
Softbridge Basic
Language (SBL)
Reference Manual

 Copyright 1996 by Primavera Systems, Inc. All rights reserved. No part of this publication may
be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including
photocopying, mimeographing, recording, taping, or in information storage and retrieval systems—
without written permission from the publisher.

Please send your comments about SureTrak Project Manager for Windows to:

Primavera Systems, Inc.
Two Bala Plaza
Bala Cynwyd, PA 19004
Telephone: 610-667-8600
FAX: 610-667-7894

Primavera Project Planner, P3, Finest Hour, Expedition, and Parade are registered trademarks, and PENGUIN,
SureTrak Project Manager, Executive Summary Presentation, Monte Carlo, QuickRisk, Buy The Hour for
Primavera, ReportSmith for Primavera, and Concentric Project Management are trademarks of Primavera
Systems, Inc. All other brands and product names are trademarks or registered trademarks of their respective
companies.

U.S. GOVERNMENT RESTRICTED RIGHTS: The SOFTWARE and documentation are
provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is
subject to the restrictions set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the
Commercial Computer Software-Restricted Rights 48 CFR 52.227-19, and our GSA contract, as
applicable.

This manual is printed on recycled paper.

1

Using Basic
Softbridge Basic language (SBL) is a programming language delivered with
SureTrak that provides power, ease of integration, and VBA compatibility.
SBL supports standard Basic numeric, string, record and array data, along
with dialog box records. SBL is similar to Visual Basic; for example, it can
run any DLL. You should find it easy to use the SBL to create scripts that
automate any variety of daily tasks. For example, you can do something as
simple as repaint the screen on demand or for something as complex as
retrieve data from another application, perform calculations with conditional
expressions, bring the new data into SureTrak, and calculate new activity
totals.

This section Contains

SBL Functional List All statements and functions in SBL
organized by functional group, such as
Dialog Boxes, Arrays, or Math Functions

SBL Basic Conventions A list of topics that describe how to use
features in SBL.

Dialog Boxes Instructions for incorporating dialog boxes
into your scripts.

Error Handling Instructions for trapping errors in your
script.

Expressions Instructions for using logical expressions in
your script.

Object Handling Instructions for using objects, properties,
and methods in your script.

Derived Trigonometric Functions Instructions for using trigonometric
functions in your script.

SBL Versus Other Basics A comparison of SBL Basic to other
versions of Basic.

SBL Compared to Visual Basic A comparison SBL Basic to Visual Basic.

2 USING BASIC

SBL Functional Index
This chapter contains a list of SBL statements and functions grouped by
function.

Arrays

Erase Reinitialize contents of an array

LBound Return the lower bound of an array's dimension

ReDim Declare dynamic arrays and reallocate memory

UBound Return the upper bound of an array's dimension

Compiler Directives

$CStrings Treat backslash in string as an escape character as in 'C'

$Include Tell the compiler to include statements from another file

$NoCStrings Tell the compiler to treat a backslash as a normal character

Line
Continuation

Continuing a long statement across multiple lines

Rem Treat the remainder of the line as a comment

Control Flow

Call Transfer control to a subprogram

Do...Loop Control repetitive actions

Exit Cause the current procedure or loop structure to return

For...Next Loop a fixed number of times

GetCurValues Retrieve current values for a dialog box

Goto Send control to a line label

If ... Then ... Else Branch on a conditional value

Let Assign a value to a variable

Lset Left-align one string or a user-defined variable within
another

On...Goto Branch to one of several labels depending upon value

Rset Right-align one string within another

Select Case Execute one of a series of statement blocks

Set Set an object variable to a value

Stop Stop program execution

While ... Wend Control repetitive actions

With Execute a series of statements on a specified variable

SBL FUNCTIONAL INDEX 3

Dates & Times

Date Function Return the current date

Date Statement Set the system date

DateSerial Return the date value for year, month, and day specified

DateValue Return the date value for string specified

Day Return the day of month component of a date-time value

Hour Return the hour of day component of a date-time value

IsDate Determine whether a value is a legal date.

Minute Return the minute component of a date-time value

Month Return the month component of a date-time value

Now Return the current date and time

Second Return the second component of a date-time value

Time Function Return the current time

Time Statement Set the current time

Timer Return the number of seconds since midnight

TimeSerial Return the time value for hour, minute, and second
specified

TimeValue Return the time value for string specified

Weekday Return the day of the week for the specified date-time
value

Year Return the year component of a date-time value

Declarations

Const Declare a symbolic constant

Declare Forward declare a procedure in the same module or in a
dynamic link library

Deftype Declare the default data type for variables

Dim Declare variables

Function ... End
Function

Define a function

Global Declare a global variable

Option Base Declare the default lower bound for array dimensions

Option Compare Declare the default case sensitivity for string comparisons

Option Explicit Force all variables to be explicitly declared

ReDim Declare dynamic arrays and reallocate memory

Static Define a static variable or subprogram

Sub ... End Sub Define a subprogram

Type Declare a user-defined data type

4 USING BASIC

Dialog Boxes

Defining Dialog Boxes
Begin Dialog Begin a dialog box definition

Button Define a button dialog box control

ButtonGroup Begin definition of a group of button dialog box
controls

CancelButton Define a Cancel button dialog box control

Caption Define the title of a dialog box

CheckBox Define a checkbox dialog box control

ComboBox Define a combo box dialog box control

DropComboBox Define a drop-down combo box dialog box control

DropListBox Define a drop-down list box dialog box control

GroupBox Define a group box in a dialog box

ListBox Define a list box dialog box control

OKButton Define an OK button dialog box control

OptionButton Define an OptionButton dialog box control

OptionGroup Begin definition of a group of OptionButton dialog
box controls

Picture Define a Picture control

PushButton Define a pushbutton dialog box control

StaticComboBox Define a static combo box dialog box control

Text Define a line of text in a dialog box

TextBox Define a text box in a dialog box

Running Dialog Boxes

Dialog Function Display a dialog box and return the button pressed

Dialog Statement Display a dialog box

DlgControlId Return numeric ID of a dialog control

DlgEnable Function Tell whether a dialog control is enabled or disabled

DlgEnable Statement Enable or disable a dialog control

DlgFocus Function Return ID of the dialog control having input focus

DlgFocus Statement Set focus to a dialog control

DlgListBoxArray
Function

Return contents of a list box or combo box

DlgListBoxArray
Statement

Set contents of a list box or combo box

DlgSetPicture Change the picture in the Picture control

SBL FUNCTIONAL INDEX 5

Dialog Boxes

DlgText Function Return the text associated with a dialog control

DlgText Statement Set the text associated with a dialog control

DlgValue Function Return the value associated with dialog control

DlgValue Statement Set the value associated with a dialog control

DlgVisible Function Tell whether a control is visible or hidden

DlgVisible Statement Show or hide a dialog control

Environment Control

AppActivate Activate another application

Command Return the command line specified when the MAIN
sub was run

Date Statement Set the current date

DoEvents Let operating system process messages

Environ Return a string from the operating system's
environment

Randomize Initialize the random-number generator

SendKeys Send keystrokes to another application

Shell Run an executable program

Errors

Assert Trigger an error if a condition is false

Erl Return the line number where a run-time error occurred

Err Function Return a run-time error code

Err Statement Set the run-time error code

Error Generate an error condition

Error Function Return a string representing an error

On Error Control run-time error handling

Resume End an error-handling routine

Trappable Errors Errors which can be trapped by SBL code

6 USING BASIC

Files

Disk and Directory Control
ChDir Change the default directory for a drive
ChDrive Change the default drive
CurDir Return the current directory for a drive
Dir Return a filename which matches a pattern
MkDir Make a directory on a disk
RmDir Remove a directory from a disk

File Control
FileAttr Return information about an open file
FileCopy Copy a file
FileDateTime Return modification date and time of a specified file
FileLen Return the length of specified file in bytes
GetAttr Return attributes of specified file, directory of volume label
Kill Delete files from a disk
Name Rename a disk file
SetAttr Set attribute information for a file

File Input/Output
Close Close a file
Eof Check for end of file
FreeFile Return the next unused file number
Get Read bytes from a file
Input Function Return a string of characters from a file
Input Statement Read data from a file or from the keyboard
Line Input Read a line from a sequential file
Loc Return current position of an open file
Lock, Unlock Control access to some/all of open file by other processes
Lof Return the length of an open file
Open Open a disk file or device for I/O
Print Print data to a file or to the screen
Put Write data to an open file
Reset Close all open disk files
Seek Function Return the current position for a file
Seek Statement Set the current position for a file
Spc Output given number of spaces
Tab Move print position to the given column
Width Set output-line width for an open file
Write Write data to a sequential file

SBL FUNCTIONAL INDEX 7

Math Functions

Financial Functions
FV Return future value of a cash flow stream

IPmt Return interest payment for a given period

IRR Return internal rate of return for a cash flow stream

NPV Return net present value of a cash flow stream

Pmt Return a constant payment per period for an annuity

PPmt Return principal payment for a given period

PV Return present value of a future stream of cash flows

Rate Return interest rate per period

Numeric Functions
Abs Return the absolute value of a number

Exp Return the value of e raised to a power

Fix Return the integer part of a number

Int Return the integer part of a number

IsNumeric Determine whether a value is a legal number

Log Return the natural logarithm of a value

Rnd Return a random number

Sgn Return a value indicating the sign of a number

Sqr Return the square root of a number

Derived
Functions

How to compute other numeric functions

Trigonometric Functions
Atn Return the arc tangent of a number

Cos Return the cosine of an angle.

Sin Return the sine of an angle

Tan Return the tangent of an angle

Derived
Functions

How to compute other trigonometric functions

Objects

CreateObject Create an OLE2 automation object

GetObject Retrieve an OLE2 object from a file or get the active
OLE2 object for an OLE2 class

Is Determine whether two object variables refer to the same
object

Me Get the current object

8 USING BASIC

Objects

New Allocate and initialize a new OLE2 object

Nothing Set an object variable to not refer to an object

Object Declare an OLE2 automation object

Typeof Check the class of an object

With Execute statements on an object or a user-defined type

Screen Input/Output

Beep Produce a short beeping tone through the speaker

Input Function Return a string of characters from a file

Input Statement Read data from a file or from the keyboard

InputBox Display a dialog box which prompts for input

MsgBox Function Display a Windows message box

MsgBox
Statement

Display a Windows message box

PasswordBox Display a dialog box which prompts for input. Don't
echo input.

Print Print data to a file or to the screen

Strings

String Functions
GetField Return a substring from a delimited source string

Hex Return the hexadecimal representation of a number, as a
string

InStr Return the position of one string within another

LCase Convert a string to lower case

Left Return the left portion of a string

Len Return the length of a string or size of a variable

Like Operator Compare a string against a pattern

LTrim Remove leading spaces from a string

Mid Fun866 Return a portion of a string

Mid Statement Replace a portion of a string with another string

Oct Return the octal representation of a number, as a string

Right Return the right portion of a string

RTrim Remove trailing spaces from a string

SBL FUNCTIONAL INDEX 9

Strings

SetField Replace a substring within a delimited target string

Space Return a string of spaces

Str Return the string representation of a number

StrComp Compare two strings.

String Return a string consisting of a repeated character

Trim Remove leading and trailing spaces from a string

UCase Convert a string to upper case

String Conversions
Asc Return an integer corresponding to a character code

CCur Convert a value to currency

CDbl Convert a value to double-precision floating point

Chr Convert a character code to a string

CInt Convert a value to an integer by rounding

CLng Convert a value to a long by rounding

CSng Convert a value to single-precision floating point

CStr Convert a value to a string

CVar Convert an number or string to a variant

CVDate Convert a value to a variant date

Format Convert a value to a string using a picture format

Val Convert a string to a number

Variants

IsEmpty Determine whether a variant has been initialized

IsNull Determine whether a variant contains a NULL value

Null Return a null variant

VarType Return the type of data stored in a variant

10 USING BASIC

SBL Basic Conventions

SBL uses the programming conventions described in this section.

Arguments Arguments to subprograms and functions you write are listed after the
subprogram or function and may or may not be enclosed in parentheses.
Whether you use parentheses depends on how you want to pass the
argument to the subprogram or function: either by value or by reference.

If an argument is passed by value, it means that the variable used for that
argument retains its value when the subprogram or function returns to the
caller. If an argument is passed by reference, it means that the variable's
value may be (and probably will be) changed for the calling procedure. For
example, suppose you set the value of a variable, x, to 5 and pass x as an
argument to a subprogram, named mysub. If you pass x by value to mysub,
the value of x is still 5 after mysub returns. If you pass x by reference to
mysub, however, x could be 5 or any other value resulting from the actions
of mysub.

To pass an argument by value, use one of the following syntax options:

Call mysub((x))
mysub(x)
Call mysub(x byVal)
mysub x byVal
y=myfunction(x)
Call myfunction((x))

To pass an argument by reference, use one of the following options:

Call mysub(x)
mysub x
y=myfunction x
Call myfunction(x)

Externally declared subroutines and functions (such as DLL functions) can
be declared to take byVal arguments in their declaration. In that case, those
arguments are always passed byVal.

Arrays Array dimensions are enclosed in parentheses after the array name:

arrayname(a,b,c)

Comments Comments are preceded by an apostrophe and may appear on their own
line in a procedure or directly after a statement or function on the same
line:

'this comment is on its own line
Dim i as Integer 'this comment is on the code line

SBL BASIC CONVENTIONS 11

Line Continuation Long statements may be continued across more than one line by typing a
space-underscore at the end of a line and continuing the statement on the
next line. (You may add a comment after the underscore.)

Dim trMonth As Integer _ 'month of transaction
trYear As Integer ' year of transaction

Records Elements in a record are identified using the following syntax:

record.element

where record is the previously defined record name and element is a member
of that record.

Typographic
Conventions

This chapter uses the following typographic conventions:

To represent Documentation syntax is

Statements and functions Boldface; initial letter uppercase:
Abs
Len(variable)

Arguments to statements or
functions

All lowercase, italicized letters:
variable, rate, prompt$

Optional arguments and/or
characters

Italicized arguments and/or characters in
brackets:
[,caption$], [type$], [$]

Required choice for an
argument from a list of
choices

List inside braces, with OR operator (|)
separating choices:
{Goto label | Resume Next | Goto 0}

Data Types Basic is a strongly typed language. Variables can be declared implicitly on
first reference by using a type character; if no type character is present, the
default type of Variant is assumed. Alternatively, the type of a variable
can be declared explicitly with the Dim statement. In either case, the
variable can only contain data of the declared type. Variables of user-
defined type must be explicitly declared. SBL supports standard Basic
numeric, string, record and array data. SBL also supports Dialog Box
Records and Objects (which are defined by the application).

12 USING BASIC

Arrays Arrays are created by specifying one or more subscripts at declaration or
Redim time. Subscripts specify the beginning and ending index for each
dimension. If only an ending index is specified, the beginning index
depends on the Option Base setting. Array elements are referenced by
enclosing the proper number of index values in parentheses after the array
name, for example, arrayname(i,j,k). See the Dim statement for more
information.

Numbers The five numeric types are:

Type From To

Integer -32,768 32,767

Long -2,147,483,648 2,147,483,647

Single -3.402823e+38 -1.401298e-45,

 0.0,

1.401298e-45 3.402823466e+38

Double -1.797693134862315d+308 -4.94065645841247d-308,

0.0,

2.2250738585072014d-308 1.797693134862315d+308

Currency -922,337,203,685,477.5808 922,337,203,685,477.5807

Numeric values are always signed.

Basic has no true Boolean variables. Basic considers 0 to be FALSE and any
other numeric value to be TRUE. Only numeric values can be used as
Booleans. Comparison operator expressions always return 0 for FALSE and -
1 for TRUE.

Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by simply using the decimal
representation. To represent an octal value, precede the constant with “&O”
or “&o” (for example, &o177). To represent a hexadecimal value, precede
the constant with “&H” or “&h” (for example, &H8001).

SBL BASIC CONVENTIONS 13

Records A record, or record variable, is a data structure containing one or more
elements, each of which has a value. Before declaring a record variable, a
Type must be defined. Once the Type is defined, the variable can be
declared to be of that type. The variable name should not have a type
character suffix. Record elements are referenced using dot notation, for
example, varname.elementname. Records can contain elements which are
themselves records.

Dialog box records look like any other user-defined data type. Elements are
referenced using the same recname.elementname syntax. The difference is
that each element is tied to an element of a dialog box. Some dialog boxes
are defined by the application, others by the user. See the Begin Dialog
statement for more information.

Strings Basic strings can be either fixed or dynamic. Fixed strings have a length
specified when they are defined, and the length cannot be changed. Fixed
strings cannot be of 0 length. Dynamic strings have no specified length.
Any string can vary in length from 0 to 32,767 characters. There are no
restrictions on the characters which can be included in a string. For
example, the character whose ANSI value is 0 can be embedded in strings.

Data Type
Conversions

Basic will automatically convert data between any two numeric types.
When converting from a larger type to a smaller type (for example Long to
Integer), a runtime numeric overflow may occur. This indicates that the
number of the larger type is too large for the target data type. Loss of
precision is not a runtime error (for example, when converting from
Double to Single, or from either float type to either integer type).

Basic will also automatically convert between fixed strings and dynamic
strings. When converting a fixed string to dynamic, a dynamic string which
has the same length and contents as the fixed string will be created. When
converting from a dynamic string to a fixed string, some adjustment may be
required. If the dynamic string is shorter than the fixed string, the resulting
fixed string will be extended with spaces. If the dynamic string is longer than
the fixed string, the resulting fixed string will be a truncated version of the
dynamic string. No runtime errors are caused by string conversions.

Basic will automatically convert between any data type and variants. Basic
will convert variant strings to numbers when required. A type mismatch error
will occur if the variant string does not contain a valid representation of the
required number.

No other implicit conversions are supported. In particular, Basic will not
automatically convert between numeric and string data. Use the functions
Val and Str$ for such conversions.

14 USING BASIC

Dynamic Arrays Dynamic arrays differ from fixed arrays in that you do not specify a
subscript range for the array elements when you dimension the array.
Instead, the subscript range is set using the Redim statement. With
dynamic arrays, you can set the size of the array elements based on other
conditions in your procedure. For example, you may want to use an array
to store a set of values entered by the user, but you don't know in advance
how many values the user has. In this case, you dimension the array
without specifying a subscript range and then execute a ReDim statement
each time the user enters a new value. Or, you might want to prompt for the
number of values a user has and execute one ReDim statement to set the
size of the array before prompting for the values.

If you use ReDim to change the size of an array and want to preserve the
contents of the array at the same time, be sure to include the Preserve
argument to the ReDim statement.

If you Dim a dynamic array before using it, the maximum number of
dimensions it can have is 8. To create dynamic arrays with more dimensions
(up to 60), do not Dim the array at all; instead use just the ReDim statement
inside your procedure.

The following procedure uses a dynamic array, varray, to hold cash flow
values entered by the user:

Sub main
 Dim aprate as Single
 Dim varray() as Double
 Dim cflowper as Integer
 Dim msgtext
 Dim x as Integer
 Dim netpv as Double
 cflowper=InputBox("Enter number of cash flow periods")
 ReDim varray(cflowper)
 For x= 1 to cflowper
 varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
 Next x
 aprate=InputBox("Enter discount rate: ")
 If aprate>1 then
 aprate=aprate/100
 End If
 netpv=NPV(aprate,varray())
 msgtext="The net present value is: "
 msgtext=msgtext & Format(netpv, "Currency")
 MsgBox msgtext
End Sub

Variant Data Type The variant data type may be used to define variables that contain any type
of data. A tag is stored with the variant data to identify the type of data that
it currently contains. You may examine the tag by using the VarType
function.

SBL BASIC CONVENTIONS 15

A variant may contain a value of any of the following types:

Type/Name Size of Data Range

0 (Empty) 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

4 Single 4 bytes (float) -3.402E38 to -1.401E-45
(negative)

1.401E-45 to 3.402E38
(positive)

5 Double 8 bytes (double) -1.797E308 to -4.94E-324
(negative)
 4.94E-324 to 1.797E308
(positive)

6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14

7 Date 8 bytes (double) Jan 1st, 100 to Dec 31st, 9999

8 String 0 to ~64kbytes 0 to ~64k characters

9 Object N/A N/A

Any newly defined Variant defaults to being of Empty type, to signify that it
contains no initialized data. An Empty Variant converts to zero when used in
a numeric expression, or an empty string in a string expression. You may test
whether a variant is uninitialized (empty) with the IsEmpty function.

Null variants have no associated data and serve only to represent invalid or
ambiguous results. You may test whether a variant contains a null value with
the IsNull function. Null is not the same as Empty, which indicates that a
variant has not yet been initialized.

16 USING BASIC

Dialog Boxes

You can use SBL to create dialog boxes for your scripts.

Step 1:
Define a Dialog Box

The Begin Dialog... End Dialog statements define a dialog box. The last
parameter to the Begin Dialog statement is the name of a function, prefixed
by a period (.).This function handles interactions between the dialog box and
the user.

The Begin Dialog statement supplies three parameters to your function: an
identifier (a dialog control ID), the action taken on the control, and a value
with additional action information. Your function should have these three
arguments as input parameters. See the Begin Dialog...End Dialog statement
for more information.

Step 2:
Write a Dialog Box

Function

This function defines dialog box behavior. For example, your function could
disable a check box, based on a user's action. The body of the function uses
the “Dlg”-prefixed SBL statements and functions to define dialog box actions.

Define the function itself using the Function...End Function statement or
declare it using the Declare statement before using the Begin Dialog
statement. Enter the name of the function as the last argument to Begin
Dialog. The function receives three parameters from Begin Dialog and returns
a value. Return a non-zero value to leave the dialog box open after the user
clicks a command button (such as Help).

Step 3:
Display the Dialog

Box

You use the Dialog function (or statement) to display a dialog box. The
argument to Dialog is a variable name that you previously dimensioned as a
dialog box record. The name of the dialog box record comes from the Begin
Dialog... End Dialog statement. The return values for the Dialog function
determine which key was pressed: -1 for OK, 0 for Cancel, >0 for a command
button. If you use the Dialog statement, it returns an error if the user presses
Cancel, which you can then trap with the On Error statement.

To create and run a dialog box, follow these three steps:

1 Define a dialog box record using the Begin Dialog...End Dialog
statements and the dialog box definition statements such as TextBox,
OKButton.

2 Create a function to handle dialog box interactions using the Dialog
Functions and Statements (optional).

3 Display the dialog box using either the Dialog Function or Dialog
Statement.

DIALOG BOXES 17

Dialog Functions
and Statements

The function you create uses the “Dlg” dialog functions and statements to
manipulate the active dialog box. This is the only function that can use
these functions and statements. The list of the “Dlg” functions and
statements is as follows:

Functions & Statements Description

DlgControlId Return numeric ID of a dialog control

DlgEnable Function Tell whether a control is enabled or
disabled

DlgEnable Statement Enable or disable a dialog control

DlgFocus Function Return ID of the dialog control having
input focus.

DlgFocus Statement Set focus to a dialog control

DlgListBoxArray Function Return contents of a list box or combo box

DlgListBoxArray Statement Set contents of a list box or combo box

DlgText Function Return the text associated with a dialog
control

DlgText Statement Set the text associated with a dialog
control

DlgValue Function Return the value associated with a dialog
control

DlgValue Statement Set the value associated with a dialog
control

DlgVisible Function Tell whether a control is visible or
disabled

DlgVisible Statement Show or hide a dialog control

Most of these functions and statements take control ID as their first
argument. For example, if a checkbox was defined with the following
statement:

CheckBox 20, 30, 50, 15, "My check box", .Check1

Then DlgEnable "Check1", 1 enables the checkbox, and
DlgValue("Check1") returns 1 if the checkbox is currently checked, 0 if
not. Note that the IDs are case-sensitive and do not include the dot which
appears before the ID. Dialog functions and statements can also work with
numeric IDs. Numeric IDs depend on the order in which dialog controls are
defined.

18 USING BASIC

For example, if the checkbox that we considered was the first control defined
in the dialog record, then DlgValue(0) would be equivalent to
DlgValue("Check1"). (The control numbering begins from 0, and the
Caption control does not count.) Find the numeric ID using the
DlgControlID function.

Note that for some controls (such as buttons and texts) the last argument in
the control definition, ID, is optional. If it is not specified, the text of the
control becomes its ID. For example, the Cancel button can be referred as
“Cancel” if its ID was not specified in the CancelButton statement.

Error Handling

SBL contains three error handling statements and functions for trapping
errors in your program: Err , Error , and On Error . SBL returns a code for
many of the possible runtime errors you may encounter. See Trappable
Errors for a complete list of codes.

In addition to the errors trapped by SBL, you may want to create your own
set of codes for trapping errors specific to your program. You would do this
if, for example, your program establishes rules for file input and the user
does not follow the rules. You can trigger an error and respond appropriately
using the same statements and functions you would use for SBL-returned
error codes.

Regardless of the error trapped, you have one of two methods to handle
errors; one is to put error-handling code directly before a line of code where
an error may occur (such as after a File Open statement), and the other is to
label a separate section of the procedure just for error handling, and force a
jump to that label if any error occurs. The On Error statement handles both
options.

Trapping Errors
Returned by SBL

Option 1, Within Body of Code: The On Error statement identifies the
line of code to go to in case of an error. In this case, the Resume Next
parameter means execution continues with the next line of code after the
error. In this example, the line of code to handle errors is the If statement.
It uses the Err statement to determine which error code is returned.

ERROR HANDLING 19

Option 2, Using Error Handler: The On Error statement used here
specifies a label to jump to in case of errors. The code segment is part of
the main procedure and uses the Err statement to determine which error
code is returned. To make sure your code doesn't accidentally fall through
to the error handler, precede it with an Exit statement.

Trapping User-
Defined (Non-SBL)

Errors

These code examples show the two ways to set and trap user-defined
errors. Both options use the Error statement to set the user-defined error to
the value 30000. To trap the error, option 1 places error-handling code
directly before the line of code that could cause an error. Option 2 contains
a labeled section of code that handles any user-defined errors.

Trappable Errors The following table lists the runtime errors which SBL returns. These
errors can be trapped by On Error . The Err function can be used to query
the error code, and the Error function can be used to query the error text.

Error code Error Text

5 Illegal function call

6 Overflow

7 Out of memory

9 Subscript out of range

10 Duplicate definition

11 Division by zero

13 Type Mismatch

14 Out of string space

19 No Resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined

48 Error in loading DLL

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

20 USING BASIC

Error code Error Text

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable set to Nothing

93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer would be larger than 64K

902 Operating system error

903 External procedure not found

904 Global variable type mismatch

905 User-defined type mismatch

906 External procedure interface mismatch

907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

EXPRESSIONS 21

Expressions

An expression is a collection of two or more terms that perform a
mathematical or logical operation. The terms are usually either variables or
functions that are combined with an operator to evaluate to a string or
numeric result. You use expressions to perform calculations, manipulate
variables, or concatenate strings.

Expressions are evaluated according to precedence order. Use parentheses to
override the default precedence order.

The precedence order (from high to low) for the operators is as follows:

■ Numeric Operators

■ String Operators

■ Comparison Operators

■ Logical Operators

Numeric ^ Exponentiation
Operators -,+ Unary minus and plus

*, / Numeric multiplication or division. For division, the result is a
Double.

\ Integer division. The operands can be Integer or Long.
Mod Modulus or Remainder. The operands can be Integer or Long.
-, + Numeric addition and subtraction. The + operator can also be

used for string concatenation.

String & String concatenation
Operators + String concatenation

Comparison > Greater than
Operators < Less than
(Numeric = Equal to

and String) <= Less than or equal to
>= Greater than or equal to
<> Not equal to

22 USING BASIC

For numbers, the operands are widened to the least common type (Integer is
preferred over Long, which is preferred over Single, which is preferred over
Double). For Strings, the comparison is case-sensitive, and based on the
collating sequence used by the language specified by the user using the
Windows Control Panel. The result is 0 for FALSE and -1 for TRUE.

Logical
Operators

Not Unary Not - operand can be Integer or Long.
The operation is performed bitwise (one's complement).

And And - operands can be Integer or Long.
The operation is performed bitwise.

Or Inclusive Or - operands can be Integer or Long.
The operation is performed bitwise.

Xor Exclusive Or - operands can be Integer or Long.
The operation is performed bitwise.

Eqv Equivalence - operands can be Integer or Long. The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Imp Implication - operands can be Integer or Long. The operation is
performed bitwise. (A Imp B) is the same as ((Not A) OR B).

Object Handling

Objects are the end products of a software application, such as a
spreadsheet, graph, or document. Each software application has its own set
of properties and methods that change the characteristics of an object.

Properties affect how an object behaves. For example, width is a property of
a range of cells in a spreadsheet, colors are a property of graphs, and margins
are a property of word processing documents.

Methods cause the application to do something to an object. Examples are
Calculate for a spreadsheet, Snap to Grid for a graph, and AutoSave for a
document.

In SBL, you can access an object and use the originating software application
to change properties and methods of that object. Before you can use an
object in a procedure, however, you must access the software application
associated with the object by assigning it to an object variable. Then you
attach an object name (with or without properties and methods) to the
variable to manipulate the object.

DERIVED TRIGONOMETRIC FUNCTIONS 23

Step 1: Create an object variable to access the application

The Dim statement creates an object variable called “visio” and assigns the
application, Visio, to it. The Set statement assigns the Visio application to
the variable visio using either GetObject or CreateObject. You use
GetObject if the application is already open on the Windows desktop. Use
CreateObject if the application is not open.

Step 2: Use methods and properties to act on objects.

To access an object, property or method, use this syntax:

appvariable.object.property
appvariable.object.method

For example, visio.document.count is a value returned by the Count method
of the Document object for the Visio application, which is assigned to the
Integer variable doccount.

Alternatively, you can create a second object variable and assign the
Document object to it using Visio’s Document method, as the Set statement
shows.

Derived Trigonometric Functions

A number of trigonometric functions may be written in Basic using the built-
in functions. The following table lists several of these functions:

Function Computed by

Secant Sec(x) = 1/Cos(x)

CoSecant CoSec(x) = 1/Sin(x)

CoTangent CoTan(x) = 1/Tan(x)

ArcSine ArcSin(x) = Atn(x/Sqr(-x*x+1))

ArcCosine ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708

ArcSecant ArcSec(x) = Atn(x/Sqr(x*x-1))+Sgn(x-1)*1.5708

ArcCoSecant ArcCoSec(x) = Atn(x/Sqr(x*x-1))+(Sgn(x)-
1)*1.5708

ArcCoTangent ArcTan(x) = Atn(x)+1.5708

Hyperbolic Sine HSin(x) = (Exp(x)-Exp(-x))/2

Hyperbolic Cosine HCos(x) = (Exp(x)+Exp(-x))/2

24 USING BASIC

Function Computed by

Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x))

Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cotangent HCotan(x) = (Exp(x)+Exp(-x))/(Exp(x)-Exp(-x))

Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)

Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)

Hyperbolic
ArcCoTangent

HArcCoTan(x) = Log((x+1)/(x-1))/2

SBL Versus Other Basics

If you are familiar with older versions of Basic (those that predate
Windows), you will notice that SBL includes many new features and
changes from the language you have learned. SBL more closely resembles
other higher level languages popular today, such as C++ and Pascal. The
topics listed here describe some of the differences you will notice between
the older Basics and SBL.

Line Numbers and
Labels

The line numbers used in earlier Basics are no longer required. To
reference a line of code, you use a label. A label is a single word followed
by a colon, which is placed at the beginning of a line of code.

Subprograms and
Global Variables

SBL is more modular, with code divided into subprograms and functions.
The subprograms and functions you write use the SBL statements and
functions to perform actions. In SBL, the first subprogram executed must
be named “main” and take no arguments (and contain no parentheses). You
use the Sub...End Sub statements to define it, as in the example that
follows:

Sub main

MsgBox “Hello, World”

End Sub

The Main subprogram can then call other subprograms or functions included
in a .SBL file.

SBL VERSUS OTHER BASICS 25

The placement of variable declarations determines their scope:

Scope Definition

Local Dimensioned inside a subroutine or function. The variable is
accessible only to the subroutine or function that dimensioned it.

Module Dimensioned outside any subroutine or function. The variable is
accessible to any subroutine or function in the same file.

Global Dimensioned outside any subroutine or function using the Global
statement. The variable is accessible to any subroutine or function
in any module (file).

Data Types
In addition to the standard data types—numeric, string, array, and
record—SBL includes Variants and objects. Variables that are defined
as Variants can store any type of data. For example, the same variable
could hold integers one time and strings later in a procedure. Objects
give you the ability to manipulate complex data supplied by an
application, such as windows, forms or OLE2 objects.

Dialog Box
Handling

SBL contains extensive dialog box statements and functions to give you
great flexibility in creating and running custom dialog boxes. You define
the contents of a dialog box using dialog statements and functions
between the Begin Dialog...End Dialog statements, and then display it
using the Dialog statement (or function).

SBL records all selections the user makes in the dialog box. You can retrieve
the selections when the dialog box is closed. In addition, your program may
include a dialog function which, through the use of dialog functions and
statements prefixed with “Dlg”, such as DlgVisible, can customize the
behavior of the dialog box (such as validating fields as they are entered).

SBL also includes statements and functions to display message boxes, that
notify the user of an event; password boxes, where the user's keystrokes are
not echoed on the screen; and input boxes, that prompt for a single line of
input.

Financial
Functions

SBL includes a list of financial functions, for calculating such things as
loan payments, internal rates of return, or future values based on a
company's cash flows.

26 USING BASIC

Date and Time
Functions

The date and time functions have been expanded to make it easier to
compare a file's date to today's date, set the current date and time, time
events, and perform scheduling-type functions (such as finding the date
for next Tuesday).

Object Handling Windows includes OLE2 Object Handling, the ability to link and embed
objects from one application into another. An object is the end product
of a software application, such as a document from a word processing
application. An offshoot of that ability is the Object data type which
permits your SBL code to access another software application through
its objects and change those objects.

Environment
Control

SBL includes the ability to call another software application
(AppActivate), and send the application keystrokes (SendKeys). Other
environment control features include the ability to run an executable
program (Shell), temporarily suspend processing to allow the operating
system to process messages (DoEvents), and return values in the
operating system environment table (Environ$).

SBL Compared to Visual Basic
Although SBL is a subset of Microsoft's Visual Basic (VB), it does contain a
few statements and functions not found in the standard version of VB,
notably:

■ $CStrings ■ GetField$

■ $Include ■ SetField$

■ $NoCStrings ■ With

■ Assert

In addition, VB does not include the statements and functions needed to
create or run dialog boxes. These features are available, however, in subsets
of VB that are provided with other Microsoft products, such as Word and
Excel. These versions, called Visual Basic for Applications (VBA), provide
the dialog box handling statements and functions found in SBL, except for
the following:

■ ButtonGroup ■ DropComboBox

■ Caption ■ StaticComboBox

+ VBA does include some dialog box statements and functions that are not
included in SBL, such as DlgFilePreview.

27

SBL Reference
This chapter lists the SBL commands and functions in alphabetical order,
and indicates action, syntax, and any relevant comments.

Abs Function
Action Returns the absolute value of a number.

Syntax Abs(number) where number is any valid numeric expression.

Comments The data type of the return value matches the type of the number. If number is a
Variant string (vartype 8), the return value will be converted to vartype 5
(Double). If the absolute value evaluates to vartype 0 (Empty), the return value will
be vartype 3 (Long).

Example This example finds the difference between two variables, oldacct and newacct.

Sub main
Dim oldacct, newacct, count
 oldacct=InputBox("Enter the oldacct number")
 newacct=InputBox("Enter the newacct number")
 count=Abs(oldacct-newacct)
 MsgBox "The absolute value is: " &count
End Sub

See Also Exp, Fix, Int, Log, Rnd, Sgn, Sqr

AppActivate Statement
Action Activates an application window.

Syntax AppActivate title where title is a string expression for the title-bar name of the
application window to activate.

Comments Title must match the name of the window character for character, but comparison
is not case sensitive, e.g., “File Manager” is the same as “file manager” or “FILE
MANAGER”. If there is more than one window with a name matching title, a
window is chosen at random.

28 SBL REFERENCE

AppActivate changes the focus to the specified window but does not change
whether the window is minimized or maximized. Use AppActivate with the
SendKeys statement to send keys to another application.

Example This example opens the Windows bitmap file ARCADE.BMP in Paintbrush.
(Paintbrush must already be open before running this example. It must also not be
minimized.)

Sub main
 MsgBox "Opening C:\WINDOWS\ARCADE.BMP in Paintbrush."
 AppActivate "Paintbrush - (Untitled)"
 SendKeys "%FOC:\WINDOWS\ARCADE.BMP{Enter}",1
 MsgBox "File opened."
End Sub

See Also SendKeys, Shell

Asc Function
Action Returns an integer corresponding to the ANSI code of the first character in the

specified string

Syntax Asc(string$) where string$ is a string expression of one or more characters.

Comments To change an ANSI code to string characters, use Chr .

Example This example asks the user for a letter and returns its ASCII value.

Sub main
 Dim userchar
 userchar=InputBox("Type a letter:")
 MsgBox "The ASC value for " & userchar & " is: " & Asc(userchar)
End Sub

See Also Chr

Assert Statement [SBL Extension]**
Action Triggers a run-time error if the condition specified is FALSE.

Syntax Assert condition where condition is a numeric or string expression that can
evaluate to TRUE or FALSE.

Comments The Assert statement should be used by SBL clients to handle an application
specific error. An assertion error cannot be trapped by the On Error statement.

Use the Assert statement to ensure that a procedure is performing in the expected
manner.

**SBL offers a number of extensions that are not included in Visual Basic.

ATN FUNCTION 29

Atn Function
Action Returns the angle (in radians) for the arc tangent of the specified number.

Syntax Atn (number) where number is any valid numeric expression.

Comments The Atn function assumes number is the ratio of two sides of a right triangle: the
side opposite the angle to find and the side adjacent to the angle. The function
returns a single-precision value for a ratio expressed as an integer, a currency, or
a single-precision numeric expression. The return value is a double-precision
value for a long, Variant or double-precision numeric expression.

To convert radians to degrees, multiply by (180/PI). The value of PI is
approximately 3.14159.

Example This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16 foot span from the outside wall to the center of
the house. The Atn function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees.

Sub main
 Dim height, span, angle, PI
 PI=3.14159
 height=8
 span=16
 angle=Atn(height/span)*(180/PI)
 MsgBox "The angle is " & Format(angle, "##.##") & " degrees"
End Sub

See Also Cos, Sin, Tan, Derived Trigonometric Functions

Beep Statement
Action Produces a tone through the computer speaker.

Syntax Beep

Comments The frequency and duration of the tone depends on the hardware.

Example This example beeps and displays a message in a box if the variable balance is less
than 0. (If you have a set of speakers hooked up to your computer, you may need
to turn them on to hear the beep.)

Sub main
 Dim expenses, balance, msgtext
 balance=InputBox("Enter your account balance")
 expenses=1000
 balance=balance-expenses

30 SBL REFERENCE

 If balance<0 then
 Beep
 Msgbox "Im sorry, your account is overdrawn."
 Else
 Msgbox "Your balance minus expenses is: " &balance
 End If
End Sub

See Also InputBox, MsgBox Statement, Print

Begin Dialog ... End Dialog Statement
Action Produces a tone through the computer speaker.

Action Begins and ends a dialog-box declaration.

Syntax Begin Dialog dialogName [x, y,] dx, dy [, caption$] [, .dialogfunction]

' dialog box definition statements

End Dialog

where is
dialogName The record name for the dialog box definition.
x, y The coordinates for the upper left corner of the dialog box.
dx,dy The width and height of the dialog box (relative to x and y).
caption$ The title for the dialog box.
.dialogfunction A Basic function to process user actions in the dialog box.

Comments To display the dialog box, you create a dialog record variable with the Dim
statement, and then display the dialog box using the Dialog function or Dialog
statement with the variable name as its argument. In the Dim statement, this
variable is defined As dialogName.

The x and y coordinates are relative to the upper left corner of the client area of the
parent window. The x argument is measured in units that are 1/4 the average width
of the system font. The y argument is measured in units 1/8 the height of the system
font. For example, to position a dialog box 20 characters in, and 15 characters down
from the upper left hand corner, enter 80, 120 as the x, y coordinates. If these
arguments are omitted, the dialog box is centered in the client area of the parent
window.

The dx argument is measured in 1/4 system-font character-width units. The dy
argument is measured in 1/8 system-font character-width units. For example, to
create a dialog box 80 characters wide, and 15 characters in height, enter 320, 120
for the dx, dy coordinates.

If the caption$ argument is omitted, a standard default caption is used.

BEGIN DIALOG ... END DIALOG STATEMENT 31

The optional .dialogfunction function must be defined (using the Function
statement) or declared (using Dim) before being used in the Begin Dialog
statement. Define the dialogfunction with the following three arguments:

Function dialogfunction% (id$, action%, suppvalue&)
' function body

End Function

id$ The text string that identifies the dialog control that triggered the
call to the dialog function (usually because the user changed this
control).

action% An integer from 1 to 5 identifying the reason why the dialog
function was called.

suppvalue& Gives more specific information about why the dialog function was
called.

As with any Basic function, these arguments may have different names. The
arguments of the dialog function may also be Variants.

In most cases, the return value of dialogfunction is ignored. The exceptions are a
return value of 2 or 5 foraction%. If the user clicks the OK button, Cancel button,
or a command button (as indicated by an action% return value of 2 and the
corresponding id$ for the button clicked), and the dialog function returns a non-zero
value, the dialog box will not be closed.

Unless the Begin Dialog statement is followed by at least one other dialog-box
definition statement and the End Dialog statement, an error will result. The
definition statements must include an OkButton , CancelButton or Button
statement. If this statement is left out, there will be no way to close the dialog box,
and the procedure will be unable to continue executing.

Id$ is the same value for the dialog control that you use in the definition of that
control. For example, the id$ value for a text box is Text1 if it is defined this way:

Textbox 271 , 78, 33, 18, .Text1

The following table summarizes the possible action% values and their meanings.

32 SBL REFERENCE

action% Meaning

1 Dialog box initialization. This value is passed before the dialog box becomes
visible.

2 Command button selected or dialog box control changed (except typing in a
text box or combo box).

3 Change in a text box or combo box. This value is passed when the control
loses the input focus: the user presses the TAB key or clicks another control.

4 Change of control focus. Id$ is the id of the dialog control gaining focus.
Suppvalue& contains the numeric id of the control losing focus. A dialog
function cannot display a message box or dialog box in response to an action
value 4.

5 An idle state. As soon as the dialog box is initialized (action% = 1), the
dialog function will be continuously called with action% = 5 if no other
action occurs. If dialog function wants to receive this message continuously
while the dialog box is idle, return a non-zero value. If 0 (zero) is returned,
action% = 5 will be passed only while the user is moving the mouse. For this
action, Id$ is equal to empty string ("") and suppvalue& is equal to the
number of times action 5 was passed before.

If the user clicks a command button or changes a dialog box control, action%
returns 2 or 3 and suppvalue& identifies the control affected. The value returned
depends on the type of control or button the user changed or clicked. The following
table summarizes the possible values for suppvalue&.

Control suppvalue&

List box Number of the item selected, 0-based.

Checkbox 1 if selected, 0 if cleared, -1 if filled with gray.

Option button Number of the option button in the option group, 0-based.

Text box Number of characters in the text box.

Combo box The number of the item selected (0-based) for action 2, the number of
characters in its text box for action 3.

OK button 1

Cancel button 2

Example This example defines and displays a dialog box with each type of item in it: list
box, combo box, buttons, etc.

Sub main
 Dim ComboBox1() as String
 Dim ListBox1() as String
 Dim DropListBox1() as String
 ReDim ListBox1(0)

BUTTON STATEMENT 33

 ReDim ComboBox1(0)
 ReDim DropListBox1(3)
 ListBox1(0)="C:\"
 ComboBox1(0)=Dir("C:*.*")
 For x=0 to 2
 DropListBox1(x)=Chr(65+x) & ":"
 Next x
 Begin Dialog UserDialog 274, 171, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 Text 106, 2, 34, 9, "Directory:", .Text2
 ListBox 106, 12, 83, 39, ListBox1(), .ListBox2
 Text 106, 52, 42, 8, "Drive:", .Text3
 DropListBox 106, 64, 95, 44, DropListBox1(), .DropListBox1
 CheckBox 9, 142, 62, 14, "List .TXT files", .CheckBox1
 GroupBox 106, 111, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 117, 119, 46, 12, "All pages", .OptionButton3
 OptionButton 117, 135, 67, 8, "Range of pages", .OptionButton4
 Text 123, 146, 20, 10, "From:", .Text6
 Text 161, 146, 14, 9, "To:", .Text7
 TextBox 177, 146, 13, 12, .TextBox4
 TextBox 145, 146, 12, 11, .TextBox5
 OkButton 213, 6, 54, 14
 CancelButton 214, 26, 54, 14
 PushButton 213, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Button, ButtonGroup, CancelButton, Caption, CheckBox, ComboBox, Dialog,
DropComboBox, GroupBox, ListBox, OKButton, OptionButtton, OptionGroup,
Picture, StaticComboBox, Text, TextBox

Button Statement
Action Defines a custom pushbutton.

Syntax A Button x, y, dx, dy, text$ [, .id]

Syntax B PushButton x, y, dx, dy, text$ [, .id]

where is
x,y The position of the button relative to the upper left corner of the

dialog box.
dx,dy The width and height of the button.

34 SBL REFERENCE

text$ The name for the pushbutton. If the width of this string is greater
than dx, trailing characters are truncated.

.id An optional identifier used by the dialog statements that act on this
control.

Comments A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement
in conjunction with the ButtonGroup statement. The two forms of the statement
(Button and PushButton) are equivalent.

Use the Button statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list box and three buttons.

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 Button 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

ButtonGroup Statement
Action Begins the definition of a group of custom buttons for a dialog box.

Syntax ButtonGroup .field where .field is the field to contain the user’s custom button
selection.

Comments If ButtonGroup is used, it must appear before any Button statement which
creates a custom button (one other than OK or Cancel.) Only one ButtonGroup
statement is allowed within a dialog box definition.

CALL STATEMENT 35

Use the ButtonGroup statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list box and three buttons.

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
‘The next four lines create three buttons
 ButtonGroup .ButtonGroup1
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, CancelButton, Caption, CheckBox,
ComboBox, DropComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Call Statement
Action Transfers control to a subprogram or function

Syntax A Call subprogram name [(argumentlist)]

Syntax B subprogram name argumentlist

where is
subprogram-name the name of the subroutine or function to call.
argumentlist the arguments for the subroutine or function (if any).

Comments Use the Call statement to call a subprogram or function written in Basic or to call
C procedures in a DLL. These C procedures must be described in a Declare
statement or be implicit in the application.

Arguments are passed by reference to procedures written in Basic. If you pass a
variable to a procedure which modifies its corresponding formal parameter, and you
do not wish to have your variable modified, enclose the variable in parentheses in
the Call statement. This will tell SBL to pass a copy of the variable. Note that this
will be less efficient, and should not be done unless necessary.

36 SBL REFERENCE

When a variable is passed to a procedure which expects its argument by reference,
the variable must match the exact type of the formal parameter of the function.
(This restriction does not apply to expressions or Variants.)

When calling an external DLL procedure, arguments can be passed by value rather
than by reference. This is specified either in the Declare statement, the Call itself,
or both, using the ByVal keyword. If ByVal is specified in the declaration, then the
ByVal keyword is optional in the call. If present, it must precede the value. If
ByVal was not specified in the declaration, it is illegal in the call unless the data
type specified in the declaration was Any.

Example This example calls a subprogram named CREATEFILE to open a file, write the
numbers 1 to 10 in it and leave it open. The calling procedure then checks the
file’s mode. If the mode is 1 (open for Input) or 2 (open for Output), the
procedure closes the file.

Declare Sub createfile()
Sub main
 Dim filemode as Integer
 Dim attrib as Integer
 Call createfile
 attrib=1
 filemode=FileAttr(1,attrib)
 If filemode=1 or 2 then
 MsgBox "File was left open. Closing now."
 Close #1
 End If
 Kill "C:\TEMP001"
End Sub
Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
End Sub

See Also Declare

CANCELBUTTON STATEMENT 37

CancelButton Statement
Action Sets the position and size of a Cancel button in a dialog box.

Syntax CancelButton x, y, dx, dy [, .id]

where is
x,y the position of the Cancel button relative to the upper left corner of

the dialog box.
dx,dy the width and height of the button.
.id an optional identifier for the button.

Comments A dy value of 14 can usually accommodate text in the system font.

.Id is used by the dialog statements that act on this control.

If you use the Dialog statement to display the dialog box and the user clicks Cancel,
the box is removed from the screen and an Error 102 is triggered. If you use the
Dialog function to display the dialog box, the function will return 0 and no error
occurs.

Use the CancelButton statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list box and three buttons.

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, Caption, CheckBox,
ComboBox, DropComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

38 SBL REFERENCE

Caption Statement
Action Defines the title of a dialog box.

Syntax Caption text$ where text$ is a string expression containing the title of the dialog
box.

Comments Use the Caption statement only between a Begin Dialog and an End Dialog
statement.

If no Caption statement is specified for the dialog box, a default caption is used.

Example This example defines a dialog box with a combination list box and three buttons.
The Caption statement changes the dialog box title to “Example -Caption
Statement”.

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94
 Caption "Example-Caption Statement"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, CancelButton, ButtonGroup,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text,
TextBox

CCur Function
Action Converts an expression to the data type Currency.

Syntax CCur(expression) where expression is any expression that evaluates to a
number.

Comments CCur accepts any type of expression. Numbers that do not fit in the Currency data
type result in an “Overflow” error. Strings that cannot be converted result in a
“Type Mismatch” error. Variants containing null result in an “Illegal Use of Null”
error.

CDBL FUNCTION 39

Example This example converts a yearly payment on a loan to a currency value with four
decimal places. A subsequent Format statement formats the value to two decimal
places before displaying it in a message box.

Sub main
Dim aprate, totalpay,loanpv
 Dim loanfv, due, monthlypay
 Dim yearlypay, msgtext
 loanpv=InputBox("Enter the loan amount: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate >1 then
 aprate=aprate/100
 End If
 aprate=aprate/12
 totalpay=InputBox("Enter the total number of pay periods: ")
 loanfv=0
Rem Assume payments are made at end of month
 due=0
 monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)
 yearlypay=CCur(monthlypay*12)
 msgtext= "The yearly payment is: " & Format(yearlypay, "Currency")
 MsgBox msgtext
End Sub

See Also Cdbl, Cint, Clng, Csng, Cstr, Cvar, CVDate

CDbl Function
Action Converts an expression to the data type Double.

Syntax CDbl(expression) where expression is any expression that evaluates to a number.

Comments CDbl accepts any type of expression. Strings that cannot be converted to a
double-precision floating point result in a “Type Mismatch” error. Variants
containing null result in an “Illegal Use of Null” error.

Example This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value
 Dim msgtext
 value=CDbl(Sqr(2))
 msgtext= "The square root of 2 is: " & Value
 MsgBox msgtext
End Sub

See Also Ccur, Cint, Clng, Csng, Cstr, Cvar, CVDate

40 SBL REFERENCE

ChDir Statement
Action Changes the default directory for the specified drive.

Syntax ChDir path$ where path$ is a string expression identifying the new default
directory.

Comments The syntax for path$ is:

[drive:] [\] directory [\directory]

If the drive argument is omitted, ChDir changes the default directory on the current
drive. The ChDir statement does not change the default drive. To change the
default drive, use ChDrive.

Example This example changes the current directory to C:\WINDOWS, if it is not already
the default.

Sub main
 Dim newdir as String
 newdir="c:\windows"
 If CurDir <> newdir then
 ChDir newdir
 End If
 MsgBox "The default directory is now: " & newdir
End Sub

See Also ChDrive, CurDir, Dir, MkDir, RmDir

ChDrive Statement
Action Changes the default drive.

Syntax ChDrive drive$ where drive$ is a string expression designating the new default
drive.

Comments This drive must exist and must be within the range specified by the LASTDRIVE
statement in the CONFIG.SYS file. If a null argument (" ") is supplied, the default
drive remains the same. If the drive$ argument is a string, ChDrive uses the first
letter only. If the argument is omitted, an error message is produced. To change
the current directory on a drive, use ChDir .

Example This example changes the default drive to A:.
Sub main
 Dim newdrive as String
 newdrive="A:"
 If Left(CurDir,2) <> newdrive then
 ChDrive newdrive
 End If
 MsgBox "The default drive is now " & newdrive
End Sub

See Also ChDir, CurDir, Dir, MkDir, RmDir

CHECKBOX STATEMENT 41

CheckBox Statement
Action Creates a checkbox in a dialog box.

Syntax CheckBox x, y, dx, dy, text$, .field

where is
x,y the upper left corner coordinates of the checkbox, relative to the

upper left corner of the dialog box.
dx the sum of the widths of the checkbox and text$.
dy the height of text$.
text$ the title shown to the right of the checkbox .
.field the name of the dialog-record field that will hold the current

checkbox setting (0=unchecked, -1=grey, 1=checked).

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-height units. (See Begin
Dialog for more information.)

Because proportional spacing is used, the dx argument width will vary with the
characters used. To approximate the width, multiply the number of characters in the
text$ field (including blanks and punctuation) by 4 and add 12 for the checkbox.

A dy value of 12 is standard, and should cover typical default fonts. If larger fonts
are used, the value should be increased. As the dy number grows, the checkbox and
the accompanying text will move down within the dialog box.

If the width of the text$ field is greater than dx, trailing characters will be truncated.
If you wish to include underlined characters so that the checkbox selection can be
made from the keyboard, precede the character to be underlined with an ampersand
(&).

SBL treats any other value of .field the same as a 1. The .field argument is also used
by the dialog statements that act on this control.

Use the CheckBox statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list box, a checkbox ,
and three buttons.

Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 76, "SBL Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 CheckBox 10, 39, 62, 14, "List .TXT files", .CheckBox1

42 SBL REFERENCE

 OkButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, ComboBox, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Chr Function
Action Returns the one-character string corresponding to an ANSI code.

Syntax Chr[$](charcode) where charcode is an integer between 0 and 255.

Comments The dollar sign, “$”, in the function name is optional. If specified, the return type
is String. If omitted, the function will return a Variant of vartype 8 (string).

Example This example displays the character equivalent for an ASCII code between 65
and 122 typed by the user.

Sub main
 Dim numb as Integer
 Dim msgtext
 Dim out
 out=0
 Do Until out
 numb=InputBox("Type a number between 65 and 122:")
 If Chr$(numb)>="A" AND Chr$(numb)<="Z" OR Chr$(numb)>="a" AND _
 Chr$(numb)<="z" then
 msgtext="The letter for the number " & numb &" is: " & Chr$(numb)
 out=1
 ElseIf numb=0 then
 Exit Sub
 Else
 Beep
 msgtext="Does not convert to a character; try again."
 End If
 MsgBox msgtext
 Loop
End Sub

See Also Asc, Ccur, Cdbl, Cint, Clng, Csng, Cstr, Cvar, CVDate, Format, Val

CINT FUNCTION 43

CInt Function
Action Converts an expression to the data type Integer by rounding.

Syntax CInt(expression) where expression is any expression that can evaluate to a
number.

Comments After rounding, the resulting number must be within the range of 32767 to
32767, or an error occurs.

Strings that cannot be converted to an integer result in a “Type Mismatch” error.
Variants containing null result in an “Illegal Use of Null” error.

Example This example calculates the average of ten golf scores.

Sub main
 Dim score As Integer
 Dim x, sum
 Dim msgtext
 Let sum=0
 For x=1 to 10
 score=InputBox("Enter golf score #"&x &":")
 sum=sum+score
 Next x
 msgtext="Your average is: " & Format(CInt(sum/(x-1)),"General Number")
 MsgBox msgtext
End Sub

See Also Ccur, Cdbl, Clng, Csng, Cstr, Cvar, CVDate

CLng Function
Action Converts an expression to the data type Long by rounding.

Syntax CLng(expression) where expression is any expression that can evaluate to a
number.

Comments After rounding, the resulting number must be within the range of 2,147,483,648
to 2,147,483,647, or an error occurs.

Strings that cannot be converted to a long result in a “Type Mismatch” error.
Variants containing null result in an “Illegal Use of Null” error.

44 SBL REFERENCE

Example This example divides the US national debt by the number of people in the
country to find the amount of money each person would have to pay to wipe it
out. This figure is converted to a Long integer and formatted as Currency.

Sub main
 Dim debt As Single
 Dim msgtext
 Const Populace = 250000000
 debt=InputBox("Enter the current US national debt:")
 msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
 MsgBox msgtext
End Sub

See Also Ccur, Cdbl, Cint, Csng, Cstr, Cvar, CVDate

Close Statement
Action Closes a file, concluding input/output to that file.

Syntax Close [[#] filenumber% [, [] filenumber% ...]] where filenumber% is an
integer expression identifying the file to close.

Comments Filenumber% is the number assigned to the file in the Open statement and may
be preceded by a pound sign (#). If this argument is omitted, all open files are
closed. Once a Close statement is executed, the association of a file with
filenumber% is ended, and the file can be reopened with the same or a different
file number.

When the Close statement is used, the final output buffer is written to the operating
system buffer for that file. Close frees all buffer space associated with the closed
file. Use the Reset statement so that the operating system will flush its buffers to
disk.

Example This example opens a file for Random access, gets the contents of one variable,
and closes the file again. The subprogram, CREATEFILE, creates the file
C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Sub main
 Dim acctno as String*3
 Dim recno as Long
 Dim msgtext as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno

COMBOBOX STATEMENT 45

 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Open, Reset, Stop

ComboBox Statement
Action Creates a combination text box and list box in a dialog box.

Syntax A ComboBox x, y, dx, dy, text$, .field

Syntax B ComboBox x, y, dx, dy, stringarray$, .field

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the combo box in which the user enters or

selects text.
text$ A string containing the selections for the combo box.
stringarray$ An array of dynamic strings for the selections in the combo box.
.field The name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

46 SBL REFERENCE

The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

Use the ComboBox statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list and text box and
three buttons.

Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 142, "SBL Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 OkButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Command Function
Action Returns the command line specified when the MAIN subprogram was invoked.

Syntax Command[$]

Comments After the MAIN subprogram returns, further calls to the Command function will
yield an empty string. This function may not be supported in some implementations
of SBL.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function returns a Variant of vartype 8 (string).

Example This example opens the file entered by the user on the command line.

Sub main
 Dim filename as String
 Dim cmdline as String
 Dim cmdlength as Integer

CONST STATEMENT 47

 Dim position as Integer
 cmdline=Command
 If cmdline="" then
 MsgBox "No command line information."
 Exit Sub
 End If
 cmdlength=Len(cmdline)
 position=InStr(cmdline,Chr(32))
 filename=Mid(cmdline,position+1,cmdlength-position)
 On Error Resume Next
 Open filename for Input as #1
 If Err<>0 then
 MsgBox "Error loading file."
 Exit Sub
 End If

 MsgBox "File " & filename & " opened."
 Close #1
 MsgBox "File " & filename & " closed."
End Sub

See Also AppActivate, DoEvents, Environ, SendKeys, Shell

Const Statement
Action Declares symbolic constants for use in a Basic program.

Syntax [Global] Const constantName [As type]= expression [,constantName =
expression] ...

where is
constantName the variable name to contain a constant value.
type the data type of the constant (Number or String).
expression any expression that evaluates to a constant number.

Comments Instead of using the As clause, the type of the constant may be specified by using
a type character as a suffix (for numbers, $ for strings) to the constantName. If no
type character is specified, the type of the constantName is derived from the type
of the expression.

If Global is specified, the constant is validated at module load time. If the constant
has already been added to the run-time global area, the constant’s type and value
are compared to the previous definition, and the load fails if a mismatch is found.
This is useful as a mechanism for detecting version mismatches between modules.

Example This example divides the US national debt by the number of people in the country
to find the amount of money each person would have to pay to wipe it out. This
figure is converted to a Long integer and formatted as Currency.

48 SBL REFERENCE

Sub main
Dim debt As Single
Dim msgtext
Const Populace=250000000
debt=InputBox("Enter the current US national debt:")
msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
MsgBox msgtext

End Sub

See Also Declare, Deftype, Dim, Let, Type

Cos Function
Action Returns the cosine of an angle.

Syntax Cos(number) where number is an angle in radians.

Comments The return value will be between -1 and 1. The return value is a single-precision
number if the angle has a data type Integer, Currency, or is a single-precision
value. The return value will be a double precision value if the angle has a data
type Long, Variant or is a double-precision value.

The angle can be either positive or negative. To convert degrees to radians, multiply
by (PI/180). The value of PI is approximately 3.14159.

Example This example finds the length of a roof, given its pitch and the distance of the
house from its center to the outside wall.

Sub main
 Dim bwidth, roof,pitch
 Dim msgtext
 Const PI=3.14159
 Const conversion=PI/180
 pitch=InputBox("Enter roof pitch in degrees")
 pitch=Cos(pitch*conversion)
 bwidth=InputBox("Enter 1/2 of house width in feet")
 roof=bwidth/pitch
 msgtext="The length of the roof is " & Format(roof, "##.##") & " feet."
 MsgBox msgtext
End Sub

See Also Atn, Sin, Tan, Derived Trigonometric Functions

CREATEOBJECT FUNCTION 49

CreateObject Function
Action Creates a new OLE2 automation object.

Syntax CreateObject(class) where class is the name of the application, a period, and
the name of the object to be used.

Comments To create an object, you first must declare an object variable, using Dim, and
then Set the variable equal to the new object, as follows:

Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax
objectvar.property or objectvar.method, as follows: OLE2.reset

Refer to the documentation provided with your OLE2 automation server application
for correct application and object names.

Example This example uses the CreateObject function to open the software product VISIO
(if it is not already open).

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim i as Integer, doccount as Integer
''Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Set visio = CreateObject("visio.application") ' find Visio

 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
 MsgBox "Visio is open."
 End If
End Sub

See Also GetObject, Is, Me, New, Nothing, Object Class, Typeof

CSng Function
Action Converts an expression to the data type Single.

Syntax CSng(expression) where expression is any expression that can evaluate to a
number.

50 SBL REFERENCE

Comments The expression must have a value within the range allowed for the Single data
type, or an error occurs.

Strings that cannot be converted to an integer result in a “Type Mismatch” error.
Variants containing null result in an “Illegal Use of Null” error.

Example This example calculates the factorial of a number. A factorial (notated with an
exclamation mark, !) is the product of a number and each integer between it and the
number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the value
120.

Sub main
 Dim number as Integer
 Dim factorial as Double
 Dim msgtext
 number=InputBox("Enter an integer between 1 and 170:")
 If number<=0 then
 Exit Sub
 End If
 factorial=1
 For x=number to 2 step -1
 factorial=factorial*x
 Next x
Rem If number =<35, then its factorial is small enough to be stored
Rem as a single-precision number
 If number<35 then
 factorial=CSng(factorial)
 End If
 msgtext="The factorial of " & number & " is: " & factorial
 MsgBox msgtext
End Sub

See Also Ccur, Cdbl, Cint, Clng, Cstr, Cvar, CVDate

CStr Function
Action Converts an expression to the data type String.

Syntax CStr(expression) where expression is any expression that can evaluate to a
number.

Comments The CStr statement accepts any type of expression:

expression is CStr returns:
Boolean a String containing “True” or “False”.
Date a String containing a date.
Empty a zero-length String ("").
Error a String containing “Error”, followed by the error number.
Null a run-time error.
Other Numeric a String containing the number.

'$CSTRINGS METACOMMAND [SBL EXTENSION]** '$ 51

Example This example converts a variable from a value to a string and displays the
result. Variant type 5 is Double and type 8 is String.

Sub main
 Dim var1
 Dim msgtext as String
 var1=InputBox("Enter a number:")
 var1=var1+10
 msgtext="Your number + 10 is: " & var1 & Chr(10)
 msgtext=msgtext & "which makes its Variant type: " & Vartype(var1)
 MsgBox msgtext
 var1=CStr(var1)
 msgtext="After conversion to a string," & Chr(10)
 msgtext=msgtext & "the Variant type is: " & Vartype(var1)
 MsgBox msgtext
End Sub

See Also Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cvar, CVDate, Format

'$CStrings Metacommand [SBL Extension]** '$
Action Tells the compiler to treat a backslash character inside a string (\) as an escape

character.

Syntax '$CStrings [Save | Restore] where Save saves the current $Cstrings setting and
Restore restores a previously saved $CStrings setting.

Comments This treatment of a backslash in a string is based on the 'C' language.

Save and Restore operate as a stack and allow the user to change the setting for a
range of the program without impacting the rest of the program.

The special characters supported are following:

Newline (Linefeed) \n
Horizontal Tab \t
Vertical Tab \v
Backspace \b
Carriage Return \r
Formfeed \f
Backslash \\
Single Quote \'
Double Quote \"
Null Character \0

The instruction “Hello\r World” is the equivalent of “Hello” + Chr$(13)+”World”.

52 SBL REFERENCE

In addition, any character can be represented as a 3-digit octal code or a 3-digit
hexadecimal code:

Octal Code \ddd
Hexadecimal Code \xddd

For both hexadecimal and octal, fewer than 3 characters can be used to specify the
code as long as the subsequent character is not a valid (hex or octal) character.

To tell the compiler to return to the default string processing mode, where the
backslash character has no special meaning, use the '$NoCStrings Metacommand.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example displays two lines, the first time using the C-language characters
“\n” for a carriage return and line feed.

Sub main
 '$CStrings
 MsgBox "This is line 1\n This is line 2 (using C Strings)"
 '$NoCStrings
 MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"
End Sub

See Also $Include, $NoCStrings, Rem

CurDir Function
Action Returns the default directory (and drive) for the specified drive.

Syntax CurDir [$] [(drive$)] where drive$ is a string expression containing the drive
to search.

Comments The drive must exist, and must be within the range specified in the LASTDRIVE
statement of the CONFIG.SYS file. If a null argument (" ") is supplied, or if no
drive$ is indicated, the path for the default drive is returned.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function will return a Variant of vartype 8 (string).

To change the current drive, use ChDrive. To change the current directory, use
ChDir .

CVAR FUNCTION 53

Example This example changes the current directory to C:\WINDOWS, if it is not already
the default.

Sub main
 Dim newdir as String
 newdir="c:\windows"
 If CurDir <> newdir then
 ChDir newdir
 End If
 MsgBox "The default directory is now: " & newdir
End Sub

See Also ChDir, ChDrive, Dir, MkDir, RmDir

CVar Function
Action Converts an expression to the data type Variant .

Syntax CVar(expression) where expression is any expression that can evaluate to a
number.

Comments CVar accepts any type of expression.

CVar generates the same result as you would get by assigning the expression to a
Variant variable.

Example This example converts a string variable to a variant variable.

Sub main
Dim answer as Single
answer=100.5
MsgBox "'Answer' is DIM'ed as Single with the value: " & answer
answer=CVar(answer)
answer=Fix(answer)
MsgBox "'Answer' is now a variant with a type of: " & VarType(answer)

End Sub

See Also Ccur, Cdbl, Cint, Clng, Csng, Cstr, CVDate

CVDate Function
Action Converts an expression to the data type Variant Date.

Syntax CVDate(expression) where expression is any expression that can evaluate to a
number.

Comments CVDate accepts both string and numeric values.

54 SBL REFERENCE

The CVDate function returns a Variant of vartype 7 (date) that represents a date
from January 1, 100 through December 31, 9999. A value of 2 represents January 1,
1900. Times are represented as fractional days.

Example This example displays the date for one week from the date entered by the user.

Sub main
Dim str1 as String
 Dim nextweek
 Dim msgtext
i: str1=InputBox$("Enter a date:")
 answer=IsDate(str1)
 If answer=-1 then
 str1=CVDate(str1)
 nextweek=DateValue(str1)+7
 msgtext="One week from the date entered is:
 msgtext=msgtext & "Format(nextweek,"dddddd")
 MsgBox msgtext
 Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
End Sub

See Also Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cstr, Cvar, Format, Val

Date Function
Action Returns a string representing the current date.

Syntax Date[$]

Comments The Date function returns a ten character string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function will return a Variant of vartype 8 (string).

Example This example displays the date for one week from the today’s date (the current
date on the computer).

Sub main
Dim nextweek
nextweek=CVar(Date)+7
MsgBox "One week from today is: " & Format(nextweek,"ddddd")

End Sub

See Also CVDate, Date Statement, Format, Now, Time Function, Time Statement, Timer,
TimeSerial

DATE STATEMENT 55

Date Statement
Action Sets the system date.

Syntax Date[$] = expression where expression is a string in one of the following forms:
mm-dd-yy, mm-dd-yyyy, mm/dd/yy or mm/dd/yyyy where mm denotes a month
(01-12), dd denotes a day (01-31), and yy or yyyy denotes a year (1980-2099).

Comments If the dollar sign, “$”, is omitted, expression can be a string containing a valid
date, a Variant of vartype 7 (date), or a Variant of vartype 8 (string).

If expression is not already a Variant of vartype 7 (date), Date attempts to convert
it to a valid date from January 1, 1980 through December 31, 2099. Date uses the
Short Date format in the International section of Windows Control Panel to
recognize day, month, and year if a string contains three numbers delimited by valid
date separators. In addition, Date recognizes month names in either full or
abbreviated form.

Example This example changes the system date to a date entered by the user.

Sub main
 Dim userdate
 Dim answer
i: userdate=InputBox("Enter a date for the system clock:")
 If userdate="" then
 Exit Sub
 End If
 answer=IsDate(userdate)
 If answer=-1 then
 Date=userdate
 Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
End Sub

See Also Date Function, Time Function, Time Statement

DateSerial Function
Action Returns a date value for year, month, and day specified.

Syntax DateSerial(year%, month%, day%) where year% is a year between 100 and
9999, or a numeric expression, month% is a month between 1 and 12, or a
numeric expression, and day% is a day between 1 and 31, or a numeric expression.

Comments The DateSerial function returns a Variant of vartype 7 (date) that represents a date
from January 1, 100 through December 31, 9999, where January 1, 1900 is 2.

56 SBL REFERENCE

A numeric expression can be used for any of the arguments to specify a relative
date: a number of days, months, or years before or after a certain date.

Example This example finds the day of the week New Year’s day will be for the year 2000.

Sub main
 Dim newyearsday
 Dim daynumber
 Dim msgtext
 Dim newday as Variant
 Const newyear=2000
 Const newmonth=1
 Let newday=1
 newyearsday=DateSerial(newyear,newmonth,newday)
 daynumber=Weekday(newyearsday)
 msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
 MsgBox msgtext
End Sub

See Also DateValue, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year

DateValue Function
Action Returns a date value for the string specified.

Syntax DateValue(date$) where date$ is a string representing a valid date.

Comments The DateValue function returns a Variant of vartype 7 (date) that represents a
date from January 1, 100 through December 31, 9999, where January 1, 1900 is 2.

DateValue accepts several different string representations for a date. It makes use
of the operating system’s international settings for resolving purely numeric dates.

Example This example displays the date for one week from the date entered by the user.
Sub main
 Dim str1 as String
 Dim nextweek
 Dim msgtext
i: str1=InputBox$("Enter a date:")
 answer=IsDate(str1)
 If answer=-1 then
 str1=CVDate(str1)
 nextweek=DateValue(str1)+7
 msgtext="One week from your date is: " & Format(nextweek,"dddddd")
 MsgBox msgtext
Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
End Sub

See Also DateSerial, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year

DAY FUNCTION 57

Day Function
Action Returns the day of the month (1-31) of a date-time value.

Syntax Day(date) where date is any expression that can evaluate to a date.

Comments Day attempts to convert the input value of date to a date value. The return value is
a Variant of vartype 2 (integer). If the value of date is null, a Variant of vartype 1
(null) is returned.

Example This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today, msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x) & "/" & Day(Today+x)
MsgBox msgtext

End Sub

See Also Date Function, DateStatement, Hour, Minute, Month, Now, Second, Weekday, Year

Declare Statement
Action Declares a procedure in a module or dynamic link library (DLL).

Syntax A Declare Sub name [libSpecification] [(parameter [As type])]

Syntax B Declare Function name [libSpecification] [(parameter [As type])]
[As functype]

where is
name the subprogram or function procedure to declare.
libSpecification the location of the procedure (module or DLL).
parameter the arguments to pass to the procedure, separated by commas.
type the type for the arguments.
functype the type of the return value for a function procedure.

Comments A Sub procedure does not return a value. A Function procedure returns a value, and
can be used in an expression. To specify the data type for the return value of a
function, end the Function name with a type character or use the As functype clause
shown above. If no type is provided, the function defaults to data type Variant .

If the libSpecification is of the format:

BasicLib libName [Alias " aliasname"]

58 SBL REFERENCE

the procedure is in another Basic module named libName. The Alias keyword
specifies that the procedure in libName is called aliasname. The other module will
be loaded on demand whenever the procedure is called. SBL will not automatically
unload modules which are loaded in this fashion. SBL will detect errors of mis-
declaration.

If the libSpecification is of the format:

Lib libName [Alias ["] ordinal["]]
or
Lib libName [Alias " aliasname"]

the procedure is in a Dynamic Link Library (DLL) named libName. The ordinal
argument specifies the ordinal number of the procedure within the external DLL.
Alternatively, aliasname specifies the name of the procedure within the external
DLL. If neither ordinal nor aliasname is specified, the DLL function is accessed by
name. It is recommended that the ordinal be used whenever possible, since
accessing functions by name may cause the module to load more slowly.

A forward declaration is needed only when a procedure in the current module is
referenced before it is defined. In this case, the BasicLib, Lib and Alias clauses are
not used.

The data type of a parameter may be specified by using a type character or by using
the As clause. Record parameters are declared by using an As clause and a type
which has previously been defined using the Type statement. Array parameters are
indicated by using empty parentheses after the parameter: array dimensions are not
specified in the Declare statement.

External DLL procedures are called with the PASCAL calling convention (the
actual arguments are pushed on the stack from left to right). By default, the actual
arguments are passed by Far reference. For external DLL procedures, there are two
additional keywords, ByVal and Any, that can be used in the parameter list.

When ByVal is used, it must be specified before the parameter it modifies. When
applied to numeric data types, ByVal indicates that the parameter is passed by
value, not by reference. When applied to string parameters, ByVal indicates that the
string is passed by Far pointer to the string data. By default, strings are passed by
Far pointer to a string descriptor.

Any can be used as a type specification, and permits a call to the procedure to pass
a value of any datatype. When Any is used, type checking on the actual argument
used in calls to the procedure is disabled (although other arguments not declared as
type Any are fully type-safe). The actual argument is passed by Far reference,
unless ByVal is specified, in which case the actual value is placed on the stack (or a
pointer to the string in the case of string data). ByVal may also be used in the call.
It is the external DLL procedure’s responsibility to determine the type and size of
the passed-in value.

DEFTYPE STATEMENT 59

When an empty string ("") is passed ByVal to an external procedure, the external
procedure will receive a valid (non-NULL) pointer to a character of 0. To send a
NULL pointer, Declare the procedure argument as ByVal As Any, and call the
procedure with an argument of 0.

Example This example declares a function that is later called by the main subprogram. The
function does nothing but set its return value to 1.

Declare Function SBL_exfunction()
Sub main
 Dim y as Integer
 Call SBL_exfunction
 y=SBL_exfunction
 MsgBox "The value returned by the function is: " & y
End Sub

Function SBL_exfunction()
 SBL_exfunction=1
End Function

See Also Call, Const, Deftype, Dim, Static, Type

Deftype Statement
Action Specifies the default data type for one or more variables.

Syntax DefCur varTypeLetters
DefInt varTypeLetters
DefLng varTypeLetters
DefSng varTypeLetters
DefDbl varTypeLetters
DefStr varTypeLetters
DefVar varTypeLetters

where varTypeLetters is a first letter of the variable name to use.

Comments VarTypeLetters may be a single letter, a comma-separated list of letters, or a range
of letters. For example, a-d indicates the letters a, b, c and d.

The case of the letters is not important, even in a letter range. The letter range a-z is
treated as a special case: it denotes all alpha characters, including the international
characters.

The Deftype statement affects only the module in which it is specified. It must
precede any variable definition within the module.

Variables defined using the Global or Dim may override the Deftype statement by
using an As clause or a type character.

60 SBL REFERENCE

Example This example finds the average of bowling scores entered by the user. Since the
variable average begins with A, it is automatically defined as a single-precision
floating point number. The other variables will be defined as Integers.

DefInt c,s,t
DefSng a
Sub main
 Dim count
 Dim total
 Dim score
 Dim average
 Dim msgtext
 For count=0 to 4
 score=InputBox("Enter bowling score #" & count+1 &":")
 total=total+score
 Next count
 average=total/count
 msgtext="Your average is: " &average
 MsgBox msgtext
End Sub

See Also Declare, Dim, Let, Type

Dialog FunctionD
Action Displays a dialog box and returns a number for the button selected (-1= OK,

0=Cancel).

Syntax Dialog (recordName) where recordName is a variable name declared as a
dialog box record.

Comments If the dialog box contains additional command buttons (for example, Help), the
Dialog function returns a number greater than 0. 1 corresponds to the first
command button, 2 to the second, and so on.

The dialog box recordName must have been declared using the Dim statement with
the As parameter followed by a dialog box definition name. This name comes from
the name argument used in the Begin Dialog statement.

To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statement. See Begin Dialog for
more information.

The Dialog function does not return until the dialog box is closed.

DIALOG STATEMENT 61

Example This example creates a dialog box with a drop down combo box in it and three
buttons: OK, Cancel, and Help. The Dialog function used here enables the
subroutine to trap when the user clicks on any of these buttons.

Sub main
 Dim cchoices as String
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OkButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 PushButton 132, 48, 42, 13, "Help", .Push1
 End Dialog
 Dim mydialogbox As UserDialog
 answer= Dialog(mydialogbox)
 Select Case answer
 Case -1
 MsgBox "You pressed OK"
 Case 0
 MsgBox "You pressed Cancel"
 Case 1
 MsgBox "You pressed Help"
 End Select
End Sub

See Also Begin Dialog...End Dialog, Dialog Statement

Dialog Statement
Action Displays a dialog box.

Syntax Dialog recordName where recordName is a variable name declared as a dialog
box record.

Comments The dialog box recordName must have been declared using the Dim statement
with the As parameter followed by a dialog box definition name. This name
comes from the name argument used in the Begin Dialog statement.

If the user exits the dialog box by pushing the Cancel button, the run-time error 102
is triggered, which can be trapped using On Error .

To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statement. See Begin Dialog for
more information.

The Dialog statement does not return until the dialog box is closed.

62 SBL REFERENCE

Example This example defines and displays a dialog box defined as UserDialog and
named mydialogbox. If the user presses the Cancel button, an error code of 102 is
returned and is trapped by the If...Then statement listed after the Dialog
statement.

Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OkButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
End Sub

See Also Begin Dialog...End Dialog, Dialog Function

Dim Statement
Action Declares variables for use in a Basic program.

Syntax Dim [Shared] variableName [As [New] type] [,variableName [As [New]
type]] ... where variableName is the name of the variable to declare and type is
the data type of the variable.

Comments VariableName must begin with a letter and contain only letters, numbers and
underscores. A name may also be delimited by brackets, and any character may
be used inside the brackets, except for other brackets.

Dim my_1st_variable As String
Dim [one long and strange! variable name] As String

If the As clause is not used, the type of the variable may be specified by using a
type character as a suffix to variableName. The two different type-specification
methods can be intermixed in a single Dim statement (although not on the same
variable).

DIM STATEMENT 63

Basic is a strongly typed language: all variables must be given a data type or they
will be automatically assigned the data type Variant . The available data types are:

Arrays
Numbers
Objects
Records
Strings
Variants

Variables may be shared across modules. A variable declared inside a procedure
has scope Local to that procedure. A variable declared outside a procedure has
scope Local to the module. If you declare a variable with the same name as a
module variable, the module variable is not accessible. See the Global statement
for details.

The Shared keyword is included for backward compatibility with older versions of
Basic. It is not allowed in Dim statements inside a procedure. It has no effect.

It is considered good programming practice to declare all variables. To force all
variables to be explicitly declared use the Option Explicit statement. It is also
recommended that you place all procedure-level Dim statements at the beginning of
the procedure.

Regardless of which mechanism you use to declare a variable, you may choose to
use or omit the type character when referring to the variable in the rest of your
program. The type suffix is not considered part of the variable name.

Arrays The available data types for arrays are: numbers, strings, variants, objects and
records. Arrays of arrays, dialog box records, and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

Dim variable([subscriptRange, ...]) As typeName
or Dim variable_with_suffix([subscriptRange, ...])

where subscriptRange is of the format:

[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base
statement can be used to change the default.

64 SBL REFERENCE

Both the startSubscript and the endSubscript are valid subscripts for the array. The
maximum number of subscripts which may be specified in an array definition is 60.
The maximum total size for an array is only limited by the amount of memory
available.

If no subscriptRange is specified for an array, the array is declared as a dynamic
array. In this case, the ReDim statement must be used to specify the dimensions of
the array before the array can be used.

Numbers Numeric variables can be declared using the As clause and one of the following
numeric types: Currency, Integer, Long, Single, Double. Numeric variables
can also be declared by including a type character as a suffix to the name.
Numeric variables are initialized to 0.

Objects Object variables are declared using an As clause and a typeName of a class.
Object variables may be Set to refer to an object, and then used to access
members and methods of the object using dot notation.

Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")
OLE2.reset

An object may be declared as New for some classes. In such instances, the object
variable does not need to be Set; a new object will be allocated when the variable is
used. Note: The class Object does not support the New operator.

Dim variableName As New className
variableName.methodName

Records Record variables are declared by using an As clause and a typeName which has
been defined previously using the Type statement. The syntax to use is:

Dim variableName As typeName

Records are made up of a collection of data elements called fields. These fields may
be of any numeric, string, Variant, or previously defined record type. See Type for
details on accessing fields within a record.

You can also use the Dim statement to declare a dialog box record. In this case,
type is specified as dialogName, where dialogName matches a dialog box name
previously defined using Begin Dialog. The dialog record variable can then be used
in a Dialog statement.

Dialog box records have the same behavior as regular records; they differ only in
the way they are defined. Some applications may provide a number of predefined
dialog boxes.

DIM STATEMENT 65

Strings SBL supports two types of strings: fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

Dim variableName As String* length

Dynamic strings have no declared length, and can vary in length from 0 to 32,767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

Dim variableName$
or Dim variableName As String

When initialized, fixed-length strings are filled with zeros. Dynamic strings are
initialized as zero-length strings.

Variants Declare variables as Variants when the type of the variable is not known at the
start of, or may change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

Dim variableName
or Dim variableName As Variant

Variant variables are initialized to vartype Empty.

Example This example shows a Dim statement for each of the possible data types.

Rem Must define a record type before you can declare a record variable
Type Testrecord

Custno As Integer
Custname As String

End Type
Sub main

Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()

' ...(code here)...
End Sub

See Also Global, Option Base, ReDim, Set, Static, Type

66 SBL REFERENCE

Dir Function
Action Returns a filename that matches the specified pattern.

Syntax Dir [$] [(pathname$ [,attributes%)] where pathname$ is a string expression
identifying a path or filename and attributes% is an integer expression specifying
the file attributes to select.

Comments Pathname$ may include a drive specification and wildcard characters ('?' and '*').
Dir returns the first filename that matches the pathname$ argument. To retrieve
additional matching filenames, call the Dir function again, omitting the
pathname$ and attributes% arguments. If no file is found, an empty string ("") is
returned.

The default value for attributes% is 0. In this case, Dir returns only files without
directory, hidden, system, or volume label attributes set.

Here are the possible values for attributes%:

Value Meaning
 0 return normal files
 2 add hidden files
 4 add system files
 8 return volume label
 16 add directories

The values in the table can be added together to select multiple attributes. For
example, to list hidden and system files in addition to normal files set attributes%
to 6 (6=2+4).

If attributes% is set to 8, the Dir function returns the volume label of the drive
specified in the pathname$, or of the current drive if drive is not explicitly
specified. If volume label attribute is set, all other attributes are ignored.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

Example This example lists the contents of the diskette in drive A.

Sub main
 Dim msgret
 Dim directory, count
 Dim x, msgtext
 Dim A()
 msgret=MsgBox("Insert a disk in drive A.")
 count=1
 ReDim A(100)
 directory=Dir ("A:*.*")
 Do While directory<>""

DLGCONTROLID FUNCTION 67

 A(count)=directory
 count=count+1
 directory=Dir
 Loop
 msgtext="Contents of drive A:\ is:" & Chr(10) & Chr(10)
 For x=1 to count
 msgtext=msgtext & A(x) & Chr(10)
 Next x
 MsgBox msgtext
End Sub

See Also ChDir, ChDrive, CurDir, MkDir, RmDir

DlgControlID Function
Action Returns the numeric ID for a dialog control in the active dialog box.

Syntax DlgControlID (Id$) where Id$ is the string ID for a dialog control.

Comments The DlgControlID function translates a string Id$ into a numeric ID. Numeric ids
correspond to the position of a control within a dialog box definition. The first
control has ID 0 (zero), the second 1, and so on. The string IDs come from the last
argument in the dialog definition statement that created the dialog control, such as
the TextBox or ComboBox statements. The string IDs does not include the period
(.) and is case-sensitive.

Use DlgControlID only while a dialog box is running. See the Begin Dialog
statement for more information.

Example This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2

68 SBL REFERENCE

 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OkButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
End Function

See Also BeginDialog...End Dialog, DlgEnable Function, DlgEnable Statement, DlgFocus
Function, DlgFocus Statement, DlgListBoxArray Function, DlgListBoxArray
Statement, DlgSetPicture, DlgText Function, DlgText Statement, DlgValue
Function, DlgValue Statement, DlgVisible Function, DlgVisible Statement

DLGENABLE FUNCTION 69

DlgEnable Function
Action Returns the enable state for the specified dialog control (-1=enabled, 0=disabled).

Syntax DlgEnable (Id) where Id is the numeric ID for the dialog control.

Comments If a dialog box control is enabled, it is accessible to the user. You may want to
disable a control if its use depends on the selection of other controls.

Use the DlgControlID function to find the numeric ID for a dialog control, based
on its string identifier.

Use DlgEnable only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box with two checkbox es, one labeled Either, the
other labeled Or. If the user clicks on Either, the Or option is grayed. Likewise, if
Or is selected, Either is grayed. This example uses the DlgEnable statement to
toggle the state of the buttons.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92,"DlgEnable example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 34, 25, 75, 19, "Either", .CheckBox1
 CheckBox 34, 43, 73, 25, "Or", .CheckBox2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 2 Then
 DlgEnable 3
 Else
 DlgEnable 2
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Function, DlgValue Statement, DlgVisible Function,
DlgVisible Statement

70 SBL REFERENCE

DlgEnable Statement
Action Enables, disables, or toggles the state of the specified dialog control.

Syntax DlgEnable Id [, mode] where Id is the numeric ID for the dialog control to
change. Mode is an integer representing the enable state (1=enable, 0=disable)

Comments If mode is omitted, the DlgEnable toggles the state of the dialog control specified
by Id. If a dialog box control is enabled, it is accessible to the user. You may
want to disable a control if its use depends on the selection of other controls.

Use the DlgControlID function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such as the TextBox or
ComboBox statements.

Use DlgEnable only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box with one checkbox , labeled Show More, and
a group box, labeled More, with two option buttons, Option 1 and Option 2. It
uses the DlgEnable function to enable the More group box and its options if the
Show More checkbox is selected.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgEnable example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 13, 6, 75, 19, "Show more", .CheckBox1
 GroupBox 16, 28, 94, 50, "More"
 OptionGroup .OptionGroup1
 OptionButton 23, 40, 56, 12, "Option 1", .OptionButton1
 OptionButton 24, 58, 61, 13, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgEnable 3,0
 DlgEnable 4,0
 DlgEnable 5,0
 Case 2 'button or control value changed
 If DlgControlID(identifier$) = 2 Then
 If DlgEnable (3)=0 then
 DlgEnable 3,1

DLGFOCUS FUNCTION 71

 DlgEnable 4,1
 DlgEnable 5,1
 Else
 DlgEnable 3,0
 DlgEnable 4,0
 DlgEnable 5,0
 End If
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Statement,
DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Function, DlgValue Statement, DlgVisible Function,
DlgVisible Statement

DlgFocus Function
Action Returns the numeric ID of the dialog control having the input focus.

Syntax DlgFocus[$]()

Comments A control has focus when it is active and responds to keyboard input.

Use DlgFocus only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box with a checkbox , labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the checkbox , the focus goes to the OK
button.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 TextBox 15, 37, 82, 12, .TextBox1
 Text 15, 23, 57, 10, "Text Box 1"
 CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

72 SBL REFERENCE

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1

DlgFocus 2
 Case 2 'user changed control or clicked a button
 If DlgFocus() <> "OkButton" then
 DlgFocus 0
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function, DlgEnable
Statement, DlgFocus Statement, DlgListBoxArray Function, DlgListBoxArray
Statement, DlgSetPicture, DlgText Function, DlgText Statement, DlgValue
Function, DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgFocus Statement
Action Sets the focus for the specified dialog control.

Syntax DlgFocus Id where Id is the ID for the dialog control to make active.

Comments Use the DlgControlID function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such as the TextBox or
ComboBox statements.

Use DlgFocus only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box with a checkbox , labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the checkbox , the focus goes to the OK
button.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgFocus Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 TextBox 15, 37, 82, 12, .TextBox1
 Text 15, 23, 57, 10, "Text Box 1"
 CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

DLGLISTBOXARRAY FUNCTION 73

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgFocus 2
 Case 2 'user changed control or clicked a button
 If DlgFocus() <> "OkButton" then
 DlgFocus 0
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Function, DlgValue Statement, DlgVisible Function,
DlgVisible Statement

DlgListBoxArray Function
Action Returns the number of elements in a list or combo box.

Syntax DlgListBoxArray (Id[, Array$]) where Id is the numeric ID for the list or
combo box and Array$ is the entries in the list box or combo box returned.

Comments Array$ is a one-dimensional array of dynamic strings. If array$ is dynamic, its
size is changed to match the number of strings in the list or combo box. If array$
is not dynamic and it is too small, an error occurs. If array$ is omitted, the
function returns the number of entries in the specified dialog control.

Use the DlgControlID function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such as the TextBox or
ComboBox statements.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog
statement for more information.

Example This example displays a dialog box with a checkbox , labeled “Display List”, and
an empty list box. If the user clicks the checkbox , the list box is filled with the
contents of the array called “myarray”. The DlgListBox Array function makes
sure the list box is empty.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgListBoxArray Example", .FileDlgFunction
 '$CStrings Save
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14

74 SBL REFERENCE

 ListBox 19, 26, 74, 59, "", .ListBox1
 CheckBox 12, 4, 86, 13, "Display List", .CheckBox1
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
Dim myarray$(3)
Dim msgtext as Variant
Dim x as Integer
For x= 0 to 2
 myarray$(x)=Chr$(x+65)
Next x
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If DlgListBoxArray(2)=0 then
 DlgListBoxArray 2, myarray$()
 End If
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray
Statement, DlgSetPicture, DlgText Function, DlgText Statement, DlgValue
Function, DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgListBoxArray Statement
Action Fills a list or combo box with an array of strings.

Syntax DlgListBoxArray Id, Array$ where Id is the ID for the list or combo box and
Array$ is the entries for the list box or combo box.

Comments Array$ has to be a one-dimensional array of dynamic strings. One entry appears in
the list box for each element of the array. If the number of strings changes
depending on other selections made in the dialog box, you should use a dynamic
array and ReDim the size of the array whenever it changes.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog
statement for more information.

Example This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
 Dim identifier$
 Dim action as Integer

DLGLISTBOXARRAY STATEMENT 75

 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OkButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If

76 SBL REFERENCE

 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed
 Case 5 'idle
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function, DlgEnable,
DlgSetPicture, DlgText Function, DlgText Statement, DlgValue Function,
DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgSetPicture Statement
Action Changes the picture in a picture dialog control for the current dialog box.

Syntax DlgSetPicture Id, filename$, type where Id is the numeric ID for the picture
dialog control, filename$ is the name of the bitmap file (.BMP) to use, and type is
an integer representing the location of the file (0=filename$, 3=Clipboard)

Comments Use the DlgControlID function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such as the TextBox or
ComboBox statements.

Use DlgListBoxArray only while a dialog box is running. See the Begin Dialog
statement for more information.

See the Picture statement for more information about displaying pictures in dialog
boxes.

Example This example displays a picture in a dialog box and changes the picture if the user
clicks the checkbox labeled “Change Picture”.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgSetPicture Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
 CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

DLGTEXT FUNCTION 77

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If suppvalue=1 then
 DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
 Else
 DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
 End If
 End If
 End SelectEnd Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function, DlgEnable
Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgText Function, DlgText Statement, DlgValue
Function, DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgText Function
Action Returns the text associated with a dialog control for the current dialog box.

Syntax DlgText[$] (Id) where Id is the numeric ID for a dialog control.

Comments If the control is a text box or a combo box, DlgText function returns the text that
appears in the text box. If it is a list box, the function returns its current selection.
If it is a text box, DlgText returns the text. If the control is a command button,
option button, option group, or a checkbox , the function returns its label.

Use DlgText only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box similar to File Open. It uses DlgText to
determine what group of files to display.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1

78 SBL REFERENCE

 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OkButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function, DlgEnable
Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DlgText Statement, DlgValue Function,
DlgValue Statement, DlgVisible Function, DlgVisible Statement

DLGTEXT STATEMENT 79

DlgText Statement
Action Changes the text associated with a dialog control for the current dialog box.

Syntax DlgText Id, text$ where Id is the numeric ID for a dialog control and text$ is the
text to use for the dialog control.

Comments If the dialog control is a text box or a combo box, DlgText sets the text that
appears in the text box. If it is a list box, a string equal to text$ or beginning with
text$ is selected. If the dialog control is a text control, DlgText sets it to text$. If
the dialog control is a command button, option button, option group, or a
checkbox , the statement sets its label.

The DlgText statement does not change the identifier associated with the control.

Use DlgText only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box similar to File Open. It uses the DlgText
statement to display the list of files in the Filename list box.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Dim filetypes as String
 Dim exestr$()
 Dim button as Integer
 Dim x as Integer
 Dim directory as String
 filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
 Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
 '$CStrings Save
 Text 8, 6, 60, 11, "&Filename:"
 TextBox 8, 17, 76, 13, .TextBox1
 ListBox 9, 36, 75, 61, exestr$(), .ListBox1
 Text 8, 108, 61, 9, "List Files of &Type:"
 DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
 Text 98, 7, 43, 10, "&Directories:"
 Text 98, 20, 46, 8, "c:\\windows"
 ListBox 99, 34, 66, 66, "", .ListBox2
 Text 98, 108, 44, 8, "Dri&ves:"
 DropListBox 98, 120, 68, 12, "", .DropListBox2
 OkButton 177, 6, 50, 14
 CancelButton 177, 24, 50, 14
 PushButton 177, 42, 50, 14, "&Help"
 '$CStrings Restore
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

80 SBL REFERENCE

 Sub ListFiles(str1$)
 DlgText 1,str1$
 x=0
 Redim exestr$(x)
 directory=Dir$("c:\windows\" & str1$,16)
 If directory<>"" then
 Do
 exestr$(x)=LCase$(directory)
 x=x+1
 Redim Preserve exestr$(x)
 directory=Dir
 Loop Until directory=""
 End If
 DlgListBoxArray 2,exestr$()
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 str1$="*.exe" 'dialog box initialized
 ListFiles str1$
 Case 2 'button or control value changed
 If DlgControlId(identifier$) = 4 Then
 If DlgText(4)="All Files (*.*)" then
 str1$="*.*"
 Else
 str1$="*.exe"
 End If
 ListFiles str1$
 End If
 Case 3 'text or combo box changed
 str1$=DlgText$(1)
 ListFiles str1$
 Case 4 'control focus changed

 Case 5 'idle
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function, DlgEnable
Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgValue Function,
DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgValue Function
Action Returns a numeric value for the state of a dialog control for the current dialog box.

Syntax DlgValue (Id) where Id is the numeric ID for a dialog control.

DLGVALUE FUNCTION 81

Comments The values returned depend on the type of dialog control:

Control Value Returned
Checkbox 1 = Selected, 0=Cleared, -1=Grayed
Option Group 0 = 1st button selected, 1 = 2nd button selected, etc.
Listbox 0 = 1st item, 1= 2nd item, etc.
Combobox 0 = 1st item, 1 = 2nd item, etc.
Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example changes the picture in the dialog box if the checkbox is selected
and changes the picture to its original bitmap if the checkbox is turned off.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgSetPicture Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
 CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=3 then
 If DlgValue(3)=1 then
 DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
 Else
 DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
 End If
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray
Function, DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Statement, DlgVisible Function, DlgVisible Statement

82 SBL REFERENCE

DlgValue Statement
Action Changes the value associated with the dialog control for the current dialog box.

Syntax DlgValue Id, value% where Id is the numeric ID for a dialog control and
value% is the new value for the dialog control.

Comments The values you use to set the control depend on the type of the control:

Control Value Returned

Checkbox 1 = Select, 0=Clear, -1=Gray.

Option Group 0 = Select 1st button, 1 = Select 2nd button.

Listbox 0 = Select 1st item, 1= Select 2nd item, etc.

Combobox 0 = Select 1st item, 1 = Select 2nd item, etc.

Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays a dialog box with a checkbox, labeled Change Option, and
a group box with two option buttons, labeled Option 1 and Option 2. When the
user clicks the Change Option button, Option 2 is selected.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgValue Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Change Option", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgValue(2)=1 then
 DlgValue 4,1

DLGVISIBLE FUNCTION 83

 Else
 DlgValue 4,0
 End If
 End If
 End Select
End Function

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray
Function, DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Function, DlgVisible Function, DlgVisible Statement

DlgVisible Function
Action Returns -1 is a dialog control is visible, 0 if it is hidden.

Syntax DlgVisible (Id) where Id is the numeric ID for a dialog control.

Comments Use DlgVisible only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays Option 2 in the Group box if the user clicks the checkbox
labeled “Show Option 2”. If the user clicks the box again, Option 2 is hidden.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgVisible 6,0

 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgVisible(6)<>1 then
 DlgVisible 6
 End If
 End If
 End Select
End Function

84 SBL REFERENCE

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgFocus Statement, DlgListBoxArray
Function, DlgListBoxArray Statement, DlgSetPicture, DlgText Function, DlgText
Statement, DlgValue Function, DlgValue Statement, DlgVisible Statement

DlgVisible Statement
Action Hides or displays a dialog control for the current dialog box.

Syntax DlgVisible Id [, mode] where Id is the numeric ID for a dialog control and mode
is the value to use to set the dialog control state:

1 = Display a previously hidden control.
0 = Hide the control.

Comments If you omit the mode, the dialog box state is toggled between visible and hidden.

Use DlgVisible only while a dialog box is running. See the Begin Dialog statement
for more information.

Example This example displays Option 2 in the Group box if the user clicks the checkbox .
labeled “Show Option 2”. If the user clicks the box again, Option 2 is hidden.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
 Dim button as integer
 Dim identifier$
 Dim action as Integer
 Dim suppvalue as Integer
 Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDlgFunction
 OkButton 130, 6, 50, 14
 CancelButton 130, 23, 50, 14
 CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
 GroupBox 28, 34, 79, 47, "Group"
 OptionGroup .OptionGroup1
 OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
 OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
 End Dialog
 Dim dlg As newdlg
 button = Dialog(dlg)
End Sub

Function FileDlgFunction(identifier$, action, suppvalue)
 Select Case action
 Case 1
 DlgVisible 6,0
 Case 2 'user changed control or clicked a button
 If DlgControlID(identifier$)=2 then
 If DlgVisible(6)<>1 then
 DlgVisible 6
 End If
 End If
 End Select
End Function

DO...LOOP STATEMENT 85

See Also BeginDialog...End Dialog, DlgControlID Function, DlgEnable Function,
DlgEnable Statement, DlgFocus Function, DlgFocus Statement,
DlgListBoxArray Function, DlgListBoxArray Statement, DlgSetPicture, DlgText
Function, DlgText Statement, DlgValue Function, DlgVisible Function

Do...Loop Statement
Action Repeats a series of program lines as long as (or until) an expression is TRUE.

Syntax A Do [{ While | Until } condition]
[statementblock]
[Exit Do]
[statementblock]

Loop
Syntax B Do

[statementblock]
[Exit Do]
[statementblock]

Loop [{ While | Until } condition]

where Condition is any expression that evaluates to TRUE (nonzero) or FALSE (0)
and statementblock(s) is the program lines to repeat while (or until) condition is
TRUE.

Comments When an Exit Do statement is executed, control goes to the statement after the
Loop statement. When used within a nested loop, an Exit Do statement moves
control out of the immediately enclosing loop.

Example This example lists the contents of the diskette in drive A.

Sub main
Dim msgret
 Dim directory, count
 Dim x, msgtext
 Dim A()
 msgret=MsgBox("Insert a disk in drive A.")
 count=1
 ReDim A(100)
 directory=Dir ("A:*.*")
 Do While directory<>""
 A(count)=directory
 count=count+1
 directory=Dir
 Loop
 msgtext="Directory of drive A:\ is:" & Chr(10)
 For x=1 to count
 msgtext=msgtext & A(x) & Chr(10)
 Next x
 MsgBox msgtext
End Sub

See Also Exit, For...Next, Stop, While...Wend

86 SBL REFERENCE

DoEvents Statement
Action Yields execution to Windows for processing operating system events.

Syntax DoEvents

Comments DoEvents does not return until Windows has finished processing all events in the
queue and all keys sent by SendKeys statement.

DoEvents should not be used if other tasks can interact with the running program in
unforeseen ways. Since SBL yields control to the operating system at regular
intervals, DoEvents should only be used to force SBL to allow other applications to
run at a known point in the program.

Example This example activates the Windows Terminal application, dials the number and
then allows the operating system to process events.

Sub main
 Dim phonenumber, msgtext
 Dim x
 phonenumber=InputBox("Type telephone number to call:")
 x=Shell("Terminal.exe",1)
 SendKeys "%PD" & phonenumber & "{Enter}",1
 msgtext="Dialing..."
 MsgBox msgtext
 DoEvents
End Sub

See Also AppActivate, SendKeys, Shell

DropComboBox Statement
Action Creates a combination of a drop-down list box and a text box.

Syntax A DropComboBox x, y, dx, dy, text$, .field

Syntax B DropComboBox x, y, dx, dy, stringarray$(), .field

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the combo box in which the user enters or

selects text.
text$ a string containing the selections for the combo box.
stringarray$ an array of dynamic strings for the selections in the combo box.
.field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

DROPCOMBOBOX STATEMENT 87

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

You use a drop combo box when you want the user to be able to edit the contents of
the list box (such as filenames or their paths). You use a drop list box when the
items in the list should remain unchanged.

Use the DropComboBox statement only between a Begin Dialog and an End
Dialog statement.

Example This example defines a dialog box with a drop combo box and the OK and
Cancel buttons.

Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OkButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."

 Else
 MsgBox "You pressed OK."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, ComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

88 SBL REFERENCE

DropListBox Statement
Action Creates a drop-down list of choices.

Syntax A DropListBox x, y, dx, dy, text$, .field

Syntax B DropListBox x, y, dx, dy, stringarray$(), .field

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the combo box in which the user enters or

selects text.
text$ a string containing the selections for the combo box.
stringarray$ an array of dynamic strings for the selections in the combo box.
.field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

A drop list box is different from a list box. The drop list box only displays its list
when the user selects it; the list box also displays its entire list in the dialog box.

Use the DropListBox statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a drop list box and the OK and Cancel
buttons.

Sub main
 Dim DropListBox1() as String
 ReDim DropListBox1(3)
 For x=0 to 2
 DropListBox1(x)=Chr(65+x) & ":"
 Next x
 Begin Dialog UserDialog 186, 62, "SBL Dialog Box"

ENVIRON FUNCTION 89

 Text 8, 4, 42, 8, "Drive:", .Text3
 DropListBox 8, 16, 95, 44, DropListBox1(), .DropListBox1
 OkButton 124, 6, 54, 14
 CancelButton 124, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, ComboBox, DropComboBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Environ Function
Action Returns the string setting for a keyword in the operating system’s environment table.

Syntax A Environ [$](environment-string$)

Syntax B Environ [$](numeric expression%)

where Environment-string$ is the name of a keyword in the operating system
environment and Numeric expression% is a number for the position of the string in
the environment table. (1st, 2nd, 3rd, etc.)

Comments If you use the environment string$ parameter, enter it in uppercase, or Environ
returns a null string (""). The return value for Syntax A is the string associated
with the keyword requested.

If you use the numeric expression% parameter, the numeric expression is
automatically rounded to a whole number, if necessary. The return value for Syntax
B is a string in the form “keyword=value”.

Environ returns a null string if the specified argument cannot be found.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

Example This example lists all the strings from the operating system environment table.

Sub main
 Dim str1(100)
 Dim msgtext
 Dim count, x
 Dim newline
 newline=Chr(10)
 x=1
 str1(x)= Environ(x)

90 SBL REFERENCE

 Do While Environ(x)<>""
 str1(x)= Environ(x)
 x=x+1
 str1(x)=Environ(x)
 Loop
 msgtext="The Environment Strings are:" & newline & newline
 count=x
 For x=1 to count
 msgtext=msgtext & str1(x) & newline
 Next x
 MsgBox msgtext
End Sub

Eof Function
Action Returns the value -1 if the end of the specified open file has been reached, 0 otherwise.

Syntax Eof(filenumber%) where filenumber% is an integer expression identifying the
open file to use.

Comments See the Open statement for more information about assigning numbers to files
when they are opened.

Example This example uses the Eof function to read records from a Random file, using a
Get statement. The Eof function keeps the Get statement from attempting to read
beyond the end of the file. The subprogram, CREATEFILE, creates the file
C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Sub main
 Dim acctno
 Dim msgtext as String
 newline=Chr(10)
 Call createfile
 Open "C:\temp001" For Input As #1
 msgtext="The account numbers are:" & newline
 Do While Not Eof(1)
 Input #1,acctno
 msgtext=msgtext & newline & acctno & newline
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Get, Input Function, Input Statement, Line Input, Loc, Lof, Open

ERASE STATEMENT 91

Erase Statement
Action Reinitializes the contents of a fixed array or frees the storage associated with a

dynamic array.

Syntax Erase Array [, Array] where Array is the of the array variable to re-initialize.

Comments The effect of using Erase on the elements of a fixed array varies with the type of
the element:

Element Type Erase Effect
numeric Each element set to zero.
variable length string Each element set to zero length string.
fixed length string Each element’s string is filled with zeros.
Variant Each element set to Empty.
user-defined type Members of each element are cleared as if the members

were array elements, i.e. numeric members have their
value set to zero, etc.

object Each element is set to the special value Nothing.

Example This example prompts for a list of item numbers to put into an aray and clears array
if the user wants to start over.

Sub main
 Dim msgtext
 Dim inum(100) as Integer
 Dim x, count
 Dim newline
 newline=Chr(10)
 x=1
 count=x
 inum(x)=0
 Do
 inum(x)=InputBox("Enter item #" & x & " (99=start over;0=end):")
 If inum(x)=99 then
 Erase inum()
 x=0
 ElseIf inum(x)=0 then
 Exit Do
 End If
 x=x+1
 Loop
 count=x-1
 msgtext="You entered the following numbers:" & newline
 For x=1 to count
 msgtext=msgtext & inum(x) & newline
 Next x
 MsgBox msgtext
End Sub

See Also Dim, ReDim, Lbound, UBound

92 SBL REFERENCE

Erl Function
Action Returns the line number where an error was trapped.

Syntax Erl

Comments If you use a Resume or On Error statement after Erl, the return value for Erl is
reset to 0. To maintain the value of the line number returned by Erl, assign it to a
variable.

The value of the Erl function can be set indirectly through the Error statement.

Example This example prints the error number using the Err function and the line number
using the Erl statement if an error occurs during an attempt to open a file. Line
numbers are automatically assigned, starting with 1, which is the Sub main
statement.

Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
' etc....
Close #1
done:
 Exit Sub
Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
End Sub

See Also Err Function, Err Statement, Error Function, Error Statement, On Error, Resume,
Trappable Errors

Err Function

Action Returns the run-time error code for the last error trapped.

Syntax Err

Comments If you use a Resume or On Error statement after Erl, the return value for Err is reset to
0. To maintain the value of the line number returned by Erl, assign it to a variable.

The value of the Err function can be set directly through the Err statement, and
indirectly through the Error statement.

The Trappable Errors are listed in an appendix.

ERR STATEMENT 93

Example This example prints the error number using the Err function and the line number
using the Erl statement if an error occurs during an attempt to open a file. Line
numbers are automatically assigned, starting with 1, which is the Sub main
statement.

Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
' etc....
 Close #1
done:
 Exit Sub
Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
End Sub

See Also Erl, Err Statement, Error Function, Error Statement, On Error, Resume,
Trappable Errors

Err Statement
Action Sets a run-time error code.

Syntax Err = n% where n% is an integer expression for the error code (between 1 and
32,767) or 0 for no run-time error.

Comments The Err statement is used to send error information between procedures.

Example This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it. It uses the Err
statement to clear any previous error codes before running the loop the first time
and it also clears the error to allow the user to try again.

Sub main
 Dim custname as String
 On Error Resume Next
 Do
 Err=0
 custname=InputBox$("Enter customer name:")
 If custname="" then
 Error 10000
 Else
 Exit Do
 End If
 Select Case Err
 Case 10000
 MsgBox "You must enter a customer name."
 Case Else
 MsgBox "Undetermined error. Try again."

94 SBL REFERENCE

 End Select
 Loop Until custname<>""
 MsgBox "The name is: " & custname
End Sub

See Also Erl, Err Function, Error Function, Error Statement, On Error, Resume,
Trappable Errors

Error Function
Action Returns the error message that corresponds to the specified error code.

Syntax Error [$] [(errornumber%)] where errornumber% is an integer between 1 and
32,767 for the error code.

Comments If this argument is omitted, SBL returns the error message for the run-time error
which has occurred most recently.

If no error message is found to match the errorcode, "" (a null string) is returned.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

The Trappable Errors are listed in an appendix.

Example This example prints the error number, using the Err function, and the text of the
error, using the Error$ function, if an error occurs during an attempt to open a file.

Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
' etc....
 Close #1
done:
 Exit Sub
Debugger:
 msgtext="Error " & Err & ": " & Error$
 MsgBox msgtext
 Resume done
End Sub

See Also Erl, Err Function, Err Statement, Error Statement, On Error, Resume,
Trappable Errors

ERROR STATEMENT 95

Error Statement
Action Simulates the occurrence of a SBL or user-defined error.

Syntax Error errornumber% where errornumber% is an integer between 1 and 32,767
for the error code.

Comments If an errornumber% is one which SBL already uses, the Error statement will
simulate an occurrence of that error.

User-defined error codes should employ values greater than those used for standard
SBL error codes. To help ensure that non-SBL error codes are chosen, user-defined
codes should work down from 32,767.

If an Error statement is executed, and there is no error-handling routine enabled,
SBL produces an error message and halts program execution. If an Error statement
specifies an error code not used by SBL, the message “User-defined error” is
displayed.

Example This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it.

Sub main
 Dim custname as String
 On Error Resume Next
 Do
 Err=0
 custname=InputBox$("Enter customer name:")
 If custname="" then
 Error 10000
 Else
 Exit Do
 End If

Select Case Err
 Case 10000
 MsgBox "You must enter a customer name."
 Case Else
 MsgBox "Undetermined error. Try again."
 End Select

 Loop Until custname<>""
 MsgBox "The name is: " & custname
End Sub

See Also Erl, Err Function, Err Statement, Error Function, On Error, Resume,
Trappable Errors

96 SBL REFERENCE

Exit Statement
Action Terminates Loop statements or transfers control to a calling procedure.

Syntax Exit {Do | For| Function | Sub}

Comments Use Exit Do inside a Do...Loop statement. Use Exit For inside a For...Next
statement. When the Exit statement is executed, control transfers to the statement
after the Loop or Next statement. When used within a nested loop, an Exit
statement moves control out of the immediately enclosing loop.

Use Exit Function inside a Function...End Function procedure. Use Exit Sub
inside a Sub...End Sub procedure.

Example This example uses the On Error statement to trap run-time errors. If there is an
error, the program execution continues at the label “Debugger”. The example uses
the Exit statement to skip over the debugging code when there is no error.

Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
' etc....
 Close #1
done:
 Exit Sub
Debugger:
 msgtext="Error " & Err & ": " & Error$
 MsgBox msgtext
 Resume done
End Sub

See Also Do...Loop, For...Next, Function...End Function, Stop, Sub...End Sub

Exp Function
Action Returns the value e (the base of natural logarithms) raised to a power.

Syntax Exp(number) where number is the exponent value for e.

Comments If the variable to contain the return value has a data type Integer, Currency, or
Single, the return value is a single-precision value. If the variable has a date type
of Long, Variant , or Double, the value returned is a double-precision number.

The constant e is approximately 2.718282.

FILEATTR FUNCTION 97

Example This example estimates the value of a factorial of a number entered by the user. A
factorial (notated with an exclamation mark, !) is the product of a number and
each integer between it and the number 1. For example, 5 factorial, or 5!, is the
product of 5*4*3*2*1, or the value 120.

Sub main
 Dim x as Single
 Dim msgtext, PI
 Dim factorial as Double
 PI=3.14159
i: x=InputBox("Enter an integer between 1 and 88: ")
 If x<=0 then
 Exit Sub
 ElseIf x>88 then
 MsgBox "The number you entered is too large. Try again."
 Goto i
 End If
 factorial=Sqr(2*PI*x)*(x^x/Exp(x))
 msgtext="The estimated factorial is: " & Format(factorial, "Scientific")
 MsgBox msgtext
End Sub

See Also Abs, Fix, Int, Log, Rnd, Sgn, Sqr

FileAttr Function
Action Returns the file mode or the operating system handle for the open file.

Syntax FileAttr(filenumber%, returntype) where filenumber% is an integer expression
identifying the open file to use and returntype is 1=Return file mode, 2=Return
operating system handle

Comments The argument filenumber% is the number used in the Open statement to open the
file.

The following table lists the return values and corresponding file modes if
returntype is 1:

Value Mode
1 Input

2 Output

8 Append

Example This example closes an open file if it is open for Input or Output. If open for
Append, it writes a range of numbers to the file. The second subprogram,
CREATEFILE, creates the file and leaves it open.

Declare Sub createfile()
Sub main
 Dim filemode as Integer
 Dim attrib as Integer

98 SBL REFERENCE

 Call createfile
 attrib=1
 filemode=FileAttr(1,attrib)
 If filemode=1 or 2 then
 MsgBox "File was left open. Closing now."
 Close #1
 Else
 For x=11 to 15
 Write #1, x
 Next x
 Close #1
 End If
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
End Sub

See Also GetAttr, Open, SetAttr

FileCopy Statement
Action Copies a file.

Syntax FileCopy source$, destination$ where source$ is a string expression for the name
(and path) of the file to copy and destination$ is a string expression for the name
(and path) for the copied file.

Comments Wildcards (* or ?) are not allowed for either the source$ or destination$. The source$
file cannot be copied if it is opened by SBL for anything other than Read access.

Example This example copies one file to another. Both filenames are specified by the user.

Sub main
 Dim oldfile, newfile
 On Error Resume Next
 oldfile= InputBox("Copy which file?")
 newfile= InputBox("Copy to?")
 FileCopy oldfile,newfile
 If Err<>0 then
 msgtext="Error during copy. Rerun program."
 Else
 msgtext="Copy successful."
 End If
 MsgBox msgtext
End Sub

See Also FileAttr, FileDateTime, GetAttr, Kill, Name

FILEDATETIME FUNCTION 99

FileDateTime Function
Action Returns the last modification date and time for the specified file.

Syntax FileDateTime(pathname$) where pathname$ is a string expression for the name
of the file to query.

Comments Pathname$ can contain path and disk information, but cannot include wildcards (*
and ?).

Example This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
 Dim tempfile
 Dim filetime, curtime
 Dim msgtext
 Dim acctno(100) as Single
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As #1
 filetime=FileDateTime(tempfile)
 x=1
 I=1
 acctno(x)=0
 Do
 curtime=Time
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=1 to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf (Minute(filetime)+2)<=Minute(curtime) then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If

 x=x+1
 Loop
 Close #1
 x=1
 msgtext="Contents of C:\TEMP001 is:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also FileLen, GetAttr

100 SBL REFERENCE

FileLen Function
Action Returns the length of the specified file.

Syntax FileLen(pathname$) where pathname$ is a string expression that contains the
name of the file to query.

Comments Pathname$ can contain path and disk information, but cannot include wildcards (*
and ?).

If the specified file is open, FileLen returns the length of the file before it was
opened.

Example This example returns the length of a file.

Sub main
 Dim length as Long
 Dim userfile as String
 Dim msgtext
 On Error Resume Next
 msgtext="Enter a filename:"
 userfile=InputBox(msgtext)
 length=FileLen(userfile)
 If Err<>0 then
 msgtext="Error occurred. Rerun program."
 Else
 msgtext="The length of " & userfile & " is: " & length
 End If
 MsgBox msgtext
End Sub

See Also FileDateTime, FileLen, GetAttr, Lof

Fix Function
Action Returns the integer part of a number.

Syntax Fix (number) where number is any valid numeric expression.

Comments The return value’s data type matches the type of the numeric expression. This
includes Variant expressions, unless the numeric expression is a string (vartype
8) that evaluates to a number, in which case the data type for its return value is
vartype 5 (double). If the numeric expression is vartype 0 (empty), the data type
for the return value is vartype 3 (long).

For both positive and negative numbers, Fix removes the fractional part of the
expression and returns the integer part only. For example, Fix (6.2) returns 6; Fix (-
6.2) returns -6.

FOR...NEXT STATEMENT 101

Example This example returns the integer portion of a number provided by the user.

Sub main
 Dim usernum
 Dim intvalue
 usernum=InputBox("Enter a number with decimal places:")
 intvalue=Fix(usernum)
 MsgBox "The integer portion of " & usernum & " is: " & intvalue
End Sub

See Also Abs, Cint, Exp, Int, Log, Rnd, Sgn, Sqr

For...Next Statement
Action Repeats a series of program lines a fixed number of times.

Syntax For counter = start TO end [STEP increment]
[statementblock]
[Exit For]
[statementblock]

Next [counter]

where is
counter a numeric variable for the loop counter.
start the beginning value of the counter.
end the ending value of the counter.
increment the amount by which the counter is changed each time the loop is

run. (The default is one.)
statementblock basic functions, statements, or methods to be executed.

Comments The start and end values must be consistent with increment: If end is greater than
start, increment must be positive. If end is less than start, increment must be
negative. SBL compares the sign of (start end) with the sign of increment. If the
signs are the same, and end does not equal start, the For...Next loop is started. If
not, the loop is omitted in its entirety.

With a For...Next loop, the program lines following the For statement are executed
until the Next statement is encountered. At this point, the Step amount is added to
the counter and compared with the final value, end. If the beginning and ending
values are the same, the loop executes once, regardless of the Step value.
Otherwise, the Step value controls the loop as follows:

102 SBL REFERENCE

Step Value Loop Execution

Positive If counter is less than or equal to end, the Step value is added to
counter. Control returns to the statement after the For statement and the
process repeats. If counter is greater than end, the loop is exited;
execution resumes with the statement following the Next statement.

Negative The loop repeats until counter is less than end.

Zero The loop repeats indefinitely.

Within the loop, the value of the counter should not be changed, as changing the
counter will make programs more difficult to maintain and debug.

For...Next loops can be nested within one another. Each nested loop should be
given a unique variable name as its counter. The Next statement for the inside loop
must appear before the Next statement for the outside loop. The Exit For statement
may be used as an alternative exit from For...Next loops.

If the variable is left out of a Next statement, the Next statement will match the
most recent For statement. If a Next statement occurs prior to its corresponding
For statement, SBL will return an error message.

Multiple consecutive Next statements can be merged together. If this is done, the
counters must appear with the innermost counter first and the outermost counter
last. For example:

For i = 1 To 10
[statementblock]
For j = 1 To 5

[statementblock]
Next j, i

Example This example calculates the factorial of a number. A factorial (notated with an
exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the
value 120.

Sub main
 Dim number as Integer
 Dim factorial as Double
 Dim msgtext
 number=InputBox("Enter an integer between 1 and 170:")
 If number<=0 then
 Exit Sub
 End If
 factorial=1
 For x=number to 2 step -1
 factorial=factorial*x
 Next x
Rem If number<= 35, then its factorial is small enough
Rem to be stored as a single-precision number

FORMAT FUNCTION 103

 If number<35 then
 factorial=CSng(factorial)
 End If
 msgtext="The factorial of " & number & " is: " & factorial
 MsgBox msgtext
End Sub

See Also Do...Loop, Exit, While...Wend

Format Function
Action Returns a formatted string of an expression based on a given format.

Syntax Format[$](expression [, format]) where expression is the value to be formatted.
It may be a number, Variant, or string and format is a string expression
representing the format to use. Select one of the topics below for a detailed
description of format strings.

Comments Format formats the expression as a number, date, time, or string depending upon
the format argument. The dollar sign, “$”, in the function name is optional. If
specified the return type is string. If omitted the function will return a Variant of
vartype 8 (string). As with any string, you must enclose the format argument in
quotation marks ("").

Numeric values are formatted as either numbers or date/times. If a numeric
expression is supplied and the format argument is omitted or null, the number will
be converted to a string without any special formatting.

Both numeric values and Variants may be formatted as dates. When formatting
numeric values as dates, the value is interpreted according the standard Basic date
encoding scheme. The base date, December 30, 1899, is represented as zero, and
other dates are represented as the number of days from the base date.

Strings are formatted by transferring one character at a time from the input
expression to the output string.

Formatting Numbers
Formatting Dates and Times
Formatting Strings

Formatting
Numbers

The predefined numeric formats with their meanings are as follows:

Format Description

General Number Display the number without thousand separator.

Fixed Display the number with at least one digit to the left and at least two
digits to the right of the decimal separator.

104 SBL REFERENCE

Format Description

Standard Display the number with thousand separator and two digits to the
right of decimal separator.

Scientific Display the number using standard scientific notation.

Currency Display the number using a currency symbol as defined in the
International section of the Control Panel. Use thousand separator
and display two digits to the right of decimal separator. Enclose
negative value in parentheses.

Percent Multiply the number by 100 and display with a percent sign
appended to the right; display two digits to the right of decimal
separator.

True/False Display False for 0, True for any other number.

Yes/No Display No for 0, Yes for any other number.

On/Off Display Off for 0, On for any other number.

For a simple numeric format, use one or more digit characters and (optionally) a
decimal separator. The two format digit characters provided are zero, “0”, and
number sign, “#”. A zero forces a corresponding digit to appear in the output; while
a number sign causes a digit to appear in the output if it is significant (in the middle
of the number or non-zero).

Number Fmt Result

1234.56 # 1235

1234.56 #.## 1234.56

1234.56 #.# 1234.6

1234.56 ######.## 1234.56

1234.56 00000.000 01234.560

0.12345 #.## .12

0.12345 0.## 0.12

A comma placed between digit characters in a format causes a comma to be placed
between every three digits to the left of the decimal separator.

Number Fmt Result

1234567.8901 #,#.## 1,234,567.89

1234567.8901 #,#.#### 1,234,567.8901

FORMAT FUNCTION 105

☞☞ Although a comma and period are used in the format to denote separators for
thousands and decimals, the output string will contain the appropriate character,
based upon the current international settings for your machine.

Numbers may be scaled either by inserting one or more commas before the decimal
separator or by including a percent sign in the format specification. Each comma
preceding the decimal separator (or after all digits if no decimal separator is
supplied) will scale (divide) the number by 1000. The commas will not appear in
the output string. The percent sign will cause the number to be multiplied by 100.
The percent sign will appear in the output string in the same position as it appears
in format.

Number Fmt Result

1234567.8901 #,.## 1234.57

1234567.8901 #,,.#### 1.2346

1234567.8901 #,#,.## 1,234.57

0.1234 #0.00% 12.34%

Characters may be inserted into the output string by being included in the format
specification. The following characters will be automatically inserted in the output
string in a location matching their position in the format specification:

- + $ () space : /

Any set of characters may be inserted by enclosing them in double quotes. Any
single character may be inserted by preceding it with a backslash, “\”.

Number Fmt Result

1234567.89 $#,0.00 $1,234,567.89

1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89

1234 \=\>#,#\<\= =>1,234<=

You may wish to use the SBL '$CSTRINGS metacommand or the Chr function if
you need to embed quotation marks in a format specification. The character code
for a quotation mark is 34.

Numbers may be formatted in scientific notation by including one of the following
exponent strings in the format specification:

E- E+ e- e+

106 SBL REFERENCE

The exponent string should be preceded by one or more digit characters. The
number of digit characters following the exponent string determines the number of
exponent digits in the output. Format specifications containing an uppercase E will
result in an uppercase E in the output. Those containing a lowercase e will result in
a lowercase e in the output. A minus sign following the E will cause negative
exponents in the output to be preceded by a minus sign. A plus sign in the format
will cause a sign to always precede the exponent in the output.

Number Fmt Result

1234567.89 ###.##E-00 123.46E04

1234567.89 ###.##e+# 123.46e+4

0.12345 0.00E-00 1.23E-01

A numeric format can have up to four sections, separated by semicolons. If you use
only one section, it applies to all values. If you use two sections, the first section
applies to positive values and zeros, the second to negative values. If you use three
sections, the first applies to positive values, the second to negative values, and the
third to zeros. If you include semicolons with nothing between them, the undefined
section is printed using the format of the first section. The fourth section applies to
Null values. If it is omitted and the input expression results in a NULL value,
Format will return an empty string.

Number Fmt Result

1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89

-1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)

0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero

0.0 #,0.00;(#,0.00);;"NA" 0.00

Null #,0.00;(#,0.00);"Zero";"NA" NA

Null "The value is: " 0.00

Formatting
Dates and

Times

As with numeric formats, there are several predefined formats for formatting
dates and times:

Format Description

General Date If the number has both integer and real parts, display both date and
time. (e.g., 11/8/93 1:23:45 PM); if the number has only integer part,
display it as a date; if the number has only fractional part, display it
as time.

Long Date Display a Long Date. Long Date is defined in the International
section of the Control Panel.

FORMAT FUNCTION 107

Format Description

Medium Date Display the date using the month abbreviation and without the day
of the week. (e.g, 08-Nov-93).

Short Date Display a Short Date. Short Date is defined in the International
section of the Control Panel.

Long Time Display Long Time. Long Time is defined in the International
section of the Control Panel and includes hours, minutes, and
seconds.

Medium Time Do not display seconds; display hours in 12-hour format and use the
AM/PM designator.

Short Time Do not display seconds; use 24-hour format and no AM/PM
designator.

When using a user-defined format for a date, the format specification contains a
series of tokens. Each token is replaced in the output string by its appropriate value.

A complete date may be output using the following tokens:

Token Output

c The date time as if the format was “ddddd ttttt”. See the definitions
below.

ddddd The date including the day, month, and year according to the
machine’s current Short Date setting. The default Short Date setting
for the United States is m/d/yy.

dddddd The date including the day, month, and year according to the
machine’s current Long Date setting. The default Long Date setting
for the United States is mmmm dd, yyyy.

ttttt The time including the hour, minute, and second using the
machine’s current time settings The default time format is h:mm:ss
AM/PM.

Finer control over the output is available by including format tokens that deal with
the individual components of the date time. These tokens are:

Token Output

d The day of the month as a one or two digit number (1-31).

dd The day of the month as a two digit number (01-31).

ddd The day of the week as a three letter abbreviation (Sun-Sat).

dddd The day of the week without abbreviation (Sunday-Saturday).

108 SBL REFERENCE

Token Output

w The day of the week as a number (Sunday as 1, Saturday as 7).

ww The week of the year as a number (1-53).

m The month of the year or the minute of the hour as a one or two digit
number. The minute will be output if the preceding token was an hour;
otherwise, the month will be output.

mm The month or the year or the minute of the hour as a two digit number. The
minute will be output if the preceding token was an hour; otherwise, the
month will be output.

mmm The month of the year as a three letter abbreviation (Jan-Dec).

mmmm The month of the year without abbreviation(January-December).

q The quarter of the year as a number (1-4).

y The day of the year as a number (1-366).

yy The year as a two-digit number (00-99).

yyyy The year as a four-digit number (100-9999).

h The hour as a one or two digit number (0-23).

hh The hour as a two digit number (00-23).

Token Output

n The minute as a one or two digit number (0-59).

nn The minute as a two digit number (00-59).

s The second as a one or two digit number (0-59).

ss The second as a two digit number (00-59).

By default, times will be displayed using a military (24-hour) clock. Several tokens
are provided in date time format specifications to change this default. They all
cause a 12 hour clock to be used. These are:

Token Output

AM/PM An uppercase AM with any hour before noon; an uppercase PM with any
hour between noon and 11:59 PM.

am/pm A lowercase am with any hour before noon; a lowercase pm with any hour
between noon and 11:59 PM.

A/P An uppercase A with any hour before noon; an uppercase P with any hour
between noon and 11:59 PM.

FORMAT FUNCTION 109

Token Output

a/p A lowercase a with any hour before noon; a lowercase p with any hour
between noon and 11:59 PM.

AMPM The contents of the 1159 string (s1159) in the WIN.INI file with any hour
before noon; the contents of the 2359 string (s2359) with any hour between
noon and 11:59 PM. Note, ampm is equivalent to AMPM.

Any set of characters may be inserted into the output by enclosing them in double
quotes. Any single character may be inserted by preceding it with a backslash, “\”.
See number formatting above for more details.

Formatting
Strings

By default, string formatting transfers characters from left to right. The
exclamation point, “!”, when added to the format specification causes characters
to be transferred from right to left.

By default, characters being transferred will not be modified. The less than, “<”,
and the greater than, “>”, characters may be used to force case conversion on the
transferred characters. Less than forces output characters to be in lowercase.
Greater than forces output characters to be in uppercase.

Character transfer is controlled by the at sign, “@”, and ampersand, “&”, characters
in the format specification. These operate as follows:

Character Interpretation

@ Output a character or a space. If there is a character in the string being
formatted in the position where the @ appears in the format string, display
it; otherwise, display a space in that position.

& Output a character or nothing. If there is a character in the string being
formatted in the position where the & appears, display it; otherwise,
display nothing.

A format specification for strings can have one or two sections separated by a
semicolon. If you use one section, the format applies to all string data. If you use
two sections, the first section applies to string data, the second to Null values and
zero-length strings.

Example This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub

See Also Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cstr, Cvar, CVDate, Str

110 SBL REFERENCE

FreeFile Function
Action Returns the lowest unused file number.

Syntax FreeFile

Comments The FreeFile function is used when you need to supply a file number and want to
make sure that you are not choosing a file number which is already in use.

The value returned can be used in a subsequent Open statement.

Example This example opens a file and assigns to it the next file number available.

Sub main
 Dim filenumber
 Dim filename as String
 filenumber=FreeFile
 filename=InputBox("Enter a file to open: ")
 On Error Resume Next
 Open filename For Input As filenumber
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 MsgBox "File " & filename & " opened as number: " & filenumber
 Close #filenumber
 MsgBox "File now closed."
End Sub

See Also Open

Function ... End Function Statement
Action Defines a function procedure.

Syntax [Static] [Private] Function name [([Optional]parameter [As type] ...)] [
As functype]
name= expression
End Function

where is
name a function name.
parameter the argument(s) to pass to the function when it is called.
type the data type for the function arguments.
functype the data type for the return value.
name=expression the expression that sets the return value for the function.

FUNCTION ... END FUNCTION STATEMENT 111

Comments The purpose of a function is to produce and return a single value of a specified
type. Recursion is supported.

The data type of name determines the type of the return value. Use a type character
as part of the name, or use the As functype clause to specify the data type. If
omitted, the default data type is Variant . When calling the function, you need not
specify the type character.

The parameters are specified as a comma-separated list of variable names. The data
type of a parameter may be specified by using a type character or by using the As
clause. Record parameters are declared using an As clause and a type which has
previously been defined using the Type statement. Array parameters are indicated
by using empty parentheses after the parameter. The array dimensions are not
specified in the Function statement. All references to an array parameter within the
body of the function must have a consistent number of dimensions.

You specify the return value for the function name using the name=expression
assignment, where name is the name of the function and expression evaluates to a
return value. If omitted, the value returned is 0 for numeric functions and an empty
string ("") for string functions and vartype 0 (Empty) is returned for a return type of
Variant. The function returns to the caller when the End Function statement is
reached or when an Exit Function statement is executed.

If you declare a parameter as Optional, a procedure may omit its value when
calling the function. Only parameters with Variant data types may be declared as
optional, and all optional arguments must appear after all required arguments in the
Function statement.

The Static keyword specifies that all the variables declared within the function will
retain their values as long as the program is running, regardless of the way the
variables are declared.

The Private keyword specifies that the function will not be accessible to functions
and subprograms from other modules. Only procedures defined in the same module
will have access to a Private function.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it will modify the variable passed by the
caller. This feature should be used with great care.

Use Sub to define a procedure with no return value.

Example This example declares a function that is later called by the main subprogram. The
function does nothing but set its return value to 1.

Declare Function SBL_exfunction()
Sub main
 Dim y as Integer
 Call SBL_exfunction

112 SBL REFERENCE

 y=SBL_exfunction
 MsgBox "The value returned by the function is: " & y
End Sub

Function SBL_exfunction()
 SBL_exfunction=1
End Function

See Also Call, Dim, Global, Option Explicit, Static, Sub...End Sub

FV Function
Action Returns the future value for a constant periodic stream of cash flows as in an

annuity or a loan.

Syntax FV (rate, nper, pmt, pv, due)

where is
rate interest rate per period.
nper total number of payment periods.
pmt constant periodic payment per period.
pv present value or the initial lump sum amount paid (as in the case of

an annuity) or received (as in the case of a loan).
due an integer value for when the payments are due (0=end of each

period, 1= beginning of the period).

Comments The given interest rate is assumed constant over the life of the annuity.

If payments are on a monthly schedule and the annual percentage rate on the
annuity or loan is 9%, the rate is 0.0075 (.0075=.09/12).

Example This example finds the future value of an annuity, based on terms specified by the
user.

Sub main
 Dim aprate, periods
 Dim payment, annuitypv
 Dim due, futurevalue
 Dim msgtext
 annuitypv=InputBox("Enter present value of the annuity: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate >1 then
 aprate=aprate/100
 End If
 periods=InputBox("Enter the total number of pay periods: ")
 payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month
 due=0
 futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
 msgtext= "The future value is: " & Format(futurevalue, "Currency")
 MsgBox msgtext
End Sub

See Also Ipmt, IRR, NPV, Pmt, Ppmt, PV, Rate

GET STATEMENT 113

Get Statement
Action Reads data from a file opened in Random or Binary mode and puts it in a

variable.

Syntax Get [#] filenumber%, [recnumber&], varname

where is
filenumber% an integer expression identifying the open file to use.
recnumber& a Long expression containing the number of the record (for

Random mode) or the offset of the byte (for Binary mode) at
which to start reading.

varname the name of the variable into which Get reads file data. Varname
can be any variable except Object or Array variables (single array
elements may be used).

Comments For more information about how files are numbered when they’re opened, see the
Open statement.

Recnumber& is in the range 1 to 2,147,483,647. If omitted, the next record or byte
is read.

++ The commas before and after the recnumber& are required, even if you do not
supply a recnumber&.

For Random mode, the following rules apply:

■ Blocks of data are read from the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varname is
smaller than the record length, the additional data is discarded. If the size of
varname is larger than the record length, an error occurs.

■ For variable length String variables, Get reads two bytes of data that indicate
the length of the string, then reads the data into varname.

■ For Variant variables, Get reads two bytes of data that indicate the type of the
Variant, then it reads the body of the Variant into varname. Note that Variants
containing strings contain two bytes of data type information followed by two
bytes of length followed by the body of the string.

■ User defined types are read as if each member were read separately, except no
padding occurs between elements.

114 SBL REFERENCE

Files opened in Binary mode behave similarly to those opened in Random mode,
except:

■ Get reads variables from the disk without record padding.

■ Variable length Strings that are not part of user defined types are not preceded
by the two-byte string length. Instead, the number of bytes read is equal to the
length of varname.

Example This example opens a file for Random access, gets its contents, and closes the file
again. The second subprogram, CREATEFILE, creates the C:\TEMP001 file used
by the main subprogram. Declare Sub createfile()

Sub main
 Dim acctno as String*3
 Dim recno as Long
 Dim msgtext as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno
 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Open, Put, Type

GetAttr Function
Action Returns the attributes of a file, directory or volume label.

Syntax GetAttr (pathname$) where pathname$ is a String expression for the name of
the file, directory, or label to query.

GETATTR FUNCTION 115

Comments Pathname$ may not contain wildcards (* and ?).

The file attributes returned by GetAttr are as follows:

Value Meaning

0 Normal file

1 Read-only file

2 Hidden file

4 System file

8 Volume label

16 Directory

32 Archive - file has changed since last backup

Example This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

Sub main
 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer
 Dim archno as Integer
 Dim msgtext as String
 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)
 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If
 Select Case attribs
 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=Msgbox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 Msgbox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."
 Case Else
 MsgBox "File was not hidden."
 End Select
End Sub

See Also FileAttr, SetAttr

116 SBL REFERENCE

GetCurValues Statement
Action Stores the current values for the dialog box associated with the specified record.

Syntax GetCurValues recordName where recordName is a variable dimensioned as a
dialog box record.

Comments A dialog box record is defined using the Begin Dialog statement. recordName is a
variable dimensioned as follows:

Dim recordName as UserDialog

where UserDialog is the dialog box name used in Begin Dialog.

Example This example stores the values for the dialog box MYDIALOGBOX.

Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OkButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
 PushButton 132, 48, 42, 13, "Help", .Push1
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 End If
 GetCurValues mydialogbox
End Sub

See Also Dim, Begin Dialog, Dialog Function, Dialog Statement

GetField Function [SBL Extension]**
Action Returns a substring from a source string.

Syntax GetField[$](string$, field_number%, separator_chars$)

where is
string$ a list of fields, divided by separator characters.
field_number% the number of the field to return, starting with 1.
separator_chars$ the characters separating each field.

GETOBJECT FUNCTION 117

Comments Multiple separator characters may be specified. If field_number is greater than the
number of fields in the string, an empty string ("") is returned.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example finds the third value in a string, delimited by plus signs (+).

Sub main
Dim teststring,retvalue
Dim msgtext
teststring="9+8+7+6+5"
retvalue=GetField(teststring,3,"+")
MsgBox "The third field in: " & teststring & " is: " & retvalue

End Sub

See Also Left, Ltrim, Mid Function, Mid Statement, Right, Rtrim, SetField, StrComp, Trim

GetObject Function
Action Returns an OLE2 object associated with the file name or the application name.

Syntax A GetObject(pathname)

Syntax B GetObject(pathname, class)

Syntax C GetObject(, class)

where pathname is the path and file name for the object to retrieve and class is a
string containing the class of the object.

Comments Use GetObject with the Setset statement to assign a variable to the object for use
in a Basic procedure. The variable used must first be dimensioned as an
Objectobjectclass.

Syntax A of GetObject accesses an OLE2 object stored in a file. For example, the
following two lines dimension the variable, FILEOBJECT as an Object and assign
the object file “PAYABLES” to it. PAYABLES is located in the subdirectory
SPREDSHT:

Dim FileObject As Object
Set FileObject = GetObject(“\spredsht\payables”)

If the application supports accessing component OLE2 objects within the file, you
may append an exclamation point and a component object name to the file name, as
follows:

Dim ComponentObject As Object
Set ComponentObject =
GetObject(“\spredsht\payables!R1C1:R13C9”)

118 SBL REFERENCE

Syntax B of GetObject accesses an OLE2 object of a particular class that is stored
in a file. Class uses the syntax “appname.objtype”, where appname is the name of
the application that provides the object, and objtype is the type or class of the
object. For example:

Dim ClassObject As Object
Set ClassObject = GetObject(“\spredsht\payables”,
“turbosht.spreadsheet”)

The third form of GetObject accesses the active OLE2 object of a particular class.
For example:

Dim ActiveSheet As Object
SetActiveSheet = GetObject(, “turbosht.spreadsheet”)

Example This example displays a list of open files in the software application, VISIO. It
uses the GetObject function to access VISIO. To see how this example works, you
need to start VISIO and open one or more documents.

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 Set doc = visio.documents(i) ' access Visio's document method
 msgtext=msgtext & Chr$(13)& doc.name
 Next i
 End If
 MsgBox msgtext
End Sub

See Also CreateObject, Is, Me, New, Nothing, Object Class, Typeof

GLOBAL STATEMENT 119

Global Statement
Action Declare Global variables for use in a Basic program.

Syntax Global variableName [As type] [,variableName [As type]] ... where
variableName is a variable name and type is the data type for a variable.

Comments Global data is shared across all loaded modules. If an attempt is made to load a
module which has a global variable declared which has a different data type than
an existing global variable of the same name, the module load will fail.

Basic is a strongly typed language: all variables must be given a data type or they
will be automatically assigned a type of Variant .

If the As clause is not used, the type of the global variable may be specified by
using a type character as a suffix to variableName. The two different type-
specification methods can be intermixed in a single Global statement (although not
on the same variable).

Regardless of which mechanism you use to declare a global variable, you may
choose to use or omit the type character when referring to the variable in the rest of
your program. The type suffix is not considered part of the variable name.

The following data types are available:

Arrays
Numbers
Records
Strings
Variants

Arrays The available data types for arrays are: numbers, strings, Variants and records.
Arrays of arrays, dialog box records, and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableName. The syntax to use for variableName is:

Global variable([subscriptRange, ...]) [As typeName]

where subscriptRange is of the format:

[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base
statement can be used to change the default.

Both the startSubscript and the endSubscript are valid subscripts for the array. The
maximum number of subscripts which may be specified in an array definition is 60.

120 SBL REFERENCE

If no subscriptRange is specified for an array, the array is declared as a dynamic
array. In this case, the ReDim statement must be used to specify the dimensions of
the array before the array can be used.

Numbers Numeric variables can be declared using the As clause and one of the following
numeric types: Currency, Integer, Long, Single, Double. Numeric variables can
also be declared by including a type character as a suffix to the name.

Records Record variables are declared by using an As clause and a type which has
previously been defined using the Type statement. The syntax to use is:

Global variableName As typeName

Records are made up of a collection of data elements called fields. These fields may
be of any numeric, string, Variant or previously defined record type. See Type for
details on accessing fields within a record.

You cannot use the Global statement to declare a dialog record.

Strings SBL supports two types of strings, fixed-length and dynamic. Fixed-length strings
are declared with a specific length (between 1 and 32767) and cannot be changed
later. Use the following syntax to declare a fixed-length string:

Global variableName As String* length

Dynamic strings have no declared length, and can vary in length from 0 to 32767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

Global variableName$
or Global variableName As String

Variants Declare variables as Variants when the type of the variable is not known at the
start of, or may change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

Global variableName
or GlobalvariableName As Variant

Variant variables are initialized to vartype Empty.

Example This example contains two subroutines that share the variables TOTAL and
ACCTNO, and the record GRECORD.

Type acctrecord
 acctno As Integer
End Type

GOTO STATEMENT 121

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord
Declare Sub createfile

Sub main
 Dim msgtext
 Dim newline as String
 newline=Chr$(10)
 Call createfile
 Open "C:\TEMP001" For Input as #1
 msgtext="The new account numbers are " & newline
 For x=1 to total
 Input #1, grecord.acctno
 msgtext=msgtext & newline & grecord.acctno
 Next x
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile
 Dim x
 x=1
 grecord.acctno=1
 Open "C:\TEMP001" For Output as #1
 Do While grecord.acctno<>0
 grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
 If grecord.acctno<>0 then
 Print #1, grecord.acctno
 x=x+1
 End If
 Loop
 total=x-1
 Close #1
End Sub

See Also Const, Dim, Option Base, ReDim, Static, Type

GoTo Statement
Action Transfers program control to the label specified.

Syntax GoTo { label | line} where label is aA name beginning in the first column of a line
of code and ending with a colon (:) and line is the line number of a program line.

Comments A label has the same format as any other Basic name. Reserved words are not
valid labels. Program lines are numbered automatically, beginning with 1.

GoTo cannot be used to transfer control out of the current Function or Subprogram.

122 SBL REFERENCE

Example This example displays the date for one week from the date entered by the user. If the
date is invalid, the Goto statement sends program execution back to the beginning.

Sub main
 Dim str1 as String
 Dim nextweek
 Dim msgtext
i: str1=InputBox$("Enter a date:")
 answer=IsDate(str1)
 If answer=-1 then
 str1=CVDate(str1)
 nextweek=DateValue(str1)+7
 msgtext="One week from the date entered is:"
 msgtext=msgtext & Format(nextweek,"dddddd")
 MsgBox msgtext
 Else
 MsgBox "Invalid date or format. Try again."
 Goto i
 End If
End Sub

See Also Do...Loop, For...Next, If...Then...Else, Select Case, While...Wend

GroupBox Statement
Action Defines a box to enclose sets of dialog box items, such as option boxes and

checkboxes.

Syntax GroupBox x, y, dx, dy, text$ [, .id]

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the combo box in which the user enters or

selects text.
text$ a string containing the title for the top border of the group box.
.id the optional string ID for the groupbox, used by the dialog

statements that act on this control.

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin Dialog
for more information.)

If text$ is wider than dx, the additional characters are truncated. If text$ is an empty
string (""), the top border of the group box will be a solid line.

Use the GroupBox statement only between a Begin Dialog and an End Dialog
statement.

HEX FUNCTION 123

Example This example creates a dialog box with a group box, and two buttons.

Sub main
 Begin Dialog UserDialog 194, 76, "SBL Dialog Box"
 GroupBox 9, 8, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
 OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4
 Text 25, 43, 20, 10, "From:", .Text6
 Text 63, 43, 14, 9, "To:", .Text7
 TextBox 79, 43, 13, 12, .TextBox4
 TextBox 47, 43, 12, 11, .TextBox5
 OkButton 135, 6, 54, 14
 CancelButton 135, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, ListBox, OKButton,
OptionButton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Hex Function
Action Returns the hexadecimal representation of a number, as a string.

Syntax Hex[$](number) where number is any numeric expression that evaluates to a
number.

Comments If number is an integer, the return string contains up to four hexadecimal digits;
otherwise, the value will be converted to a Long Integer, and the string may
contain up to 8 hexadecimal digits.

To represent a hexadecimal number directly, precede the hexidecimal value with
&H . For example, &H10 equals decimal 16 in hexadecimal notation.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

Example This example returns the hex value for a number entered by the user.
Sub main
 Dim usernum as Integer
 Dim hexvalue
 usernum=InputBox("Enter a number to convert to hexidecimal:")
 hexvalue=Hex(usernum)
 Msgbox "The HEX value is: " & hexvalue
End Sub

See Also Oct

124 SBL REFERENCE

Hour Function
Action Returns the hour of day component (0-23) of a date-time value.

Syntax Hour(time) where time is any numeric or string expression that can evaluate to a
date and time.

Comments Hour accepts any type of time including strings and will attempt to convert the
input value to a date value.

The return value is a Variant of vartype 2 (integer). If the value of time is Null, a
Variant of vartype 1 (null) is returned.

Time is a double-precision value. The numbers to the left of the decimal point
denote the date and the decimal value denotes the time (from 0 to .99999). Use the
TimeValue function to obtain the correct value for a specific time.

Example This example extracts just the time (hour, minute, and second) from a file's last
modification date and time.

Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then
 Exit Sub
 End If
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If

hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

See Also Day, Minute, Month, Now, Second, Time Function, Time Statement, Weekday, Year

IF ... THEN ... ELSE 125

If ... Then ... Else
Action Executes alternative blocks of program code based on one or more expressions.

Syntax A If condition Then then_statement [Else else_statement]

Syntax B If condition Then
statement_block
[ElseIf expression Then

statement_block]...
[Else

statement_block]
End If

where is
condition any expression that evaluates to TRUE (non-zero) or FALSE

(zero).
then_statement any valid single expression.
else_statement any valid single expression.
expression any expression that evaluates to TRUE (non-zero) or FALSE

(zero).
statement_block0 or more valid expressions, separated by colons (:), or on

different lines.

Comments When multiple statements are required in either the Then or Else clauses, use the
block version (Syntax B) of the If statement.

Example This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

Sub main
 Dim filename
 Dim attribs, msgtext
 Dim answer, archno
 Dim saveattribs
 On Error Resume Next
 archno=32
 filename=InputBox("Enter name of a file:")
 attribs=GetAttr(filename)

 If attribs=0 then
 MsgBox "Error in file name. Rerun program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If
 Select Case attribs
 Case 2,3,6,7
 msgtext="File:" &filename & "is hidden. Change it? (Y/N)"
 answer=InputBox$(msgtext)
 If answer="Y" then

126 SBL REFERENCE

 SetAttr filename, saveattribs-2
 Msgbox "File is no longer hidden."
 End If
 Case Else
 MsgBox "File was not hidden."
 End Select
End Sub

See Also Do...Loop, For...Next, Goto, On...Goto, Select Case, While...Wend

'$Include Metacommand [SBL Extension]** '
Action Includes statements from the specified file.

Syntax '$Include: “filename” where filename is the name and location of the file to
include.

Comments It is recommended (although not required) that you use a file extension of .SBH
for filename.

All metacommands must begin with an apostrophe (') and are recognized by the
compiler only if the command starts at the beginning of a line. For compatibility
with other versions of Basic, you may enclose the filename in single quotation
marks (').

If no directory or drive is specified, the compiler will search for filename on the
source file search path.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example includes a file containing the list of global variables, called
GLOBALS.SBH. For this example to work correctly, you must create the
GLOBALS.SBH file with at least the following statement: Dim gtext as String.
The Option Explicit statement is included in this example to prevent SBL from
automatically dimensioning the variable as a Variant.

Option Explicit
Sub main
 Dim msgtext as String
 '$Include: "c:\globals.sbh"
 gtext=InputBox("Enter a string for the global variable:")
 msgtext="The variable for the string '"
 msgtext=msgtext & gtext & "' was DIM'ed in GLOBALS.SBH."
 MsgBox msgtext
End Sub

See Also $Cstrings, $NoCStrings, Rem

INPUT FUNCTION 127

Input Function
Action Returns a string containing the characters read.

Syntax Input [$](number%, [#]filenumber%) where number% is the number of characters
(bytes) to read from the file and filenumber% is an integer expression identifying
the open file to use.

Comments The file pointer is advanced the number of characters read. Unlike the Input
statement, Input returns all characters it reads, including carriage returns, line
feeds, and leading spaces.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

Example This example opens a file and prints its contents to the screen.

Sub main
 Dim fname
 Dim fchar()
 Dim x as Integer
 Dim msgtext
 Dim newline
 newline=Chr(10)
 On Error Resume Next
 fname=InputBox("Enter a filename to print:")
 If fname="" then
 Exit Sub
 End If
 Open fname for Input as #1
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 msgtext="The contents of " & fname & " is: " & newline &newline
 Redim fchar(Lof(1))
 For x=1 to Lof(1)
 fchar(x)=Input(1,#1)
 msgtext=msgtext & fchar(x)
 Next x
 MsgBox msgtext
 Close #1
End Sub

See Also Get, Input Statement, Line Input, Open, Write

128 SBL REFERENCE

Input Statement
Action Reads data from a sequential file and assigns the data to variables.

Syntax A Input [#] filenumber%, variable [, variable]...

Syntax B Input [prompt$,] variable [, variable]...

where is
filenumber% an integer expression identifying the open file to read from
variable the variable(s) to contain the value(s) read from the file.
prompt$ an optional string that prompts for keyboard input.

Comments The filenumber% is the number used in the Open statement to open the file. The
list of variables is separated by commas.

If filenumber% is not specified, the user is prompted for keyboard input, either with
prompt$ or with a “?”, if prompt$ is omitted.

Example This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. It uses the Input
statement to increase the value of x and at the same time get the letter associated
with each value. The second subprogram, CREATEFILE, creates the file
C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Global x as Integer
Global y(100) as String
Sub main
 Dim acctno as Integer
 Dim msgtext
 Call createfile
i: acctno=InputBox("Enter an account number from 1-10:")
 If acctno<1 Or acctno>10 then
 MsgBox "Invalid account number. Try again."
 Goto i:
 End if
 x=1
 Open "C:\TEMP001" for Input as #1
 Do Until x=acctno
 Input #1, x,y(x)
 Loop
 msgtext="The letter for account number " & x & " is: " & y(x)
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
 Dim startletter
 Open "C:\TEMP001" for Output as #1
 startletter=65
 For x=1 to 10

INPUTBOX FUNCTION 129

 y(x)=Chr(startletter)
 startletter=startletter+1
 Next x
 For x=1 to 10
 Write #1, x,y(x)
 Next x
 Close #1
End Sub

See Also Get, Input Function, Line Input, Open, Write

InputBox Function
Action Displays a dialog box containing a prompt and returns a string entered by the user.

Syntax InputBox [$](prompt$, [title$] , [default$] ,[xpos%, ypos%])

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return a Variant of vartype 8 (string).

where is
prompt$ a string expression containing the text to show in the dialog box.
title$ the caption to display in the dialog box’s title bar.
default$ the string expression to display in the edit box as the default

response.
xpos%, ypos% numeric expressions, specified in dialog box units, that determine

the position of the dialog box.

 Comments The length of prompt$ is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be included in prompt$ if a multiple-line prompt is used.

If either prompt$ or default$ is omitted, nothing is displayed.

Xpos% determines the horizontal distance between the left edge of the screen and
the left border of the dialog box. Ypos% determines the horizontal distance from the
top of the screen to the dialog box’s upper edge. If these arguments are not entered,
the dialog box is centered roughly one third of the way down the screen. A
horizontal dialog box unit is 1/4 of the average character width in the system font; a
vertical dialog box unit is 1/8 of the height of a character in the system font.

++ To specify the dialog box’s position, you must enter both of these arguments. If
you enter one without the other, the default positioning is set.

If the user presses Enter, or selects the OK button, InputBox returns the text
contained in the input box. If the user selects Cancel, the InputBox function returns
a null string ("").

130 SBL REFERENCE

Example This example uses InputBox to prompt for a filename and then prints the filename
using MsgBox.

Sub main
 Dim filename
 Dim msgtext
 msgtext="Enter a filename:"
 filename=InputBox$(msgtext)
 MsgBox "The file name you entered is: " & filename
End Sub

See Also Input Function, Input Statement, MsgBox Function, MsgBox Statement,
PasswordBox

InStr Function
Action Returns the position of the first occurrence of one string within another string.

Syntax A InStr([start%,] string1$, string2$)

Syntax B InStr (start, string1$, string2$[, compare])

where is
start% the position in string1$ to begin the search. (1=first character in

string.)
string1$ the string to search.
string2$ the string to find.
compare an integer expression for the method to use to compare the strings.

(0=case-sensitive, 1=case-insensitive.)

Comments If not specified, the search starts at the beginning of the string (equivalent to a
start% of 1). These arguments may be of any type. They will be converted to
strings.

InStr returns a zero under the following conditions:

1 start% is greater than the length of string2$.

2 string1$ is a null string.

3 string2$ is not found.

If either string1$ or string2$ is a null Variant , Instr returns a null Variant.

If string2$ is a null string (""), Instr returns the value of start%.

If compare is 0, a case-sensitive comparison based on the ANSI character set
sequence is performed. If compare is 1, a case-insensitive comparison is done based
upon the relative order of characters as determined by the country code setting for
your system. If compare is omitted, the module level default, as specified with
Option Compare, is used.

INT FUNCTION 131

Example This example generates a random string of characters then uses InStr to find the
position of a single character within that string.

Sub main
 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim str2 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim position as Integer
 Dim msgtext, newline
 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)
 For x=1 to 26
 Randomize
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter
'Need to waste time here for fast processors
 For y=1 to 1000
 Next y
 Next x
 str2=InputBox("Enter a letter to find")
 position=InStr(str1,str2)
 If position then
 msgtext="The position of " & str2 & " is: " & position & newline
 msgtext=msgtext & "in string: " & str1
 Else
 msgtext="The letter: " & str2 & " was not found in: " & newline
 msgtext=msgtext & str1
 End If
 MsgBox msgtext
End Sub

See Also GetField, Left, Mid Function, Mid Statement, Option, Right, Str, StrComp

Int Function
Action Returns the integer part of a number.

Syntax Int(number) where number is any numeric expression.

Comments For positive numbers, Int removes the fractional part of the expression and returns
the integer part only. For negative numbers, Int returns the largest integer less than
or equal to the expression. For example, Int (6.2) returns 6; Int (-6.2) returns -7.

The return type matches the type of the numeric expression. This includes Variant
expressions which will return a result of the same vartype as input except vartype 8
(string) will be returned as vartype 5 (double) and vartype 0 (empty) will be
returned as vartype 3 (long).

132 SBL REFERENCE

Example This example uses Int to generate random numbers in the range between the
ASCII values for lowercase a and z (97 and 122). The values are converted to
letters and displayed as a string.

Sub main
Dim x as Integer
Dim y
Dim str1 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext, newline
upper=Asc("z")
lower=Asc("a")
newline=Chr(10)
For x=1 to 26

Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
str1=str1 & letter

'Need to waste time here for fast processors
For y=1 to 1500
Next y

Next x

msgtext="The string is:" & newline
msgtext=msgtext & str1
MsgBox msgtext

End Sub

See Also Exp, FixInt, Log, Rnd, Sgn, Sqr

IPmt Function
Action Returns the interest portion of a payment for a given period of an annuity.

Syntax IPmt(rate, per, nper, pv, fv, due)

where is
rate interest rate per period.
per particular payment period in the range 1 through nper.
nper total number of payment periods.
pv present value of the initial lump sum amount paid (as in the case of

an annuity) or received (as in the case of a loan).
fv future value of the final lump sum amount required (as in the case

of a savings plan) or paid (0 as in the case of a loan).
due 0 if payments are due at the end of each payment period, and 1 if

they are due at the beginning of the period.

Comments The given interest rate is assumed constant over the life of the annuity. If
payments are on a monthly schedule, then rate will be 0.0075 if the annual
percentage rate on the annuity or loan is 9%.

IRR FUNCTION 133

Example This example finds the interest portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

Sub main
 Dim aprate, periods
 Dim payperiod
 Dim loanpv, due
 Dim loanfv, intpaid
 Dim msgtext
 aprate=.095
 payperiod=12
 periods=120
 loanpv=25000
 loanfv=0
Rem Assume payments are made at end of month
 due=0
 intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
 msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
 msgtext=msgtext+ "the interest paid in month 12 is: "
 msgtext=msgtext + Format(intpaid, "Currency")
 MsgBox msgtext
End Sub

See Also FV, IRR, NPV, Pmt, Ppmt, PV, Rate

IRR Function
Action Returns the internal rate of return for a stream of periodic cash flows.

Syntax IRR(valuearray(), guess) where valuearray() is an array containing cash flow
values and guess is a ballpark estimate of the value returned by IRR .

Comments valuearray() must have at least one positive value (representing a receipt) and one
negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returned by IRR will vary with the
change in the sequence of cash flows.

In general, a guess value of between 0.1 (10 percent) and 0.15 (15 percent) would
be a reasonable estimate.

IRR is an iterative function. It improves a given guess over several iterations until
the result is within 0.00001 percent. If it does not converge to a result within 20
iterations, it signals failure.

Example This example calculates an internal rate of return (expressed as an interest rate
percentage) for a series of business transactions (income and costs). The first
value entered must be a negative amount, or IRR generates an “Illegal Function
Call” error.

Sub main
 Dim cashflows() as Double

134 SBL REFERENCE

 Dim guess, count as Integer
 Dim i as Integer
 Dim intnl as Single
 Dim msgtext as String
 guess=.15
 count=InputBox("How many cash flow amounts do you have?")
 ReDim cashflows(count+1)
 For i=0 to count-1
 cashflows(i)=InputBox("Enter income value for month " & i+1 & ":")
 Next i
 intnl=IRR(cashflows(),guess)
 msgtext="The IRR for your cash flow amounts is: "
 msgtext=msgtext & Format(intnl, "Percent")
 MsgBox msgtext
End Sub

See Also FV, Ipmt, NPV, Pmt, Ppmt, PV, Rate

Is Operator
Action Compares two object expressions and returns -1 if they refer to the same object, 0

otherwise.

Syntax objectExpression Is objectExpression where objectexpression is any valid object
expression.

Comments Is may also be used to test if an object variable has been Set to Nothing.

Example This example displays a list of open files in the software application, VISIO. It
uses the Is operator to determine whether VISIO is available. To see how this
example works, you need to start VISIO and open one or more documents.

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 Set doc = visio.documents(i) ' access Visio's document method
 msgtext=msgtext & Chr$(13)& doc.name
 Next i
 End If
 MsgBox msgtext
End Sub

See Also Create Object, Get Object, Me, Nothing, Object, Typeof

ISDATE FUNCTION 135

IsDate Function
Action Returns -1 (TRUE) if an expression is a legal date, 0 (FALSE) if it is not.

Syntax IsDate(expression) where expression is any valid expression.

Comments IsDate returns -1 (True) if the expression is of vartype 7 (date) or a string that may
be interpreted as a date.

Example This example adds a number to today’s date value and checks to see if it is still a
valid date (within the range January 1, 100AD through December 31, 9999AD).

Sub main
 Dim curdatevalue
 Dim yrs
 Dim msgtext
 curdatevalue=DateValue(Date$)
 yrs=InputBox("Enter a number of years to add to today's date")
 yrs=yrs*365
 curdatevalue=curdatevalue+yrs
 If IsDate(curdatevalue)=-1 then
 MsgBox "The new date is: " & Format(CVDate(curdatevalue), "dddddd")

 Else
 MsgBox "The date is not valid."
 End If
End Sub

See Also CVDate, IsEmpty, IsNull, IsNumeric, VarType

IsEmpty Function
Action Returns -1 (TRUE) if a Variant has been initialized. 0 (FALSE) otherwise.

Syntax IsEmpty(expression) where expression is any expression with a data type of
Variant .

Comments IsEmpty returns -1 (True) if the Variant is of vartype 0 (empty). Any newly
defined Variant defaults to being of Empty type, to signify that it contains no
initialized data. An Empty Variant converts to zero when used in a numeric
expression, or an empty string ("") in a string expression.

Example This example prompts for a series of test scores and uses IsEmpty to determine
whether the maximum allowable limit has been hit. (IsEmpty determines when to
exit the Do...Loop.)

Sub main
 Dim arrayvar(10)
 Dim x as Integer
 Dim tscore as Single
 Dim total as Integer
 x=1

136 SBL REFERENCE

 Do
 tscore=InputBox("Enter test score #" & x & ":")
 arrayvar(x)=tscore
 x=x+1
 Loop Until IsEmpty(arrayvar(10))<>-1
 total=x-1
 msgtext="You entered: " & Chr(10)

For x=1 to total
 msgtext=msgtext & Chr(10) & arrayvar(x)
 Next x
 MsgBox msgtext
End Sub

See Also IsDate, IsNull, IsNumeric, VarType

IsNull Function
Action Returns -1 (TRUE) if a Variant expression contains the Null value, 0 (FALSE)

otherwise.

Syntax IsNull(expression) where expression is any expression with a data type of
Variant .

Comments Null Variants have no associated data and serve only to represent invalid or
ambiguous results. Null is not the same as Empty, which indicates that a Variant
has not yet been initialized.

Example This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

Sub main
 Dim arrayvar(10)
 Dim count as Integer
 Dim total as Integer
 Dim x as Integer
 Dim tscore as Single
 count=10
 total=0
 For x=1 to count
 tscore=InputBox("Enter test score #" & x & ":")
 If tscore<0 then
 arrayvar(x)=Null
 Else
 arrayvar(x)=tscore
 total=total+arrayvar(x)
 End If
 Next x
 Do While x<>0
 x=x-1
 If IsNull(arrayvar(x))=-1 then
 count=count-1
 End If

ISNUMERIC FUNCTION 137

 Loop
 msgtext="The average (excluding negative values) is: " & Chr(10)
 msgtext=msgtext & Format (total/count, "##.##")
 MsgBox msgtext
End Sub

See Also IsDate, IsEmpty, IsNumeric, VarType

IsNumeric Function
Action Returns -1 (TRUE) if an expression has a data type of Numeric, 0 (FALSE)

otherwise.

Syntax IsNumeric(expression) where expression is any valid expression.

Comments IsNumeric returns -1 (True) if the expression is of vartypes 2-6 (numeric) or a
string that may be interpreted as a number.

Example This example uses IsNumeric to determine whether a user selected an option (1-3)
or typed “Q” to quit.

Sub main
Dim answer
answer=InputBox("Enter a choice (1-3) or type Q to quit")
If IsNumeric(answer)=-1 then

Select Case answer
Case 1

MsgBox "You chose #1."
Case 2

MsgBox "You chose #2."
Case 3

MsgBox "You chose #3."
End Select

Else
MsgBox "You typed Q."

End If
End Sub

See Also IsDate, IsEmpty, IsNull, VarType

Kill Statement
Action Deletes files from a hard disk or floppy drive.

Syntax Kill pathname$ where pathname$ is a String expression that specifies a valid
DOS file specification.

Comments The pathname$ specification can contain paths and wildcards. Kill deletes files
only, not directories. Use the RmDir function to delete directories.

138 SBL REFERENCE

Example This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. The second
subprogram, CREATEFILE, creates the file C:\TEMP001 used by the main
subprogram. After processing is complete, the first subroutine uses Kill to delete
the file.

Declare Sub createfile()
Global x as Integer
Global y(100) as String

Sub main
 Dim acctno as Integer
 Dim msgtext
 Call createfile
i: acctno=InputBox("Enter an account number from 1-10:")
 If acctno<1 Or acctno>10 then
 MsgBox "Invalid account number. Try again."
 Goto i:
 End if
 x=1
 Open "C:\TEMP001" for Input as #1
 Do Until x=acctno
 Input #1, x,y(x)
 Loop
 msgtext="The letter for account number " & x & " is: " & y(x)
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
 Dim startletter
 Open "C:\TEMP001" for Output as #1
 startletter=65
 For x=1 to 10
 y(x)=Chr(startletter)
 startletter=startletter+1
 Next x
 For x=1 to 10
 Write #1, x,y(x)
 Next x
 Close #1
End Sub

See Also FileAttr, FileDateTime, GetAttr, RmDir

LBound Function
Action Returns the lower bound of the subscript range for the specified array.

Syntax LBound(arrayname [, dimension]) where arrayname is the name of the array to
use and dimension is the dimension to use.

LCASE FUNCTION 139

Comments The dimensions of an array are numbered starting with 1. If the dimension is not
specified, 1 is used as a default.

LBound can be used with UBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and ReDim
to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total
 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)
start:
 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop
 answer=InputBox$("Do you have more scores? (Y/N)")
 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start
 End If
 End If
 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)
 For y=x to count
 total=total+arrayvar(y)
 Next y
 MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub

See Also Dim, Global, Option Base, ReDim, Static, UBound

LCase Function
Action Returns a copy of a string, with all uppercase letters converted to lowercase.

Syntax LCase[$](string$) where string$ is a string, or an expression containing the
string to use.

Comments The translation is based on the country specified in the Windows Control Panel.
LCase accepts expressions of type String. LCase accepts any type of argument
and will convert the input value to a string.

140 SBL REFERENCE

The dollar sign, “$”, in the function name is optional. If specified the return type is
String. If omitted the function will typically return a Variant of vartype 8 (string).
If the value of string$ is NULL, a Variant of vartype 1 (Null) is returned.

Example This example converts a string entered by the user to lowercase.

Sub main
Dim userstr as String
 userstr=InputBox$("Enter a string in upper and lowercase letters")
 userstr=LCase$(userstr)
 Msgbox "The string now is: " & userstr
End Sub

See Also UCase

Left Function
Action Returns a string of a specified length copied from the beginning of another string.

Syntax Left [$](string$, length%) where string$ is a string or an expression containing
the string to copy and length% is the number of characters to copy.

Comments If the length of string$ is less than length%, Left returns the whole string.

Left accepts expressions of type String. Left accepts any type of string$, including
numeric values, and will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically return a Variant of vartype 8 (string).
If the value of string$ is NULL, a Variant of vartype 1 (Null) is returned.

Example This example extracts a user's first name from the entire name entered.

Sub main
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace=Chr(32)
username=InputBox("Enter your first and last name")
count=InStr(username,charspace)
firstname=Left(username,count)
Msgbox "Your first name is: " &firstname

End Sub

See Also GetField, Ltrim, Mid Function, Mid Statement, Right, Rtrim, Str, StrComp, Trim

LEN FUNCTION 141

Len Function
Action Returns the length of a string or variable.

Syntax A Len(string$)

Syntax B Len(varname)

where string$ is a string or an expression that evaluates to a string and varnameis a
variable that contains a string.

Comments If the argument is a string, the number of characters in the string is returned. If the
argument is a Variant variable, Len returns the number of bytes required to
represent its value as a string; otherwise, the length of the built-in data type or
user-defined type is returned.

If syntax B is used, and varname is a Variant containing a NULL, Len will return
a Null Variant.

Example This example returns the length of a name entered by the user (including spaces).

Sub main
Dim username as String
username=InputBox("Enter your name")
count=Len(username)
Msgbox "The length of your name is: " &count

End Sub

See Also Instr

Let (Assignment Statement)
Action Assigns an expression to a Basic variable.

Syntax [Let] variable = expression where variable is the name of a variable to assign to
the expression and expression is the expression to assign to the variable.

Comments The keyword Let is optional.

The Let statement can be used to assign a value or expression to a variable with a
data type of Numeric, String, Variant or Record variable. You can also use the
Let statement to assign to a record field or to an element of an array.

When assigning a value to a numeric or string variable, standard conversion rules
apply.

142 SBL REFERENCE

Example This example uses the Let statement for the variable sum. The subroutine finds an
average of 10 golf scores.

Sub main
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum=0
For x=1 to 10

score=InputBox("Enter your last ten golf scores #" & x & ":")
sum=sum+score

Next x
msgtext="Your average is: " & CInt(sum/(x-1))
MsgBox msgtext

End Sub

See Also Const, Lset, Set

Like Operator
Action Returns the value -1 (TRUE) if a string matches a pattern, 0 (FALSE) otherwise.

Syntax string$ LIKE pattern$ where string$ is any string expression. and pattern$ is any
string expresssion to match to string$.

Comments pattern$ may include the following special characters:

Character Matches:

? A single character

* A set of zero or more characters

A single digit character (0-9)

[chars] A single character in chars

[!chars] A single character not in chars

[schar-echar] A single character in range schar to echar

[!schar-echar] A single character not in range schar to echar

Both ranges and lists may appear within a single set of square brackets. Ranges are
matched according to their ANSI values. In a range, schar must be less than echar.

If either string$ or pattern$ is NULL then the result value is NULL.

The Like operator respects the current setting of Option Compare.

LINE INPUT STATEMENT 143

Example This example tests whether a letter is lowercase.

Sub main
 Dim userstr as String
 Dim revalue as Integer
 Dim msgtext as String
 Dim pattern
 pattern="[a-z]"
 userstr=InputBox$("Enter a letter:")
 retvalue=userstr LIKE pattern
 If retvalue=-1 then
 msgtext="The letter " & userstr & " is lowercase."
 Else
 msgtext="Not a lowercase letter."
 End If
 Msgbox msgtext
End Sub

See Also Instr, Option Compare, StrComp

Line Input Statement
Action Reads a line from a sequential file into a string variable.

Syntax A Line Input [#] filenumber%, varname$

Syntax B Line Input [prompt$,] varname$

where is
filenumber% an integer expression identifying the open file to use.
prompt$ an optional string that can be used to prompt for keyboard input.
varname$ a string variable to contain the line read.

Comments If specified, the filenumber% is the number used in the Open statement to open
the file. If filenumber% is not provided, the line is read from the keyboard.

If prompt$ is not provided, a prompt of “?” is used.

Example This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Sub main
 Dim testscore as String
 Dim x
 Dim y
 Dim newline
 Call createfile
 Open "c:\temp001" for Input as #1
 x=1
 newline=Chr(10)

144 SBL REFERENCE

 msgtext= "The contents of c:\temp001 is: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & testscore & newline
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Get, Input Function, Input Statement, Open

ListBox Statement
Action Defines a list box of choices for a dialog box.

Syntax A ListBox x, y, dx, dy, text$, .field

Syntax B ListBox x, y, dx, dy, stringarray$(), .field

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the list box.
text$ a string containing the selections for the list box.
stringarray$ an array of dynamic strings for the selections in the list box.
.field the name of the dialog-record field that will hold a number for the

choice made in the list box.

Comments The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin
Dialog for more information.)

LOC FUNCTION 145

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

A number representing the selection’s position in the text$ string is recorded in the
field designated by the .field argument when the OK button (or any pushbutton
other than Cancel) is pushed. The numbers begin at 0. If no item is selected, it is -1.
The field argument is also used by the dialog statements that act on this control.

Use the ListBox statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with list box and two buttons.

Sub main
 Dim ListBox1() as String
 ReDim ListBox1(0)
 ListBox1(0)="C:\"
 Begin Dialog UserDialog 133, 66, 171, 65, "SBL Dialog Box"
 Text 3, 3, 34, 9, "Directory:", .Text2
 ListBox 3, 14, 83, 39, ListBox1(), .ListBox2
 OkButton 105, 6, 54, 14
 CancelButton 105, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, OkButton, OptionButtton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

Loc Function
Action Returns the current offset within an open file.

Syntax Loc(filenumber%) where filenumber% is an integer expression identifying the
open file to query.

146 SBL REFERENCE

Comments The filenumber% is the number used in the Open statement of the file.

For files opened in Random mode, Loc returns the number of the last record read
or written. For files opened in Append, Input , or Output mode, Loc returns the
current byte offset divided by 128. For files opened in Binary mode, Loc returns
the offset of the last byte read or written.

Example This example creates a file of account numbers as entered by the user. When the
user finishes, the example displays the offset in the file of the last entry made.

Sub main
 Dim filepos as Integer
 Dim acctno() as Integer
 Dim x as Integer
 x=0
 Open "c:\TEMP001" for Random as #1
 Do
 x=x+1
 Redim Preserve acctno(x)
 acctno(x)=InputBox("Enter account #" & x & " or 0 to end:")
 If acctno(x)=0 then
 Exit Do
 End If
 Put #1,, acctno(x)
 Loop
 filepos=Loc(1)
 Close #1
 MsgBox "The offset is: " & filepos
 Kill "C:\TEMP001"
End Sub

See Also Eof, Lof, Open

Lock, Unlock Statements
Action Controls access to an open file.

Syntax Lock [#]filenumber% [, [start&] [To end&]]

Unlock [#]filenumber% [, { record& | [start&] To end& }]

where is
filenumber% an integer expression identifying the open file.
record& number of the starting record to unlock.
start& number of the first record or byte offset to lock/unlock.
end& number of the last record or byte offset to lock/unlock.

LOCK, UNLOCK STATEMENTS 147

Comments The filenumber% is the number used in the Open statement of the file.

For Binary mode, start&, and end& are byte offsets. For Random mode, start&,
and end& are record numbers. If start& is specified without end&, then only the
record or byte at start& is locked. If To end& is specified without start&, then all
records or bytes from record number or offset 1 to end& are locked.

For Input , Output and Append modes, start&, and end& are ignored and the
whole file is locked.

Lock and Unlock always occur in pairs with identical parameters. All locks on
open files must be removed before closing the file, or unpredictable results will
occur.

Example This example locks a file that is shared by others on a network, if the file is
already in use. The second subprogram, CREATEFILE, creates the file used by
the main subprogram.

Declare Sub createfile
Sub main
 Dim btngrp, icongrp
 Dim defgrp
 Dim answer
 Dim noaccess as Integer
 Dim msgabort
 Dim msgstop as Integer
 Dim acctname as String
 noaccess=70
 msgstop=16
 Call createfile
 On Error Resume Next
 btngrp=1
 icongrp=64
 defgrp=0
 answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
 If answer=1 then
 Open "C:\TEMP001" for Input as #1
 If Err=noaccess then
 msgabort=MsgBox("File Locked",msgstop,"Aborted")
 Else
 Lock #1
 Line Input #1, acctname
 MsgBox "The first account name is: " & acctname
 Unlock #1
 End If
 Close #1
 End If
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the letters A-J into the file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1

148 SBL REFERENCE

For x=1 to 10
 Write #1, Chr(x+64)
 Next x
 Close #1
End Sub

See Also Open

Lof Function
Action Returns the length in bytes of an open file.

Syntax Lof(filenumber%) where filenumber% is an integer expression identifying the
open file.

Comments The filenumber% is the number used in the Open statement of the file.

Example This example opens a file and prints its contents to the screen.

Sub main
 Dim fname
 Dim fchar()
 Dim x as Integer
 Dim msgtext
 Dim newline
 newline=Chr(10)
 fname=InputBox("Enter a filename to print:")
 On Error Resume Next
 Open fname for Input as #1
 If Err<>0 then
 MsgBox "Error loading file. Re-run program."
 Exit Sub
 End If
 msgtext="The contents of " & fname & " is: " & newline &newline
 Redim fchar(Lof(1))
 For x=1 to Lof(1)
 fchar(x)=Input(1,#1)
 msgtext=msgtext & fchar(x)
 Next x

 MsgBox msgtext
 Close #1
End Sub

See Also Eof, FileLen, Loc, Open

LOG FUNCTION 149

Log Function
Action Returns the natural logarithm of a number.

Syntax Log(number) where number is any valid numeric expression.

Comments The return value is single-precision for an integer, currency or single-precision
numeric expression, double precision for a long, Variant or double-precision
numeric expression.

Example This example uses the Log function to determine which number is larger:
999^1000 (999 to the 1000 power) or 1000^999 (1000 to the 999 power). Note
that you can't use the exponent (^) operator for numbers this large.

Sub main
Dim x
Dim y
x=999
y=1000
a=y*(Log(x))
b=x*(Log(y))
If a>b then

MsgBox "999^1000 is greater than 1000^999"
Else

MsgBox "1000^999 is greater than 999^1000"
End If

End Sub

See Also Exp, FixInt, Int, Rnd, Sgn, Sqr

Lset Statement
Action Copies one string to another, or assigns a user-defined type variable to another.

Syntax A Lset string$ = string-expression

Syntax B Lset variable1 = variable2

where is
string$ a string or string expression to contain the copied characters.
string-expression an expression containing the string to copy.
variable1 a variable with a user-defined type to contain the copied

variable.
variable2 a variable with a user-defined type to copy.

Comments If string$ is shorter than string-expression, Lset copies the leftmost character of
string-expression into string$. The number of characters copied is equal to the
length of string$.

150 SBL REFERENCE

If string is longer than string-expression, all characters of string-expression are
copied into string$, filling it from left to right. All leftover characters of string$ are
replaced with spaces.

In Syntax B, the number of characters copied is equal to the length of the shorter of
variable1 and variable2.

Lset cannot be used to assign variables of different user-defined types if either
contains a Variant or a variable-length string.

Example This example puts a user's last name into the variable LASTNAME. If the name is
longer than the size of LASTNAME, then the user’s name is truncated. If you
have a long last name and you get lots of junk mail, you’ve probably seen how this
works already.

Sub main
Dim lastname as String
Dim strlast as String*8
lastname=InputBox("Enter your last name")
Lset strlast=lastname
msgtext="Your last name is: " &strlast
MsgBox msgtext

End Sub

See Also Rset

LTrim Function
Action Returns a copy of a string with all leading space characters removed.

Syntax LTrim [$](string$) where string$ is a string or expression containing a string to
copy.

Comments LTrim accepts any type of string$, including numeric values, and will convert the
input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function typically returns a Variant of vartype 8 (string). If
the value of string$ is NULL, a Variant of vartype 1 (Null) is returned.

Example This example trims the leading spaces from a string padded with spaces on the left.

Sub main
 Dim userinput as String
 Dim numsize
 Dim str1 as String*50
 Dim strsize
 strsize=50
 userinput=InputBox("Enter a string of characters:")
 numsize=Len(userinput)
 str1=Space(strsize-numsize) & userinput
' Str1 has a variable number of leading spaces.
 MsgBox "The string is: " &str1

ME 151

 str1=LTrim$(str1)
' Str1 now has no leading spaces.
 MsgBox "The string now has no leading spaces: " & str1
End Sub

See Also GetField, Left, Mid Function, Mid Statement, Right, Rtrim, Trim

Me
Action Refers to the currently used OLE2 automation object.

Syntax Me

Comments Some Basic modules are attached to application objects and Basic subroutines are
invoked when that application object encounters events. A good example is a user
visible button that triggers a Basic routine when the user clicks the mouse on the
button.

Subroutines in such contexts may use the variable Me to refer to the object which
triggered the event (i.e., which button was clicked). The programmer may use Me
in all the same ways as any other object variable except that Me may not be Set.

Example This example

Sub main
---TBD---
End Sub

See Also Create Object, Get Object, New, Nothing, Object, Typeof

Mid Function
Action Returns a portion of a string, starting at a specified location within the string.

Syntax Mid [$](string$, start%[, length%])

where is
string$ a string or expression that contains the string to change.
start% the starting position in string$ to begin replacing characters.
length% the number of characters to replace.

Comments Mid accepts any type of string$, including numeric values, and will convert the
input value to a string. If the length% argument is omitted, or if string$ is smaller
than length%, then Mid returns all characters in string$. If start% is larger than
string$, then Mid returns a null string ("").

The index of the first character in a string is 1.

152 SBL REFERENCE

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function typically returns a Variant of vartype 8 (string). If
the value of string$ is Null, a Variant of vartype 1 (Null) is returned.

To modify a portion of a string value, see Mid Statement.

Example This example uses the Mid statement to replace the last name in a user-entered
string to asterisks(*).

Sub main
 Dim username as String
 Dim position as Integer
 Dim count as Integer
 Dim uname as String
 Dim replacement as String
 username=InputBox("Enter your full name:")
 uname=username
 replacement="*"
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 username=Mid(username,position+1)
 count=count+position
 Loop
 For x=1 to Len(username)
 count=count+1
 Mid(uname,count)=replacement
 Next x
 MsgBox "Your name now is: " & uname
End Sub

See Also GetField, Left, Len, Ltrim, Mid Function, Right, Rtrim, Trim

Mid Statement
Action Replaces part (or all) of one string with another, starting at a specified location.

Syntax Mid (stringvar$, start%[, length%]) = string$

where is
stringvar$ the string to change.
start% an expression for the position to begin replacing characters.
length% an expression for the number of characters to replace.
string$ the string to place into another string.

Comments If the length% argument is omitted, or if string$ is smaller than length%, then Mid
replaces all the characters from the start% to the end of the string$. If start% is
larger than the number of characters in the indicated stringvar$, then Mid appends
string% to stringvar$.

The index of the first character in a string is 1.

MINUTE FUNCTION 153

Example This example uses the Mid function to find the last name in a string. entered by the
user.

Sub main
 Dim username as String
 Dim position as Integer
 username=InputBox("Enter your full name:")
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 position=position+1
 username=Mid(username,position)
 Loop
 MsgBox "Your last name is: " & username
End Sub

See Also GetField, Lcase, Left, Len, Ltrim, Mid Statement, Right, Rtrim, Trim

Minute Function
Action Returns an integer for the minute component (0-59) of a date-time value.

Syntax Minute(time) where time is any expression that can evolute to a date-time value.

Comments Minute accepts any type of time, including strings, and will attempt to convert the
input value to a date value.

The return value is a Variant of vartype 2 (Integer). If the value of time is null, a
Variant of vartype 1 (null) is returned.

Example This example extracts just the time (hour, minute, and second) from a file's last
modification date and time.

Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then
 Exit Sub
 End If
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If

154 SBL REFERENCE

 hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

See Also Day, Hour, Month, Now, Second, Time Function, Time Statement, Weekday,
Year

MkDir Statement
Action Creates a new directory.

Syntax MkDir path$ where path$ is a string expression identifying the new default
directory to create.

Comments The syntax for path$ is:

[drive:] [\] directory [\directory]

The drive argument is optional. If drive is omitted, MkDir makes a new directory
on the current drive. The directory argument is any directory name.

Example This example makes a new temporary directory in C:\ and then deletes it.

Sub main
Dim path as String
On Error Resume Next
path=CurDir(C)
If path<>"C:\" then

ChDir "C:\"
End If
MkDir "C:\TEMP01"
If Err=75 then

MsgBox "Directory already exists"
Else

MsgBox "Directory C:\TEMP01 created"
MsgBox "Now removing directory"
RmDir "C:\TEMP01"

End If
End Sub

See Also ChDir, ChDrive, CurDir, Dir, RmDir

MONTH FUNCTION 155

Month Function
Action Returns an integer for the month component (1-12) of a date-time value.

Syntax Month(date) where date is any expression that evaluates to a date-time value.

Comments It accepts any type of date, including strings, and will attempt to convert the input
value to a date value.

The return value is a Variant of vartype 2 (integer). If the value of date is null, a
Variant of vartype 1 (null) is returned.

Example This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext

End Sub

See Also Date Function, Date Statement, Day, Hour, Minute, Now, Second, Weekday, Year

Msgbox Function
Action Displays a message dialog box and returns a value (1-7) indicating which button

the user selected.

Syntax Msgbox(prompt$,[buttons%][, title$])

where is
prompt$ the text to display in a dialog box.
buttons% an integer value for the buttons, the icon, and the default button

choice to display in a dialog box.
title$ a string expression containing the title for the message box.

Comments prompt$ must be no more than 1,024 characters long. A message string greater
than 255 characters without intervening spaces will be truncated after the 255th
character.

buttons% is the sum of three values, one from each of the following groups:

156 SBL REFERENCE

Group Value Description

1: Buttons 0 OK only

1 OK, Cancel

2 Abort, Retry, Ignore

3 Yes, No, Cancel

4 Yes, No

5 Retry, Cancel

2: Icons 16 Critical Message (STOP)

32 Warning Query (?)

48 Warning Message (!)

64 Information Message (i)

3: Defaults 0 First button

256 Second button

512 Third button

If buttons% is omitted, Msgbox displays a single OK button.

After the user clicks a button, Msgbox returns a value indicating the user’s choice.
The return values for the Msgbox function are:

Value Button Pressed

1 OK

2 Cancel

3 Abort

4 Retry

5 Ignore

6 Yes

7 No

Example This example displays one of each type of message box.

Sub main
 Dim btngrp as Integer
 Dim icongrp as Integer
 Dim defgrp as Integer
 Dim msgtext as String
 icongrp=16
 defgrp=0
 btngrp=0
 Do Until btngrp=6
 Select Case btngrp
 Case 1, 4, 5
 defgrp=0
 Case 2
 defgrp=256
 Case 3

MSGBOX STATEMENT 157

 defgrp=512
 End Select
 msgtext=" Icon group = " & icongrp & Chr(10)
 msgtext=msgtext + " Button group = " & btngrp & Chr(10)
 msgtext=msgtext + " Default group = " & defgrp & Chr(10)
 msgtext=msgtext + Chr(10) + " Continue?"
 answer=MsgBox(msgtext, btngrp+icongrp+defgrp)
 Select Case answer
 Case 2,3,7
 Exit Do
 End Select
 If icongrp<>64 then
 icongrp=icongrp+16
 End If
 btngrp=btngrp+1
 Loop
End Sub

See Also InputBox, MsgBox Statement, PasswordBox

Msgbox Statement
Action Displays a prompt in a message dialog box.

 Syntax MsgBox prompt$, [buttons%][, title$] where prompt$ is the text to display in a
dialog box, buttons% is an integer value for the buttons, the icon, and the default
button choice to display in a dialog box, and title$ is a string expression containing
the title for the message box.

Comments Prompt$ must be no more than 1,024 characters long. A message string greater
than 255 characters without intervening spaces will be truncated after the 255th
character.

buttons% is the sum of three values, one from each of the following groups:

Group Value Description

1: Buttons 0 OK only

1 OK, Cancel

2 Abort, Retry, Ignore

3 Yes, No, Cancel

4 Yes, No

5 Retry, Cancel

2: Icons 16 Critical Message (STOP)

32 Warning Query (?)

48 Warning Message (!)

64 Information Message (i)

3: Defaults 0 First button

256 Second button

512 Third button

If buttons% is omitted, Msgbox displays a single OK button.

158 SBL REFERENCE

Example This example finds the future value of an annuity, whose terms are defined by the
user. It uses the MsgBox statement to display the result.

Sub main
 Dim aprate, periods
 Dim payment, annuitypv
 Dim due, futurevalue
 Dim msgtext
 annuitypv=InputBox("Enter present value of the annuity: ")
 aprate=InputBox("Enter the annual percentage rate: ")
 If aprate >1 then
 aprate=aprate/100
 End If
 periods=InputBox("Enter the total number of pay periods: ")
 payment=InputBox("Enter the initial amount paid to you: ")

Rem Assume payments are made at end of month
 due=0
 futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
 msgtext="The future value is: " & Format(futurevalue, "Currency")
 MsgBox msgtext
End Sub

See Also InputBox, MsgBox Function, PasswordBox

Name Statement
Action Renames a file or moves a file from one directory to another.

Syntax Name oldfilename$ As newfilename$ where oldfilename$ is a string expression
containing the file to rename and newfilename$ is a string expression containing
the name for the file.

Comments A path may be part of either filename argument. If the paths are different, the file
is moved to the new directory.

A file must be closed in order to be renamed. If the file oldfilename$ is open or if
the file newfilename$ already exists, Basic generates an error message.

Example This example creates a temporary file, C:\TEMP001, renames the file to
C:\TEMP002, then deletes them both. It calls the subprogram, CREATEFILE,
to create the C:\TEMP001 file.

Declare Sub createfile()
Sub main

Call createfile
On Error Resume Next
Name "C:\TEMP001" As "C:\TEMP002"
MsgBox "The file has been renamed"
MsgBox "Now deleting both files"
Kill "TEMP001"
Kill "TEMP002"

End Sub

NEW OPERATOR 159

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter
Open "C:\TEMP001" for Output as #1
For x=1 to 10

Write #1, x
Next x
Close #1

End Sub

See Also FileAttr, FileCopy, GetAttr, Kill

New Operator
Action Allocates and initializes a new OLE2 object of the named class.

Syntax Set objectVar = New className

Dim objectVar As New className

where objectVar is the OLE2 object to allocate and initialize and className is the
class to assign to the object.

Comments In the Dim statement, New marks objectVar so that a new object will be allocated
and initialized when objectVar is first used. If objectVar is not referenced, then no
new object will be allocated.

+ An object variable that was declared with New will allocate a second object if
objectVar is Set to Nothing and referenced again.

Example This example

Sub main
---TBD---
End Sub

See Also Dim, Global, Set, Static

$NoCStrings Metacommand [SBL Extension]**
Action Tells the compiler to treat a backslash(\) inside a string as a normal character.

Syntax '$NoCStrings [Save]where Save means saves the current '$CStrings setting
before restoring the treatment of the backslash (\) to a normal character.

Comments Use the '$CStings Restore command to restore a previously saved setting. Save
and Restore operate as a stack and allow the user to change the '$CStrings setting
for a range of the program without impacting the rest of the program.

160 SBL REFERENCE

Use the '$CStrings metacommand to tell the compiler to treat a backslash (\) inside
of a string as an Escape character.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example displays two lines, the first time using the C language characters “\n”
for a carriage return and line feed.

Sub main
 '$CStrings
 MsgBox "This is line 1\n This is line 2 (using C Strings)"
 '$NoCStrings
 MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"
End Sub

See Also $Cstrings, $Include, Rem

Nothing Function
Action Returns an object value that doesn’t refer to an object.

Syntax Set variableName = Nothing where variableName is the name of the object
variable to set to nothing.

Comments Nothing is the value object variables have when they do not refer to an object,
either because the have not been initialized yet or because they were explicitly Set
to Nothing. For example:

If Not objectVar Is Nothing then
objectVar.Close
Set objectVar = Nothing

End If

Example This example displays a list of open files in the software application VISIO. It
uses the Nothing function to determine whether VISIO is available. To see how
this example works, you need to start VISIO and open one or more documents.

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio

NOW FUNCTION 161

 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 Set doc = visio.documents(i) ' access Visio's document method
 msgtext=msgtext & Chr$(13)& doc.name
 Next i
 End If
 MsgBox msgtext
End Sub

See Also Is, New

Now Function
Action Returns the current date and time.

Syntax Now()

Comments The Now function returns a Variant of vartype 7 (date) that represents the current
date and time according to the setting of the computer’s system date and time.

Example This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5

x=x+1
Loop
msgtext="This Thursday is: " &Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext

End Sub

See Also Date Function, Date Statement, Day, Hour, Minute, Month, Second, Time
Function, Time Statement, Weekday, Year

NPV Function
Action Returns the net present value of a investment based on a stream of periodic cash

flows and a constant interest rate.

Syntax NPV (rate, valuearray()) where rate is the discount rate per period and
valuearray() is an array containing cash flow values.

162 SBL REFERENCE

Comments Valuearray() must have at least one positive value (representing a receipt) and
one negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returned by NPV will vary with the
change in the sequence of cash flows.

If the discount rate is 12% per period, rate is the decimal equivalent, i.e. 0.12.

NPV uses future cash flows as the basis for the net present value calculation. If the
first cash flow occurs at the beginning of the first period, its value should be added
to the result returned by NPV and must not be included in valuearray().

Example This example finds the net present value of an investment, given a range of cash
flows by the user.

Sub main
 Dim aprate as Single
 Dim varray() as Double
 Dim cflowper as Integer
 Dim x as Integer
 Dim netpv as Double
 cflowper=InputBox("Enter number of cash flow periods")
 ReDim varray(cflowper)
 For x= 1 to cflowper
 varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
 Next x
 aprate=InputBox("Enter discount rate: ")
 If aprate>1 then
 aprate=aprate/100
 End If
 netpv=NPV(aprate,varray())
 MsgBox "The net present value is: " & Format(netpv, "Currency")
End Sub

See Also FV, Ipmt, IRR, Pmt, Ppmt, PV, Rate

Null Function
Action Returns a Variant value set to NULL.

Syntax Null

Comments Null is used to set a Variant to the Null value explicitly, as follows:

variableName = Null

Note that Variants are initialized by Basic to the empty value, which is different
from the null value.

Example This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

OBJECT CLASS 163

Sub main
 Dim arrayvar(10)
 Dim count as Integer
 Dim total as Integer
 Dim x as Integer
 Dim tscore as Single
 count=10
 total=0
 For x=1 to count
 tscore=InputBox("Enter test score #" & x & ":")
 If tscore<0 then
 arrayvar(x)=Null
 Else
 arrayvar(x)=tscore
 total=total+arrayvar(x)
 End If
 Next x
 Do While x<>0
 x=x-1
 If IsNull(arrayvar(x))=-1 then
 count=count-1
 End If
 Loop
 msgtext="The average (excluding negative values) is: " & Chr(10)
 msgtext=msgtext & Format (total/count, "##.##")
 MsgBox msgtext
End Sub

See Also IsEmpty, IsNull, VarType

Object Class
Action A class that provides access to OLE2 automation objects.

Syntax Dim variableName As Object where variableName is the name of the object
variable to declare.

Comments To create a new object, first dimension a variable, using the Dim statement, then
Set the variable to the return value of CreateObject or GetObject, as follows:

Dim OLE2 As Object
SetOLE2 = CreateObject("spoly.cpoly")

To refer to a method or property of the newly created object, use the syntax:
objectvar.property or objectvar.method, as follows: OLE2.reset

Example This example displays a list of open files in the software application VISIO. It
uses the Object class to declare the variables used for accessing VISIO and its
document files and methods.

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

164 SBL REFERENCE

'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 Set doc = visio.documents(i) ' access Visio's document method
 msgtext=msgtext & Chr$(13)& doc.name
 Next i
 End If
 MsgBox msgtext
End Sub

See Also Create Object, Get Object, New, Nothing, Typeof

Oct Function
Action Returns the octal representation of a number, as a string.

Syntax Oct[$](number) where number is a numeric expression for the number to convert
to octal.

Comments If the numeric expression has a data type of Integer, the string will contain up to
six octal digits; otherwise, the expression will be converted to a data type of Long,
and the string may contain up to 11 octal digits.

To represent an octal number directly, precede the octal value with &O . For
example, &O10 equals decimal 8 in octal notation.

The dollar sign, “$”, in the function name is optional. If specified the return data
type is String. If omitted the function will return a Variant of vartype 8 (string).

Example This example prints the octal values for the numbers from 1 to 15.

Sub main
 Dim x,y
 Dim msgtext
 Dim nofspaces
 msgtext="Octal numbers from 1 to 15:" & Chr(10)
 For x=1 to 15
 nofspaces=10
 y=Oct(x)
 If Len(x)=2 then
 nofspaces=nofspaces-2
 End If
 msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y

OKBUTTON STATEMENT 165

 Next x
 MsgBox msgtext
End Sub

See Also Hex

OkButton Statement
Action Determines the position and size of an OK button in a dialog box.

Syntax OKButton x, y, dx, dy [, .id]

where is
x,y the position of the Cancel button relative to the upper left corner of

the dialog box.
dx,dy the width and height of the button.
.id an optional identifier for the button.

Comments A dy value of 14 typically accommodates text in the system font.

.id is an optional identifier used by the dialog statements that act on this control.

Use the OkButton statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a dropcombo box and the OK and Cancel
buttons.

Sub main
 Dim cchoices as String
 On Error Resume Next
 cchoices="All"+Chr$(9)+"Nothing"
 Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
 ButtonGroup .ButtonGroup1
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
 OkButton 131, 8, 42, 13
 CancelButton 131, 27, 42, 13
End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."
 Else
 MsgBox "You pressed OK."
 End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OptionButton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

166 SBL REFERENCE

On...Goto Statement
Action Branch to a label in the current procedure based on the value of a numeric

expression.

Syntax ON numeric-expression GoTo label1 [,label2, ...] where numeric-expression is any
numeric expression that evolutes to a positive number and label1, label2 are label in
the current procedure to branch to if numeric-expression evalutes to 1, 2, etc.

Comments If numeric expression evaluates to 0 or to a number greater than the number of
labels following GoTo, the program continues at the next statement. If numeric-
expression evaluates to a number less than 0 or greater than 255, an “ Illegal
function call” error is issued.

Example This example sets the current system time to the user's entry. If the entry cannot
be converted to a valid time value, this subroutine sets the variable to Null. It then
checks the variable and if it is Null, uses the On...Goto statement to ask again.

Sub main
Dim answer as Integer
answer=InputBox("Enter a choice (1-3) or 0 to quit")
On answer Goto c1, c2, c3
MsgBox("You typed 0.")
Exit Sub

c1: MsgBox("You picked choice 1.")
Exit Sub

c2: MsgBox("You picked choice 2.")
Exit Sub

c3: MsgBox("You picked choice 3.")
Exit Sub

End Sub

See Also Goto, Select Case

On Error Statement
Action Specifies the location of an error-handling routine within the current procedure.

Syntax ON [Local] Error { GoTo label [Resume Next] GoTo 0} where label is a
string used as a label in the current procedure to identify the lines of code that
process errors.

Comments On Error can also be used to disable an error-handling routine. Unless an On
Error statement is used, any run-time error will be fatal, i.e., SBL will terminate
the execution of the program.

ON ERROR STATEMENT 167

An On Error statement is composed of the following parts:

Part Definition

Local Keyword allowed in error-handling routines at the procedure level.
Used to ensure compatibility with other Variants of Basic.

GoTo label Enables the error-handling routine that starts at label. If the
designated label is not in the same procedure as the On Error
statement, SBL generates an error message.

Resume Next Designates that error handling code is handled by the statement
which immediately follows the statement that caused an error. At
this point, use the Error function to retrieve the error-code of the
run-time error.

GoTo 0 Disables any error handler that has been enabled.

When it is referenced by an On Error GoTo label statement, an error-handler is
enabled. Once this enabling occurs, a run-time error will result in program control
switching to the error-handling routine and “activating” the error handler. The error
handler remains active from the time the run-time error has been trapped until a
Resume statement is executed in the error handler.

If another error occurs while the error handler is active, SBL will search for an error
handler in the procedure which called the current procedure (if this fails, SBL will
look for a handler belonging to the caller’s caller, ...). If a handler is found, the
current procedure will terminate, and the error handler in the calling procedure will
be activated.

It is an error (No Resume) to execute an End Sub or End Function statement
while an error handler is active. The Exit Sub or Exit Function statement can be
used to end the error condition and exit the current procedure.

Example This example prompts the user for a drive and directory name and uses On Error
to trap invalid entries.

Sub main
 Dim userdrive, userdir, msgtext
in1: userdrive=InputBox("Enter drive:",,"C:")
 On Error Resume Next
 ChDrive userdrive
 If Err=68 then
 MsgBox "Invalid Drive. Try again."
 Goto in1
 End If
in2: On Error Goto Errhdlr1
 userdir=InputBox("Enter directory path:")
 ChDir userdrive & userdir
 Msgbox "New default directory is: " & userdrive & userdir
 Exit Sub
Errhdlr1:
 Select Case Err
 Case 75

168 SBL REFERENCE

 msgtext="Path is invalid."
 Case 76
 msgtext="Path not found."
 Case 70
 msgtext="Permission denied."
 Case Else
 msgtext="Error " & Err & ": " & Error$ & "occurred."
 End Select
 MsgBox msgtext & " Try again."
 Resume in2
End Sub

See Also Erl, Err Function, Err Statement, Error Function, Error Statement, Resume

Open Statement
Action Opens a file or device for input or output.

Syntax Open filename$ [For mode] [Access access] [lock] As [#] filenumber% [Len = reclen]

where is
filename$ a string or string expression for the name of the file to open.

mode one of the following keywords:
Input Put data into the file sequentially.
Output Read data from the file sequentially.
Append Add data to the file sequentially.
Random Get data from the file by random access.
Binary Get binary data from the file.

access one of the following keywords:
Read Read data from the file only.
Write Write data the file only.
Read Write Read or write data to the file.

lock one of the following keywords to designate access by other
processes:

Shared Read or write available on the file.
Lock Read Read data only.
Lock Write Write data only.
Lock Read Write No read or write available.

filenumber% an integer or expression containing the integer to assign to the open
file (between 1 and 255).

reclen the length of the records (for Random or Binary files only).

OPEN STATEMENT 169

Comments A file must be opened before any input/output operation can be performed on it.

If filename$ does not exist, it is created when opened in Append, Binary , Output
or Random modes.

If mode is not specified, it defaults to Random.

If access is not specified for Random or Binary modes, access is attempted in the
following order: Read Write, Write , Read.

If lock is not specified, filename$ can be opened by other processes that do not
specify a lock, although that process cannot perform any file operations on the file
while the original process still has the file open.

Use the FreeFile function to find the next available value for filenumber%.

Reclen is ignored for Input , Output , and Appendmodes.

Example This example opens a file for Random access, gets the contents of the file, and
closes the file again. The second subprogram, CREATEFILE, creates the file
C:\TEMP001 used by the main subprogram.

Declare Sub createfile()
Sub main
 Dim acctno as String*3
 Dim recno as Long
 Dim msgtext as String
 Call createfile
 recno=1
 newline=Chr(10)
 Open "C:\TEMP001" For Random As #1 Len=3
 msgtext="The account numbers are:" & newline
 Do Until recno=11
 Get #1,recno,acctno
 msgtext=msgtext & acctno
 recno=recno+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub
Sub createfile()
 Rem Put the numbers 1-10 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=1 to 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Close, FreeFile

170 SBL REFERENCE

OptionButton Statement
Action Defines the position and text associated with an option button in a dialog box.

Syntax OptionButton x, y, dx, dy, text$ [, .id]

where is
x,y the position of the button relative to the upper left corner of the

dialog box.
dx,dy the width and height of the button.
text$ a string to display next to the option button. If the width of this

string is greater than dx, trailing characters are truncated.
.id an optional identifier used by the dialog statements that act on this

control.

Comments You must have at least two OptionButton statements in a dialog box. You use
these statements in conjunction with the OptionGroup statement.

A dy value of 12 typically accommodates text in the system font.

To enable the user to select an option button by typing a character from the
keyboard, precede the character in text$ with an ampersand (&).

Use the OptionButton statement only between a Begin Dialog and an End Dialog
statement.

Example This example creates a dialog box with a group box with two option buttons: “All
pages” and “Range of pages”.

Sub main
 Begin Dialog UserDialog 183, 70, "SBL Dialog Box"
 GroupBox 5, 4, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 16, 12, 46, 12, "All pages", .OptionButton3
 OptionButton 16, 28, 67, 8, "Range of pages", .OptionButton4
 Text 22, 39, 20, 10, "From:", .Text6
 Text 60, 39, 14, 9, "To:", .Text7
 TextBox 76, 39, 13, 12, .TextBox4
 TextBox 44, 39, 12, 11, .TextBox5
 OkButton 125, 6, 54, 14
 CancelButton 125, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

OPTIONGROUP STATEMENT 171

OptionGroup Statement
Action Groups a series of option buttons under one heading in a dialog box.

Syntax OptionGroup .field where .field is a value for the option button selected by the
user: 0 for the first option button, 1 for the second button, and so on.

Comments The OptionGroup statement is used in conjunction with OptionButton
statements to set up a series of related options. The OptionGroup Statement
begins the definition of the option buttons and establishes the dialog-record field
that will contain the option selection.

Use the OptionGroup statement only between a Begin Dialog and an End Dialog
statement.

Example This example creates a dialog box with a group box with two option buttons: “All
pages” and “Range of Pages”.

Sub main
 Begin Dialog UserDialog 192, 71, "SBL Dialog Box"
 GroupBox 7, 6, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 18, 14, 46, 12, "All pages", .OptionButton3
 OptionButton 18, 30, 67, 8, "Range of pages", .OptionButton4
 Text 24, 41, 20, 10, "From:", .Text6
 Text 62, 41, 14, 9, "To:", .Text7
 TextBox 78, 41, 13, 12, .TextBox4
 TextBox 46, 41, 12, 11, .TextBox5
 OkButton 126, 6, 54, 14
 CancelButton 126, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionButton, Picture, StaticComboBox, Text, TextBox

Option Base Statement
Action Specifies the default lower bound to use for array subscripts.

Syntax Option Base lowerBound% where lowerBound is a number or expression
containing a number for the default lower bound: either 0 or 1.

Comments If no Option Base statement is specified, the default lower bound for array
subscripts will be 0.

172 SBL REFERENCE

The Option Base statement is not allowed inside a procedure, and must precede
any use of arrays in the module. Only one Option Base statement is allowed per
module.

Example This example resizes an array if the user enters more data than can fit in the
array. It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total
 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)
start:
 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop
 answer=InputBox$("Do you have more scores? (Y/N)")
 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start
 End If
 End If
 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)

For y=x to count
 total=total+arrayvar(y)
 Next y
 MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub

See Also Dim, Global, Lbound, ReDim, Static

Option Compare Statement
Action Specifies the default method for string comparisons: either case-sensitive or case-

insensitive.

Syntax Option Compare { Binary | Text } where Binary means comparisons are case-
sensitive (i.e., lowercase and uppercase letters are different) and Text means
comparisons are not case-sensitive.

OPTION EXPLICIT STATEMENT 173

Comments Binary comparisons compare strings based upon the ANSI character set. Text
comparisons are based upon the relative order of characters as determined by the
country code setting for your system.

Example This example compares two strings: “JANE SMITH” and “jane smith”. When
Option Compare is Text, the strings are considered the same. If Option Compare
is Binary, they will not be the same. Binary is the default. To see the difference,
run the example once, then run it again, commenting out the Option Compare
statement.

Option Compare Text
Sub main
 Dim strg1 as String
 Dim strg2 as String
 Dim retvalue as Integer
 strg1="JANE SMITH"
 strg2="jane smith"
i:
 retvalue=StrComp(strg1,strg2)
 If retvalue=0 then
 MsgBox "The strings are identical"
 Else
 MsgBox "The strings are not identical"
 Exit Sub
 End If
End Sub

See Also Instr, StrComp

Option Explicit Statement
Action Specifies that all variables in a module must be explicitly declared.

Syntax Option Explicit

Comments By default, Basic automatically declares any variables that do not appear in a
Dim, Global, Redim, or Static statement. Option Explicit causes such variables to
produce a “Variable Not Declared” error.

Example This example specifies that all variables must be explicitly declared, thus
preventing any mistyped variable names.

Option Explicit
Sub main

Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String

'...(code here)...
End Sub

See Also Const, Deftype, Dim, Function...End Function, Global, ReDim, Static, Sub...End Sub

174 SBL REFERENCE

PasswordBox Function
Action Returns a string entered by the user without echoing it to the screen.

Syntax PasswordBox[$](prompt$,[title$] ,[default$] [,xpos%, ypos%])

where is
prompt$ a string expression containing the text to show in the dialog box
title$ the caption for the dialog box’s title bar
default$ the string expression shown in the edit box as the default

response.
xpos%, ypos% the position of the dialog box, relative to the upper left corner of

the screen.

Comments The PasswordBox function displays a dialog box containing a prompt. Once the
user has entered text, or made the button choice being prompted for, the contents of
the box are returned.

The length of prompt$ is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be included in prompt$ if a multiple-line prompt is used.

If either prompt$ or default$ is omitted, nothing is displayed.

Xpos% determines the horizontal distance between the left edge of the screen and
the left border of the dialog box, measured in dialog box units. Ypos% determines
the horizontal distance from the top of the screen to the dialog box’s upper edge,
also in dialog box units. If these arguments are not entered, the dialog box is
centered roughly one third of the way down the screen. A horizontal dialog box unit
is 1/4 of the average character width in the system font; a vertical dialog box unit is
1/8 of the height of a character in the system font.

++ To specify the dialog box’s position, you must enter both of these arguments. If
you enter one without the other, the default positioning is used.

Once the user presses Enter, or selects the OK button, PasswordBox returns the
text contained in the password box. If the user selects Cancel, the PasswordBox
function returns a null string ("").

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function will return a Variant of vartype 8 (string).

Example This example asks the user for a password.

Sub main
 Dim retvalue
 Dim a
 retvalue=PasswordBox("Enter your login password",Password)
 If retvalue<>"" then

PICTURE STATEMENT 175

 MsgBox "Verifying password"
' (continue code here)
 Else
 MsgBox "Login cancelled"
 End If
End Sub

See Also InputBox, MsgBox Function, MsgBox Statement

Picture Statement
Action Defines a picture control in a dialog box.

Syntax Picture x, y, dx, dy, filename$, type [, .id]

where is
x,y the position of the picture relative to the upper left corner of the

dialog box.
dx,dy the width and height of the picture.
filename$ the name of the bitmap file (a file with .BMP extension) where the

picture is located.
type an integer for the location of the bitmap (0=filename$, 3=Windows

Clipboard).
.id an optional identifier used by the dialog statements that act on this

control.

Comments The Picture statement can only be used between a Begin Dialog and an End
Dialog statement.

Note The picture will be scaled equally in both directions and centered if the
dimensions of the picture are not proportional to dx and dy.

If type% is 3, filename$ is ignored.

If the picture is not available (the file filename$ doesn’t exist, doesn’t contain a
bitmap, or there is no bitmap on the Clipboard), the picture control will display the
picture frame and the text “(missing picture)”. This behavior may be changed by
adding 16 to the value of type%. If type% is 16 or 19 and the picture is not
available, a runtime error occurs.

Example This example defines a dialog box with a picture, and the OK and Cancel
buttons.

Sub main
 Begin Dialog UserDialog 148, 73, "SBL Dialog Box"
 Picture 8, 7, 46, 46, "C:\WINDOWS\ARCADE.BMP", 0
 OkButton 80, 10, 54, 14
 CancelButton 80, 30, 54, 14
 End Dialog

176 SBL REFERENCE

 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionButton, OptionGroup, StaticComboBox, Text, TextBox

Pmt Function
Action Returns a constant periodic payment amount for an annuity or a loan.

Syntax Pmt (rate, nper, pv, fv, due)

where is
rate interest rate per period.
nper total number of payment periods.
pv present value of the initial lump sum amount paid (as in the case of

an annuity) or received (as in the case of a loan).
fv future value of the final lump sum amount required (as in the case

of a savings plan) or paid (0 as in the case of a loan).
due an integer value for when the payments are due (0=end of each

period, 1= beginning of the period).

Comments Rate is assumed to be constant over the life of the loan or annuity. If payments
are on a monthly schedule, then rate will be 0.0075 if the annual percentage rate
on the annuity or loan is 9%.

Example This example finds the monthly payment on a given loan.

Sub main
 Dim aprate, totalpay
 Dim loanpv, loanfv
 Dim due, monthlypay
 Dim yearlypay, msgtext
 loanpv=InputBox("Enter the loan amount: ")
 aprate=InputBox("Enter the loan rate percent: ")
 If aprate >1 then
 aprate=aprate/100
 End If
 totalpay=InputBox("Enter the total number of monthly payments: ")
 loanfv=0
'Assume payments are made at end of month
 due=0
 monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
 msgtext="The monthly payment is: " & Format(monthlypay, "Currency")
 MsgBox msgtext
End Sub

See Also FV, Ipmt, IRR, NPV, PV, Ppmt, Rate

PPMT FUNCTION 177

PPmt Function

Action Returns the principal portion of the payment for a given period of an annuity.

Syntax PPmt (rate, per, nper, pv, fv, due)

where is
rate interest rate per period.
per particular payment period in the range 1 through nper.
nper total number of payment periods.
pv present value of the initial lump sum amount paid (as in the case of

an annuity) or received (as in the case of a loan).
fv future value of the final lump sum amount required (as in the case

of a savings plan) or paid (0 as in the case of a loan).
due an integer value for when the payments are due (0=end of each

period, 1= beginning of the period).

Comments Rate is assumed to be constant over the life of the loan or annuity. If payments are
on a monthly schedule, then rate will be 0.0075 if the annual percentage rate on
the annuity or loan is 9%.

Example This example finds the principal portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

Sub main
 Dim aprate, periods
 Dim payperiod
 Dim loanpv, due
 Dim loanfv, principal
 Dim msgtext
 aprate=9.5/100
 payperiod=12
 periods=120
 loanpv=25000
 loanfv=0
Rem Assume payments are made at end of month
 due=0
 principal=PPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
 msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
 msgtext=msgtext & " the principal paid in month 12 is: "
 MsgBox msgtext & Format(principal, "Currency")
End Sub

See Also FV, Ipmt, IRR, NPV, Pmt, PV, Rate

178 SBL REFERENCE

Print Statement
Action Prints data to an open file or to the screen.

Syntax Print [filenumber%,] expressionlist [{ ; | , }] where filenumber% is an integer
expression identifying the open file to use and expressionlist is a numeric, string,
and Variant expression containing the list of values to print.

Comments The Print statement outputs data to the specified filenumber%. filenumber% is
the number assigned to the file when it was opened. See the Open statement for
more information. If this argument is omitted, the Print statement outputs data to
the screen.

If the expressionlist is omitted, a blank line is written to the file.

The values in expressionlist are separated by either a semi-colon (“;”) or a comma
(“,”) . A semi-colon indicates that the next value should appear immediately after
the preceding one without intervening white space. A comma indicates that the next
value should be positioned at the next print zone. Print zones begin every 14 spaces.

The optional [{;|,}] argument at the end of the Print statement determines where
output for the next Print statement to the same output file should begin. A semi-
colon will place output immediately after the output from this Print statement on
the current line; a comma will start output at the next print zone on the current line.
If neither separator is specified, a CR-LF pair will be generated and the next Print
statement will print to the next line.

Special functions Spc and Tab can be used inside Print statement to insert a given
number of spaces and to move the print position to a desired column.

The Print statement supports only elementary Basic data types. See Input for more
information on parsing this statement.

Example This example prints the octal values for the numbers from 1 to 25.

Sub main
Dim x as Integer
Dim y
For x=1 to 25

y=Oct$(x)
Print x Tab(10) y

Next x
End Sub

See Also Open, Spc, Tab, Write

PUSHBUTTON STATEMENT 179

PushButton Statement
Action Defines a custom pushbutton.

Syntax A PushButton x, y, dx, dy, text$ [, .id]

Syntax B Button x, y, dx, dy, text$ [, .id]

where is
x,y the position of the button relative to the upper left corner of the

dialog box.
dx,dy the width and height of the button.
text$ the name for the pushbutton. If the width of this string is greater

than dx, trailing characters are truncated.
.id an optional identifier used by the dialog statements that act on this

control.

Comments A dy value of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement
in conjunction with the ButtonGroup statement. The two forms of the statement
(Button and PushButton) are equivalent.

Use the Button statement only between a Begin Dialog and an End Dialog
statement.

Example This example defines a dialog box with a combination list box and three buttons.

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
 ButtonGroup .ButtonGroup1
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 PushButton 113, 57, 54, 13, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog

 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

180 SBL REFERENCE

See Also Begin Dialog...End Dialog Statement, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text,
TextBox

Put Statement

Action Writes a variable to a file opened in Random or Binary mode.

Syntax Put [#] filenumber%, [recnumber&], varname

where is
filenumber% an integer expression identifying the open file to use.
recnumber& a Long expression containing the record number or the byte offset

at which to start writing.
varname the name of the variable containing the data to write.

Comments Filenumber% is the number assigned to the file when it was opened. See the
Open statement for more information.

Recnumber& is in the range 1 to 2,147,483,647. If recnumber& is omitted, the next
record or byte is written.

+ The commas before and after recnumber% are required, even if no recnumber&
is specified.

Varname can be any variable except Object, Application Data Type or Array
variables (single array elements may be used).

For Random mode, the following apply:

■ Blocks of data are written to the file in chunks whose size is equal to the size
specified in the Len clause of the Open statement. If the size of varname is
smaller than the record length, the record is padded to the correct record size. If
the size of variable is larger than the record length, an error occurs.

■ For variable length String variables, Put writes two bytes of data that indicate
the length of the string, then writes the string data.

■ For Variant variables, Put writes two bytes of data that indicate the type of the
Variant, then it writes the body of the Variant into the variable. Note that
Variants containing strings contain two bytes of type information, followed by
two bytes of length, followed by the body of the string.

■ User defined types are written as if each member were written separately,
except no padding occurs between elements.

PV FUNCTION 181

Files opened in Binary mode behave similarly to those opened in Random mode
except:

■ Put writes variables to the disk without record padding.

■ Variable length Strings that are not part of user defined types are not preceded
by the two byte string length.

Example This example opens a file for Random access, puts the values 1-10 in it, prints the
contents, and closes the file again.

Sub main
' Put the numbers 1-10 into a file
 Dim x, y
 Open "C:\TEMP001" as #1
 For x=1 to 10
 Put #1,x, x
 Next x
 msgtext="The contents of the file is:" & Chr(10)
 For x=1 to 10
 Get #1,x, y
 msgtext=msgtext & y & Chr(10)
 Next x
 Close #1
 MsgBox msgtext
 Kill "C:\TEMP001"
End Sub

See Also Close, Get, Open, Write

PV Function
Action Returns the present value of a constant periodic stream of cash flows as in an

annuity or a loan.

Syntax PV (rate, nper, pmt, fv, due)

where is
rate interest rate per period.
nper total number of payment periods.
pmt constant periodic payment per period.
fv future value of the final lump sum amount required (in the case of a

savings plan) or paid (0 in the case of a loan).
due an integer value for when the payments are due (0=end of each

period, 1= beginning of the period).

Comments Rate is assumed constant over the life of the annuity. If payments are on a
monthly schedule, then rate will be 0.0075 if the annual percentage rate on the
annuity or loan is 9%.

182 SBL REFERENCE

Example This example finds the present value of a 10-year $25,000 annuity that will pay
$1,000 a year at 9.5%.

Sub main
 Dim aprate, periods
 Dim payment, annuityfv
 Dim due, presentvalue
 Dim msgtext
 aprate=9.5
 periods=120
 payment=1000
 annuityfv=25000
Rem Assume payments are made at end of month
 due=0
 presentvalue=PV(aprate/12,periods,-payment, annuityfv,due)
 msgtext= "The present value for a 10-year $25,000 annuity @ 9.5%"
 msgtext=msgtext & " with a periodic payment of $1,000 is: "
 msgtext=msgtext & Format(presentvalue, "Currency")
 MsgBox msgtext
End Sub

See Also FV, Ipmt, IRR, NPV, Pmt, Ppmt, Rate

Randomize Statement
Action Seeds the random-number generator.

Syntax Randomize [number%] where number% is an integer value between -32768 and
32767.

Comments If no number% argument is given, Basic uses the Timer function to initialize the
random number generator.

Example This example generates a random string of characters using the Randomize
statement and Rnd function. The second For...Next loop is to slow down
processing in the first For...Next loop so that Randomize can be seeded with a new
value each time from the Timer function.

Sub main
 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim str2 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim msgtext
 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)
 For x=1 to 26
 Randomize
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter

RATE FUNCTION 183

For y = 1 to 1500
 Next y
 Next x
 msgtext=str1
 MsgBox msgtext
End Sub

See Also Rnd, Timer

Rate Function
Action Returns the interest rate per period for an annuity or a loan.

Syntax Rate (nper, pmt, pv, fv, due, guess)

where is
nper total number of payment periods.
pmt constant periodic payment per period.
pv present value of the initial lump sum amount paid (as in the case of

an annuity) or received (as in the case of a loan).
fv future value of the final lump sum amount required (in the case of a

savings plan) or paid (0 in the case of a loan).
due an integer value for when the payments are due (0=end of each

period, 1= beginning of the period)
guess a ballpark estimate for the rate returned.

Comments In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would be a
reasonable value for guess.

Rate is an iterative function: it improves the given value of guess over several
iterations until the result is within 0.00001 percent. If it does not converge to a
result within 20 iterations, it signals failure.

Example This example finds the interest rate on a 10 year $25,000 annuity, that pays $100
per month.

Sub main
 Dim aprate
 Dim periods
 Dim payment, annuitypv
 Dim annuityfv, due
 Dim guess
 Dim msgtext as String
 periods=120
 payment=100
 annuitypv=0
 annuityfv=25000
 guess=.1
Rem Assume payments are made at end of month
 due=0
 aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)

184 SBL REFERENCE

 aprate=(aprate*12)
 msgtext= "The percentage rate for a 10-year $25,000 annuity "
 msgtext=msgtext & "that pays $100/month has "
 msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
 MsgBox msgtext
End Sub

See Also FV, Ipmt, IRR, NPV, Pmt, Ppmt, PV

ReDim Statement
Action Changes the upper and lower bounds of a dynamic array’s dimensions.

Syntax ReDim [Preserve] variableName (subscriptRange, ...) [As [New] type] , ...

where is
variableName the variable array name to redimension.
subscriptRange the new upper and lower bounds for the array.
type the type for the data elements in the array.

Comments ReDim re-allocates memory for the dynamic array to support the specified
dimensions, and may optionally re-initialize the array elements. ReDim cannot
be used at the module level; it must be used inside of a procedure.

The Preserve option is used to change the last dimension in the array while
maintaining its contents. If Preserve is not specified, the contents of the array are
re-initialized. Numbers will be set to zero (0). Strings and Variants will be set to
empty ("").

The subscriptRange is of the format:

[startSubscript To] endSubscript

If startSubscript is not specified, 0 is used as the default. The Option Base
statement can be used to change the default.

A dynamic array is normally created by using Dim to declare an array without a
specified subscriptRange. The maximum number of dimensions for a dynamic
array created in this fashion is 8. If you need more than 8 dimensions, you may use
the ReDim statement inside of a procedure to declare an array which has not
previously been declared using Dim or Global. In this case, the maximum number
of dimensions allowed is 60.

The available data types for arrays are: numbers, strings, Variants, records and
objects. Arrays of arrays, dialog box records, and objects are not supported.

REM STATEMENT 185

If the As clause is not used, the type of the variable may be specified by using a
type character as a suffix to the name. The two different type-specification methods
can be intermixed in a single ReDim statement (although not on the same variable).

The ReDim statement cannot be used to change the number of dimensions of a
dynamic array once the array has been given dimensions. It can only change the
upper and lower bounds of the dimensions of the array. The LBound and UBound
functions can be used to query the current bounds of an array variable’s
dimensions.

Care should be taken to avoid ReDim'ing an array in a procedure that has received
a reference to an element in the array in an argument; the result is unpredictable.

Example This example finds the net present value for a series of cash flows. The array
variable that holds the cash flow amounts is initially a dynamic array that is
redimensioned after the user enters the number of cash flow periods they have.

Sub main
 Dim aprate as Single
 Dim varray() as Double
 Dim cflowper as Integer
 Dim x as Integer
 Dim netpv as Double
 cflowper=InputBox("Enter number of cash flow periods:")
 ReDim varray(cflowper)
 For x= 1 to cflowper
 varray(x)=InputBox("Enter cash flow amount for period #" &x &":")
 Next x
 aprate=InputBox ("Enter discount rate:")
 If aprate>1 then
 aprate=aprate/100
 End If
 netpv=NPV(aprate,varray())
 MsgBox "The Net Present Value is: " & Format(netpv,"Currency")
End Sub

See Also Dim, Global, Option Base, Static

Rem Statement
Action Identifies a line of code as a comment in a Basic program.

Syntax Rem comment where comment is the text of the comment.

Comments Everything from Rem to the end of the line is ignored.

The single quote (') can also be used to initiate a comment. Metacommands (e.g.,
$CSTRINGS) must be preceded by the single quote comment form.

Example This example defines a dialog box with a combination list box and two buttons.
The Rem statements describe each block of definition code.

186 SBL REFERENCE

Sub main
 Dim fchoices as String
 fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
 Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Rem The next two lines create the combo box
 Text 9, 5, 69, 10, "Filename:", .Text1
 DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
Rem The next two lines create the command buttons
 OkButton 113, 14, 54, 13
 CancelButton 113, 33, 54, 13
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

Reset Statement
Action Closes all open disk files and writes any data in the operating system buffers to disk.

Syntax Reset

Example This example creates a file, puts the numbers 1-10 in it, then attempts to Get past
the end of the file. The On Error statement traps the error and execution goes to
the Debugger code which uses Reset to close the file before exiting.

Sub main
' Put the numbers 1-10 into a file
 Dim x as Integer
 Dim y as Integer
 On Error Goto Debugger
 Open "C:\TEMP001" as #1 Len=2
 For x=1 to 10
 Put #1,x, x
 Next x
 Close #1
 msgtext="The contents of the file is:" & Chr(10)
 Open "C:\TEMP001" as #1 Len=2
 For x=1 to 10
 Get #1,x, y
 msgtext=msgtext & Chr(10) & y
 Next x
 MsgBox msgtext
done:
 Close #1
 Kill "C:\TEMP001"
 Exit Sub

Debugger:
 MsgBox "Error " & Err & " occurred. Closing open file."
 Reset
 Resume done
End Sub

See Also Close

RESUME STATEMENT 187

Resume Statement
Action Halts an error-handling routine.

Syntax A Resume Next

Syntax B Resume label

Syntax C Resume [0]

where label is the label that identifies the statement to go to after handling an error.

Comments When the Resume Next statement is used, control is passed to the statement
which immediately follows the statement in which the error occurred.

When the Resume [0] statement is used, control is passed to the statement in
which the error occurred.

The location of the error handler which has caught the error determines where
execution will resume. If an error is trapped in the same procedure as the error
handler, program execution will resume with the statement that caused the error. If
an error is located in a different procedure from the error handler, program control
reverts to the statement that last called out the procedure containing the error
handler.

Example This example prints an error message if an error occurs during an attempt to open
a file. The Resume statement jumps back into the program code at the label,
done. From here, the program exits.

Sub main
 Dim msgtext, userfile
 On Error GoTo Debugger
 msgtext="Enter the filename to use:"
 userfile=InputBox$(msgtext)
 Open userfile For Input As #1
 MsgBox "File opened for input."
' etc....
 Close #1
done:
 Exit Sub

Debugger:
 msgtext="Error number " & Err & " occurred at line: " & Erl
 MsgBox msgtext
 Resume done
End Sub

See Also Erl, Err Function, Err Statement, Error, Error Function, On Error, Trappable Errors

188 SBL REFERENCE

Right Function
Action Returns a string copied from the rightmost characters in a specified string.

Syntax Right[$](string, length%) where string is any type of expression that contains
the string to copy and length% is an integer for the number of characters to copy
from expression.

Comments If the length of expression is less than length%, Right returns the whole string.

Right accepts any type of expression, including numeric values, and will convert
the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically return a Variant of vartype 8 (string).
If the value of expression is NULL, a Variant of vartype 1 (Null) is returned.

Example This example checks for the extension .BMP in a filename entered by a user and
activates the Paintbrush application if the file is found. Note this uses the Option
Compare statement to accept either uppercase or lowercase letters for the
filename extension.

Option Compare Text
Sub main
 Dim filename as String
 Dim x
 filename=InputBox("Enter a .BMP file and path: ")
 extension=Right(filename,3)
 If extension="BMP" then
 x=Shell("PBRUSH.EXE",1)
 Sendkeys "%FO" & filename & "{Enter}", 1
 Else
 MsgBox "File not found or extension not .BMP."
 End If
End Sub

See Also GetField, Instr, Left, Len, Ltrim, Mid Function, Mid Statement, Rtrim, Trim

RmDir Statement
Action Removes a directory.

Syntax RmDir path$ where path$ is a string expression identifying the directory to
remove.

Comments The syntax for path$ is:

[drive:] [\] directory [\directory]

The drive argument is optional. The directory argument is a directory name.

RND FUNCTION 189

The directory to be removed must be empty, except for the working (.) and parent
(..) directories.

Example This example makes a new temporary directory in C:\ and then deletes it.

Sub main
 Dim path as String
 On Error Resume Next
 path=CurDir(C)
 If path<>"C:\" then
 ChDir "C:\"
 End If
 MkDir "C:\TEMP01"
 If Err=75 then
 MsgBox "Directory already exists"
 Else
 MsgBox "Directory C:\TEMP01 created"
 MsgBox "Now removing directory"
 RmDir "C:\TEMP01"
 End If
End Sub

See Also ChDir, ChDrive, CurDir, Dir, MkDir

Rnd Function
Action Returns a single precision random number between 0 and 1.

Syntax Rnd [(number!)] where number! is a numeric expression to specify how to
generate the random numbers. (<0=use the number specified, >0=use the next
number in the sequence, 0=use the number most recently generated.)

Comments If number! is omitted, Rnd uses the next number in the sequence to generate a
random number. The same sequence of random numbers is generated whenever
Rnd is run, unless the random number generator is re-initialized by the
Randomize statement.

Example This example generates a random string of characters within a range. The Rnd
function is used to set the range between lowercase “a” and “z”. The second
For...Next loop is to slow down processing in the first For...Next loop so that
Randomize can be seeded with a new value each time from the Timer function.

Sub main
 Dim x as Integer
 Dim y
 Dim str1 as String
 Dim str2 as String
 Dim letter as String
 Dim randomvalue
 Dim upper, lower
 Dim msgtext
 upper=Asc("z")
 lower=Asc("a")
 newline=Chr(10)

190 SBL REFERENCE

 For x=1 to 26
 Randomize
 randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
 letter=Chr(randomvalue)
 str1=str1 & letter
 For y = 1 to 1500
 Next y
 Next x
 msgtext=str1
 MsgBox msgtext
End Sub

See Also Exp, FixInt, Int, Log, Randomize, Sgn, Sqr

Rset Statement
Action Right-aligns one string inside another string.

Syntax Rset string$ = string-expression where string$ is the string to contain the right-
aligned characters and string-expression is the string containing the characters to
put into string$.

Comments If string$ is longer than string-expression, the leftmost characters of string$ are
replaced with spaces.

If string$ is shorter than string-expression, only the leftmost characters of string-
expression are copied.

Rset cannot be used to assign variables of different user-defined types.

Example This example uses Rset to right align an amount entered by the user in a field that
is 15 characters long. It then pads the extra spaces with asterisks (*) and adds a
dollar sign ($) and decimal places (if necessary).

Sub main
 Dim amount as String*15
 Dim x
 Dim msgtext
 Dim replacement
 replacement="*"
 amount=InputBox("Enter an amount:")
 position=InStr(amount,".")
 If Right(amount,3)<>".00" then
 amount=Rtrim(amount) & ".00"
 End If
 Rset amount="$" & Rtrim(amount)
 length=15-Len(Ltrim(amount))
 For x=1 to length
 Mid(amount,x)=replacement
 Next x
 Msgbox "Formatted amount: " & amount
End Sub

See Also Lset

RTRIM FUNCTION 191

RTrim Function
Action Copies a string and removes any trailing spaces.

Syntax RTrim [$](string$) where string$ is an expression that evaluates to a string.

Comments RTrim accepts any type of string including numeric values and will convert the
input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically return a Variant of vartype 8 (string).
If the value of string is NULL, a Variant of vartype 1 (Null) is returned.

Example This example asks for an amount and then right aligns it in a field that is 15
characters long. It uses Rtrim to trim any trailing spaces in the amount string, if
the number entered by the user is less than 15 digits.

Sub main
 Dim amount as String*15
 Dim x
 Dim msgtext
 Dim replacement
 replacement="X"
 amount=InputBox("Enter an amount:")
 position=InStr(amount,".")
 If position=0 then
 amount=Rtrim(amount) & ".00"
 End If
 Rset amount="$" & Rtrim(amount)
 length=15-Len(Ltrim(amount))
 For x=1 to length
 Mid(amount,x)=replacement
 Next x
 Msgbox "Formatted amount: " & amount
End Sub

See Also GetField, Left, Len, Ltrim, Mid Function, Mid Statement, Right, Trim

Second Function
Action Returns the second component (0-59) of a date-time value.

Syntax Second(time) where time is an expression containing a date time value.

Comments Second accepts any type of time including strings and will attempt to convert the
input value to a date value.

The return value is a Variant of vartype 2 (integer). If the value of time is NULL, a
Variant of vartype 1 (Null) is returned.

192 SBL REFERENCE

Example This example displays the last saved date and time for a file whose name is
entered by the user.

Sub main
 Dim filename as String
 Dim ftime
 Dim hr, min
 Dim sec
 Dim msgtext as String
i: msgtext="Enter a filename:"
 filename=InputBox(msgtext)
 If filename="" then
 Exit Sub
 End If
 On Error Resume Next
 ftime=FileDateTime(filename)
 If Err<>0 then
 MsgBox "Error in file name. Try again."
 Goto i:
 End If
 hr=Hour(ftime)
 min=Minute(ftime)
 sec=Second(ftime)
 Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

See Also Day, Hour, Minute, Month, Now, Time Function, Time Statement, Weekday,
Year

Seek Function
Action Returns the current file position for an open file.

Syntax Seek(filenumber%) where filenumber% is an integer expression identifying an
open file to query.

Comments Filenumber% is the number assigned to the file when it was opened. See the
Open statement for more information.

For files opened in Random mode, Seek returns the number of the next record to
be read or written. For all other modes, Seek returns the file offset for the next
operation. The first byte in the file is at offset 1, the second byte is at offset 2, etc.
The return value is a Long.

Example This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file “C:\TEMP001” used by the main subprogram.

Declare Sub createfile
Sub main
 Dim testscore as String
 Dim x
 Dim y
 Dim newline

SEEK STATEMENT 193

 Call createfile
 Open "C:\TEMP001" for Input as #1
 x=1
 newline=Chr(10)
 msgtext= "The test scores are: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & newline & testscore
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

Sub createfile()
 Rem Put the numbers 10-100 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
For x=10 to 100 step 10

Write #1, x
 Next x
 Close #1
End Sub

See Also Get, Open, Put, Seek Statement

Seek Statement
Action Sets the position within an open file for the next read or write operation.

Syntax Seek [#] filenumber%, position& where filenumber% is an integer expression
identifying an open file to query position& is a numeric expression for the starting
position of the next read or write operation (record number or byte offset).

Comments The Seek statement. If you write to a file after seeking beyond the end of the file,
the file’s length is extended. Basic will return an error message if a Seek operation
is attempted which specifies a negative or zero position.

Filenumber% is an integer expression identifying the open file to Seek in. See the
Open statement for more details.

For files opened in Random mode, position& is a record number; for all other
modes, position& is a byte offset. Position& is in the range 1 to 2,147,483,647. The
first byte or record in the file is at position 1, the second is at position 2, etc.

194 SBL REFERENCE

Example This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file “C:\TEMP001” used by the main subprogram.

Declare Sub createfile
Sub main
 Dim testscore as String
 Dim x
 Dim y
 Dim newline
 Call createfile
 Open "C:\TEMP001" for Input as #1
 x=1
 newline=Chr(10)
 msgtext= "The test scores are: " & newline
 Do Until x=Lof(1)
 Line Input #1, testscore
 x=x+1
 y=Seek(1)
 If y>Lof(1) then
 x=Lof(1)
 Else
 Seek 1,y
 End If
 msgtext=msgtext & newline & testscore
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub
Sub createfile()
 Rem Put the numbers 10-100 into a file
 Dim x as Integer
 Open "C:\TEMP001" for Output as #1
 For x=10 to 100 step 10
 Write #1, x
 Next x
 Close #1
End Sub

See Also Get, Open, Put, Seek Function

Select Case Statement
Action Executes a series of statements, depending on the value of an expression.

Syntax Select Case testexpression
[Case expressionlist

[statement_block]]
[Case expressionlist

[statement_block]]
.
.

SELECT CASE STATEMENT 195

[Case Else
[statement_block]]

End Select

where is
testexpression any expression containing a variable to test.
expressionlist one or more expressions that contain a possible value for

testexpression .
statement_blockthe statements to execute if testexpression equals expressionlist.

Comments When there is a match between testexpression and one of the values in
expressionlist, the statement_block following the Case clause is executed. When
the next Case clause is reached, execution control goes to the statement following
the End Select statement.

The expressionlist(s) may be a comma-separated list of expressions of the following
forms:

expression
expression To expression
Is comparison_operator expression

The type of each expression must be compatible with the type of testexpression.

Note that when the To keyword is used to specify a range of values, the smaller
value must appear first. The comparison_operator used with the Is keyword is one
of: <, >, =, <=, >=, <>.

Each statement_block can contain any number of statements on any number of
lines.

Example This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

Sub main
 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer
 Dim archno as Integer
 Dim msgtext as String
 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)
 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If

196 SBL REFERENCE

 Select Case attribs
 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=Msgbox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 Msgbox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."
 Case Else
 MsgBox "File was not hidden."
 End Select
End Sub

See Also If...Then...Else, On...Goto, Option Compare

SendKeys Statement
Action Send keystrokes to an active Windows application.

Syntax SendKeys string$ [, wait%] where string$ is an expression containing the
characters to send and wait% is a numeric expression to determine whether to
wait until all keys are processed before continuing program execution (-
1=wait, 0=don’t wait).

Comments The keystrokes are represented by characters of string.

The default value for wait is 0 (FALSE).

To specify an ordinary character, enter this character in the string. For example, to
send character 'a' use “a” as string. Several characters may be combined in one
string: string “abc” means send 'a', 'b', and 'c'.

To specify that Shift, Alt, or Control keys should be pressed simultaneously with a
character, prefix the character with

+ to specify Shift
% to specify Alt
^ to specify Control.

Parentheses may be used to specify that the Shift, Alt, or Control key should be
pressed with a group of characters. For example, “%(abc)” is equivalent to
“%a%b%c”.

Since '+', '%', '^' ,'(' and ')' characters have special meaning to SendKeys, they must
be enclosed in braces if they need to be sent with SendKeys. For example string
“{%}” specifies a percent character '%'.

SENDKEYS STATEMENT 197

The other characters that need to be enclosed in braces are '~' which stands for a
newline or “Enter” if used by itself and braces themselves: use {{} to send '{' and
{}} to send '}'. Brackets '[' and ']' do not have special meaning to SendKeys but
may have special meaning in other applications, therefore, they need to be enclosed
inside braces as well.

To specify that a key needs to be sent several times, enclose the character in braces
and specify the number of keys sent after a space: for example, use {X 20} to send
20 'X' characters.

To send one of the nonprintable keys use a special keyword inside braces:

Key Keyword

Backspace {BACKSPACE} or
{BKSP} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter {ENTER}

Esc {ESCAPE} or {ESC}

Help {HELP}

Home {HOME}

Insert {INSERT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up Arrow {UP}

To send one of function keys F1-F15, simply enclose the name of the key inside
braces. For example, to send F5 use “{F5}”.

Note that special keywords can be used in combination with +, %, and ^. For
example: %{TAB} means Alt-Tab. Also, you can send several special keys in the
same way as you would send several normal keys: {UP 25} sends 25 Up arrows.

198 SBL REFERENCE

SendKeys can send keystrokes only to the currently active application. Therefore,
you have to use the AppActivate statement to activate an application before
sending keys (unless it is already active).

SendKeys cannot be used to send keys to an application which was not designed to
run under Windows.

Example This example starts the Windows Terminal application and dials a phone number
entered by the user.

Sub main
 Dim phonenumber, msgtext
 Dim x
 phonenumber=InputBox("Type telephone number to call:")
 x=Shell("Terminal.exe",1)
 SendKeys "%PD" & phonenumber & "{Enter}",1
 msgtext="Dialing..."
 MsgBox msgtext
End Sub

See Also AppActivate, DoEvents, Shell

Set Statement
Action Assigns a variable to an OLE2 object.

Syntax Set variableName = expression where variableName is an object variable or a
Variant variable and expresssion is a function, an object member, or Nothing.

Comments The following example shows the syntax for the Set statement:

Dim OLE2 As Object
Set OLE2 = CreateObject("spoly.cpoly")
OLE2.reset

+ If you omit the keyword Set when assigning an object variable, Basic will try to
copy the default member of one object to the default member of another. This
usually results in a runtime error:

' Incorrect code - tries to copy default member!
OLE2 = GetObject(,"spoly.cpoly")

Example This example displays a list of open files in the software application, VISIO. It
uses the Set statement to assign VISIO and its document files to object
variables. To see how this example works, you need to start VISIO and open
one or more documents.

Sub main
 Dim visio as Object
 Dim doc as Object
 Dim msgtext as String
 Dim i as Integer, doccount as Integer

SETATTR STATEMENT 199

'Initialize Visio
 Set visio = GetObject(,"visio.application") ' find Visio
 If (visio Is Nothing) then
 Msgbox "Couldn't find Visio!"
 Exit Sub
 End If
'Get # of open Visio files
 doccount = visio.documents.count 'OLE2 call to Visio
 If doccount=0 then
 msgtext="No open Visio documents."
 Else
 msgtext="The open files are: " & Chr$(13)
 For i = 1 to doccount
 Set doc = visio.documents(i) ' access Visio's document method
 msgtext=msgtext & Chr$(13)& doc.name
 Next i
 End If
 MsgBox msgtext
End Sub

See Also CreateObject, Is, Me, New, Nothing, Object Class, Typeof

SetAttr Statement
Action Sets the attributes for a file.

Syntax SetAttr pathname$, attributes% where pathname$ is a string expression
containing the filename to modify and attributes % is an integer containing the
new attributes for the file.

Comments Wildcards are not allowed in pathname$. If the file is open, you can modify its
attributes, but only if it is opened for Read access. Here is a description of
attributes that can be modified:

Value Meaning

0 Normal file

1 Read-only file

2 Hidden file

4 System file

32 Archive - file has changed
since last backup

Example This example tests the attributes for a file and if it is hidden, changes it to a
normal (not hidden) file.

Sub main
 Dim filename as String
 Dim attribs, saveattribs as Integer
 Dim answer as Integer

200 SBL REFERENCE

 Dim archno as Integer
 Dim msgtext as String
 archno=32
 On Error Resume Next
 msgtext="Enter name of a file:"
 filename=InputBox(msgtext)
 attribs=GetAttr(filename)
 If Err<>0 then
 MsgBox "Error in filename. Re-run Program."
 Exit Sub
 End If
 saveattribs=attribs
 If attribs>= archno then
 attribs=attribs-archno
 End If
 Select Case attribs
 Case 2,3,6,7
 msgtext=" File: " &filename & " is hidden." & Chr(10)
 msgtext=msgtext & Chr(10) & " Change it?"
 answer=Msgbox(msgtext,308)
 If answer=6 then
 SetAttr filename, saveattribs-2
 Msgbox "File is no longer hidden."
 Exit Sub
 End If
 MsgBox "Hidden file not changed."
 Case Else
 MsgBox "File was not hidden."
 End Select
End Sub

See Also FileAttr, GetAttr

SetField Function [SBL Extension]**

Action Replaces a field within a string and returns the modified string.

Syntax SetField[$](string$, field_number%, field$, separator_chars$)

where is
string$ A string consisting of a series of fields, separated by

separator_char$.
field_number% An integer for the field to replace within string$.
field$ An expression containing the new value for the field.
separator_char$ A string containing the character(s) used to separate the fields in

string$.

Comments separator_char$ may contain multiple separator characters, although the first
one will be used as the separator character.

SGN FUNCTION 201

The field_number% starts with 1. If field_number% is greater than the number of
fields in the string, the returned string will be extended with separator characters to
produce a string with the proper number of fields.

It is legal for the new field$ value to be a different size than the old value.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example extracts the last name from a full name entered by the user.

Sub main
 Dim username as String
 Dim position as Integer
 username=InputBox("Enter your full name:")
 Do
 position=InStr(username," ")
 If position=0 then
 Exit Do
 End If
 username=SetField(username,1," "," ")
 username=Ltrim(username)
 Loop
 MsgBox "Your last name is: " & username
End Sub

See Also GetField

Sgn Function
Action Returns a value indicating the sign of a number.

Syntax Sgn(number) where number is an expression for the number to use.

Comments The value that the Sgn function returns depends on the sign of number.

For numbers > 0, Sgn (number) returns 1.

For numbers = 0, Sgn (number) returns 0.

For numbers < 0, Sgn (number) returns -1.

Example This example tests the value of the variable profit and displays 0 for profit if it is
a negative number. The subroutine uses Sgn to determine whether profit is
positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

202 SBL REFERENCE

MsgBox "Yeah! We turned a profit!"
ElseIf Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub

See Also Exp, FixInt, Int, Log, Rnd, Sqr

Shell Function
Action Starts a Windows application and returns its task ID.

Syntax Shell(pathname$, [windowstyle%]) where pathname$ is the name of the program
to execute and windowstyle% is an integer value for the style of the program's
window (1-7).

Comments Shell runs an executable program. Pathname$ may be the name of any valid
.COM, .EXE., .BAT, or .PIF file. Arguments or command line switches may be
included. If pathname$ is not a valid executable file name, or if Shell cannot start
the program, an error message occurs.

Windowstyle% is one of the following values:

Value Window Style

1 Normal window with focus

2 Minimized with focus

3 Maximized with focus

4 Normal window without focus

7 Minimized without focus

If windowstyle% is not specified, the default of windowstyle% = 1 is assumed
(normal window with focus).

Shell returns the task ID for the program, a unique number that identifies the
running program.

Example This example activates the Terminal application and dials a number entered by
the user.

Sub main
 Dim phonenumber, msgtext
 Dim x
 phonenumber=InputBox("Type telephone number to call:")
 x=Shell("Terminal.exe",1)

 SendKeys "%PD" & phonenumber & "{Enter}",1
 msgtext="Dialing..."
 MsgBox msgtext
End Sub

See Also AppActivate, Command, SendKeys

SIN FUNCTION 203

Sin Function
Action Returns the sine of an angle specified in radians.

Syntax Sin(number) where number is an expression containing the angle in radians.

Comments The return value will be between -1 and 1. The return value is single-precision if
the angle is an integer, currency or single-precision value, double precision for a
long, Variant or double-precision value.The angle is specified in radians, and can
be either positive or negative.

To convert degrees to radians, multiply by (PI/180). The value of PI is 3.14159.

Example This example finds the height of the building, given the length of a roof and the
roof pitch.

Sub main
 Dim height, rooflength
 Dim pitch
 Dim msgtext
 Const PI=3.14159
 Const conversion= PI/180
 pitch=InputBox("Enter the roof pitch in degrees:")
 pitch=pitch*conversion
 rooflength=InputBox("Enter the length of the roof in feet:")
 height=Sin(pitch)*rooflength
 msgtext="The height of the building is "
 msgtext=msgtext & Format(height, "##.##") & " feet."
 MsgBox msgtext
End Sub

See Also Atn, Cos, Tan, Derived Trigonometric Functions

Space Function
Action Returns a string of spaces.

Syntax Space[$](number) where number is a numeric expression for the number of
spaces to return.

Comments number can be any numeric data type, but will be rounded to an integer. number
must be between 0 and 32,767.

The dollar sign, “$”, in the function name is optional. If specified the return type is
String. If omitted, the function will return a Variant of vartype 8 (String).

204 SBL REFERENCE

Example This example prints the octal numbers from 1 to 15 as a two-column list and uses
Space to separate the columns.

Sub main
 Dim x,y
 Dim msgtext
 Dim nofspaces
 msgtext="Octal numbers from 1 to 15:" & Chr(10)
 For x=1 to 15
 nofspaces=10
 y=Oct(x)
 If Len(x)=2 then
 nofspaces=nofspaces-2
 End If
 msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
 Next x
 MsgBox msgtext
End Sub

See Also Spc, String

Spc Function
Action Prints a number of spaces.

Syntax Spc (n) where n is an integer for the number of spaces to output.

Comments The Spc function can be used only inside Print statement.

When the Print statement is used, the Spc function will use the following rules for
determining the number of spaces to output:

1 If n is less than the total line width, Spc outputs n spaces.

2 If n is greater than the total line width, Spc outputs n Modwidth spaces.

3 If the difference between the current print position and the output line width
(call this difference x) is less than n or n Modwidth, then Spc skips to the next
line and outputs n - x spaces.

To set the width of a print line, use the Width statement.

Example This example puts five spaces and the string “ABCD” to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
 Dim str1 as String
 Dim x as String*10
 str1="ABCD"
 Open "C:\TEMP001" For Output As #1
 Width #1, 10
 Print #1, Spc(15); str1
 Close #1
 Open "C:\TEMP001" as #1 Len=12
 Get #1, 1,x

SQR FUNCTION 205

 Msgbox "The contents of the file is: " & x
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also Print, Space, Tab, Width

Sqr Function
Action Returns the square root of a number.

Syntax Sqr(number) where number is an expression containing the number to use.

Comments The return value is single-precision for an integer, currency or single-precision
numeric expression, double precision for a long, Variant or double-precision
numeric expression.

Example This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value as Double
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext

End Sub

See Also Exp, FixInt, Int, Log, Rnd, Sgn

Static Statement
Action Declares variables and allocate storage space.

Syntax Static variableName [As type] [,variableName [As type]] ... where variableName
is the name of the variable to declare and type is the data type of the variable.

Comments Variables declared with the Static statement retain their value as long as the
program is running. The syntax of Static is exactly the same as the syntax of the
Dim statement.

All variables of a procedure can be made static by using the Static keyword in a
definition of that procedure See Function or Sub for more information.

Example This example puts account numbers to a file using the record variable GRECORD
and then prints them again.

Type acctrecord
 acctno as Integer
End Type

206 SBL REFERENCE

Sub main
 Static grecord as acctrecord
 Dim x
 Dim total
 x=1
 grecord.acctno=1
 On Error Resume Next
 Open "C:\TEMP001" For Output as #1
 Do While grecord.acctno<>0
i: grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
 If Err<>0 then
 MsgBox "Error occurred. Try again."
 Err=0
 Goto i
 End If
 If grecord.acctno<>0 then
 Print #1, grecord.acctno
 x=x+1
 End If
 Loop
 Close #1
 total=x-1
 msgtext="The account numbers are: " & Chr(10)
 Open "C:\TEMP001" For Input as #1
 For x=1 to total
 Input #1, grecord.acctno
 msgtext=msgtext & Chr(10) & grecord.acctno
 Next x
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also Dim, Function...End Function, Global, Option Base, ReDim, Sub...End Sub

StaticComboBox Statement
Action Creates a combination of a list of choices and a text box.

Syntax A StaticComboBox x, y, dx, dy, text$, .field

Syntax B StaticComboBox x, y, dx, dy, stringarray$(), .field

where is
x,y the upper left corner coordinates of the list box, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the combo box in which the user enters or

selects text.
text$ a string containing the selections for the combo box.
stringarray$ an array of dynamic strings for the selections in the combo box.
.field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

STATICCOMBOBOX STATEMENT 207

Comments The StaticComboBox statement is equivalent to the ComboBox or
DropComboBox statement, but the list box of StaticComboBox always stays
visible. All dialog functions and statements that apply to the ComboBox apply to
the StaticComboBox as well.

The x argument is measured in 1/4 system-font character-width units. The y
argument is measured in 1/8 system-font character-width units. (See Begin Dialog
for more information.)

The text$ argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments in the text$ string are entered as
shown in the following example:

dimname = "listchoice"+Chr$(9)+"listchoice"+Chr$(9)+"listchoice"...

The string in the text box will be recorded in the field designated by the .field
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

Use the StaticComboBox statement only between a Begin Dialog and an End
Dialog statement.

Example This example defines a dialog box with a static combo box labeled “Installed
Drivers” and the OK and Cancel buttons.

Sub main
 Dim cchoices as String
 cchoices="MIDI Mapper"+Chr$(9)+"Timer"
 Begin Dialog UserDialog 182, 116, "SBL Dialog Box"
 StaticComboBox 7, 20, 87, 49, cchoices, .StaticComboBox1
 Text 6, 3, 83, 10, "Installed Drivers", .Text1
 OkButton 118, 12, 54, 14
 CancelButton 118, 34, 54, 14
 End Dialog
 Dim mydialogbox As UserDialog
 Dialog mydialogbox
 If Err=102 then
 MsgBox "You pressed Cancel."

 Else
 MsgBox "You pressed OK."
 End If
End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

208 SBL REFERENCE

Stop Statement
Action Halts program execution.

Syntax Stop

Comments Stop statements can be placed anywhere in a program to suspend its execution.
Although the Stop statement halts program execution, it does not close files or
clear variables.

Example This example stops program execution at the user’s request.

Sub main
 Dim str1
 str1=InputBox("Stop program execution? (Y/N):")
 If str1="Y" or str1="y" then
 Stop
 End If
 MsgBox "Program complete."
End Sub

Str Function
Action Returns a string representation of a number.

Syntax Str[$](number) where number is the number to represent as a string.

Comments The precision in the returned string is single-precision for an integer or single-
precision numeric expression, double precision for a long or double-precision
numeric expression, and currency precision for currency. Variants return the
precision of their underlying vartype.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function will return a Variant of vartype 8 (String).

Example This example prompts for two numbers, adds them, then shows them as a
concatenated string.

Sub main
 Dim x as Integer
 Dim y as Integer
 Dim str1 as String
 Dim value1 as Integer
 x=InputBox("Enter a value for x: ")
 y=InputBox("Enter a value for y: ")
 MsgBox "The sum of these numbers is: " & x+y
 str1=Str(x) & Str(y)
 MsgBox "The concatenated string for these numbers is: " & str1
End Sub

See Also Format, Val

STRCOMP FUNCTION 209

StrComp Function
Action Compares two strings and returns an integer specifying the result of the comparison.

Syntax StrComp(string1$, string2$ [, compare%])

where is
string1$ any expression containing the first string to compare.
string2$ the second string to compare.
compare% an integer for the method of comparison (0=case-sensitive, 1=case-

insensitive).

Comments StrComp returns one of the following values:

Value Meaning

-1 string1$ < string2$

0 string1$ = string2$

>1 string1$ > string2$

Null string1$ = Null or string2$ = Null

If compare% is 0, a case sensitive comparison based on the ANSI character set
sequence is performed. If compare% is 1, a case insensitive comparison is done
based upon the relative order of characters as determined by the country code
setting for your system. If omitted, the module level default, as specified with
Option Compare is used.

The string1 and string2 arguments are both passed as Variants. Therefore, any type
of expression is supported. Numbers will be automatically converted to strings.

Example This example compares a user-entered string to the string “Smith”.

Option Compare Text
Sub main
 Dim lastname as String
 Dim smith as String
 Dim x as Integer
 smith="Smith"
 lastname=InputBox("Type your last name")
 x=StrComp(lastname,smith,1)
 If x=0 then
 MsgBox "You typed 'Smith' or 'smith'."
 Else
 MsgBox "You typed: " & lastname & " not 'Smith'."
 End If
End Sub

See Also Instr, Option Compare

210 SBL REFERENCE

String FunctionString
Action Returns a string consisting of a repeated character.

Syntax A String[$](number, Character%)

Syntax B String[$] (number, string-expression$)

where is
number the length of the string to be returned.
Character% a numeric expression that contains an integer for the decimal

ANSI code of the character to use.
string-expression$ a string argument, the first character of which becomes the

repeated character.

Comments number must be between 0 and 32,767.

Character% must evaluate to an integer between 0 and 255.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function returns a Variant of vartype 8 (String).

Example This example places asterisks (*) in front of a string that is printed as a
payment amount.

Sub main
 Dim str1 as String
 Dim size as Integer
i: str1=InputBox("Enter an amount up to 999,999.99: ")
 If Instr(str1,".")=0 then
 str1=str1+".00"
 End If
 If Len(str1)>10 then
 MsgBox "Amount too large. Try again."
 Goto i
 End If
 size=10-Len(str1)
'Print amount in a space on a check allotted for 10 characters
 str1=String(size,Asc("*")) & str1
 Msgbox "The amount is: $" & str1
End Sub

See Also Space, Str

SUB ... END SUB STATEMENT 211

Sub ... End Sub Statement
Action Defines a subprogram procedure.

Syntax [Static] [Private] Sub name [([Optional] parameter [As type] , ...)]

End Sub

where is
name the name of the subprogram.
parameter a comma-separated list of parameter names.
type a data type for parameter

Comments A call to a subprogram stands alone as a separate statement. (See the Call
statement). Recursion is supported.

The data type of a parameter may be specified by using a type character or by using
the As clause. Record parameters are declared by using an As clause and a type
which has previously been defined using the Type statement. Array parameters are
indicated by using empty parentheses after the parameter. The array dimensions are
not specified in the Sub statement. All references to an array within the body of the
subprogram must have a consistent number of dimensions.

If a parameter is declared as Optional, its value may be omitted when the function
is called. Only Variant parameters may be declared as optional, and all optional
parameters must appear after all required parameters in the Sub statement.

The procedure returns to the caller when the End Sub statement is reached or when
an Exit Sub statement is executed.

The Static keyword specifies that all the variables declared within the subprogram
will retain their values as long as the program is running, regardless of the way the
variables are declared.

The Private keyword specifies that the procedures will not be accessible to
functions and subprograms from other modules. Only procedures defined in the
same module will have access to a Private subprogram.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it will modify the variable passed by the
caller.

The MAIN subprogram has a special meaning. In many implementations of Basic,
MAIN will be called when the module is “run”. The MAIN subprogram is not
allowed to take arguments.

Use Function to define a procedure which has a return value.

212 SBL REFERENCE

Example This example is a subroutine that uses the Sub...End Sub function.

Sub main
MsgBox "Hello, World."

End Sub

See Also Call, Dim, Function...End Function, Global, Option Explicit, Static

Tab Function
Action Moves the current print position to the column specified.

Syntax Tab (n) where n is the new print position to use.

Comments The Tab function can be used only inside Print statement. The leftmost print
position is position number 1.

When the Print statement is used, the Tab function will use the following rules for
determining the next print position:

1 If n is less than the total line width, the new print position is n.

2 If n is greater than the total line width, the new print position is n Modwidth .

3 If the current print position is greater than n or n Mod width, Tab skips to the
next line and sets the print position to n or n Mod width.

To set the width of a print line, use the Width statement.

Example This example prints the octal values for the numbers from 1 to 25. It uses Tab to
put five character spaces between the values.

Sub main
Dim x as Integer
Dim y
For x=1 to 25

y=Oct$(x)
Print x Tab(10) y

Next x
End Sub

See Also Print, Space, Spc, Width

Tan Function
Action Returns the tangent of an angle in radians.

Syntax Tan(number) where number is an expression containing the angle in radians.

TEXT STATEMENT 213

Comments number is specified in radians, and can be either positive or negative.

The return value is single-precision if the angle is an integer, currency or single-
precision value, double precision for a long, Variant or double-precision value.

To convert degrees to radians, multiply by PI/180. The value of PI is 3.14159.

Example This example finds the height of the exterior wall of a building, given its roof
pitch and the length of the building.

Sub main
 Dim bldglen, wallht
 Dim pitch
 Dim msgtext
 Const PI=3.14159
 Const conversion= PI/180
 On Error Resume Next
 pitch=InputBox("Enter the roof pitch in degrees:")
 pitch=pitch*conversion
 bldglen=InputBox("Enter the length of the building in feet:")
 wallht=Tan(pitch)*(bldglen/2)
 msgtext="The height of the building is: " & Format(wallht, "##.00")
 MsgBox msgtext
End Sub

See Also Atn, Cos, Sin, Derived Trigonometric Functions

Text Statement
Action Places line(s) of text in a dialog box.

Syntax Text x, y, dx, dy, text$ [, .id]

where is
x,y the upper left corner coordinates of the text area, relative to the upper

left corner of the dialog box.
dx,dy the width and height of the text area.
text$ a string containing the text to appear in the text area defined by x,y.
.id an optional identifier used by the dialog statements that act on this

control.

Comments If the width of text$ is greater than dx, the spillover characters wrap to the next
line. This will continue as long as the height of the text area established by dy is
not exceeded. Excess characters are truncated.

By preceding an underlined character in text$ with an ampersand (&), you enable a
user to press the underlined character on the keyboard and position the cursor in the
combo or text box defined in the statement immediately following the Text
statement.

Use the Text statement only between a Begin Dialog and an End Dialog statement.

214 SBL REFERENCE

Example This example defines a dialog box with a combination list and text box and three
buttons.

Sub main
 Dim ComboBox1() as String
 ReDim ComboBox1(0)
 ComboBox1(0)=Dir("C:*.*")
 Begin Dialog UserDialog 166, 142, "SBL Dialog Box"
 Text 9, 3, 69, 13, "Filename:", .Text1
 DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
 OkButton 101, 6, 54, 14
 CancelButton 101, 26, 54, 14
 PushButton 101, 52, 54, 14, "Help", .Push1
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, TextBox

TextBox Statement
Action Creates a text box in a dialog box.

Syntax TextBox [NoEcho] x, y, dx, dy, .field

where is
x,y the upper left corner coordinates of the text box, relative to the

upper left corner of the dialog box.
dx,dy the width and height of the text box area.
.field the name of the dialog record field to hold the text string.

Comments A dy value of 12 will usually accommodate text in the system font.

When the user selects the OK button, or any pushbutton other than cancel, the text
string entered in the text box will be recorded in .field.

The NoEcho keyword is often used for passwords; it displays all characters entered
as asterisks (*).

Use the TextBox statement only between a Begin Dialog and an End Dialog
statement.

TIME FUNCTION 215

Example This example creates a dialog box with a group box, and two buttons.

Sub main
 Begin Dialog UserDialog 194, 76, "SBL Dialog Box"
 GroupBox 9, 8, 97, 57, "File Range"
 OptionGroup .OptionGroup2
 OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
 OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4
 Text 25, 43, 20, 10, "From:", .Text6
 Text 63, 43, 14, 9, "To:", .Text7
 TextBox 79, 43, 13, 12, .TextBox4
 TextBox 47, 43, 12, 11, .TextBox5
 OkButton 135, 6, 54, 14
 CancelButton 135, 26, 54, 14
 End Dialog
 Dim mydialog as UserDialog
 On Error Resume Next
 Dialog mydialog
 If Err=102 then
 MsgBox "Dialog box canceled."
 End If
End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text

Time Function
Action Returns a string representing the current time.

Syntax Time[$]

Comments The Time function returns an eight character string. The format of the string is
“hh:mm:ss” where hh is the hour, mm is the minutes and ss is the seconds. The
hour is specified in military style, and ranges from 0 to 23.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function will return a Variant of vartype 8 (String).

Example This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
 Dim tempfile
 Dim filetime, curtime
 Dim msgtext
 Dim acctno(100) as Single
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As #1
 filetime=FileDateTime(tempfile)
 x=1
 I=1
 acctno(x)=0

216 SBL REFERENCE

 Do
 curtime=Time
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=1 to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf (Minute(filetime)+2)<=Minute(curtime) then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1
 x=1
 msgtext="Contents of C:\TEMP001 is:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1

 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also Date Function, Date Statement, Time Statement, Timer, TimeSerial, TimeValue

Time Statement
Action Sets the system time.

Syntax Time[$] = expression where expression is an expression that evaluates to a valid
time.

Comments When Time (with the dollar sign “$”) is used, the expression must evaluate to a
string of one of the following forms:

hh Set the time to hh hours 0 minutes and 0 seconds
hh:mm Set the time to hh hours mm minutes and 0 seconds.
hh:mm:ss Set the time to hh hours mm minutes and ss seconds

Time uses a 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00.

If the dollar sign '$' is omitted, expression can be a string containing a valid date, a
Variant of vartype 7 (date) or 8 (string).

TIMER FUNCTION 217

If expression is not already a Variant of vartype 7 (date), Time attempts to convert
it to a valid time. It recognizes time separator characters defined in the International
section of the Windows Control Panel. Time (without the $) accepts both 12 and 24
hour clocks.

Example This example changes the time on the system clock.

Sub main
 Dim newtime as String
 Dim answer as String
 On Error Resume Next
i: newtime=InputBox("What time is it?")
 answer=InputBox("Is this AM or PM?")
 If answer="PM" or answer="pm" then
 newtime=newtime &"PM"
 End If
 Time=newtime
 If Err<>0 then
 MsgBox "Invalid time. Try again."
 Err=0
 Goto i
 End If
End Sub

See Also Date Function, Date Statement, Time Function, TimeSerial, TimeValue

Timer Function
Action Returns the number of seconds that have elapsed since midnight.

Syntax Timer

Comments The Timer function can be used in conjunction with the Randomize statement to
seed the random number generator.

Example This example uses Timer Function to find a Megabucks number.

Sub main
 Dim msgtext
 Dim value(9)
 Dim nextvalue
 Dim x
 Dim y
 msgtext="Your Megabucks numbers are: "
 For x=1 to 8
 Do
 value(x)=Timer
 value(x)=value(x)*100
 value(x)=Str(value(x))
 value(x)=Val(Right(value(x),2))
 Loop Until value(x)>1 and value(x)<36
 For y=1 to 1500
 Next y
 Next x

218 SBL REFERENCE

 For y=1 to 8
 For x= 1 to 8
 If y<>x then
 If value(y)=value(x) then
 value(x)=value(x)+1
 End If
 End If
 Next x
 Next y
 For x=1 to 8
 msgtext=msgtext & value(x) & " "
 Next x
 MsgBox msgtext
End Sub

See Also Randomize

TimeSerial Function
Action Returns a time as a Variant of type 7 (date/time) for a specific hour, minute, and

second.

Syntax TimeSerial(hour%, minute%, second%) where hour% is a numeric expression
for an hour (0-23), minute% is a numeric expression for a minute (0-59) and
second% is a numeric expression for a second (0-59).

Comments You also can specify relative times for each argument by using a numeric
expression representing the number of hours, minutes, or seconds before or after a
certain time.

Example This example displays the current time using Time Serial.

Sub main
 Dim y
 Dim msgtext
 Dim nowhr
 Dim nowmin
 Dim nowsec
 nowhr=Hour(Now)
 nowmin=Minute(Now)
 nowsec=Second(Now)
 y=TimeSerial(nowhr,nowmin,nowsec)
 msgtext="The time is: " & y
 MsgBox msgtext

End Sub

See Also DateSerial, Date Value, Hour, Minute, Now, Second, TimeValue

TIMEVALUE FUNCTION 219

TimeValue Function
Action Returns a time value for a specified string.

Syntax TimeValue(time$) where time$ is a string representing a valid date time value.

Comments The TimeValue function returns a Variant of vartype 7 (date/time) that
represents a time between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59
P.M., inclusive.

Example This example writes a variable to a disk file based on a comparison of its last
saved time and the current time. Note that all the variables used for the TimeValue
function are dimensioned as Double, so that calculations based on their values will
work properly.

Sub main
 Dim tempfile
 Dim ftime
 Dim filetime as Double
 Dim curtime as Double
 Dim minutes as Double
 Dim acctno(100) as Integer
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As 1
 ftime=FileDateTime(tempfile)
 filetime=TimeValue(ftime)
 minutes= TimeValue("00:02:00")
 x=1
 I=1
 acctno(x)=0
 Do
 curtime= TimeValue(Time)
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 For I=I to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf filetime+minutes<=curtime then
 For I=I to x
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1
 x=1
 msgtext="You entered:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext

220 SBL REFERENCE

 Close #1
 Kill "C:\TEMP001"
End Sub

See Also DateSerial, Date Value, Hour, Minute, Now, Second, TimeSerial

Trim Function
Action Returns a copy of a string after removing all leading and trailing spaces.

Syntax Trim [$](string) where string is an expression containing the string to trim.

Comments Trim accepts expressions of type String. Trim accepts any type of string
including numeric values and will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function typically returns a Variant of vartype 8 (String). If
the value of string is NULL, a Variant of vartype 1 (Null) is returned.

Example This example removes leading and trailing spaces from a string entered by the
user.

Sub main
 Dim userstr as String
 userstr=InputBox("Enter a string with leading/trailing spaces")
 MsgBox "The string is: " & Trim(userstr) & " with nothing after it."
End Sub

See Also GetField, Left, Len, Ltrim, Mid Function, Mid Statement, Right, RTrim

Type Statement
Action Declares a user-defined type.

Syntax Type userType
field1 As type1
field2 As type2
 ...

End Type

where is
userType a string expression for the name of the user-defined type.
field1, field2 the name of a field in the user-defined type.
type1, type2 a data type: Integer, Long, Single, Double, Currency, String,

String*length, Variant, or another user-defined type.

TYPEOF FUNCTION 221

Comments The user-defined type declared by Type can then be used in the Dim statement to
declare a record variable. A user-defined type is sometimes referred to as a record
type or a structure type.

field may not be an array. However, arrays of records are allowed.

The Type statement is not valid inside of a procedure definition. To access the
fields of a record, use notation of the form:

recordName.fieldName
To access the fields of an array of records, use notation of the form:

arrayName(index).fieldName

Example This example shows a Type and Dim statement for a record. You must define a
record type before you can declare a record variable. The subroutine then
references a field within the record.

Type Testrecord
 Custno As Integer
 Custname As String
End Type
Sub main
 Dim myrecord As Testrecord
i: myrecord.custname=InputBox("Enter a customer name:")
 If myrecord.custname="" then
 Exit Sub
 End If
 answer=InputBox("Is the name: " & myrecord.custname &" correct? (Y/N)")

If answer="Y" or answer="y" then
 MsgBox "Thank you."
 Else
 MsgBox "Try again."
 Goto i
 End If
End Sub

See Also Deftype, Dim

Typeof Function
Action Returns a value indicating whether an object is of a given class (-1=TRUE,

0=FALSE).

Syntax If Typeof objectVariable Is className then. . . where objectVariable is the object
to test and className is the class to compare the object to.

Comments Typeof may only be used in an If statement and may not be combined with other
boolean operators. That is, Typeof may only be used exactly as shown in the
syntax above.

222 SBL REFERENCE

To test if an object does not belong to a class, use the following code structure:

If Typeof objectVariable Is className Then
Else

Rem Perform some action.
End If

Example This example .

Sub main
---TBD---
End Sub

See Also CreateObject, GetObject, Is, Me, New, Nothing, Object Class

UBound Function
Action Returns the upper bound of the subscript range for the specified array.

Syntax UBound(arrayname [, dimension]) where arrayname is the name of the array to
use and dimension is the dimension to use.

Comments The dimensions of an array are numbered starting with 1. If the dimension is not
specified, 1 is used as a default.

LBound can be used with UBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the
array. It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
 Dim arrayvar() as Integer
 Dim count as Integer
 Dim answer as String
 Dim x, y as Integer
 Dim total
 total=0
 x=1
 count=InputBox("How many test scores do you have?")
 ReDim arrayvar(count)
start:
 Do until x=count+1
 arrayvar(x)=InputBox("Enter test score #" &x & ":")
 x=x+1
 Loop
 answer=InputBox$("Do you have more scores? (Y/N)")
 If answer="Y" or answer="y" then
 count=InputBox("How many more do you have?")
 If count<>0 then
 count=count+(x-1)
 ReDim Preserve arrayvar(count)
 Goto start

UCASE FUNCTION 223

 End If
 End If
 x=LBound(arrayvar,1)
 count=UBound(arrayvar,1)
 For y=x to count
 total=total+arrayvar(y)
 Next y
 MsgBox "The average of the " & count & " scores is: " & Int(total/count)
End Sub

See Also Dim, Global, Lbound, Option Base, ReDim, Static

UCase Function
Action Returns a copy of a string after converting all lowercase letters to uppercase.

Syntax UCase[$](string) where string is an expression that evalutes to a string.

Comments The translation is based on the country specified in the Windows Control Panel.

UCase accepts expressions of type string. UCase accepts any type of argument and
will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function typically returns a Variant of vartype 8 (String). If
the value of string is Null, a Variant of vartype 1 (Null) is returned.

Example This example converts a filename entered by a user to all uppercase letters.

Option Base 1
Sub main
 Dim filename as String
 filename=InputBox("Enter a filename: ")
 filename=UCase(filename)
 MsgBox "The filename in uppercase is: " & filename
End Sub

See Also Asc, LCase

Val Function
Action Returns the numeric value of the first number found in the specified string.

Syntax Val(string$) where string$ is a string expression containing a number.

Comments Spaces in the source string are ignored. If no number is found, Val returns 0.

224 SBL REFERENCE

Example This example tests the value of the variable profit and displays 0 for profit if it is
a negative number. The subroutine uses Sgn to determine whether profit is
positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

MsgBox "Yeah! We turned a profit!"
ElseIf Sgn(profit)=0 then

MsgBox "Okay. We broke even."
Else

MsgBox "Uh, oh. We lost money."
End If

End Sub

See Also Ccur, Cdbl, Cint, Clng, Csng, Cstr, Cvar, CVDate, Format, Str

VarType Function
Action Returns the Variant type of the specified Variant variable (0-9).

Syntax VarType(varname) where varname is the Variant variable to use.

Comments The value returned by VarType is one of the following:

Ordinal Representation

0 (Empty)

1 Null

2 Integer

3 Long

4 Single

5 Double

6 Currency

7 Date

8 String

9 Object

VARTYPE FUNCTION 225

Example This example returns the type of a variant.

Sub main
 Dim x
 Dim myarray(8)
 Dim retval
 Dim retstr
 myarray(1)=Null
 myarray(2)=0
 myarray(3)=39000
 myarray(4)=CSng(10^20)
 myarray(5)=10^300
 myarray(6)=CCur(10.25)
 myarray(7)=Now
 myarray(8)="Five"
 For x=0 to 8
 retval=Vartype(myarray(x))
 Select Case retval
 Case 0
 retstr=" (Empty)"
 Case 1
 retstr=" (Null)"
 Case 2
 retstr=" (Integer)"
 Case 3
 retstr=" (Long)"
 Case 4
 retstr=" (Single)"
 Case 5
 retstr=" (Double)"
 Case 6
 retstr=" (Currency)"
 Case 7
 retstr=" (Date)"
 Case 8
 retstr=" (String)"
 End Select

 If retval=1 then
 myarray(x)="[null]"
 ElseIf retval=0 then
 myarray(x)="[empty]"
 End If
 MsgBox "The variant type for " &myarray(x) & " is: " &retval &retstr
 Next x
End Sub

See Also IsDate, IsEmpty, IsNull, IsNumeric

226 SBL REFERENCE

Weekday Function
Action Returns the day of the week for the specified date-time value.

Syntax Weekday(date) where date is an expression containing a date time value.

Comments The Weekday function returns an integer between 1 and 7, inclusive (1=Sunday,
7=Saturday).

Weekday accepts any expression, including strings, and attempts to convert the
input value to a date value.

The return value is a Variant of vartype 2 (Integer). If the value of date is NULL, a
Variant of vartype 1 (Null) is returned.

Example This example finds the day of the week on which New Year's Day will fall in the
year 2000.

Sub main
 Dim newyearsday
 Dim daynumber
 Dim msgtext
 Dim newday as Variant
 Const newyear=2000
 Const newmonth=1
 Let newday=1
 newyearsday=DateSerial(newyear,newmonth,newday)
 daynumber=Weekday(newyearsday)
 msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
 MsgBox msgtext
End Sub

See Also Date Function, Date Statement, Day, Hour, Minute, Month, Now, Second, Year

While ... Wend
Action Controls a repetitive action.

Syntax While condition
statementblock

Wend
where condition is an expression that evaluates to True (non-zero) or False (zero)
and statementblock is a series of statements to execute if condition is True.

Comments The statementblock statements are until condition becomes 0 (False).

The While statement is included in SBL for compatibility with older versions of
Basic. The Do statement is a more general and powerful flow control statement.

WHILE ... WEND 227

Example The uses While...Wend to loop through the C:\TEMP00? files. These files are
created by the subroutine CREATEFILES.

Declare Sub createfiles
Sub main
 Dim custfile as String
 Dim aline as String
 Dim pattern as String
 Dim count as Integer
 Call createfiles
 Chdir "C:\"
 custfile=Dir$("TEMP00?")
 pattern="*" + "Overdue" + "*"
 While custfile <> ""
 Open custfile for input as #1
 On Error goto atEOF
 Do
 Line Input #1, aline
 If aline Like pattern Then
 count=count+1
 End If
 Loop
nxtfile:
 On Error GoTo 0
 Close #1
 custfile = Dir$
 Wend
 If count<>0 then
 Msgbox "Number of overdue accounts: " & count
 Else
 Msgbox "No accounts overdue"
 End If
 Kill "C:\TEMP001"
 Kill "C:\TEMP002"
 Exit Sub
atEOF:
 Resume nxtfile
End Sub

Sub createfiles()
 Dim odue as String
 Dim ontime as String
 Dim x
 Open "C:\TEMP001" for OUTPUT as #1
 odue="*" + "Overdue" + "*"
 ontime="*" + "On-Time" + "*"
 For x=1 to 3
 Write #1, odue
 Next x
 For x=4 to 6
 Write #1, ontime
 Next x
 Close #1
 Open "C:\TEMP002" for Output as #1
 Write #1, odue
 Close #1
End Sub

See Also Do...Loop

228 SBL REFERENCE

Width Statement
Action Sets the output line width for an open file.

Syntax Width [#]filenumber%, width% where filenumber% is an integer expression for
the open file to use and width% is an integer expression for the width of the line
(0 to 255).

 Comments Filenumber% is the number assigned to the file when it is opened. See the Open
statement for more information.

A value of zero (0) for width% indicates there is no line length limit. The default
width% for a file is zero (0).

Example This example puts five spaces and the string “ABCD” to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
 Dim str1 as String
 Dim x as String*10
 str1="ABCD"
 Open "C:\TEMP001" For Output As #1
 Width #1, 10
 Print #1, Spc(15); str1
 Close #1
 Open "C:\TEMP001" as #1 Len=12
 Get #1, 1,x
 Msgbox "The contents of the file is: " & x
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also Open, Print

With Statement [SBL Extension]**
Action Executes a series of statements on a specified variable.

Syntax With variable
statement_block

End With

where variable is the variable to be changed by the statements in statement_block
and statement_block the statements to execute.

Comments Variable may be an object or a user defined type. The With statements can be nested.

**SBL offers a number of extensions that are not included in Visual Basic.

WRITE STATEMENT 229

Example This example creates a user-defined record type, custrecord and uses the With
statement to fill in values for the record fields, for the record called “John”.

Type custrecord
 name as String
 ss as String
 salary as Single
 dob as Variant
 street as String
 apt as Variant
 city as String
 state as String
End Type
Sub main
 Dim John as custrecord
 Dim msgtext
 John.name="John"
 With John
 .ss="037-67-2947"
 .salary=60000
 .dob=#10-09-65#
 .street="15 Chester St."
 .apt=28
 .city="Cambridge"
 .state="MA"
 End With
 msgtext=Chr(10) & "Name:" & Space(5) & John.name & Chr(10)
 msgtext=msgtext & "SS#: " & Space(6) & john.ss & chr(10)
 msgtext=msgtext & "D.O.B:" & Space(4) & john.dob
 Msgbox "Done with: " & Chr(10) & msgtext
End Sub

See Also Type...End Type

Write Statement
Action Writes data to an open sequential file.

Syntax Write [#] filenumber% [,expressionlist]

where filenumber% is an integer expression for the open file to use and
expressionlist is one or more values to write to the file.

Comments The file must be opened in Output or Append mode. Filenumber% is the
number assigned to the file when it is opened. See the Open statement for more
information.

If expressionlist is omitted, the Write statement writes a blank line to the file. (See
Input for more information.)

Example This example writes a variable to a disk file based on a comparison of its last
saved time and the current time.

230 SBL REFERENCE

Sub main
 Dim tempfile
 Dim filetime, curtime
 Dim msgtext
 Dim acctno(100) as Single
 Dim x, I
 tempfile="C:\TEMP001"
 Open tempfile For Output As #1
 filetime=FileDateTime(tempfile)
 x=1
 I=1
 acctno(x)=0
 Do
 curtime=Time
 acctno(x)=InputBox("Enter an account number (99 to end):")
 If acctno(x)=99 then
 If x=1 then Exit Sub
 For I=1 to x-1
 Write #1, acctno(I)
 Next I
 Exit Do
 ElseIf (Minute(filetime)+2)<=Minute(curtime) then
 For I=I to x-1
 Write #1, acctno(I)
 Next I
 End If
 x=x+1
 Loop
 Close #1
 x=1
 msgtext="Contents of C:\TEMP001 is:" & Chr(10)
 Open tempfile for Input as #1
 Do While Eof(1)<>-1
 Input #1, acctno(x)
 msgtext=msgtext & Chr(10) & acctno(x)
 x=x+1
 Loop
 MsgBox msgtext
 Close #1
 Kill "C:\TEMP001"
End Sub

See Also Close, Open, Print, Put

Year Function
Action Returns the year component (1-12) of a date-time value.

Syntax Year(date)

where date is an expression that can evaluate to a date time value.

YEAR FUNCTION 231

Comments The Year function returns an integer between 100 and 9999, inclusive.

Year accepts any type of date, including strings, and will attempt to convert the
input value to a date value.

The return value is a Variant of vartype 2 (Integer). If the value of date is NULL, a
Variant of vartype 1 (Null) is returned.

Example This example returns the year for today.

Sub main
Dim nowyear
nowyear=Year(Now)
MsgBox "The current year is: " &nowyear

End Sub

See Also Date Function, Date Statement, Day, Hour, Minute, Month, Now, Time Function,
Second, Weekday

233

Glossary

Call by reference In a Basic script, arguments
passed by reference to a procedure may be
modified by the procedure. Procedures written
in Basic are defined to receive their arguments
by reference. If you call such a procedure and
pass it a variable, and if the procedure modifies
its corresponding formal parameter, it will
modify the variable. Passing an expression by
reference is acceptable in Basic; if the called
procedure modifies its corresponding
parameter, a temporary value will be modified,
with no apparent effect on the caller.

Call by value In a Basic script, when an
argument is passed by value to a procedure, the
called procedure receives a copy of the
argument. If the called procedure modifies its
corresponding formal parameter, it will not
affect the caller. Procedures written in other
languages such as C may receive their
arguments by value.

Comment In a Basic script, a comment is text
that documents a program. Comments have no
effect on the program (except for
metacommands). In Basic, a comment begins
with a single quotation mark (‘), and continues
to the end of the line. If the first character in a
comment is a dollar sign ($), the comment will
be interpreted as a metacommand. Lines
beginning with the keyword Rem are also
interpreted as comments.

Dialog control An item in a dialog box, such as
a list box, combo box, or command button.

Function In a Basic script, a procedure which
returns a value. In Basic, the return value is
specified by assigning a value to the name of
the function, as if the function were a variable.

Label In a Basic script, a label identifies a
position in the program at which to continue
execution, usually as a result of executing a
GoTo statement. To be recognized as a label, a
name must begin in the first column, and must
be immediately followed by a colon (:).
Reserved words are not valid labels.

Metacommand In a Basic script, a command
that gives the compiler instructions on how to
build the program. In Basic, metacommands
are specified in comments that begin with a
dollar sign ($).

Name In a Basic script, a name must start with
a letter (A through Z). The remainder of a
name can also contain numeric digits (0
through 9) or an underscore (_). A name cannot
exceed 40 characters in length. ‘Type
characters’ are not considered part of a name.

234 GLOSSARY

Precedence order In a Basic script, the system
SBL uses to determine which operators in an
expression to evaluate first, second, and so on.
Operators with a higher precedence are
evaluated before those with lower precedence.
Operators with equal precedence are evaluated
from left to right. The default precedence
order, from high to low, is numeric, string,
comparison, logical.

Procedure In a Basic script, a series of SBL
statements and functions executed as a unit.
Both subprograms (Sub) and functions
(Function) are called procedures.

SBL The acronym for the Softbridge Basic
Language (SBL).

Subprogram In a Basic script, a procedure that
does not return a value.

Type character In a Basic script, a special
character used as a suffix to the name of a
function, variable, or constant. The character
defines the data type of the variable or
function. The characters are:

Dynamic String...$
Integer..%
Long integer ..&
Single: single precision floating point !
Double: double precision floating point ...#
Currency exact fixed point@

Vartype In a Basic script, the internal tag used to
identify the type of value currently assigned to a
variant. One of the following:

Empty ...0
Null...1
Integer...2
Long ...3
Single..4
Double ..5
Currency...6
Date ..7
String ..8
Object ...9

	Using Basic
	SBL Functional Index
	SBL Basic Conventions
	Dialog Boxes
	Error Handling
	Expressions
	Object Handling
	Derived Trigonometric Functions
	SBL Versus Other Basics
	SBL Compared to Visual Basic

	SBL Reference
	Abs Function
	AppActivate Statement
	Asc Function
	Assert Statement [SBL Extension]**
	Atn Function
	Beep Statement
	Begin Dialog ... End Dialog Statement
	Button Statement
	ButtonGroup Statement
	Call Statement
	CancelButton Statement
	Caption Statement
	CCur Function
	CDbl Function
	ChDir Statement
	ChDrive Statement
	CheckBox Statement
	Chr Function
	CInt Function
	CLng Function
	Close Statement
	ComboBox Statement
	Command Function
	Const Statement
	Cos Function
	CreateObject Function
	CSng Function
	CStr Function
	'$CStrings Metacommand [SBL Extension]** '$
	CurDir Function
	CVar Function
	CVDate Function
	Date Function
	Date Statement
	DateSerial Function
	DateValue Function
	Day Function
	Declare Statement
	Deftype Statement
	Dialog FunctionD
	Dialog Statement
	Dim Statement
	Dir Function
	DlgControlID Function
	DlgEnable Function
	DlgEnable Statement
	DlgFocus Function
	DlgFocus Statement
	DlgListBoxArray Function
	DlgListBoxArray Statement
	DlgSetPicture Statement
	DlgText Function
	DlgText Statement
	DlgValue Function
	DlgValue Statement
	DlgVisible Function
	DlgVisible Statement
	Do...Loop Statement
	DoEvents Statement
	DropComboBox Statement
	DropListBox Statement
	Environ Function
	Eof Function
	Erase Statement
	Erl Function
	Err Function
	Err Statement
	Error Function
	Error Statement
	Exit Statement
	Exp Function
	FileAttr Function
	FileCopy Statement
	FileDateTime Function
	FileLen Function
	Fix Function
	For...Next Statement
	Format Function
	FreeFile Function
	Function ... End Function Statement
	FV Function
	Get Statement
	GetAttr Function
	GetCurValues Statement
	GetField Function [SBL Extension]**
	GetObject Function
	Global Statement
	GoTo Statement
	GroupBox Statement
	Hex Function
	Hour Function
	If ... Then ... Else
	'$Include Metacommand [SBL Extension]** '
	Input Function
	Input Statement
	InputBox Function
	InStr Function
	Int Function
	IPmt Function
	IRR Function
	Is Operator
	IsDate Function
	IsEmpty Function
	IsNull Function
	IsNumeric Function
	Kill Statement
	LBound Function
	LCase Function
	Left Function
	Len Function
	Let (Assignment Statement)
	Like Operator
	Line Input Statement
	ListBox Statement
	Loc Function
	Lock, Unlock Statements
	Lof Function
	Log Function
	Lset Statement
	LTrim Function
	Me
	Mid Function
	Mid Statement
	Minute Function
	MkDir Statement
	Month Function
	Msgbox Function
	Msgbox Statement
	Name Statement
	New Operator
	$NoCStrings Metacommand [SBL Extension]**
	Nothing Function
	Now Function
	NPV Function
	Null Function
	Object Class
	Oct Function
	OkButton Statement
	On...Goto Statement
	On Error Statement
	Open Statement
	OptionButton Statement
	OptionGroup Statement
	Option Base Statement
	Option Compare Statement
	Option Explicit Statement
	PasswordBox Function
	Picture Statement
	Pmt Function
	PPmt Function
	Print Statement
	PushButton Statement
	Put Statement
	PV Function
	Randomize Statement
	Rate Function
	ReDim Statement
	Rem Statement
	Reset Statement
	Resume Statement
	Right Function
	RmDir Statement
	Rnd Function
	Rset Statement
	RTrim Function
	Second Function
	Seek Function
	Seek Statement
	Select Case Statement
	SendKeys Statement
	Set Statement
	SetAttr Statement
	SetField Function [SBL Extension]**
	Sgn Function
	Shell Function
	Sin Function
	Space Function
	Spc Function
	Sqr Function
	Static Statement
	StaticComboBox Statement
	Stop Statement
	Str Function
	StrComp Function
	String FunctionString
	Sub ... End Sub Statement
	Tab Function
	Tan Function
	Text Statement
	TextBox Statement
	Time Function
	Time Statement
	Timer Function
	TimeSerial Function
	TimeValue Function
	Trim Function
	Type Statement
	Typeof Function
	UBound Function
	UCase Function
	Val Function
	VarType Function
	Weekday Function
	While ... Wend
	Width Statement
	With Statement [SBL Extension]**
	Write Statement
	Year Function

	Glossary

