite side _
hypotenuse

o e adjacent side = b
hypotenuse h’

1
e

Because similar triangles have proportional sides, the values of sin 6 and cos 6
depend only on the size of the acute angle 6, and not at all on the size of the
right triangle whose sides are used to compute these values.

Example 1 We know from geometry that in a 30°-60° right triangle, the side
opposite the 30° angle is half the hypotenuse (see Problem 32 in Section 1.2).
This enables us to draw the familiar right triangles shown in Fig. 1.36, and from
these triangles we see that

V3

sin 30° = — sin 60° = B sin 45° =

Sl

|

>
3

cos 30° = —2—3— cos 60° = % cos 45° = L.

It is customary to rationalize the denominators on the right by writing

1 _1 . V2_1ls5
vz V2 vz 2

but for the moment we leave these values as they stand in order to emphasize the
defining ratios.

*The Greek letter 6 is pronounced “theta.”
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The ideas described here are part of what is called right triangle trigonome-
try, in which angles are measured in degrees and sines and cosines are defined
only for acute angles of right triangles. In the equivalent forms

a=hsin @ and b= hcos 6,

these definitions have a number of applications in geometry and physics. This is
all right as far as it goes. However, for the purposes of calculus the limitations
of this approach are crippling. We therefore start all over again at the beginning
and give a capsule development of analytic trigonometry, in which the trigono-
metric functions are freed from their dependence on right triangles and are de-
fined as real-valued functions of a real variable. As an example of what we mean
by analytic trigonometry, let us consider the motion of an object oscillating up
and down at the end of a spring (Fig. 1.37). If this motion is described by the
position function

5= fif) =cost,

which gives the position s as a function of the time 1, then it makes little sense
to think of t as an angle and measure its values in degrees. We must consider
what cos  means when 7 is not an angle but a number—the number of seconds
that have elapsed since the motion began when r = 0.

Our treatment below is self-contained. Even a student who knows nothing of
the subject will be able to learn everything that matters by reading with close at-
tention and working through the problems at the end of the section.

RADIAN MEASURE

In elementary mathematics and daily life, angles are measured in degrees, with
90° measuring a right angle. But the degree is an arbitrary measure inherited from
the ancient Babylonian astronomers, and its use in calculus would make many
of our formulas intolerably messy. In calculus we use a much more natural and
convenient system called radian measure, which is defined in terms of how much
arc an angle cuts off on a circle.

In this system the unit of angle measurement is called the radian. One radian
is the angle which, placed at the center of a circle, subtends (cuts off) an arc
whose length equals the radius (Fig. 1.38, left). More generally, the number of
radians # in an arbitrary central angle (Fig. 1.38, right) is defined to be the ratio
of the length s of the subtended arc to the radius 5, 8 = s/r, so that s = rf. We

£ A\

6 = 1 radian 8 =% radians

39
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Figure 1.37
Figure 1.38
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> 6 O

note especially that in a unit circle (r = 1), a central angle of @ radians subtends
an arc of length s = 6. Since the circumference of a circle is ¢ = 27r, a com-
plete central angle of 360° is equivalent to 27rr/r = 2r radians. Thus,

Figure 1.39

27 radians = 360° or 7 radians = 180°;
and it follows from this that

1 radian = 15D = 57.296°, 1°= " =00175 radian.
™ 180
Further, 90° = #/2, 60° = #/3, 45° = #/4, and 30° = 7/6, where we follow the
convention of omitting the word “radian” in using radian measure. It is a good
idea for students to memorize these common conversions with the aid of the cir-
cle diagrams in Fig. 1.39. In addition to knowing the conversions in these dia-
grams, it will help students feel more comfortable with radians if they also think
through and verify the additional conversions in the following table.

Degrees

30!45‘60!9(]‘120|I35|150’I80]2]0|225‘240‘270|300’3I5‘330|360

1w

6

T

4

S

3

3

2

4

3

Radians

2w

The specific reason why radian measure for angles is preferred in calculus will
appear in Section 3.4. In most of our work we will use radian measure routinely
and mention degrees only in passing.

DEFINITIONS OF sin 6 AND cos ¢

We approach trigonometry by way of analytic geometry. Consider the unit cir-
O Vp_ (x.y) cle x2 + y2 = 1 in the xy-plane (Fig. 1.40), and let 8 be an arbitrary real num-
ber. If 6 is positive, let the radius OP start in the position OA and revolve coun-
terclockwise through @ radians. Thus, # =7 produces half a revolution and # =
24 produces a complete revolution, both counterclockwise. If @ is negative, we
form the positive number — f and let OP revolve clockwise through — @ radians.
See Fig. 1.41. In this way, each real number 6 (positive, negative, or zero) de-
termines a unique position of the radius OP in Fig. 1.40, and therefore a unique
point P = (x, y) with the property that x> + y? = 1.

The sine and cosine of @ are now defined by

(=1,0)

Figure 1.40 )
sin =y and cos = x.

The word “sine,” sinus in Latin, is a corruption of an Arabic word meaning
“chord” or “bowstring.” Since sin and cos are the names of functions, the proper
notation should be sin(6) and cos(#), just as we write f(#) when the function is
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1
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ra

)

f However, in the case of trigonometric functions it is customary to omit the
parentheses. It is evident from the definition that —1 = sin 6 =< 1, and similarly
for cos 6. The algebraic signs of these quantities depend on which quadrant of
the plane the point P happens to lie in (Fig. 1.42). For values of 6 such that 0 <
6 < 7/2, these definitions agree with the right triangle definitions given above,
because in the triangle in Fig. 1.40 we have sin 8 = y = y/1 = (opposite side)/
(hypotenuse) and cos 8 = x = x/1 = (adjacent side)/(hypotenuse).

sin 81— -

=
ST
h— ——

cos 9;’\

l/ﬁ‘;

Figure 1.41
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g
@
k-1
o
o
*
k-1

sin

P

sinf =0
cosB =0

sinf =0
cos B <0

sinB <0
cos 8 <0

IDENTITIES

If we compare the angles # and —@ in Fig. 1.43, we see at once that

sin (—6) = —sin 8 and cos (—f) = cos 6. (4}

The equation x> + y* = 1, or equivalently y> + x2 = 1, translates immediately
into the important identity
sin? @+ cos® B = 1. (2)

[The somewhat strange notation sin? @ is the standard way of writing the square

Figure 1.42

N

I
i

in 6,

sin@ <0
cos® >0

Figure 1.43
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of the number sin 6, that is, (sin 8)%; and similarly for cos? 6.] Problem 10 in
Section 9.1 outlines a general proof of the addition formulas

sin (0 + &) = sin 6 cos ¢ + cos 0 sin ¢, (3)
cos (6 + ¢) = cos 6 cos ¢ — sin 6 sin ¢. (4)
We give a proof of (3) below, in connection with Fig. 1.44, for the restricted case
in which f and ¢ are both positive angles whose sum is less than 7/2. First, how-

ever, we point out that if we put ¢ =@in (3) and (4), we obtain the double-
angle formulas

sin 260 = 2 sin # cos 6, (5)
cos 26 = cos? A — sin? 6. (6)
And finally, if we write (2) and (6) together as
cos? @+ sin2@=1,
cos? @ — sin? # = cos 26,
then by adding and subtracting we get the half-angle formulas
cos? 0= 3(1 + cos 26), )]
sin? 6 = 3(1 — cos 26). (8)

Now, to prove (3) for the restricted case mentioned above, we consult Fig. 1.44
and write
. PQ _PT+TQ
) =— =X
sin(0+4) =5p =~ op
_PT+RS _PT RS
oP OP OP

_PT PR _ RS OR

" PR OP OR OP
= cos f sin ¢ + sin  cos ¢

A similar argument can be given for formula (4).

VALUES AND GRAPHS

Example 1 provides several first-quadrant §'s for which exact values of sin € and
cos @ are easy to find. These facts can also be obtained by looking carefully at
the three parts of Fig. 1.45 and remembering the Pythagorean theorem:

n oL i
sin i 2\/5. sin 3 2\/3.

sin

l=

cos

oy oy

1 A S & 1

5\/5, cos b \/E, cos 3 2

Also, an inspection of Fig. 1.40 with OP in various positions gives us similar in-
formation for the cases 6 = 0, @/2, m, 37/2, 2m:

sin 0 = 0, sin%=l, sin w =0, sin-:izz=—1, sin 27 =0,
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y ¥ y
o a?+a?=| y
a-+;=1‘ a?:l.:% al+ ;=1
a2=3 a2= %
1
|
I
1 60° = |
I 3 |
1 ! I = =1
1 I 459 = T |la= ; ") 19 2\/3
o _ = 1 ,]—, 4 | 1
30 =g ke | I
I I '
| | |
a=13 o a=12 * ! x
Figure 1.45
™ 37
cos0=1, cos?:-ﬂ, cos = —1, cos?=0. cos 2w = 1.
Further, by drawing pictures and using the ideas in Fig. 1.45 we can find the ex-
act values of sin @ and cos # for any value of  that represents an angle one-third,
one-half, or two-thirds of the way through any quadrant.
Example 2 To illustrate this remark, we point out (Fig. 1.46) that 135° = 37/4 y

is halfway from 7/2 to r, so the point P is in the second quadrant with coordi-
nates (—1V/2, 3V/2), and consequently we have

3T _1 ELN |
sin 2 —2‘\/5, cos o 2‘\/5.

Similarly, 300° = 57/3 is one-third of the way from 3#/2 to 27, so P is in the
fourth quadrant with coordinates (3, —3V/3), and we have

ST L Sm_1
51"3_ 2\/5, (:053—2.

Of course, most s are beyond the scope of these methods, and in these cases
the values of sin # and cos 6 can be found from trigonometric tables or a calcu-
lator. The problem of how these values themselves are calculated is more diffi-
cult, and will be discussed in Chapter 14.

For every 6, the numbers 6 and 8 + 2 clearly determine the same point P, so

sin (8 + 27) = sin @ and cos (@ + 2m) = cos 6.

This says that the values of sin # and cos 6 repeat when @ increases by 2. We
express these properties of sin  and cos @ by saying that these functions are pe-
riodic with period 2.

The graph of sin 8 is easy to sketch by looking at Fig. 1.40 and using imagi-
nation to follow the way y varies as 6 increases from O to 27, that is, as the ra-
dius swings around through one complete counterclockwise revolution. It is clear
that sin @ starts at 0, increases to 1, decreases to 0, decreases further to —1, and
increases to 0. This gives one complete cycle of sin 6 on the interval 0 = 6 =
247, as shown on the left in Fig. 1.47. By using the periodicity of sin 8, we see

Figure 1.46
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g p——————

cos 0

=3

sin @

that the complete graph (on the right in the figure) consists of infinitely many
repetitions of this cycle, to the right and to the left. The graph of cos 8 can be
sketched in essentially the same way (Fig. 1.48). The main difference is that
cos @ starts at 1 when 6 = 0, decreases to 0, decreases further to — 1, increases

to 0, and increases further to 1.

cos 6

sin 26

On the other hand, the graph of sin 26 makes one complete cycle on the in-

terval 0 = @ = r, because 26 increases from 0 to 27 as 6 increases from 0 to 7

(Fig. 1.49, left). This says that sin 26 oscillates twice as fast as sin £. In the same

i 1
sin 30

27

Figure 1.49

—
BV v

2 4

i
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way we see that sin 360 oscillates half as fast as sin 6 (Fig. 1.49, right). In gen-
eral, both sin k6 and cos k@ make one complete cycle for 0 = k6 = 2, or equiv-
alently, on the interval 0 = 8 = 2w/k.

Notice that degrees are almost entirely banished from this way of thinking
about trigonometry. Trigonometric values can be written using degree measure
or radian measure: either sin 30° or sin 77/6; either cos 90° or cos 7/2. But when-
ever we think of trigonometric functions, as in writing y = sin 8 or f(8) = cos 6,

the independent variable 6 is always understood to be in radians.

The functions sin # and cos @ are the basic trigonometric functions, but there
are four others that are also important though less fundamental: the tangent, cotan-

gent, secant, and cosecant. These can be defined as follows:

mo=228
cot6=%g-.
m6=£§.
csc8=ﬁ.

Even though we mention them here, these four functions will not be essential for
our work until we reach Chapter 10. At that time we will review them thoroughly.

PROBLEMS

1 Convert the given angle from degrees to radians:
(a) 15°% (b) 150°;
(c) 1500% (d) —36°
(e) —110% &) 7.

2 Convert the given angle from radians to degrees:
(a) =/15; (b) m/45;
(c) —nl36,; (d) =3;
(e) 7% (£) 30.

3 Find the value of the given expression without using ta-
bles or a calculator:
(a) cos (—120°); (b) sin 780°%;
{c) sin l;”; (d) cos (—-I%E):
(e) sin -li—ﬂ: (f) cos %

4 [s the given number positive, negative, or zero?
(a) sin 5004, (b) cos 7;
(c) sin 901°; (d) cos 2%

5 Verify the given identities:
(a) sin 30 = 3 sin § — 4 sin® @ (Hint: 360 = 20 + 6);
(b) cos 38 = 4 cos® 8 — 3 cos 6.

6 By sketching the angles in a unit circle and using the

facts that sin /6 = 1, cos m/6 = V/3/2, find

: ™ . dw
(a) sm( 6)' (b) sin 6
. 13w AT
(c) sin 5 (d) cos[ 6)'
T 137
(e) cos rE (f) cos 6

Express each trigonometric function as a corresponding
function of an angle in the first quadrant (0 = 8 = m/2)
preceded by a + or — sign:

(a) sin 9—”;

2 (b) sin 7r;
© Sin(‘%ﬁ): d) sin (-%"’);
(e) cos 10, (f) cos 24“1;
@) cos 3T

Replace ¢ by —¢ in the addition formulas (3) and (4),
and use the identities (1), to obtain the subtraction for-
mulas:
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sin (0 — ¢) = sin f cos ¢ — cos O sin ¢, 14 Apply the half-angle formula for the sine to find
cos (6 — ¢) = cos 0 cos ¢ + sin @ sin ¢. (a) sin —}; (b) sin (—%)
9 By examining Fig. 1.50, obtain the following identities: 15 Use the appropriate addition or subtraction formula to
(a) sin (7 — #) = sin 8, cos (w — #) = —cos 6, find
. 2w 2w ™
(b) sin (g - 8) = cos 6, cos (% - 3) = sin . (a) sin £l from Ty Wt
5w 5w ™.
Use similar arguments—based on appropriate pictures (b) cos = from == = o + -
—to obtain identities (c) and (d): . 17w 17w -
(c) sin (@ + m) = —sin 6, cos (6 + ) = —cos 6; (c) sin = from 6 3w =~ 6
16 Use the method of the eding problem to find
(d) sin(ﬂ+£)=cm 8,cos(ﬂ+%)= —sin f. 197 precmwgp 114
B (a) cos T: (b) cos - (c) sin 5
10 Derive the identities in Problem 9 as special cases of the — ;
. -
bt sl snbsorian Tasruies 17 Check the identity for sin(8 +¢) when
11 The half-angle formulas (7) and (8) are called by this (a) 8= % and ¢ = %;
name because if we set 260 = a, they can be written as
R =7 =
o, [I—cna () 6= and ¢ =7
¥ - 2 ' 18 Check the identity for cos(# +¢) when
T T
+ cos = i LY
m%a::h ;osa‘ (@) =g and ¢ =3
b) f=-"and ¢ =
Use these formulas to find the values of sin 15° and (b) 8= 2 Al = 4"
cos 15°. 19 Find sin 57/12 by using the fact that 5#/12 = 7/4 + /6.
12 Apply the formulas in Problem 11 to find the values of 20 Find sin 7/12 by using the fact that /12 = w/4 — /6.
sin 30° and cos 30° from the fact that cos 60° = 3. Reconcile your answer here with the first answer in Prob-
13 Apply the half-angle formula for the cosine to find lem 11.
() 008 W, ) cos 3m 21 Establish the addition formula (4) for the cosine by the
e L 4 method suggested in the text, that is, by using Fig. 1.44.
(v, x)
(= f | I (x,¥) (x, )
T+ 8 '21_ )
e ]
(1,m (1,0)
Figure 1.50

CHAPTER 1 REVIEW: DEFINITIONS, CONCEPTS, METHODS

Define, state, or think through the following.

1
2
3

Rational and irrational numbers.
Real line.
Rules for inequalities.

~ &b

Absolute value of a number.
Closed and open intervals.
Coordinate plane.
Pythagorean theorem.
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Distance formula.

Midpoint formulas.

Slope of a straight line.

Point-slope equation of a line.
Slope-intercept equation of a line.
Slope criterion for parallel lines.
Slope criterion for perpendicular lines.
Equation of a circle.

Completing the square.

Definition of a parabola.

Equations of parabolas.

Function.

Domain and range of a function.
Independent and dependent variables.

SECTION 1.2

1

2

If @ and b are positive numbers, prove the inequality
Vab = Ha + b) as Euclid did, by considering a right tri-
angle inscribed in a semicircle (Fig. 1.51).

td

a

Figure 1.51

If a and b are any two numbers, denote the larger by
max (a, b) and the smaller by min (a, b). Show that

max (a, b) = 3(a + b + |a — b)),

and find a similar expression for min (a, b).

Show thatifa<bandc =d,thena+ c=b + d. Use
this fact to prove that |a + b| = |a| + |b|. Hint: Begin by
noticing that —|a| < a < |a| and —|b| = b = |b].

If @ is a positive rational number, explain why the fol-
lowing method for calculating the square root of a works.
First, choose a rational number which is a reasonable
guess at the value of Va, and call this initial approxi-
mation x;. Next, divide a by x; and average the result
with x|, thereby obtaining a second approximation x;.
Next, divide a by x; and average the result with x;, ob-
taining a third approximation x3. This procedure is ex-
pressed by the formula

Xn+|=‘1i(1n+xi), =123 ....
n

Hint: If x, is reasonably close to Va but different from
it, then Va lies between x, and a/x; (why?), and so the

HEERNRREER

32
33

35

10

11

Polynomials.

Rational functions.

Algebraic functions.
Transcendental functions.

Graph of a function.

Zero of a function.

Asymptote of a curve.

Infinite discontinuity of a function.
Radian measure.

Sine and cosine of £.

Addition and subtraction formulas.
Values and graphs of sin 6 and cos 6.
Double-angle formulas.

Half-angle formulas.

average of x; and a/x; is likely to be even closer to Va;
also note that

Xni1 — Va = —é-(x,. -2Va+ xi,,) = 2Lx"(x,;, —Va).
Use the method of Problem 4 to calculate V2, first with
x; = 1 and then with x; = 3.

Use the method of Problem 4 to calculate /3, first with
x; = 2 and then with x; = %

If @ and b are real numbers with a < b, show that there
exists at least one rational number ¢ such that a < ¢ <
b, and hence infinitely many. In particular, between any
two irrationals there exist an infinite number of rationals.
If @ is a nonzero rational number and b is irrational, show
that @ + b, a — b, ab, a/b, and b/a are all irrational.

If @ and b are irrational, is @ + b necessarily irrational?
Is ab?

If @ and b are real numbers with @ < b, show that there
exists at least one irrational number ¢ such that a < ¢ <
b, and hence infinitely many. In particular, between any
two rationals there exist an infinite number of irrationals.
Give another proof of the Pythagorean theorem by using
the equations

Figure 1.52

"Further proofs can be found in Section B.1 of Simmons, Calculus
Gems (McGraw-Hill, 1992).
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In each case place the figure in a convenient position rel-
ative to the coordinate system and prove the statement
algebraically:

(a) The sum of the squares of the distances of any point
from two opposite vertices of a rectangle equals the
sum of the squares of its distances from the other two
vertices.

(b) In any triangle, 4 times the sum of the squares of the
medians equals 3 times the sum of the squares of the
sides.

If Py = (x, y1) and P2 = (x5, y2) are distinct points, and

if P = (x, y) is located on the segment joining them in

such a position that the ratio of its distance from P, to
its distance from P; is ¢/p, show that

c=paten it gy
ptq rtq
Find the point on the segment joining (1, 2) and (5, 9)
that is 1} of the way from the first point to the second.

y=

SECTION 1.3

15

16

17

18

19

If the line determined by two distinct points (x;, y;) and
(x2, ¥2) is not vertical, and therefore has slope (y2 — y;)/
(x3 = x;), show that the point-slope form of its equation
is the same regardless of which point is used as the given
point.

Determine what each of the following statements implies
about the constants A, B, C in the equation Ax + By +
cC=0:

(a) The line goes through the origin.

(b) The line is parallel to the y-axis.

(c) The line is perpendicular to the y-axis.

(d) The line goes through (1, 1).

(e) The line is parallel to 5x + 3y = 2.

(f) The line is perpendicular to x + 10y = 3.

If the lines Ajx + Bjy + C; =0and Ayx + By + G =
0 are not parallel and k is any constant, show that

(Aix + By + C)) + k(Ax + Boy + Co) = 0

is a line through the point of intersection of the given

lines. When k is assigned various values, this equation

represents various members of the family of all lines

through the point of intersection.

Giventhelinesx + 3y —2=0and 2x — y + 4 = 0, use

Problem 17 to find the equation of the line through their

point of intersection which

(a) passes through (-2, 1);

(b) is perpendicular to the line 3y + x = 21;

(c) passes through the origin.

The points (0, 0), (a, 0), and (b, c) are the vertices of an

arbitrary triangle which is placed in a convenient posi-

tion relative to the coordinate system.

(a) Find the equation of the line through each vertex per-
pendicular to the opposite side, and show alge-

21

22

braically that these three lines intersect at a single
point.
(b) Find the equation of the perpendicular bisector of
each side, and show algebraically that these three
lines intersect at a single point. Why is this fact geo-
metrically obvious?
Find the equation of the line through each vertex and
the midpoint of the opposite side, and show alge-
braically that these three lines intersect at a single
point. Also, verify that this point is two-thirds of the
way from each vertex to the midpoint of the oppo-
site side.
Show that each of the following is the equation of a
straight line:
(@ x*—xly—2x2+Ix—3y—6=0.
(b) 3xy2 +5y2 —y? — 4y + 12x + 20 = 0.
Show that the distance from a point (xp, yg) to a line Ax +
By + C = 0 is given by

1A% + Byo + €|
VA? + B?

Find the distance between the parallel lines 4x + 3y +
12=0and 4x + 3y — 38 = 0.

If two intersecting straight lines are given, then it is easy
to see that the bisectors of the angles formed by these
lines are two other straight lines whose points are
equidistant from the given lines. Use this fact to find the
equations of the bisectors of the angles formed by the
lines

(@) 3x+4y—10=0and4x—3y—-5=0;

(b)) y=0and y = x.

Why is it geometrically obvious (without calculation)
that the bisectors of the angles of any triangle intersect
at a single point?

(c

SECTION 1.4

25

26

27

29

Find the values of b for which the line y = 3x + b in-

tersects the circle x2 + y? = 4.

If the line y = mx + b is tangent to the circle x2 + y2 =

2, find an equation relating m, b, and r.

Find the equation of the locus of a point P = (x, y) that

moves in such a way that

(a) its distance from (0, 0) is twice its distance from
(a, 0);

(b) the product of its distances from (a, 0) and (—a, 0)
is @ (this curve is called a lemniscate).

In each case, sketch the graph.

A line segment of length 6 moves in such a way that its

endpoints remain on the x-axis and y-axis. What is the

equation of the locus of its midpoint?

A point moves in such a way that the ratio of its dis-

tances from two fixed points is a constant k # 1. Show

that the locus is a circle.
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Find the equation of the line which is tangent to the cir-
cle x2 + y2 + 8x + 6y + 8 = 0 at the point (—8, —2).
Find the equations of the lines that pass through the point
(1, 3) and are tangent to the circle x? + y? = 2.

If two circles

¥+y*+Ax+By+C =0

and

2+ yl+ Apx+ By + Ca=0
intersect in two points, and if & is a constant # —1, ex-
plain why

(x2+y?+Ax+By+C)
+k(xz+y2+A2x+B;y+Cg)=l‘}

is the equation of a circle through the points of intersec-

tion. If k = —1, what does the equation represent?

Use Problem 32 to find the equation of the line joining

the points of intersection of the circles x? + y? = 4x +

4y — 4 and x? + y? = 2y. Also find these points of in-

tersection.

Show that a parabola with focus at the origin, axis the

x:axis, and opening to the right has an equation of the

form y2 = 4p(x + p), where p > 0.

Find the equation of the parabola with focus (1, 1) and

directrix x + y = 0, and simplify this equation to a form

without radicals. Hint: See Problem 21.

Let the vertex of the parabola x? = 4py be joined to every

other point of the parabola. Show that the midpoints of

the resulting chords lie on another parabola. Find the fo-
cus and directrix of this second parabola.

Consider all chords with given slope m that have end-

points on the parabola x> = 4py. Prove that the locus of

the midpoints of these chords is a straight line parallel
to the y-axis.

A focal chord of a parabola is the segment cut by the

parabola from a straight line through the focus.

(a) If A and B are the endpoints of a focal chord, and if
the line through A and the vertex intersects the di-
rectrix at a point C, show that the line through B and
C is parallel to the axis of the parabola.

(b) Show that the length of a focal chord is twice the dis-
tance from its midpoint to the directrix.

(c) Show that if the two tangents to a parabola are drawn
from any point on the directrix, then the points of
tangency are the endpoints of a focal chord.

Given the two points A = (4p, 0) and B = (4p, 4p), di-

vide the segments OA and AB into equal numbers of equal

parts, number the points of division as shown in Fig. 1.53,

and join the points of division on AB to the origin by

straight lines. Show that the points of intersection of each
of these lines with the corresponding vertical lines lie on
the parabola x? = 4py.

49

Fr
//
// 4
' A
I /// /’,
)/ A 43
| £l -
| & 4
|/f//+ -~
| A - -~ ,A B
[ g +' o
LAV L
AT 41
Ju LT
T 4=
= + .
o 1 2 3 4 4 X
Figure 1.53
SECTION 1.5
40 Find the domain of each of the following functions:
X
5—x —
(a) X (b) x—3
(€) Vx—2; (d) V5 = 3x;
x+ ? . 3/
© T ) Vx;
1
(g) V9 — 4x?, (h) ;
Vx+3
(i) V7x?+5.
41 If f(x) = ax + b, show that

42

45

47

1 (xn + x:) _ fx) + flxg)
2 2 :
Is this true for flx) = x??

If f(x) = (1 + x)/(1 — x), find

(@) fl—x) () f (%)
© f(75) @ f(f).

If f(x) = Vx, what function g(x) has the property that
2(f(x) = x?

The perimeter of a right triangle is 6 and its hypotenuse
is x. Express the area as a function of x.

A cylinder has fixed total surface area A. Express its vol-
ume as a function of the radius r of its base.

A cone is inscribed in a sphere with fixed radius a. If r
is the radius of the base of the cone, express its volume
as a function of r.

A cone is circumscribed about a sphere with fixed radius
a. If r is the radius of the base of the cone, express its
volume as a function of r.

If f(x) = (x — 3)/(x + 1), show that f(f(f(x))) = x.

Let a, b, c, d be given constants with the property that
ad — bc # 0. If f(x) = (ax + b)/(cx + d), show that
there exists a function g(x) = (ax + B)(yx + 8) such
that f(g(x)) = x. Also show that for these two functions
it is true that f(g(x)) = g(f(x)).
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