
EViews COM Automation
WHITEPAPER AS OF 2/14/2013

EViews COM Automation allows an external program or script to launch and control EViews
programmatically and to transfer data back and forth. This allows you to use much of the functionality
of EViews within your own programs.

COM Registration
To use EViews COM, you must first register the EViews Type Library on the machine that will need
access to EViews. Typically, this is done for you during the EViews installation process. To perform this
step manually, first make sure your EViews serial number has been properly registered. Next, open a
command window and run EViews with a "/register" command line parameter as follows:

C:\Program Files\EViews8\EViews8.exe /register

Conversely, to unregister EViews COM, run the EViews program with a "/unregister" parameter. This
will remove all relevant entries from the Windows registry. (Note: This does NOT affect EViews serial
number registration.)

Adding a Reference
In order to use our EViews COM objects in a VBA
or.NET project, you must add a reference to our Type
Library.

In Visual Studio, right-click your project file and select
"Add Reference…" and then select the "COM" tab.
Scroll down to "EViews 8.0 Type Library" (for EViews
8) or “EViews 1.0 Type Library” (for EViews 7) and
select it. Click OK to add this reference to your
project.

Note: If you cannot find "EViews 8.0 Type Library" in the
list, this means EViews 8 COM has not been properly
registered with Windows. See "COM Registration" above.

In VBA (such as in Excel), switch to the VBA development
environment (ALT-F11 in Excel). Under the "Tools" menu,
click on "References…". Scroll down to "EViews 8.0 Type
Library" and check the associated checkbox. Click OK to
close the popup.

In other development environments, please refer to their

Figure 2 - Excel VBA 'References' Popup

Figure 1 - Visual Studio 'Add Reference' Popup

instructions in properly using COM objects. Our type library definitions are located in a file named
"EViewsMgr.dll" in the EViews subdirectory.

COM Classes
EViews COM is made up of two class objects: Manager and Application.

EViews Manager
The EViews Manager class is used to manage and create instances of the main EViews Application class.

Manager.GetApplication
This method returns an instance of the EViews.Application class. It also allows you to specify whether to
create a new instance of EViews or to try and connect to a currently running instance of EViews.

VB.NET Example:
Dim mgr As New EViews.Manager
Dim app As EViews.Application
app = mgr.GetApplication(EViews.CreateType.NewInstance)

VBA Example:
Dim mgr As New EViews.Manager
Dim app As EViews.Application
Set app = mgr.GetApplication(ExistingOnly)

Valid parameter values to GetApplication are: NewInstance (always create a new instance of EViews),
ExistingOrNew (look for existing instance of EViews and create another one if not found), and
ExistingOnly (only look for existing instance, do not create one).

Note: Calling GetApplication is the only way to get a usable Application class object. An Application
object that is instanced directly will not be properly initialized and will not be usable.

EViews Application
The EViews Application class provides access to EViews functionality and data. It has the following
methods:

Show()
Hide()
ShowLog()
HideLog()
Run(commandString)
Lookup(patternString, typeString, returnType)
ListToArray(nameString)
ArrayToList(nameArray)
Get(objectName, naType, naString)
GetSeries(seriesName, sampleString, naType, naString)
GetGroup(seriesNames, sampleString, naType, naString)
GetGroupEx(seriesNames, sampleString, naType, naString, groupOptions)
Put(objectName, objectData, dataType, writeType)
PutSeries(seriesName, seriesData, sampleString, seriesType, writeType)

PutGroup(seriesNames, seriesData, sampleString, seriesType, writeType)

Application.Show()
Displays the EViews MDI Frame window. By default, when EViews is started via COM, it is hidden.

Application.Hide()
Hides the EViews MDI Frame window from view.

Application.ShowLog()
Displays the EViews COM Output Log window. Will only be visible if EViews itself is visible.

Application.HideLog()
Hides the EViews COM Output Log window.

Application.Run(commandString)
This method is used to run an EViews command and does not return a value. Some examples of EViews
commands include:

VB.NET Example – Opening a workfile:
app.Run("wfopen c:\mywork.wf1")

Excel VBA Example -- Creating a series:
app.Run "series x"

Application.Lookup(patternString, typeString, returnType)
Returns a list of object names from the current active workfile that match the specified pattern and/or
type. patternString is a required parameter and supports the use of wildcards (e.g. "*" or "g*") and can
also specify multiple object patterns that are space delimited (e.g. "g* s*"). typeString is optional and
supports all the basic types defined in EViews such as "series", "group", "matrix", etc. You can define
multiple types in a space delimited format (e.g. "series group").

The returnType parameter is optional and specifies how to return the list of matching object names:

LookupReturnString – returns the names in a single string that is space delimited.
LookupReturnArray – returns the names as a 1-dimensional array of strings.
LookupReturnMatrixAsRows – returns the names as a 2-dimensional array of strings (1 column,
multiple rows). Excel users can apply this return object directly to an Excel range of equal size.
LookupReturnMatrixAsColumns – returns the names as a 2-dimensional array of strings (1 row,
multiple columns). Excel users can apply this return object directly to an Excel range of equal
size.

VB.NET Example:
app.Run("wfopen c:\mywork.wf1")
Dim s As String = app.Lookup("s* g*", "series",

EViews.LookupReturnType.LookupReturnString)
's = "s1 s2 s3 g1 g2 g3"

Excel VBA Example:

app.Run "wfopen c:\mywork.wf1"
Dim s
s = app.Lookup("s* g*", "series", LookupReturnMatrixAsColumns)
Dim rows, cols As Integer
rows = UBound(s, 1) – LBound(s, 1) + 1
cols = UBound(s, 2) – LBound(s, 2) + 1
Dim wsht as Worksheet
Set wsht = ActiveSheet
Dim rng
Set rng = wsht.Range(wsht.Cells(1, 1), wsht.Cells(rows, cols))
rng.Value = s 'puts each name into its own cell in the first row

Application.ListToArray(nameString)
A utility function to convert a name string (space delimited) into an array of strings (1 column, multiple
rows).

Application.ArrayToList(nameArray)
A utility function to convert a name array into a single name string (space delimited).

Application.Get(objectName, naType, naString)
Retrieves data from an object in the current active workfile. The objectName parameter can specify a
single object name, or an expression. naType and naString specifies how to return values that are
missing in EViews (NA). The allowed values are:

NATypeAsEmpty -- returns an empty or blank value
NATypeAsString – returns the specified naString value (if specified) in place of the NA
NATypeAsExcelNA – returns the Excel NA value (for use in Excel cells)

If not specified, naType defaults to NATypeAsEmpty.

For example:

VB.NET Example – Retrieve series "x":
Dim o as Object = app.Get("x")

Excel VBA Example – Retrieve an equation's covariance matrix:
Dim o
O = app.Get("=eq1.@cov")

Note: The types of EViews objects that can be returned include series, vectors, matrices, tables, and
scalar values.

Application.GetSeries(seriesName, sampleString, naType, naString)
Similar to Get, but restricted to retrieving a series object only. Also supports a named sample or a
custom sample string to filter the rows that are returned. naType and naString specifies how to return
values that are missing in EViews (NA) (see Application.Get for description of different NATypes).

VB.NET Example – Retrieve series "x" using named sample object "sample1":
Dim o as Object = app.GetSeries("x", "sample1")

Excel VBA Example – Retrieve series "x" for date range 1980 thru 1990

Dim o
o = app.GetSeries("x", "1980 1990")

Application.GetGroup(seriesNames, sampleString, naType, naString)
Similar to GetSeries, but can retrieve multiple series objects as a 2-dimensional array. The seriesNames
parameter can be a string with each name delimited by a space, an array of strings, or an Excel Range
(either a row or a column of values). This parameter can also make use of wildcards (*) to search for
names that fit a pattern. naType and naString specifies how to return values that are missing in EViews
(NA) (see Application.Get for description of different NATypes).

VB.NET Example – Retrieve all series objects whose name starts with x or y:
Dim o as Object = app.GetGroup("x* y*")

Excel VBA Example – Retrieve series "x" and series "y" (along with the date labels) for date range 1980 thru 1990
Dim o
o = app.GetGroup("@date x y", "1980 1990", NATypeAsExcelNA)
Dim rows, cols As Integer
rows = UBound(o, 1) – LBound(o, 1) + 1 'number of rows in returned object
cols = UBound(o, 2) – LBound(o, 2) + 1 'number of columns in returned object
Dim wsht as Worksheet
Set wsht = ActiveSheet
Dim rng
Set rng = wsht.Range(wsht.Cells(1, 1), wsht.Cells(rows, cols))
rng.Value = o 'puts data into top left corner of sheet

Note: The implicit series "@date" can be included in the list of series names to add a column of date
labels to the results.

Application.GetGroupEx(seriesNames, sampleString, naType, naString, groupOptions)
Similar to GetGroup, but allows you to specify a groupOptions string that is a comma-delimited list of
options. Valid options include:

badname – If a specified object name does not exist in the current workfile, this option will
control how EViews will respond. badname=error is the default behavior and EViews
will return an error on the first object name that doesn't exist. badname=pad returns aa
empty column padded with naType for each object name that is not found.

transpose – this option will transpose the 2 dimensional array of data before returning.

VB.NET Example – Retrieve all series object x1, x2, and x3, even if they don't exist in the current workfile, and transpose:
Dim o as Object = app.GetGroupEx("x1 x2 x3", , , , "badname=pad,transpose")

Application.Put(objectName, objectData, dataType, writeType)
Puts data into an existing or new object in the current workfile. objectData must be in a format that is
compatible with the destination object type (if it already exists). For example, if writing to a matrix
object, objectData must be a 2 dimensional numeric (an Excel range can also be used as the objectData

value). dataType is an optional parameter to manually specify how to read the objectData value (Scalar,
Series, Vector, Matrix, etc.). writeType is an optional parameter to specify how to update any pre-
existing object with the new data:

WriteProtect – If an object already exists with the same name, cancel the Put operation.
WriteMerge – Push the source value only if it's not NA. Values outside of source range are left
alone.
WriteMergePreferDestination – Push the source value only if the destination value is NA.
Values outside of source range are left alone.
WriteUpdate – (default) Always push the source value (regardless of NA). Values outside of
source range are left alone. For series objects, source range is considered the current sample
window.
WriteOverwrite – Always push the source value (regardless of NA). Values outside of source
range are changed to NA.

If not specified, writeType defaults to WriteUpdate.

VB.NET Example – Update series "x" with new values:
Dim val() as Double = {1.2, 2.3, 3.4, 4.5}
app.Put("x", val, EViews.DataType.DataTypeAuto, EViews.WriteType.WriteMerge)

VB.NET Example – Create matrix "m" as a 2x2 matrix:
Dim mat(,) as Double = {{1,0}, {0,1}}
app.Put("m", mat, EViews.DataType.DataTypeMatrix,

EViews.WriteType.WriteOverwrite)

Excel VBA Example – Create an alpha series "s" based on the cell values located in specified Excel Range:
Dim rng As Range
Set rng = Worksheets(1).Range("D1:D10")
app.Put "s", rng, DataTypeSeriesAlpha

Note: DataTypeAuto inspects objectData and defaults to a series object if the dataObject is a 1-
dimensional array. Otherwise, it defaults to scalar (for non-arrays) or matrix (for 2 dimensional arrays).
For new objects, the first 100 values of the array are inspected to determine if it is numeric or a string.

Application.PutSeries(seriesName, seriesData, sampleString, seriesType, writeType)
Puts data into an existing or new series object in the current workfile. seriesData must be a 1-
dimensional array of values. sampleString can be a named sample or a custom sample string which will
be used to filter the updates to only those rows that fall in the specified sample. seriesType is an
optional parameter to manually specify how to read the seriesData values (Series or Alpha). writeType
is an optional parameter to specify how to update any pre-existing object with the new data (see
Application.Put for description of different WriteTypes).

VB.NET Example – Update series "x" whose rows fall in the named sample "Sample1" with new values:
Dim val() as Double = {1.2, 2.3}

app.PutSeries("x", val, "sample1", EViews.SeriesType.SeriesTypeAuto,
EViews.WriteType.WriteMerge)

Excel VBA Example – Create an alpha series "s" based on the cell values located in specified Excel Range:

Dim rng As Range
Set rng = Worksheets(1).Range("D1:D10")
app.PutSeries "s", rng, "", SeriesTypeAlpha

Note: For new objects, SeriesTypeAuto inspects the first 100 elements in the seriesData object to
determine if the series is numeric or alpha.

Application.PutGroup(seriesNames, seriesData, sampleString, seriesType, writeType)
Similar to PutSeries, but allows writing to multiple series objects at once. The seriesNames parameter
can be a string with each name delimited by a space, an array of strings, or an Excel Range (either a row
or a column of values). seriesData must be a 2-dimensional array whose number of columns matches
the number of names specified in the first parameter. sampleString can be a named sample or a custom
sample string which will be used to filter the updates to only those rows that fall in the specified sample.
seriesType is an optional parameter to manually specify how to read the seriesData values (Series or
Alpha). writeType is an optional parameter to specify how to update any pre-existing object with the
new data (see Application.Put for description of different WriteTypes).

VB.NET Example – Update series "x" and "y" whose rows fall in the named sample "sample1" with new values:
Dim val() as Double = {{1.2, 2.3}, {4.5, 5.6}}
app.PutGroup("x y", val, "sample1")

Excel VBA Example – Create 2 series objects whose names are located in cells a1 and b1, and whose data is in a2:b11:
Dim rngHeaders as Range
Set rngHeaders = ActiveSheet.Range("a1", "b1")
Dim rngData As Range
Set rng = ActiveSheet.Range("a2:b11")
app.PutGroup rngHeaders, rngData

Licensing Restrictions
EViews COM is available for both Standard and Enterprise Editions.

Web server access to EViews via COM is not allowed. When being run by other windows services or
being run remotely via Distributed COM, EViews will limit COM access to a single instance. Please
contact QMS to obtain authorization.

Excel Example (Read with Error Handling):
The following sample code defines an Excel VBA macro that can be used to load all series objects found
in a specific worksheet. This also shows an example of basic error handling to display any errors that are
reported by EViews. To use this macro, create a blank worksheet in Excel, add a reference to "EViews
8.0 Type Library", create the following macro in a Module file, and then run it to see it in action. Be sure
to change the hard-coded values before running the macro to your specific workfile:

Public Sub GetWorkfile()
 On Error GoTo ErrorHandler

 'hard coded values
 Dim lsPath As String
 lsPath = "c:\mywork.wf1" 'hard coded to read from mywork.wf1
 Dim liStartColumn As Integer
 liStartColumn = 1 'put the first object in column 1
 Dim liHeaderRow As Integer
 liHeaderRow = 1 'put the column header in row 1, data after that
 Dim wsht As Worksheet
 Set wsht = ActiveSheet 'output to the current activesheet

 'open connection to EViews
 Dim mgr As New EViews.Manager
 Dim app As EViews.Application
 Set app = mgr.GetApplication(ExistingOrNew)

 'open the workfile
 app.Run "wfopen " & lsPath

 'get the column headers
 Dim columnHeaders
 columnHeaders = app.Lookup("*", "series", LookupReturnMatrixAsColumns)

 'display the column headers
 Dim colcnt As Integer
 'columns are in 2nd dimension
 colcnt = UBound(columnHeaders, 2) - LBound(columnHeaders, 2) + 1
 Dim rng As Range
 Set rng = wsht.Range(wsht.Cells(liHeaderRow, liStartColumn),

wsht.Cells(liHeaderRow, liStartColumn + colcnt - 1))
 rng.Value = columnHeaders

 'now get the data...
 Dim seriesData
 seriesData = app.GetGroup(columnHeaders, "@all")

 'display the data
 Dim rowcnt As Integer
 'rows are in 1st dimension
 rowcnt = UBound(seriesData, 1) - LBound(seriesData, 1) + 1
 Set rng = wsht.Range(wsht.Cells(liHeaderRow + 1, liStartColumn),

wsht.Cells(liHeaderRow + rowcnt, liStartColumn + colcnt - 1))
 rng.Value = seriesData

ExitHandler:
 On Error Resume Next
 Set app = Nothing
 Set mgr = Nothing
 Exit Sub

ErrorHandler:
 Dim ret As VbMsgBoxResult

 ret = MsgBox(Err.Description, vbAbortRetryIgnore Or vbCritical, "EViews
Error")

 Select Case ret
 Case vbAbort:
 Resume ExitHandler
 Case vbRetry:
 Resume
 Case vbIgnore:
 Resume Next
 End Select
 Resume ExitHandler
End Sub

Excel Example (Write with Error Handling):
The following sample code defines an Excel VBA macro that does the opposite of the previous Read
example. It will push all the data from specific columns from the spreadsheet into a new workfile in
EViews and then save it. To use this macro, copy this code into your Excel spreadsheet, and change the
hard coded values in the function to point to your specific header and data range:

Public Sub SaveToWorkfile()
 On Error GoTo ErrorHandler

 'hard coded values
 Dim lsPath As String
 lsPath = "c:\mywork2.wf1" 'hard coded to write to mywork2.wf1
 Dim liStartColumn As Integer
 liStartColumn = 1 'column 1 has the first column of data
 Dim liHeaderRow As Integer
 liHeaderRow = 1 'column headers are on row 1, with the data after that
 Dim liColCount As Integer
 liColCount = 15 'number of columns of data to push from excel worksheet
 Dim liRowCount As Integer
 liRowCount = 92 'number of rows to push from excel worksheet
 Dim wsht As Worksheet
 Set wsht = ActiveSheet 'read from the current activesheet

 'open connection to EViews
 Dim mgr As New EViews.Manager
 Dim app As EViews.Application
 Set app = mgr.GetApplication(ExistingOrNew)

 'show the EViews window
 app.Show

 'creates a new undated workfile with the correct number of observations
 app.Run "create u " & CStr(liRowCount)

 'get the column header range
 Dim rngHeaders As Range
 Set rngHeaders = wsht.Range(wsht.Cells(liHeaderRow, liStartColumn),

wsht.Cells(liHeaderRow, liStartColumn + liColCount - 1))

 'get the data range

 Dim rngData As Range
 Set rngData = wsht.Range(wsht.Cells(liHeaderRow + 1, liStartColumn),

wsht.Cells(liHeaderRow + liRowCount, liStartColumn + liColCount - 1))

 'now push to EViews as Series objects
 app.PutGroup rngHeaders, rngData

 'now save the new workfile
 app.Run "wfsave " & lsPath

ExitHandler:
 On Error Resume Next
 Set app = Nothing
 Set mgr = Nothing
 Exit Sub

ErrorHandler:
 Dim ret As VbMsgBoxResult
 ret = MsgBox(Err.Description, vbAbortRetryIgnore Or vbCritical, "EViews

Error")
 Select Case ret
 Case vbAbort:
 Resume ExitHandler
 Case vbRetry:
 Resume
 Case vbIgnore:
 Resume Next
 End Select
 Resume ExitHandler
End Sub

	COM Registration
	Adding a Reference
	COM Classes
	EViews Manager
	EViews Application
	Licensing Restrictions
	Excel Example (Read with Error Handling):
	Excel Example (Write with Error Handling):

