Softbridge Basic
Language (SBL)

Reference Manual

O Copyright 1996 by Primavera Systems, Inc. All rights reserved. No part of this publication may
be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including
photocopying, mimeographing, recording, taping, or in information storage and retrieval systems—
without written permission from the publisher.

Please send your comments about SureTrak Project Manager for Windows to:

Primavera Systems, Inc.
Two Bala Plaza

Bala Cynwyd, PA 19004
Telephone: 610-667-8600
FAX: 610-667-7894

Primavera Project Planner, P3, Finest Hour, Expedition, and Parade are registered trademarks, and PENGUIN,
SureTrak Project Manager, Executive Summary Presentation, Monte Carlo, QuickRisk, Buy The Hour for
Primavera, ReportSmith for Primavera, and Concentric Project Management are trademarks of Primavera
Systems, Inc. All other brands and product names are trademarks or registered trademarks of their respective
companies.

U.S. GOVERNMENT RESTRICTED RIGHTS: The SOFTWARE and documentation are
provided with RESTRICTED RIGHTS. Use, duplication, or disclosure by the Government is
subject to the restrictions set forth in subparagraph (c)(1)(ii) of The Rights in Technical Data and
Computer Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the
Commercial Computer Software-Restricted Rights 48 CFR 52.227-19, and our GSA contract, as
applicable.

"“ This manual is printed on recycled paper.
L |

Using Basic

Softbridge Basic language (SBL) is a programming language delivered with
SureTrak that provides power, ease of integration, and VBA compatibility.
SBL supports standard Basic numeric, string, record and array data, along
with dialog box records. SBL is similar to Visual Basic; for example, it can
run any DLL. You should find it easy to use the SBL to create scripts that
automate any variety of daily tasks. For example, you can do something as
simple as repaint the screen on demand or for something as complex as
retrieve data from another application, perform calculations with conditional
expressions, bring the new data into SureTrak, and calculate new activity

totals.

This section

Contains

SBL Functional List

SBL Basic Conventions

Dialog Boxes

Error Handling

Expressions

Object Handling

Derived Trigonometric Functions

SBL Versus Other Basics

SBL Compared to Visual Basic

All statements and functions in SBL
organized by functional group, such as
Dialog Boxes, Arrays, or Math Functions

A list of topics that describe how to use
features in SBL.

Instructions for incorporating dialog boxes
into your scripts.

Instructions for trapping errors in your
script.

Instructions for using logical expressions in
your script.

Instructions for using objects, properties,
and methods in your script.

Instructions for using trigonometric
functions in your script.

A comparison of SBL Basic to other
versions of Basic.

A comparison SBL Basic to Visual Basic.

USING BASIC

SBL Functional Index

This chapter contains a list of SBL statements and functions grouped by

function.

Arrays

Erase Reinitialize contents of an array

LBound Return the lower bound of an array's dimension
ReDim Declare dynamic arrays and reallocate memory
UBound Return the upper bound of an array's dimension

Compiler Directives

$CStrings
$include
$NoCStrings
Line
Continuation
Rem

Treat backslash in string as an escape character as in 'C'
Tell the compiler to include statements from another file
Tell the compiler to treat a backslash as a normal character
Continuing a long statement across multiple lines

Treat the remainder of the line as a comment

Control Flow

Call Transfer control to a subprogram

Do...Loop Control repetitive actions

Exit Cause the current procedure or loop structure to return

For...Next Loop a fixed number of times

GetCurValues Retrieve current values for a dialog box

Goto Send control to a line label

If ... Then ... Ele Branch on a conditional value

Let Assign a value to a variable

Lset Left-align one string or a user-defined variable within
another

On...Goto Branch to one of several labels depending upon value

Rset Right-align one string within another

Select Case Execute one of a series of statement blocks

Set Set an object variable to a value

Stop Stop program execution

While ... Wend Control repetitive actions

With Execute a series of statements on a specified variable

SBL FUNCTIONAL INDEX

Dates & Times

Date Function
Date Statement
DateSerial
DateValue

Day

Hour

IsDate

Minute

Month

Now

Second

Time Function
Time Statement
Timer
TimeSerial

TimeValue
Weekday

Year

Declarations

Return the current date

Set the system date

Return the date value for year, month, and day specified
Return the date value for string specified

Return the day of month component of a date-time value
Return the hour of day component of a date-time value
Determine whether a value is a legal date.

Return the minute component of a date-time value
Return the month component of a date-time value
Return the current date and time

Return the second component of a date-time value
Return the current time

Set the current time

Return the number of seconds since midnight

Return the time value for hour, minute, and second
specified

Return the time value for string specified

Return the day of the week for the specified date-time
value

Return the year component of a date-time value

Const
Declare

Deftype
Dim

Function ... End
Function

Global

Option Base
Option Compare
Option Explicit
ReDim

Static

Sub ... End Sub

Type

Declare a symbolic constant

Forward declare a procedure in the same module or in a

dynamic link library

Declare the default data type for variables
Declare variables

Define a function

Declare a global variable
Declare the default lower bound for array dimensions

Declare the default case sensitivity for string comparisons

Force all variables to be explicitly declared
Declare dynamic arrays and reallocate memory
Define a static variable or subprogram

Define a subprogram

Declare a user-defined data type

USING BASIC

Dialog Boxes

Defining Dialog Boxes

Begin Dialog
Button
ButtonGroup

CancelButton
Caption
CheckBox
ComboBox
DropComboBox
DropListBox
GroupBox
ListBox
OKButton
OptionButton
OptionGroup

Picture
PushButton
StaticComboBox
Text

TextBox

Begin a dialog box definition
Define a button dialog box control

Begin definition of a group of button dialog box
controls

Define a Cancel button dialog box control

Define the title of a dialog box

Define a checkbox dialog box control

Define a combo box dialog box control

Define a drop-down combo box dialog box control
Define a drop-down list box dialog box control
Define a group box in a dialog box

Define a list box dialog box control

Define an OK button dialog box control

Define an OptionButton dialog box control

Begin definition of a group of OptionButton dialog
box controls

Define a Picture control

Define a pushbutton dialog box control
Define a static combo box dialog box control
Define a line of text in a dialog box

Define a text box in a dialog box

Running Dialog Boxes

Dialog Function
Dialog Statement
DigControlld

Display a dialog box and return the button pressed
Display a dialog box
Return numeric ID of a dialog control

DigEnable Functin Tell whether a dialog control is enabled or disabled
DlgEnable StatemeénEnable or disable a dialog control

DlgFocus Function Return ID of the dialog control having input focus
DlgFocus Statemén Set focus to a dialog control

DlgListBoxArray
Function

DlgListBoxArray
Statement

DlgSetPicture

Return contents of a list box or combo box
Set contents of a list box or combo box

Change the picture in the Picture control

SBL FUNCTIONAL INDEX

Dialog Boxes

DIgText Function

Return the text associated with a dialog control

DIgText Statement Set the text associated with a dialog control
DlgValue Function Return the value associated with dialog control
DlgValue Statemen Set the value associated with a dialog control
DlgVisible Functiommn Tell whether a control is visible or hidden
DlgVisible StatemenShow or hide a dialog control

Environment Control

AppActivate
Command

Date Statement

Activate another application

Return the command line specified when the MAIN
sub was run

Set the current date

DoEvents Let operating system process messages

Environ Return a string from the operating system's
environment

Randomize Initialize the random-number generator

SendKeys Send keystrokes to another application

Shell Run an executable program

Errors

Assert Trigger an error if a condition is false

Erl Return the line number where a run-time error occurred

Err Function
Err Statement
Error

Error Function
On Error
Resume

Return a run-time error code

Set the run-time error code
Generate an error condition

Return a string representing an error
Control run-time error handling

End an error-handling routine

Trappable Errag Errors which can be trapped by SBL code

n USING BASIC

Files

Disk and Directory Control

ChDir Change the default directory for a drive

ChDrive Change the default drive

CurDir Return the current directory for a drive

Dir Return a filename which matches a pattern

MKkDir Make a directory on a disk

RmDir Remove a directory from a disk

File Control

FileAttr Return information about an open file

FileCopy Copy afile

FileDateTime Return modification date and time of a specified file
FileLen Return the length of specified file in bytes

GetAttr Return attributes of specified file, directory of volume label
Kill Delete files from a disk

Name Rename a disk file

SetAttr Set attribute information for a file

File Input/Output

Close Close a file

Eof Check for end of file

FreeFile Return the next unused file number
Get Read bytes from a file

Input Function Return a string of characters from a file
Input Statement Read data from a file or from the keyboard

Line Input Read a line from a sequential file

Loc Return current position of an open file

Lock, Unlock Control access to some/all of open file by other processes
Lof Return the length of an open file

Open Open a disk file or device for I/O

Print Print data to a file or to the screen

Put Write data to an open file

Reset Close all open disk files

Seek Function Return the current position for a file
Seek Statement Set the current position for a file

Spc Output given number of spaces
Tab Move print position to the given column
Width Set output-line width for an open file

Write Write data to a sequential file

SBL FUNCTIONAL INDEX

Math Functions

Financial Functions

FVv
IPmt
IRR
NPV
Pmt
PPmt
PV
Rate

Return future value of a cash flow stream

Return interest payment for a given period

Return internal rate of return for a cash flow stream
Return net present value of a cash flow stream
Return a constant payment per period for an annuity
Return principal payment for a given period

Return present value of a future stream of cash flows
Return interest rate per period

Numeric Functions

Abs

Exp

Fix

Int
IsNumeric
Log

Rnd

Sgn

Sqr
Derived
Functions

Return the absolute value of a number

Return the value cdraised to a power

Return the integer part of a number

Return the integer part of a number
Determine whether a value is a legal number
Return the natural logarithm of a value

Return a random number

Return a value indicating the sign of a number
Return the square root of a number

How to compute other numeric functions

Trigonometric Functions

Atn Return the arc tangent of a number

Cos Return the cosine of an angle.

Sin Return the sine of an angle

Tan Return the tangent of an angle

Derived How to compute other trigopnometric functions

Functions

Objects

CreateObject Create an OLE2 automation object

GetObject Retrieve an OLE2 object from a file or get the active
OLEZ2 object for an OLEZ2 class

Is Determine whether two object variables refer to the same
object

Me Get the current object

n USING BASIC

Objects

New Allocate and initialize a new OLE2 object

Nothing Set an object variable to not refer to an object

Object Declare an OLE2 automation object

Typeof Check the class of an object

With Execute statements on an object or a user-defined type

Screen Input/Output

Beep

Input Function
Input Statement
InputBox

MsgBox Functio

MsgBox
Statement
PasswordBox

Print

Strings

Produce a short beeping tone through the speaker
Return a string of characters from a file

Read data from a file or from the keyboard
Display a dialog box which prompts for input
Display a Windows message box

Display a Windows message box

Display a dialog box which prompts for input. Don't
echo input.

Print data to a file or to the screen

String Functions

GetField
Hex

InStr

LCase

Left

Len

Like Operator
LTrim

Mid Fun866
Mid Statement
Oct

Right

RTrim

Return a substring from a delimited source string
Return the hexadecimal representation of a number, as a
string

Return the position of one string within another
Convert a string to lower case

Return the left portion of a string

Return the length of a string or size of a variable
Compare a string against a pattern

Remove leading spaces from a string

Return a portion of a string

Replace a portion of a string with another string

Return the octal representation of a number, as a string
Return the right portion of a string

Remove trailing spaces from a string

SBL FUNCTIONAL INDEX “

Strings

SetField Replace a substring within a delimited target string
Space Return a string of spaces

Str Return the string representation of a number
StrComp Compare two strings.

String Return a string consisting of a repeated character
Trim Remove leading and trailing spaces from a string
UCase Convert a string to upper case

String Conversions

Asc Return an integer corresponding to a character code
CCur Convert a value to currency

CDbl Convert a value to double-precision floating point
Chr Convert a character code to a string

Cint Convert a value to an integer by rounding

ClLng Convert a value to a long by rounding

CSng Convert a value to single-precision floating point
Cstr Convert a value to a string

CVar Convert an number or string to a variant

CVDate Convert a value to a variant date

Format Convert a value to a string using a picture format
Val Convert a string to a number

Variants

ISEmpty Determine whether a variant has been initialized
IsNull Determine whether a variant contains a NULL value
Null Return a null variant

VarType

Return the type of data stored in a variant

USING BASIC

SBL Basic Conventions

Arguments

Arrays

Comments

SBL uses the programming conventions described in this section.

Arguments to subprograms and functions you write are listed after the
subprogram or function and may or may not be enclosed in parentheses.
Whether you use parentheses depends on how you want to pass the
argument to the subprogram or function: either by value or by reference.

If an argument is passed by value, it means that the variable used for that
argument retains its value when the subprogram or function returns to the
caller. If an argument is passed by reference, it means that the variable's
value may be (and probably will be) changed for the calling procedure. For
example, suppose you set the value of a variable, x, to 5 and pass x as an
argument to a subprogram, named mysub. If you pass x by value to mysub,
the value of x is still 5 after mysub returns. If you pass x by reference to
mysub, however, x could be 5 or any other value resulting from the actions
of mysub.

To pass an argument by value, use one of the following syntax options:

Call mysub((x))
mysub(x)

Call mysub(x byVal)
mysub x byVal
y=myfunction(x)
Call myfunction((x))

To pass an argument by reference, use one of the following options:

Call mysub(x)
mysub x
y=myfunction x
Call myfunction(x)

Externally declared subroutines and functions (such as DLL functions) can
be declared to take byVal arguments in their declaration. In that case, those
arguments are always passed byVal.

Array dimensions are enclosed in parentheses after the array name:

arrayname(a,b,c)

Comments are preceded by an apostrophe and may appear on their own
line in a procedure or directly after a statement or function on the same
line:

‘this comment is on its own line
Dim i as Integer 'this comment is on the code line

SBL BASIC CONVENTIONS

Line Continuation Long statements may be continued across more than one line by typing a
space-underscore at the end of a line and continuing the statement on the
next line. (You may add a comment after the underscore.)

Dim trMonth As Integer _ 'month of transaction
trYear As Integer " year of transaction

Records Elements in a record are identified using the following syntax:
record.element

whererecordis the previously defined record name afgmenis a member
of that record.

Typographic This chapter uses the following typographic conventions:
Conventions

To represent Documentation syntax is
Statements and functions Boldface; initial letter uppercase:
Abs

Len(variable)

Arguments to statements or All lowercase, italicized letters:

functions variable, rate, prompt$
Optional arguments and/or Italicized arguments and/or characters in
characters brackets:

[.caption$, [typed, [$]
Required choice for an List inside braces, with OR operator (|)
argument from a list of separating choices:
choices {Goto label| Resume Next | Goto 0}

Data Types Basic is a strongly typed language. Variables can be declared implicitly on
first reference by using a type character; if no type character is present, the
default type olariant is assumed. Alternatively, the type of a variable
can be declared explicitly with tH&im statement. In either case, the
variable can only contain data of the declared type. Variables of user-
defined type must be explicitly declared. SBL supports standard Basic
numeric, string, record and array data. SBL also supports Dialog Box
Records and Objects (which are defined by the application).

USING BASIC

Arrays

Numbers

Arrays are created by specifying one or more subscripts at declaration or
Redim time. Subscripts specify the beginning and ending index for each
dimension. If only an ending index is specified, the beginning index
depends on th@ption Basesetting. Array elements are referenced by
enclosing the proper number of index values in parentheses after the array
name, for examplarrayname(i,j,k) See thdim statement for more
information.

The five numeric types are:

Type From To

Integer -32,768 32,767

Long -2,147,483,648 2,147,483,647

Single -3.402823e+38 -1.401298e-45,
0.0,
1.401298e-45 3.402823466e+38

Double -1.797693134862315d+308 -4.94065645841247d-308,
0.0,

2.2250738585072014d-308 1.797693134862315d+308
Currency -922,337,203,685,477.5808 922,337,203,685,477.5807

Numeric values are always signed.

Basic has no true Boolean variables. Basic considers 0 to be FALSE and any
other numeric value to be TRUE. Only numeric values can be used as
Booleans. Comparison operator expressions always return 0 for FALSE and -
1 for TRUE.

Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by simply using the decimal
representation. To represent an octal value, precede the constant with “&0O”
or “&0” (for example, &0177). To represent a hexadecimal value, precede
the constant with “&H" or “&h” (for example, &H8001).

SBL BASIC CONVENTIONS

Records

Strings

Data Type
Conversions

A record, or record variable, is a data structure containing one or more
elements, each of which has a value. Before declaring a record variable, a
Type must be defined. Once tigpe is defined, the variable can be
declared to be of that type. The variable name should not have a type
character suffix. Record elements are referenced using dot notation, for
exampleyarname.elementnamBecords can contain elements which are
themselves records.

Dialog box records look like any other user-defined data type. Elements are
referenced using the sameename.elementnansgntax. The difference is

that each element is tied to an element of a dialog box. Some dialog boxes
are defined by the application, others by the user. Seeidiia Dialog
statement for more information.

Basic strings can be either fixed or dynamic. Fixed strings have a length
specified when they are defined, and the length cannot be changed. Fixed
strings cannot be of 0 length. Dynamic strings have no specified length.
Any string can vary in length from O to 32,767 characters. There are no
restrictions on the characters which can be included in a string. For
example, the character whose ANSI value is 0 can be embedded in strings.

Basic will automatically convert data between any two numeric types.
When converting from a larger type to a smaller type (for exahypig to
Integer), a runtime numeric overflow may occur. This indicates that the
number of the larger type is too large for the target data type. Loss of
precision is not a runtime error (for example, when converting from
Double to Single, or from either float type to either integer type).

Basic will also automatically convert between fixed strings and dynamic
strings. When converting a fixed string to dynamic, a dynamic string which
has the same length and contents as the fixed string will be created. When
converting from a dynamic string to a fixed string, some adjustment may be
required. If the dynamic string is shorter than the fixed string, the resulting
fixed string will be extended with spaces. If the dynamic string is longer than
the fixed string, the resulting fixed string will be a truncated version of the
dynamic string. No runtime errors are caused by string conversions.

Basic will automatically convert between any data typevamints. Basic

will convert variant strings to numbers when required. A type mismatch error
will occur if the variant string does not contain a valid representation of the
required number.

No other implicit conversions are supported. In particular, Basic will not
automatically convert between numeric and string data. Use the functions
Val andStr$ for such conversions.

USING BASIC

Dynamic Arrays

Variant Data Type

Dynamic arrays differ from fixed arrays in that you do not specify a
subscript range for the array elements when you dimension the array.
Instead, the subscript range is set usindRibéim statement. With

dynamic arrays, you can set the size of the array elements based on other
conditions in your procedure. For example, you may want to use an array
to store a set of values entered by the user, but you don't know in advance
how many values the user has. In this case, you dimension the array
without specifying a subscript range and then execute a ReDim statement
each time the user enters a new value. Or, you might want to prompt for the
number of values a user has and execute one ReDim statement to set the
size of the array before prompting for the values.

If you use ReDim to change the size of an array and want to preserve the
contents of the array at the same time, be sure to include the Preserve
argument to the ReDim statement.

If you Dim a dynamic array before using it, the maximum number of
dimensions it can have is 8. To create dynamic arrays with more dimensions
(up to 60), do not Dim the array at all; instead use jusR#igim statement
inside your procedure.

The following procedure uses a dynamic arxayray, to hold cash flow
values entered by the user:

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim msgtext
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x=1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #" & x & ":")
Next x
aprate=InputBox("Enter discount rate:)
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV(aprate,varray())
msgtext="The net present value is: "
msgtext=msgtext & Format(netpv, "Currency")
MsgBox msgtext
End Sub

The variant data type may be used to define variables that contain any type
of data. A tag is stored with the variant data to identify the type of data that
it currently contains. You may examine the tag by using/th@ype

function.

SBL BASIC CONVENTIONS

A variant may contain a value of any of the following types:

Type/Name Size of Data Range

0 (Empty) 0 N/A

1 Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

4 Single 4 bytes (float) -3.402E38 to -1.401E-45
(negative)
1.401E-45 to 3.402E38
(positive)

5 Double 8 bytes (double) -1.797E308 to -4.94E-324
(negative)
4.94E-324 to 1.797E308
(positive)

6 Currency 8 bytes (fixed) -9.223E14 to 9.223E14

7 Date 8 bytes (double) Jan 1st, 100 to Dec 31st, 9999

8 String 0 to ~64kbytes 0 to ~64k characters

9 Object N/A N/A

Any newly defined Variant defaults to being of Empty type, to signify that it
contains no initialized data. An Empty Variant converts to zero when used in
a numeric expression, or an empty string in a string expression. You may test
whether a variant is uninitialized (empty) with ts&mpty function.

Null variants have no associated data and serve only to represent invalid or
ambiguous results. You may test whether a variant contains a null value with
thelsNull function. Null is not the same as Empty, which indicates that a
variant has not yet been initialized.

USING BASIC

Dialog Boxes

Step 1:
Define a Dialog Box

Step 2:
Write a Dialog Box
Function

Step 3:
Display the Dialog
Box

You can use SBL to create dialog boxes for your scripts.

TheBegin Dialog... End Dialogstatements define a dialog box. The last
parameter to the Begin Dialog statement is the name of a function, prefixed
by a period (.).This function handles interactions between the dialog box and
the user.

The Begin Dialog statement supplies three parameters to your function: an
identifier (a dialog control ID), thaction taken on the control, andvalue

with additional action information. Your function should have these three
arguments as input parameters. See the Begin Dialog...End Dialog statement
for more information.

This function defines dialog box behavior. For example, your function could
disable a check box, based on a user's action. The body of the function uses
the “Dlg”-prefixed SBL statements and functions to define dialog box actions.

Define the function itself using tHaunction...End Function statement or

declare it using thBeclare statemenbeforeusing theBegin Dialog

statement. Enter the name of the function as the last argument to Begin
Dialog. The function receives three parameters from Begin Dialog and returns
a value. Return a non-zero value to leave the dialog box open after the user
clicks a command button (such as Help).

You use thdialog function (or statement) to display a dialog box. The
argument to Dialog is a variable name that you previously dimensioned as a
dialog box record. The name of the dialog box record comes froBetia
Dialog... End Dialogstatement. The return values for the Dialog function
determine which key was pressed: -1 for OK, 0 for Cancel, >0 for a command
button. If you use thBialog statement, it returns an error if the user presses
Cancel, which you can then trap with tBa Error statement.

To create and run a dialog box, follow these three steps:

1 Define a dialog box record using the Begin Dialog...End Dialog
statements and the dialog box definition statements such as TextBox,
OKButton.

2 Create a function to handle dialog box interactions using the Dialog
Functions and Statements (optional).

3 Display the dialog box using either the Dialog Function or Dialog
Statement.

DIALOG BOXES

Dialog Functions
and Statements

The function you create uses the “DIg” dialog functions and statements to
manipulate the active dialog box. This is tmdy function that can use
these functions and statements. The list of the “DIg” functions and

statements is as follows:

Functions & Statements

Description

DlgControlld
DlgEnable Function

DIgEnable Statement

DlgFocus Function

DIlgFocus Statement
DlgListBoxArray Function
DlgListBoxArray Statement
DIgText Function

DIgText Statement

DlgValue Function

DlgValue Statement

DlgVisible Function

DlgVisible Statement

Return numeric ID of a dialog control

Tell whether a control is enabled or
disabled

Enable or disable a dialog control

Return ID of the dialog control having
input focus.

Set focus to a dialog control
Return contents of a list box or combo box
Set contents of a list box or combo box

Return the text associated with a dialog
control

Set the text associated with a dialog
control

Return the value associated with a dialog
control

Set the value associated with a dialog
control

Tell whether a control is visible or
disabled

Show or hide a dialog control

Most of these functions and statements take control ID as their first
argument. For example, if a checkbox was defined with the following

statement:

CheckBox 20, 30, 50, 15, "My check box", .Check1

ThenDIgEnable "Checkl", 1 enables the checkbox, and
DigValue("Check1") returns 1 if the checkbox is currently checked, O if
not. Note that the IDs are case-sensitive and do not include the dot which

appears before the ID. Dialog functions and statements can also work with
numeric IDs. Numeric IDs depend on the order in which dialog controls are
defined.

USING BASIC

For example, if the checkbox that we considered was the first control defined
in the dialog record, thellgValue(0) would be equivalent to
DlgValue("Check1"). (The control numbering begins from 0, and the

Caption control does not count.) Find the numeric ID using the

DlgControllD function.

Note that for some controls (such as buttons and texts) the last argument in
the control definition, ID, is optional. If it is not specified, the text of the
control becomes its ID. For example, the Cancel button can be referred as
“Cancel” if its ID was not specified in ti@ancelButton statement.

Error Handling

Trapping Errors
Returned by SBL

SBL contains three error handling statements and functions for trapping
errors in your prograngrr , Error , andOn Error . SBL returns a code for
many of the possible runtime errors you may encounterT gpable
Errors for a complete list of codes.

In addition to the errors trapped by SBL, you may want to create your own
set of codes for trapping errors specific to your program. You would do this
if, for example, your program establishes rules for file input and the user
does not follow the rules. You can trigger an error and respond appropriately
using the same statements and functions you would use for SBL-returned
error codes.

Regardless of the error trapped, you have one of two methods to handle
errors; one is to put error-handling code directly before a line of code where
an error may occur (such as after a File Open statement), and the other is to
label a separate section of the procedure just for error handling, and force a
jump to that label if any error occurs. The On Error statement handles both
options.

Option 1, Within Body of Code: TheOn Error statement identifies the
line of code to go to in case of an error. In this case, the Resume Next
parameter means execution continues with the next line of code after the
error. In this example, the line of code to handle errors i tsatement.

It uses theéerr statement to determine which error code is returned.

ERROR HANDLING

Trapping User-
Defined (Non-SBL)
Errors

Trappable Errors

Option 2, Using Error Handler: Tt@n Error statement used here

specifies a label to jump to in case of errors. The code segment is part of
the main procedure and uses Hre statement to determine which error
code is returned. To make sure your code doesn't accidentally fall through
to the error handler, precede it withBxit statement.

These code examples show the two ways to set and trap user-defined
errors. Both options use tl#ror statement to set the user-defined error to
the value 30000. To trap the error, option 1 places error-handling code
directly before the line of code that could cause an error. Option 2 contains
a labeled section of code that handles any user-defined errors.

The following table lists the runtime errors which SBL returns. These
errors can be trapped Bn Error . TheErr function can be used to query
the error code, and th&ror function can be used to query the error text.

Error code Error Text

5 lllegal function call

6 Overflow

7 Out of memory

9 Subscript out of range
10 Duplicate definition

11 Division by zero

13 Type Mismatch

14 Out of string space

19 No Resume

20 Resume without error

28 Out of stack space

35 Sub or Function not defined
48 Error in loading DLL

52 Bad file name or number
53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

USING BASIC

Error code Error Text

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive
75 Path/File access error

76 Path not found

91 Object variable set to Nothing
93 Invalid pattern

94 lllegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method
439 Argument type mismatch

440 Obiject error

901 Input buffer would be larger than 64K
902 Operating system error

903 External procedure not found
904 Global variable type mismatch
905 User-defined type mismatch
906 External procedure interface mismatch
907 Pushbutton required

908 Module has no MAIN

910 Dialog box not declared

EXPRESSIONS

Expressions

Numeric
Operators

String
Operators

Comparison
Operators
(Numeric
and String)

An expression is a collection of two or more terms that perform a

mathematical or logical operation. The terms are usually either variables or

functions that are combined with an operator to evaluate to a string or
numeric result. You use expressions to perform calculations, manipulate
variables, or concatenate strings.

Expressions are evaluated according to precedence order. Use parentheses to

override the default precedence order.

The precedence order (from high to low) for the operators is as follows:

m Numeric Operators

m String Operators

m Comparison Operators

m Logical Operators

A Exponentiation

-+ Unary minus and plus

*/ Numeric multiplication or division. For division, the result is a
Double.

\ Integer division. The operands canlbtger or Long.

Mod Modulus or Remainder. The operands cambeger or Long.

-+ Numeric addition and subtraction. The + operator can also be
used for string concatenation.

& String concatenation

+ String concatenation

> Greater than

< Less than

= Equal to

<= Less than or equal to

>= Greater than or equal to

<> Not equal to

USING BASIC

For numbers, the operands are widened to the least commonntigue(is
preferred ovetong, which is preferred oveBingle, which is preferred over
Double). ForStrings, the comparison is case-sensitive, and based on the
collating sequence used by the language specified by the user using the
Windows Control Panel. The result is 0 for FALSE and -1 for TRUE.

Logical Not Unary Not - operand can be Integer or Long.
Operators The operation is performed bitwise (one's complement).
And And - operands can be Integer or Long.

The operation is performed bitwise.

Or Inclusive Or - operands can be Integer or Long.
The operation is performed bitwise.

Xor Exclusive Or - operands can be Integer or Long.
The operation is performed bitwise.

Eqv Equivalence - operands can be Integer or Long. The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Imp Implication - operands can be Integet.ong The operation is
performed bitwise. (Amp B) is the same as ((Not A) OR B).

Object Handling

Objects are the end products of a software application, such as a
spreadsheet, graph, or document. Each software application has its own set
of properties and methods that change the characteristics of an object.

Properties affect how an object behaves. For example, width is a property of
a range of cells in a spreadsheet, colors are a property of graphs, and margins
are a property of word processing documents.

Methods cause the application to do something to an object. Examples are
Calculate for a spreadsheet, Snap to Grid for a graph, and AutoSave for a
document.

In SBL, you can access an object and use the originating software application
to change properties and methods of that object. Before you can use an
object in a procedure, however, you must access the software application
associated with the object by assigning it to an object variable. Then you
attach an object name (with or without properties and methods) to the
variable to manipulate the object.

DERIVED TRIGONOMETRIC FUNCTIONS

Step 1: Create an object variable to access the application

TheDim statement creates an object variable called “visio” and assigns the
application, Visio, to it. Th&etstatement assigns the Visio application to
the variable visio using eith&etObject or CreateObject You use

GetObject if the application is already open on the Windows desktop. Use
CreateObiject if the application is not open.

Step 2: Use methods and properties to act on objects.

To access an object, property or method, use this syntax:

appvariable.object.property
appvariable.object.method

For exampleyisio.document.countis a value returned by the Count method
of the Document object for the Visio application, which is assigned to the
Integer variable doccount.

Alternatively, you can create a second object variable and assign the
Document object to it using Visio’s Document method, as the Set statement

shows.

Derived Trigonometric Functions

A number of trigonometric functions may be written in Basic using the built-
in functions. The following table lists several of these functions:

Function

Computed by

Secant
CoSecant
CoTangent
ArcSine
ArcCosine
ArcSecant

ArcCoSecant

ArcCoTangent
Hyperbolic Sine

Hyperbolic Cosine

Sec(x) = 1/Cos(x)

CoSec(x) = 1/Sin(x)

CoTan(x) = 1/Tan(x)

ArcSin(x) = Atn(x/Sqr(-x*x+1))

ArcCos(x) = Atn(-x/Sqr(-x*x+1))+1.5708
ArcSec(x) = Atn(x/Sqr(x*x-1))+Sgn(x-1)*1.5708

ArcCoSec(x) = Atn(x/Sqr(x*x-1))+(Sgn(x)-
1)*1.5708

ArcTan(x) = Atn(x)+1.5708
HSIin(x) = (Exp(x)-Exp(-x))/2
HCos(x) = (Exp(x)+Exp(-x))/2

USING BASIC

Function Computed by

Hyperbolic Tangent HTan(x) = (Exp(x)-Exp(-x))/(Exp(x)+Exp(-x))
Hyperbolic Secant HSec(x) = 2/(Exp(x)+Exp(-x))

Hyperbolic CoSecant HCoSec(x) = 2/(Exp(x)-Exp(-x))

Hyperbolic Cotangent HCotan(x) = (Exp(X)+Exp(-x))/(Exp(X)-Exp(-x))
Hyperbolic ArcSine HArcSin(x) = Log(x+Sqr(x*x+1))

Hyperbolic ArcCosine HArcCos(x) = Log(x+Sqr(x*x-1))

Hyperbolic ArcTangent HArcTan(x) = Log((1+x)/(1-x))/2

Hyperbolic ArcSecant HArcSec(x) = Log((Sqr(-x*x+1)+1)/x)
Hyperbolic ArcCoSecant HArcCoSec(x) = Log((Sgn(x)*Sqr(x*x+1)+1)/x)
Hyperbolic HArcCoTan(x) = Log((x+1)/(x-1))/2
ArcCoTangent

SBL Versus Other Basics

Line Numbers and
Labels

Subprograms and
Global Variables

If you are familiar with older versions of Basic (those that predate
Windows), you will notice that SBL includes many new features and
changes from the language you have learned. SBL more closely resembles
other higher level languages popular today, such as C++ and Pascal. The
topics listed here describe some of the differences you will notice between
the older Basics and SBL.

The line numbers used in earlier Basics are no longer required. To
reference a line of code, you use a label. A label is a single word followed
by a colon, which is placed at the beginning of a line of code.

SBL is more modular, with code divided into subprograms and functions.
The subprograms and functions you write use the SBL statements and
functions to perform actions. In SBL, the first subprogram executed must

be named “main” and take no arguments (and contain no parentheses). You
use theSub...End Substatements to define it, as in the example that

follows:

Sub main
MsgBox “Hello, World”
End Sub

The Main subprogram can then call other subprograms or functions included
in a .SBL file.

SBL VERSUS OTHER BASICS

Data Types

Dialog Box
Handling

Financial
Functions

The placement of variable declarations determines their scope:

Scope Definition

Local Dimensioned inside a subroutine or function. The variable is
accessible only to the subroutine or function that dimensioned it.

Module Dimensioned outside any subroutine or function. The variable is
accessible to any subroutine or function in the same file.

Global Dimensioned outside any subroutine or function using the Global
statement. The variable is accessible to any subroutine or function
in any module (file).

In addition to the standard data types—numeric, string, array, and
record—SBL includes Variants and objects. Variables that are defined
as Variants can store any type of data. For example, the same variable
could hold integers one time and strings later in a procedure. Objects
give you the ability to manipulate complex data supplied by an
application, such as windows, forms or OLE2 objects.

SBL contains extensive dialog box statements and functions to give you
great flexibility in creating and running custom dialog boxes. You define
the contents of a dialog box using dialog statements and functions
between th&egin Dialog...End Dialogstatements, and then display it
using theDialog statement (or function).

SBL records all selections the user makes in the dialog box. You can retrieve
the selections when the dialog box is closed. In addition, your program may
include a dialog function which, through the use of dialog functions and
statements prefixed with “Dlg”, such BigVisible, can customize the

behavior of the dialog box (such as validating fields as they are entered).

SBL also includes statements and functions to displessage boxeghat
notify the user of an evergassword boxeswhere the user's keystrokes are
not echoed on the screen; angut boxes that prompt for a single line of
input.

SBL includes a list of financial functions, for calculating such things as
loan payments, internal rates of return, or future values based on a
company's cash flows.

USING BASIC

Date and Time
Functions

Object Handling

Environment
Control

The date and time functions have been expanded to make it easier to
compare a file's date to today's date, set the current date and time, time
events, and perform scheduling-type functions (such as finding the date
for next Tuesday).

Windows includes OLE2 Object Handling, the ability to link and embed
objects from one application into another. An object is the end product
of a software application, such as a document from a word processing
application. An offshoot of that ability is tli@bject data type which
permits your SBL code to access another software application through
its objects and change those objects.

SBL includes the ability to call another software application
(AppActivate), and send the application keystrok8srfdKeys. Other
environment control features include the ability to run an executable
program Shell), temporarily suspend processing to allow the operating
system to process messageskKvents, and return values in the
operating system environment tabsygiron$).

SBL Compared to Visual Basic

Although SBL is a subset of Microsoft's Visual Basic (VB), it does contain a
few statements and functions not found in the standard version of VB,
notably:

m 3$CStrings m GetField$
m 3$Include m SetField$
m $NoCsStrings m With

m Assert

In addition, VB does not include the statements and functions needed to
create or run dialog boxes. These features are available, however, in subsets
of VB that are provided with other Microsoft products, such as Word and
Excel. These versions, called Visual Basic for Applications (VBA), provide
the dialog box handling statements and functions found in SBL, except for
the following:

m ButtonGroup m DropComboBox
m Caption m StaticComboBox

VBA does include some dialog box statements and functions that are not
included in SBL, such as DlgFilePreview.

SBL Reference

This chapter lists the SBL commands and functions in alphabetical order,
and indicates action, syntax, and any relevant comments.

Abs Function

Action
Syntax

Comments

Example

See Also

Returns the absolute value of a number.
Abs(number) wherenumberis any valid numeric expressio

The data type of the return value matches the type ofuimber If numberis a

Variant string (vartype 8), the return value will be converted to vartype 5

(Double). If the absolute value evaluates to vartype 0 (Empty), the return value will
be vartype 3 (Long).

This example finds the difference between two variables, oldacct and newacct.

Sub main

Dim oldacct, newacct, count
oldacct=InputBox("Enter the oldacct number")
newacct=InputBox("Enter the newacct number")
count=Abs(oldacct-newacct)
MsgBox "The absolute value is: " &count

End Sub

Exp, Fix, Int, Log, Rnd, Sgn, Sqr

AppActivate Statement

Action

Syntax

Comments

Activates an application window.

AppActivate title where title is a string expression for the title-bar name of the
application window to activate

Title must match the name of the window character for character, but comparison
is not case sensitive, e.g., “File Manager” is the same as “file manager” or “FILE
MANAGER?”. If there is more than one window with a name matclittey a

window is chosen at random.

SBL REFERENCE

AppActivate changes the focus to the specified window but does not change
whether the window is minimized or maximized. WggpActivate with the
SendKeysstatement to send keys to another application.

Example This example opens the Windows bitmap file ARCADE.BMP in Paintbrush.
(Paintbrush must already be open before running this example. It must also not be
minimized.)

Sub main
MsgBox "Opening C:\WINDOWS\ARCADE.BMP in Paintbrush."
AppActivate "Paintbrush - (Untitled)"
SendKeys "%FOC:\WINDOWS\ARCADE BMP{Enter}",1

MsgBox "File opened.”
End Sub

See Also SendKeys, Shell

Asc Function

Action Returns an integer corresponding to the ANSI code of the first character in the
specified string

Syntax Asc(string$) where string$ is a string expression of one or more characters.
Comments To change an ANSI code to string charactersQise

Example This example asks the user for a letter and returns its ASCII value.

Sub main

Dim userchar

userchar=InputBox("Type a letter;")

MsgBox "The ASC value for " & userchar & " is: " & Asc(userchar)
End Sub

See Also Chr

Assert Statement [SBL Extension]**

Action Triggers a run-time error if the condition specified is FALSE.

Syntax Assertconditionwhere condition is a numeric or string expression that can
evaluate to TRUE or FALSE.

Comments TheAssert statement should be used by SBL clients to handle an application
specific error. An assertion error cannot be trapped b@thError statement.

Use theAssert statement to ensure that a procedure is performing in the expected
manner.

*SBL offers a number of extensions that are not included in Visual Basic.

ATN FUNCTION

Atn Function

Action
Syntax

Comments

Example

See Also

Returns the angle (in radians) for the arc tangent of the specified number.
Atn (number) where number is any valid numeric expression.

The Atn function assumesumberis the ratio of two sides of a right triangle: the
side opposite the angle to find and the side adjacent to the angle. The function
returns a single-precision value for a ratio expressed as an integer, a currency, or
a single-precision numeric expression. The return value is a double-precision
value for a long, Variant or double-precision numeric expression.

To convert radians to degrees, multiply by (180/Pl). The value of Pl is
approximately 3.14159.

This example finds the roof angle necessary for a house with an attic ceiling of 8
feet (at the roof peak) and a 16 foot span from the outside wall to the center of
the house. The Atn function returns the angle in radians; it is multiplied by
180/PI to convert it to degrees.

Sub main

Dim height, span, angle, PI

PI=3.14159

height=8

span=16

angle=Atn(height/span)*(180/PI)

MsgBox "The angle is " & Format(angle, "##.##") & " degrees"
End Sub

Cos, Sin, Tan, Derived Trigonometric Functions

Beep Statement

Action
Syntax
Comments

Example

Produces a tone through the computer speaker.
Beep
The frequency and duration of the tone depends on the hardware.

This example beeps and displays a message in a box if the @hdkbiceis less
than 0. (If you have a set of speakers hooked up to your computer, you may need
to turn them on to hear the beep.)

Sub main
Dim expenses, balance, msgtext
balance=InputBox("Enter your account balance")
expenses=1000
balance=balance-expenses

SBL REFERENCE

See Also

If balance<0 then
Beep
Msgbox "Im sorry, your account is overdrawn."
Else
Msgbox "Your balance minus expenses is: " &balance
End If
End Sub

InputBox, MsgBox Statement, Print

Begin Dialog ... End Dialog Statement

Action
Action

Syntax

Comments

Produces a tone through the computer speaker.
Begins and ends a dialog-box declaration.

Begin DialogdialogNamg[x, y;] dx, dy[, captior$s] [, .dialogfunction]

" dialog box definition statements

End Dialog

where is

dialogName The record name for the dialog box definition.

X,y The coordinates for the upper left corner of the dialog box.
dx,dy The width and height of the dialog box (relativectandy).
caption$ The title for the dialog box.

.dialogfunction A Basic function to process user actions in the dialog box.

To display the dialog box, you create a dialog record variable witBithe
statement, and then display the dialog box usingptakg function or Dialog
statementwith the variable name as its argument. InDira statement, this
variable is defined\s dialogName

Thex andy coordinates are relative to the upper left corner of the client area of the
parent window. Th& argument is measured in units that are 1/4 the average width

of the system font. Thegargument is measured in units 1/8 the height of the system
font. For example, to position a dialog box 20 characters in, and 15 characters down
from the upper left hand corner, enter 80, 120 agtiyeoordinates. If these

arguments are omitted, the dialog box is centered in the client area of the parent
window.

Thedx argument is measured in 1/4 system-font character-width unitglyThe
argument is measured in 1/8 system-font character-width units. For example, to
create a dialog box 80 characters wide, and 15 characters in height, enter 320, 120
for thedx, dycoordinates.

If the caption$argument is omitted, a standard default caption is used.

BEGIN DIALOG ... END DIALOG STATEMENT

The optionaldialogfunctionfunction must be defined (using tRanction
statement) or declared (usiBgm) before being used in tigegin Dialog
statement. Define thdialogfunctionwith the following three arguments:

Function dialogfunction%(id$, action%, suppvalue&
' function body
End Function

id$ The text string that identifies the dialog control that triggered the
call to the dialog function (usually because the user changed this
control).

action% An integer from 1 to 5 identifying the reason why the dialog

function was called.

suppvalue& Gives more specific information about why the dialog function was
called.

As with any Basic function, these arguments may have different names. The
arguments of the dialog function may also be Variants.

In most cases, the return valued@dlogfunctionis ignored. The exceptions are a
return value of 2 or 5 faction% If the user clicks the OK button, Cancel button,

or a command button (as indicated byaation%return value of 2 and the
correspondingd$ for the button clicked), and the dialog function returns a non-zero
value, the dialog box wilhotbe closed.

Unless theBegin Dialog statement is followed by at least one other dialog-box
definition statement and thend Dialog statement, an error will result. The

definition statements must include @kButton, CancelButton or Button

statement. If this statement is left out, there will be no way to close the dialog box,
and the procedure will be unable to continue executing.

Id$ is the same value for the dialog control that you use in the definition of that
control. For example, thid$ value for a text box is Textl if it is defined this way:

Textbox 271, 78, 33, 18, .Textl

The following table summarizes the possiat¢ion%values and their meanings.

SBL REFERENCE

action% Meaning

1 Dialog box initialization. This value is passed before the dialog box becomes
visible.
2 Command button selected or dialog box control changed (except typing in a

text box or combo box).

3 Change in a text box or combo box. This value is passed when the control
loses the input focus: the user presses the TAB key or clicks another control.

4 Change of control focutd$ is the id of the dialog control gaining focus.
Suppvalue&contains the numeric id of the control losing focus. A dialog
function cannot display a message box or dialog box in response to an action
value 4.

5 An idle state. As soon as the dialog box is initializction% = 1), the
dialog function will be continuously called witittion%= 5 if no other
action occurs. Iflialog functionwants to receive this message continuously
while the dialog box is idle, return a non-zero value. If O (zero) is returned,
action%= 5 will be passed only while the user is moving the mouse. For this
action,ld$ is equal to empty string (") arslippvalue&is equal to the
number of times action 5 was passed before.

If the user clicks a command button or changes a dialog box cattioin%

returns 2 or 3 anduppvalue&dentifies the control affected. The value returned
depends on the type of control or button the user changed or clicked. The following
table summarizes the possible valuessigrpvalue&.

Control suppvalue&
List box Number of the item selected, 0-based.
Checkbox 1 if selected, O if cleared, -1 if filled with gray.

Option button Number of the option button in the option group, 0-based.

Text box Number of characters in the text box.
Combo box The number of the item selected (0-based) for action 2, the number of
characters in its text box for action 3.
OK button 1
Cancel button 2
Example This example defines and displays a dialog box with each type of item in it: list
box, combo box, buttons, etc.
Sub main
Dim ComboBox1() as String

Dim ListBox1() as String
Dim DropListBox1() as String
ReDim ListBox1(0)

BUTTON STATEMENT

ReDim ComboBox1(0)
ReDim DropListBox1(3)
ListBox1(0)="C:\"
ComboBox1(0)=Dir("C:*.*")
For x=0to 2
DropListBox1(x)=Chr(65+x) & ":"
Next x
Begin Dialog UserDialog 274, 171, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
Text 106, 2, 34, 9, "Directory:", .Text2
ListBox 106, 12, 83, 39, ListBox1(), .ListBox2
Text 106, 52, 42, 8, "Drive:", .Text3
DropListBox 106, 64, 95, 44, DropListBox1(), .DropListBox1
CheckBox 9, 142, 62, 14, "List .TXT files", .CheckBox1
GroupBox 106, 111, 97, 57, "File Range"
OptionGroup .OptionGroup?2
OptionButton 117, 119, 46, 12, "All pages", .OptionButton3
OptionButton 117, 135, 67, 8, "Range of pages", .OptionButton4
Text 123, 146, 20, 10, "From:", .Text6
Text 161, 146, 14, 9, "To:", .Text7
TextBox 177,146, 13, 12, .TextBox4
TextBox 145, 146, 12, 11, .TextBox5
OkButton 213, 6, 54, 14
CancelButton 214, 26, 54, 14
PushButton 213, 52, 54, 14, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

See Also Button, ButtonGroup, CancelButton, Caption, CheckBox, ComboBox, Dialog,
DropComboBox, GroupBox, ListBox, OKButton, OptionButtton, OptionGroup,
Picture, StaticComboBox, Text, TextBox

Button Statement

Action Defines a custom pushbutton.
Syntax A Button x, y, dx, dy, tet[, .id]

Syntax B PushButtonx, y, dx, dy, textf .id]

where is
X,y The position of the button relative to the upper left corner of the
dialog box.

dx,dy The width and height of the button.

SBL REFERENCE

Comments

Example

See Also

text$ The name for the pushbutton. If the width of this string is greater
thandx; trailing characters are truncated.

id An optional identifier used by the dialog statements that act on this
control.

A dyvalue of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement
in conjunction with théButtonGroup statement. The two forms of the statement
(Button andPushButton) are equivalent.

Use theButton statement only betweerBegin Dialogand arEnd Dialog
statement.

This example defines a dialog box with a combination list box and three buttons.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
Button 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled.”
End If
End Sub

Begin Dialog...End Dialog Statement, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

ButtonGroup Statement

Action

Syntax

Comments

Begins the definition of a group of custom buttons for a dialog box.

ButtonGroup .field where.fieldis thefield to contain the user’s custom button
selection.

If ButtonGroup is used, it must appear before 8utton statement which
creates a custom button (one other than OK or Cancel.) OnBuitenGroup
statement is allowed within a dialog box definition.

CALL STATEMENT

Use theButtonGroup statement only betweerBagin Dialog and arEnd Dialog
statement.

Example This example defines a dialog box with a combination list box and three buttons.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Text 9,5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
‘The next four lines create three buttons
ButtonGroup .ButtonGroupl
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

See Also Begin Dialog...End Dialog Statement, Button, CancelButton, Caption, CheckBox,

ComboBox, DropComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Call Statement

Action Transfers control to a subprogram or function
Syntax A Call subprogrammame][(argumentlis)]
Syntax B subprogrammame argumentlist
where is
subprogram-name the name of the subroutine or function to call.
argumentlist the arguments for the subroutine or function (if any).
Comments Use the Call statement to call a subprogram or function written in Basic or to call

C procedures in a DLL. These C procedures must be describ&kuiaae
statement or be implicit in the application.

Arguments are passed by reference to procedures written in Basic. If you pass a
variable to a procedure which modifies its corresponding formal parameter, and you
do not wish to have your variable modified, enclose the variable in parentheses in
the Call statement. This will tell SBL to pass a copy of the variable. Note that this
will be less efficient, and should not be done unless necessary.

SBL REFERENCE

When a variable is passed to a procedure which expects its argument by reference,
the variable must match the exact type of the formal parameter of the function.
(This restriction does not apply to expressions or Variants.)

When calling an external DLL procedure, arguments can be passed by value rather
than by reference. This is specified either indeelare statement, th€all itself,

or both, using th&yVal keyword. IfByVal is specified in the declaration, then the
ByVal keyword is optional in the call. If present, it must precede the value. If

ByVal was not specified in the declaration, it is illegal in the call unless the data
type specified in the declaration wasy.

Example This example calls a subprogram named CREATEFILE to open a file, write the
numbers 1 to 10 in it and leave it open. The calling procedure then checks the
file’s mode. If the mode is 1 (open for Input) or 2 (open for Output), the
procedure closes the file.

Declare Sub createfile()
Sub main
Dim filemode as Integer
Dim attrib as Integer
Call createfile
attrib=1
filemode=FileAttr(1,attrib)
If filemode=1 or 2 then
MsgBox "File was left open. Closing now."
Close #1
End If
Kill "C:\TEMP001"
End Sub
Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMPO001" for Output as #1
For x=11t0 10
Write #1, x
Next x
End Sub

See Also Declare

CANCELBUTTON STATEMENT

CancelButton Statement

Action

Syntax

Comments

Example

See Also

Sets the position and size of a Cancel button in a dialog box.

CancelButtonx, y,dx, dy[, .id]

where
X,y

dx,dy
.id

is

the position of the Cancel button relative to the upper left corner of
the dialog box.

the width and height of the button.

an optional identifier for the button.

A dyvalue of 14 can usually accommodate text in the system font.

.Id is used by the dialog statements that act on this control.

If you use theéDialog statement to display the dialog box and the user clicks Cancel,
the box is removed from the screen and an Error 102 is triggered. If you use the
Dialog function to display the dialog box, the function will return 0 and no error

OocCcurs.

Use theCancelButton statement only betweerBegin Dialogand arEnd Dialog
statement.

This example defines a dialog box with a combination list box and three buttons.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Text 9,5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

Begin Dialog...End Dialog Statement, Button, ButtonGroup, Caption, CheckBox,
ComboBox, DropComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

SBL REFERENCE

Caption Statement

Action
Syntax

Comments

Example

See Also

Defines the title of a dialog box.

Caption text$wheretext$is a string expression containing the title of the dialog
box.

Use theCaption statement only betweerBaegin Dialogand arEnd Dialog
statement.

If no Caption statement is specified for the dialog box, a default caption is used.

This example defines a dialog box with a combination list box and three buttons.
The Caption statement changes the dialog box title to “Example -Caption
Statement”.

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94
Caption "Example-Caption Statement"
Text 9,5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled.”
End If
End Sub

Begin Dialog...End Dialog Statement, Button, CancelButton, ButtonGroup,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text,
TextBox

CCur Function

Action

Syntax

Comments

Converts an expression to the data tgoerency.

CCur(expression whereexpressions any expression that evaluates to a
number.

CCur accepts any type ekpressionNumbers that do not fit in the Currency data
type result in an “Overflow” error. Strings that cannot be converted result in a
“Type Mismatch” error. Variants containing null result in an “lllegal Use of Null”
error.

CDBL FUNCTION

Example This example converts a yearly payment on a loan to a currency value with four
decimal places. A subsequent Format statement formats the value to two decimal
places before displaying it in a message box.

Sub main
Dim aprate, totalpay,loanpv
Dim loanfv, due, monthlypay
Dim yearlypay, msgtext
loanpv=InputBox("Enter the loan amount: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
aprate=aprate/12
totalpay=InputBox("Enter the total number of pay periods: ")
loanfv=0
Rem Assume payments are made at end of month
due=0
monthlypay=Pmt(aprate,totalpay,-loanpv,loanfv,due)
yearlypay=CCur(monthlypay*12)
msgtext= "The yearly payment is: " & Format(yearlypay, "Currency")
MsgBox msgtext
End Sub

See Also Cdbl, Cint, Clng, Csng, Cstr, Cvar, CVDate

CDbl Function

Action Converts an expression to the data toeible.

Syntax CDbl(expression whereexpressions any expression that evaluates to a number.

Comments CDbl accepts any type ekpressionStrings that cannot be converted to a
double-precision floating point result in a “Type Mismatch” error. Variants
containing null result in an “lllegal Use of Null” error.

Example This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbl(Sqr(2))
msgtext= "The square root of 2 is: " & Value
MsgBox msgtext
End Sub

See Also Ccur, Cint, Clng, Csng, Cstr, Cvar, CVDate

SBL REFERENCE

ChDir Statement

Action
Syntax

Comments

Example

See Also

Changes the default directory for the specified drive.

ChDir path$wherepaths is a string expression identifying the new default
directory.

The syntax fopath$is:
[drive:]] [\] directory[\directory]

If the drive argument is omitte@hDir changes the default directory on the current
drive. TheChDir statement does not change the default drive. To change the
default drive, us€hDrive.

This example changes the current directory to C:\WINDOWS, if it is not already
the default.

Sub main

Dim newdir as String

newdir="c:\windows"

If CurDir <> newdir then

ChDir newdir

End If

MsgBox "The default directory is now: " & newdir
End Sub

ChDrive, CurDir, Dir, MkDir, RmDir

ChDrive Statement

Action

Syntax

Comments

Example

See Also

Changes the default drive.

ChDrive drive$wheredrive$is a string expression designating the new default
drive.

This drive must exist and must be within the range specified by the LASTDRIVE
statement in the CONFIG.SYS file. If a null argument (" ") is supplied, the default
drive remains the same. If thleive$argument is a strin@gzhDrive uses the first

letter only. If the argument is omitted, an error message is produced. To change
the current directory on a drive, usaDir.

This example changes the default drive to A:.

Sub main

Dim newdrive as String

newdrive="A:"

If Left(CurDir,2) <> newdrive then

ChDrive newdrive

End If

MsgBox "The default drive is now " & newdrive
End Sub

ChDir, CurDir, Dir, MkDir, RmDir

CHECKBOX STATEMENT

CheckBox Statement

Action

Syntax

Comments

Example

Creates a checkbox in a dialog box.

CheckBoxx, y, dx, dy, text$, .field

where is

X,y the upper left corner coordinates of the checkbox, relative to the
upper left corner of the dialog box.

dx the sum of the widths of the checkbox aext$.

dy the height otext$

text$ the title shown to the right of the checkbox .

field the name of the dialog-record field that will hold the current

checkbox setting (O=unchecked, -1=grey, 1=checked).

Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-height unitB¢gee
Dialog for more information.)

Because proportional spacing is used,dhargument width will vary with the
characters used. To approximate the width, multiply the number of characters in the
text$field (including blanks and punctuation) by 4 and add 12 for the checkbox.

A dyvalue of 12 is standard, and should cover typical default fonts. If larger fonts
are used, the value should be increased. Adyth@mber grows, the checkbox and
the accompanying text will move down within the dialog box.

If the width of thetext$field is greater thadx, trailing characters will be truncated.
If you wish to include underlined characters so that the checkbox selection can be
made from the keyboard, precede the character to be underlined with an ampersand

(&).

SBL treats any other value dield the same as a 1. THeeld argument is also used
by the dialog statements that act on this control.

Use theCheckBox statement only betweerBagin Dialogand arEnd Dialog
statement.

This example defines a dialog box with a combination list box, a checkbox ,
and three buttons.

Sub main

Dim ComboBox1() as String

ReDim ComboBox1(0)

ComboBox1(0)=Dir("C:*.*")

Begin Dialog UserDialog 166, 76, "SBL Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
CheckBox 10, 39, 62, 14, "List .TXT files", .CheckBox1

SBL REFERENCE

OkButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled.”

End If

End Sub

See Also Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, ComboBox, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Chr Function

Action Returns the one-character string corresponding to an ANSI code.
Syntax Chr[$](charcode) wherecharcodeis an integer between 0 and 255.

Comments The dollar sign, “$”, in the function name is optional. If specified, the return type
is String. If omitted, the function will return a Variant of vartype 8 (string).

Example This example displays the character equivalent for an ASCII code between 65
and 122 typed by the user.

Sub main
Dim numb as Integer
Dim msgtext
Dim out
out=0
Do Until out
numb=InputBox("Type a number between 65 and 122:")
If Chr$(numb)>="A" AND Chr$(numb)<="Z" OR Chr$(numb)>="a" AND _
Chr$(numb)<="z" then
msgtext="The letter for the number " & numb &" is: " & Chr$(numb)
out=1
Elself numb=0 then
Exit Sub
Else
Beep
msgtext="Does not convert to a character; try again.”
End If
MsgBox msgtext
Loop
End Sub

See Also Asc, Ccur, Cdbl, Cint, Clng, Csng, Cstr, Cvar, CVDate, Format, Val

CINT FUNCTION

ClInt Function

Action

Syntax

Comments

Example

See Also

Converts an expression to the data tiyypieger by rounding.

Cint(expressior) whereexpressioris any expression that can evaluate to a
number.

After rounding, the resulting number must be within the range of 32767 to
32767, or an error occurs.

Strings that cannot be converted to an integer result in a “Type Mismatch” error.
Variants containing null result in an “lllegal Use of Null” error.

This example calculates the average of ten golf scores.

Sub main
Dim score As Integer
Dim x, sum
Dim msgtext
Let sum=0
For x=1to0 10
score=InputBox("Enter golf score #'&x &"")
sum=sum-+score
Next x
msgtext="Your average is: " & Format(Clnt(sum/(x-1)),"General Number")
MsgBox msgtext
End Sub

Ccur, Cdbl, CIng, Csng, Cstr, Cvar, CVDate

CLng Function

Action

Syntax

Comments

Converts an expression to the data typeg by rounding.

CLng(expressior) whereexpressioris anyexpression that can evaluate to a
number.

After rounding, the resulting number must be within the range of 2,147,483,648
to 2,147,483,647, or an error occurs.

Strings that cannot be converted to a long result in a “Type Mismatch” error.
Variants containing null result in an “lllegal Use of Null” error.

SBL REFERENCE

Example

See Also

This example divides the US national debt by the number of people in the
country to find the amount of money each person would have to pay to wipe it
out. This figure is converted to a Long integer and formatted as Currency.

Sub main
Dim debt As Single
Dim msgtext
Const Populace = 250000000
debt=InputBox("Enter the current US national debt:")
msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
MsgBox msgtext
End Sub

Ccur, Cdbl, Cint, Csng, Cstr, Cvar, CVDate

Close Statement

Action

Syntax

Comments

Example

Closes a file, concluding input/output to that file.

Close[[#] filenumber%[, [] filenumber%...]] wherefilenumber%s an
integer expression identifying the file to close.

Filenumber%is the number assigned to the file in @gen statement and may

be preceded by a pound sign (#). If this argument is omitted, all open files are
closed. Once €losestatement is executed, the association of a file with
filenumber%s ended, and the file can be reopened with the same or a different
file number.

When theClosestatement is used, the final output buffer is written to the operating
system buffer for that fileClosefrees all buffer space associated with the closed
file. Use theResetstatement so that the operating system will flush its buffers to
disk.

This example opens a file for Random access, gets the contents of one variable,
and closes the file again. The subprogram, CREATEFILE, creates the file
C:\TEMPO0O1 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim acctno as String*3
Dim recno as Long
Dim msgtext as String
Call createfile
recno=1
newline=Chr(10)
Open "C:\TEMPO001" For Random As #1 Len=3
msgtext="The account numbers are:" & newline & newline
Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno

COMBOBOX STATEMENT

See Also

recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP0O01"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMP001" for Output as #1
For x=11t0 10
Write #1, x
Next x
Close #1
End Sub

Open, Reset, Stop

ComboBox Statement

Action
Syntax A

Syntax B

Comments

Creates a combination text box and list box in a dialog box.
ComboBoxx, y, dx, dy, text$, .field

ComboBoxXx, vy, dx, dy, stringarray$, .field

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the combo box in which the user enters or
selects text.

text$ A string containing the selections for the combo box.

stringarray$ An array of dynamic strings for the selections in the combo box.

field The name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-width unitsBgge
Dialog for more information.)

Thetext$argument must be defined, usinBian Statement, before thigegin
Dialog statement is executed. The arguments ineki$string are entered as
shown in the following example:

dimname= "listchoice€+Chr$(9)+'istchoice'+Chr$(9)+'listchoice'...

SBL REFERENCE

Example

See Also

The string in the text box will be recorded in the field designated byidia
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

Use theComboBoxstatement only betweerBegin Dialogand arEnd Dialog
statement.

This example defines a dialog box with a combination list and text box and
three buttons.

Sub main
Dim ComboBox1() as String
ReDim ComboBox1(0)
ComboBox1(0)=Dir("C:*.*")
Begin Dialog UserDialog 166, 142, "SBL Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Text1
ComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
OkButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Command Function

Action
Syntax

Comments

Example

Returns the command line specified when the MAIN subprogram was invoked.
Command[$]

After the MAIN subprogram returns, further calls to the Command function will
yield an empty string. This function may not be supported in some implementations
of SBL.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function retur@evariant of vartype 8 (string).

This example opens the file entered by the user on the command line.

Sub main
Dim filename as String
Dim cmdline as String
Dim cmdlength as Integer

CONST STATEMENT

See Also

Dim position as Integer
cmdline=Command
If cmdline="" then
MsgBox "No command line information.”
Exit Sub
End If
cmdlength=Len(cmdline)
position=InStr(cmdline,Chr(32))
filename=Mid(cmdline,position+1,cmdlength-position)
On Error Resume Next
Open filename for Input as #1
If Err<>0 then
MsgBox "Error loading file."
Exit Sub
End If

MsgBox "File " & filename & " opened.”

Close #1

MsgBox "File " & filename & " closed."
End Sub

AppActivate, DoEvents, Environ, SendKeys, Shell

Const Statement

Action

Syntax

Comments

Example

Declares symbolic constants for use in a Basic program.

[Global] Const constantNameAs type]= expressior,constantName
expression ...

where is

constantName the variable name to contain a constant value.

type the data type of the constaiumber or String).
expression any expression that evaluates to a constant number.

Instead of using thas clause, the type of the constant may be specified by using
a type character as a suffix (for numbers, $ for strings) todhstantNamef no

type character is specified, the type of tbastantNamés derived from the type

of the expression.

If Global is specified, the constant is validated at module load time. If the constant
has already been added to the run-time global area, the constant’s type and value
are compared to the previous definition, and the load fails if a mismatch is found.
This is useful as a mechanism for detecting version mismatches between modules.

This example divides the US national debt by the number of people in the country
to find the amount of money each person would have to pay to wipe it out. This
figure is converted to a Long integer and formatted as Currency.

SBL REFERENCE

Sub main

Dim debt As Single
Dim msgtext
Const Populace=250000000
debt=InputBox("Enter the current US national debt:")
msgtext="The $/citizen is: " & Format(CLng(Debt/Populace), "Currency")
MsgBox msgtext
End Sub

See Also Declare, Deffype Dim, Let, Type

Cos Function

Action Returns the cosine of an angle.
Syntax Cos(number) wherenumberis an angle in radians.
Comments The return value will be between -1 and 1. The return value is a single-precision

number if the angle has a data typeger, Currency, or is a single-precision
value. The return value will be a double precision value if the angle has a data
typelLong, Variant or is a double-precision value.

The angle can be either positive or negative. To convert degrees to radians, multiply
by (P1/180). The value of Pl is approximately 3.14159.

Example This example finds the length of a roof, given its pitch and the distance of the
house from its center to the outside wall.

Sub main
Dim bwidth, roof,pitch
Dim msgtext
Const PI=3.14159
Const conversion=P1/180
pitch=InputBox("Enter roof pitch in degrees")
pitch=Cos(pitch*conversion)
bwidth=InputBox("Enter 1/2 of house width in feet")
roof=bwidth/pitch
msgtext="The length of the roof is " & Format(roof, "##.##") & " feet."
MsgBox msgtext

End Sub

See Also Atn, Sin, Tan, Derived Trigonometric Functions

CREATEOBJECT FUNCTION

CreateObject Function

Action

Syntax

Comments

Example

See Also

Creates a new OLE?2 automation object.

CreateObject(class) whereclassis thename of the application, a period, and
the name of the object to be used.

To create an object, you first must declare an object variable, Dsimgand
thenSetthe variable equal to the new object, as follows:

Dim OLE2As Object
SetOLE2= CreateObject('spoly.cpoly)

To refer to a method or property of the newly created object, use the syntax
objectvar.propertyor objectvar.methodas follows:OLE2.reset

Refer to the documentation provided with your OLE2 automation server application
for correct application and object names.

This example uses the CreateObject function to open the software product VISIO
(if it is not already open).

Sub main
Dim visio as Object
Dim doc as Object
Dim i as Integer, doccount as Integer
“Initialize Visio
Set visio = GetObject(,"visio.application") 'find Visio
If (visio Is Nothing) then
Set visio = CreateObject("visio.application") ' find Visio

If (visio Is Nothing) then
Msghox "Couldn't find Visio!"
Exit Sub
End If
MsgBox "Visio is open."
End If
End Sub

GetObject, Is, Me, New, Nothing, Object Class, Typeof

CSng Function

Action

Syntax

Converts an expression to the data tgpele

CSng(expressior whereexpressions anyexpression that can evaluate to a
number.

SBL REFERENCE

Comments The expression must have a value within the range allowed f&irigte data
type, or an error occurs.

Strings that cannot be converted to an integer result in a “Type Mismatch” error.
Variants containing null result in an “lllegal Use of Null” error.

Example This example calculates the factorial of a number. A factorial (notated with an
exclamation mark, !) is the product of a number and each integer between it and the

number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the value
120.

Sub main
Dim number as Integer
Dim factorial as Double
Dim msgtext
number=InputBox("Enter an integer between 1 and 170:")
If number<=0 then
Exit Sub
End If
factorial=1
For x=number to 2 step -1
factorial=factorial*x
Next x
Rem If number =<35, then its factorial is small enough to be stored
Rem as a single-precision number
If number<35 then
factorial=CSng(factorial)
End If
msgtext="The factorial of " & number & "is: " & factorial
MsgBox msgtext
End Sub

See Also Ccur, Cdbl, Cint, Clng, Cstr, Cvar, CVDate

CStr Function

Action Converts an expression to the data tgfng.
Syntax CStr(expressior) whereexpressiorns any expression that can evaluate to a
number.

Comments The CStr statement accepts any typesapression

expressionis CStr returns:

Boolean a String containing “True” or “False”.

Date a String containing a date.

Empty a zero-length String ("").

Error a String containing “Error”, followed by the error number.
Null a run-time error.

Other Numeric a String containing the number.

'$CSTRINGS METACOMMAND [SBL EXTENSION]** '$

Example

See Also

This example converts a variable from a value to a string and displays the
result. Variant type 5 is Double and type 8 is String.

Sub main
Dim varl
Dim msgtext as String
varl=InputBox("Enter a number:")
varl=varl+10
msgtext="Your number + 10 is: " & varl & Chr(10)
msgtext=msgtext & "which makes its Variant type: " & Vartype(varl)
MsgBox msgtext
varl=CStr(varl)
msgtext="After conversion to a string," & Chr(10)
msgtext=msgtext & "the Variant type is: " & Vartype(varl)
MsgBox msgtext

End Sub

Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cvar, CVDate, Format

'$CStrings Metacommand [SBL Extension]** '$

Action

Syntax

Comments

Tells the compiler to treat a backslash character inside a string (\) as an escape
character.

'$CStrings [Save| Restorgl whereSavesaves the current $Cstrings setting and
Restorerestores a previously saved $CStrings setting.

This treatment of a backslash in a string is based on the 'C' language.

SaveandRestoreoperate as a stack and allow the user to change the setting for a
range of the program without impacting the rest of the program.

The special characters supported are following:

Newline (Linefeed) \n
Horizontal Tab \t
Vertical Tab \v
Backspace \b
Carriage Return \r
Formfeed \f
Backslash \\
Single Quote \
Double Quote \"
Null Character \0

The instruction “Hello\r World” is the equivalent of “Hello” + Chr$(13)+"World".

SBL REFERENCE

Example

See Also

In addition, any character can be represented as a 3-digit octal code or a 3-digit
hexadecimal code:

Octal Code \ddd
Hexadecimal Code \xddd

For both hexadecimal and octal, fewer than 3 characters can be used to specify the
code as long as the subsequent character is not a valid (hex or octal) character.

To tell the compiler to return to the default string processing mode, where the
backslash character has no special meaning, useNb€Strings Metacommand.

**SBL offers a number of extensions that are not included in Visual Basic.

This example displays two lines, the first time using the C-language characters
“\n” for a carriage return and line feed.

Sub main

'$CStrings

MsgBox "This is line 1\n This is line 2 (using C Strings)"

'$NoCStrings

MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"
End Sub

$Include, $NoCStrings, Rem

CurDir Function

Action

Syntax

Comments

Returns the default directory (and drive) for the specified drive.

CurDir [$] [(drive$)] wheredrive$is a string expression containing the drive
to search.

The drive must exist, and must be within the range specified in the LASTDRIVE
statement of the CONFIG.SYS file. If a null argument (") is supplied, or if no
drive$ is indicated, the path for the default drive is returned.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function will returaVariant of vartype 8 (string).

To change the current drive, uSBDrive. To change the current directory, use
ChDir.

CVAR FUNCTION

Example This example changes the current directory to C:A\WINDOWS, if it is not already
the default.

Sub main

Dim newdir as String

newdir="c:\windows"

If CurDir <> newdir then

ChDir newdir

End If

MsgBox "The default directory is now: " & newdir
End Sub

See Also ChDir, ChDrive, Dir, MkDir, RmDir

CVar Function

Action Converts an expression to the data typeant.
Syntax CVar(expression whereexpressions any expression that can evaluate to a
number.

Comments CVar accepts any type of expression.

CVar generates the same result as you would get by assigeiagptessiorio a
Variant variable.

Example This example converts a string variable to a variant variable.

Sub main

Dim answer as Single

answer=100.5

MsgBox "Answer' is DIM'ed as Single with the value: " & answer

answer=CVar(answer)

answer=Fix(answer)

MsgBox "Answer' is now a variant with a type of: " & VarType(answer)
End Sub

See Also Ccur, Cdbl, Cint, Clng, Csng, Cstr, CVDate

CVDate Function

Action Converts an expression to the data tyjpeant Date.
Syntax CVDate(expressior) whereexpressions any expression that can evaluate to a
number.

Comments CVDate accepts both string and numeric values.

SBL REFERENCE

The CVDate function returns &ariant of vartype 7 (date) that represents a date
from January 1, 100 through December 31, 9999. A value of 2 represents January 1,
1900. Times are represented as fractional days.

Example This example displays the date for one week from the date entered by the user.

Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i strl=InputBox$("Enter a date:")
answer=IsDate(strl)
If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="One week from the date entered is:
msgtext=msgtext & "Format(nextweek,"dddddd")
MsgBox msgtext
Else
MsgBox "Invalid date or format. Try again."
Gotoi
End If
End Sub

See Also Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cstr, Cvar, Format, Val

Date Function

Action Returns a string representing the current date.

Syntax Date[$]
Comments The Date function returns a ten character string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function will returaVariant of vartype 8 (string).

Example This example displays the date for one week from the today’s date (the current
date on the computer).
Sub main
Dim nextweek
nextweek=CVar(Date)+7

MsgBox "One week from today is: " & Format(nextweek,"ddddd")
End Sub

See Also CVDate, Date Statement, Format, Now, Time Function, Time Statement, Timer,
TimeSerial

DATE STATEMENT

Date Statement

Action Sets the system date.

Syntax Date[$] = expressionwhere expression is a string in one of the following forms:
mm-dd-yy, mm-dd-yyysnm/dd/yyor mm/dd/yyywheremmadenotes a month
(01-12),dd denotes a day (01-31), apglor yyyydenotes a year (1980-2099).

Comments If the dollar sign, “$”, is omittedexpressiortan be a string containing a valid
date, avariant of vartype 7 (date), ordariant of vartype 8 (string).

If expressions not already &ariant of vartype 7 (dateDate attempts to convert

it to a valid date from January 1, 1980 through December 31, P@®®uses the

Short Date format in the International section of Windows Control Panel to
recognize day, month, and year if a string contains three numbers delimited by valid
date separators. In additiddate recognizes month names in either full or

abbreviated form.

Example This example changes the system date to a date entered by the user.

Sub main
Dim userdate
Dim answer
i: userdate=InputBox("Enter a date for the system clock:")
If userdate="" then
Exit Sub
End If
answer=IsDate(userdate)
If answer=-1 then
Date=userdate
Else
MsgBox "“Invalid date or format. Try again."
Gotoi
End If
End Sub

See Also Date Function, Time Function, Time Statement

DateSerial Function

Action Returns a date value for year, month, and day specified.

Syntax DateSerial(year%, month%, day%whereyear%is a year between 100 and
9999, or a numeric expressianpnth% is anonth between 1 and 12, or a
numeric expression, amay%is a day between 1 and 31, or a humeric expression.

Comments The DateSerialfunction returns &ariant of vartype 7 (date) that represents a date
from January 1, 100 through December 31, 9999, where January 1, 1900 is 2.

SBL REFERENCE

Example

See Also

A numeric expression can be used for any of the arguments to specify a relative
date: a number of days, months, or years before or after a certain date.

This example finds the day of the week New Year’s day will be for the year 2000.

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext
Dim newday as Variant
Const newyear=2000
Const newmonth=1
Let newday=1
newyearsday=DateSerial(newyear,newmonth,newday)
daynumber=Weekday(newyearsday)
msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
MsgBox msgtext
End Sub

DateValue, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year

DateValue Function

Action
Syntax

Comments

Example

See Also

Returns a date value for the string specified.
DateValue(date$) wheredate$ is a string representing a valid date.

TheDateValuefunction returns &ariant of vartype 7 (date) that represents a
date from January 1, 100 through December 31, 9999, where January 1, 1900 is 2.

DateValue accepts several different string representations for a date. It makes use
of the operating system’s international settings for resolving purely numeric dates.

This example displays the date for one week from the date entered by the user.

Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i strl=InputBox$("Enter a date:")
answer=IsDate(strl)
If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(strl)+7
msgtext="One week from your date is: " & Format(nextweek,"dddddd")
MsgBox msgtext
Else
MsgBox "Invalid date or format. Try again."
Gotoi
End If
End Sub

DateSerial, Day, Month, Now, TimeSerial, TimeValue, Weekday, Year

DAY FUNCTION

Day Function

Action
Syntax

Comments

Example

See Also

Returns the day of the month (1-31) of a date-time value.
Day(date) wheredateis any expression that can evaluate to & dat

Day attempts to convert the input value of date to a date value. The return value is
aVariant of vartype 2 (integer). If the value of date is null, a Variant of vartype 1
(null) is returned.

This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today, msgtext
Today=DateValue(Now)

Letx=0

Do While Weekday(Today+x)<> 5
X=x+1

Loop

msgtext="This Thursday is: " & Month(Today+x) & "/" & Day(Today+x)
MsgBox msgtext
End Sub

Date Function, DateStatement, Hour, Minute, Month, Now, Second, Weekday, Year

Declare Statement

Action
Syntax A

Syntax B

Comments

Declares a procedure in a module or dynamic link library (DLL).

Declare Subname[libSpecification] [(parametef Astype])]

Declare Functionname] libSpecification] [(parametef As type])]
[As functype]

where is

name the subprogram or function procedure to declare.
libSpecification the location of the procedure (module or DLL).

parameter the arguments to pass to the procedure, separated by commas.
type the type for the arguments.

functype the type of the return value for a function procedure.

A Sub procedure does not return a valuekénction procedure returns a value, and
can be used in an expression. To specify the data type for the return value of a
function, end the Function name with a type character or ugssthumctypeclause
shown above. If no type is provided, the function defaults to data/igpent .

If the libSpecificationis of the format:

BasicLib libName [Alias " aliasnamé]

SBL REFERENCE

the procedure is in another Basic module nalibdthme TheAlias keyword

specifies that the procedurelibNameis calledaliasname The other module will

be loaded on demand whenever the procedure is called. SBL will not automatically
unload modules which are loaded in this fashion. SBL will detect errors of mis-
declaration.

If the libSpecificationis of the format:

Lib libName[Alias ["] ordinal["]]
or
Lib libName [Alias " aliasnamé]

the procedure is in a Dynamic Link Library (DLL) nangdName Theordinal
argument specifies the ordinal number of the procedure within the external DLL.
Alternatively, aliasnamespecifies the name of the procedure within the external
DLL. If neitherordinal noraliasnameis specified, the DLL function is accessed by
name. It is recommended that threlinal be used whenever possible, since
accessing functions by name may cause the module to load more slowly.

A forward declaration is needed only when a procedure in the current module is
referenced before it is defined. In this case RhasicLib, Lib andAlias clauses are
not used.

The data type of a parameter may be specified by using a type character or by using
the As clause. Record parameters are declared by usiAg elause and type

which has previously been defined using Tigpe statement. Array parameters are
indicated by using empty parentheses afteptrameter array dimensions are not
specified in thédeclare statement.

External DLL procedures are called with the PASCAL calling convention (the

actual arguments are pushed on the stack from left to right). By default, the actual
arguments are passed by Far reference. For external DLL procedures, there are two
additional keywordsByVal andAny, that can be used in the parameter list.

WhenByVal is used, it must be specified before the parameter it modifies. When
applied to numeric data typé®yVal indicates that the parameter is passed by
value, not by reference. When applied to string param@&g¥&l indicates that the
string is passed by Far pointer to the string data. By default, strings are passed by
Far pointer to a string descriptor.

Any can be used as a type specification, and permits a call to the procedure to pass
a value of any datatype. Whamy is used, type checking on the actual argument
used in calls to the procedure is disabled (although other arguments not declared as
type Any are fully type-safe). The actual argument is passed by Far reference,
unlessByVal is specified, in which case the actual value is placed on the stack (or a
pointer to the string in the case of string daBg)al may also be used in the call.

It is the external DLL procedure’s responsibility to determine the type and size of
the passed-in value.

DEFTYPE STATEMENT

Example

See Also

When an empty string (") is passBgVal to an external procedure, the external
procedure will receive a valid (non-NULL) pointer to a character of 0. To send a
NULL pointer, Declarethe procedure argumentBgVal As Any, and call the
procedure with an argument @f

This example declares a function that is later called by the main subprogram. The
function does nothing but set its return value to 1.

Declare Function SBL_exfunction()
Sub main

Dimy as Integer

Call SBL_exfunction

y=SBL_exfunction

MsgBox "The value returned by the function is: " & y
End Sub

Function SBL_exfunction()
SBL_exfunction=1
End Function

Call, Const, Délype Dim, Static, Type

Deftype Statement

Action

Syntax

Comments

Specifies the default data type for one or more variables.

DefCur varTypeletters

Defint varTypeLetters

DefLng varTypeLetters

DefSngvarTypelLetters

DefDbl varTypeLetters

DefStr varTypeLetters

DefVar varTypeletters

wherevarTypeLetterss a first letter of the variable name to use.

VarTypelettersnay be a single letter, a comma-separated list of letters, or a range
of letters. For example, a-d indicates the letters a, b, ¢ and d.

The case of the letters is not important, even in a letter range. The letter range a-z is
treated as a special case: it denotes all alpha characters, including the international
characters.

The Deftypestatement affects only the module in which it is specified. It must
precede any variable definition within the module.

Variables defined using the Global or Dim may overrideltbftypestatement by
using anAs clause or a type character.

m SBL REFERENCE

Example

See Also

This example finds the average of bowling scores entered by the user. Since the
variableaveragebegins with A, it is automatically defined as a single-precision
floating point number. The other variables will be defined as Integers.

Defint ¢,s,t
DefSng a
Sub main
Dim count
Dim total
Dim score
Dim average
Dim msgtext
For count=0 to 4
score=InputBox("Enter bowling score #" & count+1 &":")
total=total+score
Next count
average=total/count
msgtext="Your average is: " &average
MsgBox msgtext
End Sub

Declare, Dim, Let, Type

Dialog FunctionD

Action

Syntax

Comments

Displays a dialog box and returns a number for the button selected (-1= OK,
0=Cancel).

Dialog (recordName whererecordNames a variable name declared as a
dialog box record.

If the dialog box contains additional command buttons (for example, Help), the
Dialog function returns a number greater than 0. 1 corresponds to the first
command button, 2 to the second, and so on.

The dialog boxecordNamemust have been declared usingEtie statement with
the As parameter followed by a dialog box definition name. This name comes from
the name argument used in the Begin Dialog statement.

To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statememBefgn Dialogfor
more information.

TheDialog function does not return until the dialog box is closed.

DIALOG STATEMENT

Example This example creates a dialog box with a drop down combo box in it and three
buttons: OK, Cancel, and Help. The Dialog function used here enables the
subroutine to trap when the user clicks on any of these buttons.

See Also

Sub main
Dim cchoices as String
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Text1
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OkButton 131, 8,42, 13
CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl
End Dialog
Dim mydialogbox As UserDialog
answer= Dialog(mydialogbox)
Select Case answer
Case -1
MsgBox "You pressed OK"
Case 0
MsgBox "You pressed Cancel"
Case 1
MsgBox "You pressed Help”
End Select
End Sub

Begin Dialog...End Dialog, Dialog Statement

Dialog Statement

Action Displays a dialog box.
Syntax Dialog recordNamevhererecordNames a variable name declared as a dialog
box record.
Comments The dialog boxecordNameamust have been declared usingEhe statement

with the As parameter followed by a dialog box definition name. This name
comes from the name argument used irBegin Dialogstatement.

If the user exits the dialog box by pushing the Cancel button, the run-time error 102
is triggered, which can be trapped usig Error .

To trap a user’s selections within a dialog box, you must create a function and
specify it as the last argument to the Begin Dialog statememBe®gn Dialogfor
more information.

TheDialog statement does not return until the dialog box is closed.

SBL REFERENCE

Example This example defines and displays a dialog box defisétsarDialogand
namedmydialogbox|f the user presses the Cancel button, an error code of 102 is
returned and is trapped by the If...Then statement listed after the Dialog
statement.

Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OkButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then
MsgBox "You pressed Cancel."
Else
MsgBox "You pressed OK."
End If
End Sub

See Also Begin Dialog...End Dialog, Dialog Function

Dim Statement

Action Declares variables for use in a Basic program.

Syntax Dim [Shared] variableNamdAs [New] typq [,variableNamdAs [New]
typd] ... wherevariableNames the name of the variable to declare geis
the data type of the variable.

Comments VariableNameamust begin with a letter and contain only letters, numbers and
underscores. A name may also be delimited by brackets, and any character may
be used inside the brackets, except for other brackets.

Dim my_1st_variablés String
Dim [one long and strange! variable nams]String

If the As clause is not used, the type of the variable may be specified by using a
type character as a suffix to variableName. The two different type-specification
methods can be intermixed in a sinBlien statement (although not on the same
variable).

DIM STATEMENT

Arrays

Basic is a strongly typed language: all variables must be given a data type or they
will be automatically assigned the data tysgiant. The available data types are:

Arrays
Numbers
Objects
Records
Strings
Variants

Variables may be shared across modules. A variable declared inside a procedure
has scope Local to that procedure. A variable declared outside a procedure has
scope Local to the module. If you declare a variable with the same name as a
module variable, the module variable is not accessible. S€dbal statement

for details.

The Shared keyword is included for backward compatibility with older versions of
Basic. It is not allowed iDim statements inside a procedure. It has no effect.

It is considered good programming practice to declare all variables. To force all
variables to be explicitly declared use @tion Explicit statement. It is also
recommended that you place all procedure-IB®ial statements at the beginning of
the procedure.

Regardless of which mechanism you use to declare a variable, you may choose to
use or omit the type character when referring to the variable in the rest of your
program. The type suffix is not considered part of the variable name.

The available data types for arrays are: numbers, strings, variants, objects and
records. Arrays of arrays, dialog box records, and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableNameThe syntax to use faariableNamas:

Dim variablg [subscriptRange..])AstypeName
or Dim variable_with_suffig[subscriptRange..])

wheresubscriptRangés of the format:

[startSubscripfTo] endSubscript

If startSubscripts not specified, 0 is used as the default. Op&on Base
statement can be used to change the default.

SBL REFERENCE

Both thestartSubscripind theendSubscripare valid subscripts for the array. The
maximum number of subscripts which may be specified in an array definition is 60.
The maximum total size for an array is only limited by the amount of memory
available.

If no subscriptRangés specified for an array, the array is declared as a dynamic
array. In this case, tHeeDim statement must be used to specify the dimensions of
the array before the array can be used.

Numbers Numeric variables can be declared usingAkelause and one of the following
numeric typesCurrency, Integer, Long, Single, Double. Numeric variables
can also be declared by including a type character as a suffix to the name.
Numeric variables are initialized to 0.

Objects Object variables are declared usingf@clause and gypeNameof aclass
Object variables may Ifgetto refer to an object, and then used to access
members and methods of the object using dot notation.

Dim OLE2 As Object
SetOLE2= CreateObject('spoly.cpoly’)
OLE2.reset

An object may be declared Bgw for some classes. In such instances, the object
variable does not need to Bet a new object will be allocated when the variable is
used. Note: The clag3bject does not support tHéew operator.

Dim variableNameAs NewclassName
variableName.methodName

Records Record variables are declared by usindhartlause and typeNamevhich has
been defined previously using thgpe statement. The syntax to use is:

Dim variableNameAs typeName

Records are made up of a collection of data elements called fields. These fields may
be of any numeric, string, Variant, or previously defined record typelgmefor
details on accessing fields within a record.

You can also use tHeim statement to declare a dialog box record. In this case,
typeis specified agdialogNamewheredialogNamematches a dialog box nhame
previously defined usinBegin Dialog The dialog record variable can then be used
in aDialog statement.

Dialog box records have the same behavior as regular records; they differ only in
the way they are defined. Some applications may provide a number of predefined
dialog boxes.

DIM STATEMENT

Strings

Variants

Example

See Also

SBL supports two types of strings: fixed-length and dynamic. Fixed-length
strings are declared with a specific length (between 1 and 32767) and cannot be
changed later. Use the following syntax to declare a fixed-length string:

Dim variableNameAs String* length

Dynamic strings have no declared length, and can vary in length from O to 32,767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

Dim variableName$
or Dim variableNam@e\s String

When initialized, fixed-length strings are filled with zeros. Dynamic strings are
initialized as zero-length strings.

Declare variables as Variants when the type of the variable is not known at the
start of, or may change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

Dim variableName
or Dim variableNameAs Variant

Variant variables are initialized to vartype Empty.

This example shows a Dim statement for each of the possible data types.

Rem Must define a record type before you can declare a record variable
Type Testrecord
Custno As Integer
Custname As String
End Type
Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
Dim myrecord As Testrecord
Dim ole2var As Object
Dim F(1 to 10), A()
' ...(code here)...
End Sub

Global, Option Base, ReDim, Set, Static, Type

m SBL REFERENCE

Dir Function
Action Returns a filename that matches the specified pattern.
Syntax Dir [$] [(pathname$,attributes%)] wherepathname$s a string expression

identifying a path or filename aradtributes%is an integer expression specifying
the file attributes to select.

Comments Pathname$nay include a drive specification and wildcard characters (*?' and "*').
Dir returns the first filename that matches pathname$rgument. To retrieve
additional matching filenames, call tbér function again, omitting the
pathname$&ndattributes%arguments. If no file is found, an empty string (
returned.

) is

The default value foattributes%is 0. In this caseir returns only files without
directory, hidden, system, or volume label attributes set.

Here are the possible values &ttributes%

Value Meaning
0 return normal files
2 add hidden files
4 add system files
8 return volume label
16 add directories

The values in the table can be added together to select multiple attributes. For
example, to list hidden and system files in addition to normal filestsdtutes%
to 6 (6=2+4).

If attributes%is set to 8, th®ir function returns the volume label of the drive
specified in thgpathnamegor of the current drive if drive is not explicitly
specified. If volume label attribute is set, all other attributes are ignored.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will return¥ariant of vartype 8 (string).

Example This example lists the contents of the diskette in drive A.

Sub main
Dim msgret
Dim directory, count
Dim x, msgtext
Dim A()
msgret=MsgBox("Insert a disk in drive A.")
count=1
ReDim A(100)
directory=Dir ("A:**")
Do While directory<>""

DLGCONTROLID FUNCTION

See Also

A(count)=directory
count=count+1
directory=Dir
Loop
msgtext="Contents of drive A:\ is:" & Chr(10) & Chr(10)
For x=1 to count
msgtext=msgtext & A(x) & Chr(10)
Next x
MsgBox msgtext
End Sub

ChDir, ChDrive, CurDir, MkDir, RmDir

DIlgControllD Function

Action
Syntax

Comments

Example

Returns the numeric ID for a dialog control in the active dialog box.
DIgControlID (1d$) where 1d$ is the string ID for a dialog control.

TheDIgControllD function translates a string 1d$ into a numeric ID. Numeric ids
correspond to the position of a control within a dialog box definition. The first
control has ID 0 (zero), the second 1, and so on. The string IDs come from the last
argument in the dialog definition statement that created the dialog control, such as
the TextBox or ComboBox statements. The string IDs does not include the period
(.) and is case-sensitive.

UseDlIgControlID only while a dialog box is running. See #egin Dialog
statement for more information.

This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\windows"
ListBox 99, 34, 66, 66, ", .ListBox2

m SBL REFERENCE

Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OkButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DigText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=
End If
DlgListBoxArray 2,exestr$()
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action

Case 1
str1$="+exe" 'dialog box initialized
ListFiles str1$

Case 2 ‘button or control value changed

If DlgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Strig="++"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 'text or combo box changed
str1$=DIgText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 'idle
End Select

End Function

See Also BeginDialog...End Dialog, DIgEnable Function, DIgEnable Statement, DigFocus
Function, DIgFocus Statement, DigListBoxArray Function, DIgListBoxArray
Statement, DIgSetPicture, DIgText Function, DIgText Statement, DIigValue
Function, DIgValue Statement, DIgVisible Function, DIgVisible Statement

DLGENABLE FUNCTION m

DlgEnable Function

Action
Syntax

Comments

Example

See Also

Returns the enable state for the specified dialog control (-1=enabled, O=disabled).
DlgEnable (Id) whereld is the numeric ID for the dialog control.

If a dialog box control is enabled, it is accessible to the user. You may want to
disable a control if its use depends on the selection of other controls.

Use theDIgControllD function to find the numeric ID for a dialog control, based
on its string identifier.

UseDlgEnable only while a dialog box is running. See #egin Dialog statement
for more information.

This example displays a dialog box with two checkbox es, one labeled Either, the
other labeled Or. If the user clicks on Either, the Or option is grayed. Likewise, if
Or is selected, Either is grayed. This example uses the DIgEnable statement to
toggle the state of the buttons.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92,"DIgEnable example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 34, 25, 75, 19, "Either", .CheckBox1
CheckBox 34, 43, 73, 25, "Or", .CheckBox2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 2 ‘button or control value changed
If DigControlld(identifier$) = 2 Then
DlgEnable 3
Else
DIgEnable 2
End If
End Select
End Function

BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function,
DlgFocus Function, DIgFocus Statement, DIgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DIgText Function, DIigText
Statement, DIgValue Function, DigValue Statement, DIgVisible Function,
DlgVisible Statement

SBL REFERENCE

DlgEnable Statement

Action Enables, disables, or toggles the state of the specified dialog control.

Syntax DigEnableld [, mode] whereld is the numeric ID for the dialog control to
changeModeis an integer representing the enable state (1=enable, O=disable)

Comments If modeis omitted, théDlgEnable toggles the state of the dialog control specified
by Id. If a dialog box control is enabled, it is accessible to the user. You may
want to disable a control if its use depends on the selection of other controls.

Use theDIgControllD function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such aEttBox or
ComboBox statements.

UseDlgEnable only while a dialog box is running. See tegin Dialogstatement
for more information.

Example This example displays a dialog box with one checkbox , labeled Show More, and
a group box, labeled More, with two option buttons, Option 1 and Option 2. It
uses the DIgEnable function to enable the More group box and its options if the
Show More checkbox is selected.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgEnable example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 13, 6, 75, 19, "Show more", .CheckBox1
GroupBox 16, 28, 94, 50, "More"
OptionGroup .OptionGroupl
OptionButton 23, 40, 56, 12, "Option 1", .OptionButton1
OptionButton 24, 58, 61, 13, "Option 2", .OptionButton2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DigEnable 3,0
DigEnable 4,0
DIgEnable 5,0
Case 2 'button or control value changed
If DigControlD(identifier$) = 2 Then
If DlgEnable (3)=0 then
DlgEnable 3,1

DLGFOCUS FUNCTION

DigEnable 4,1
DIgEnable 5,1
Else
DlgEnable 3,0
DlgEnable 4,0
DligEnable 5,0
End If
End If
End Select
End Function

See Also BeginDialog...End Dialog, DIgControlID Function, DIgEnable Statement,
DlgFocus Function, DIgFocus Statement, DIgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DIgText Function, DIigText
Statement, DIgValue Function, DigValue Statement, DIgVisible Function,
DlgVisible Statement

DlgFocus Function

Action Returns the numeric ID of the dialog control having the input focus.

Syntax DlgFocug$]()
Comments A control has focus when it is active and responds to keyboard input.

UseDlIgFocusonly while a dialog box is running. See Begin Dialog statement
for more information.

Example This example displays a dialog box with a checkbox , labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the checkbox , the focus goes to the OK
button.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DigFocus Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23, 57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

SBL REFERENCE

See Also

DlgFocus

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Casel
DlgFocus 2
Case 2 ‘user changed control or clicked a button
If DlgFocus() <> "OkButton" then
DlgFocus 0
End If
End Select
End Function

BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function, DIgEnable
Statement, DIgFocus Statement, DigListBoxArray Function, DIgListBoxArray
Statement, DIgSetPicture, DIgText Function, DIigText Statement, DigValue
Function, DIgValue Statement, DIgVisible Function, DilgVisible Statement

Statement

Action
Syntax

Comments

Example

Sets the focus for the specified dialog control.
DlgFocusld whereld is the ID for the dialog control to make active.

Use theDIgControllD function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such aEtiBox or
ComboBox statements.

UseDlIgFocusonly while a dialog box is running. See tegin Dialogstatement
for more information.

This example displays a dialog box with a checkbox , labeled Check1, and a text
box, labeled Text Box 1, in it. When the box is initialized, the focus is set to the
text box. As soon as the user clicks the checkbox , the focus goes to the OK
button.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgFocus Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
TextBox 15, 37, 82, 12, .TextBox1
Text 15, 23,57, 10, "Text Box 1"
CheckBox 15, 6, 75, 11, "Check1", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

DLGLISTBOXARRAY FUNCTION

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DIgFocus 2
Case 2 ‘user changed control or clicked a button
If DIgFocus() <> "OkButton" then
DIgFocus 0
End If
End Select
End Function

See Also BeginDialog...End Dialog, DIgControlID Function, DIgEnable Function,
DIlgEnable Statement, DIgFocus Function, DIgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DIgText Function, DIigText
Statement, DIgValue Function, DigValue Statement, DIgVisible Function,
DlgVisible Statement

DlgListBoxArray Function

Action Returns the number of elements in a list or combo box.

Syntax DlgListBoxArray (Id[, Array$]) whereld is the numeric ID for the list or
combo box andrray$is the entries in the list box or combo box returned.

Comments Array$is a one-dimensional array of dynamic stringsrtay$is dynamic, its
size is changed to match the number of strings in the list or combo lorayi$
is not dynamic and it is too small, an error occurari@y$is omitted, the
function returns the number of entries in the specified dialog control.

Use theDIgControllD function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such ds#iBox or
ComboBox statements.

UseDlgListBoxArray only while a dialog box is running. See Begin Dialog
statement for more information.

Example This example displays a dialog box with a checkbox , labeled “Display List”, and
an empty list box. If the user clicks the checkbox , the list box is filled with the
contents of the array called “myarray”. The DlgListBox Array function makes
sure the list box is empty.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgListBoxArray Example", .FileDIgFunction
'$CStrings Save
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14

SBL REFERENCE

See Also

ListBox 19, 26, 74, 59, ™, .ListBox1
CheckBox 12, 4, 86, 13, "Display List", .CheckBox1
'$CStrings Restore
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Dim myarray$(3)
Dim msgtext as Variant
Dim x as Integer
Forx=0to 2
myarray$(x)=Chr$(x+65)
Next x
Select Case action
Case 1
Case 2 ‘user changed control or clicked a button
If DigControllD(identifier$)=3 then
If DIgListBoxArray(2)=0 then
DlgListBoxArray 2, myarray$()
End If
End If
End Select
End Function

BeginDialog...End Dialog, DIgControlID Function, DIgEnable Function,
DlgEnable Statement, DigFocus Function, DIgFocus Statement, DlgListBoxArray
Statement, DIgSetPicture, DIgText Function, DIgText Statement, DIigValue
Function, DIgValue Statement, DIgVisible Function, DIgVisible Statement

DlgListBoxArray Statement

Action

Syntax

Comments

Example

Fills a list or combo box with an array of strings.

DlgListBoxArray Id, Array$whereld is the D for the list or combo box and
Array$is the entries for the list box or combo box.

Array$ has to be a one-dimensional array of dynamic strings. One entry appears in
the list box for each element of the array. If the number of strings changes
depending on other selections made in the dialog box, you should use a dynamic
array andReDim the size of the array whenever it changes.

UseDlgListBoxArray only while a dialog box is running. See egin Dialog
statement for more information.

This example displays a dialog box similar to File Open.

Declare Sub ListFiles(str1$)
Declare Function FileDIgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer

DLGLISTBOXARRAY STATEMENT

Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8,17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98,7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OkButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Sub ListFiles(str1$)
DigText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DlgListBoxArray 2,exestr$()
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action

Case 1
stri$="*.exe" ‘dialog box initialized
ListFiles str1$

Case 2 ‘button or control value changed

If DlgControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
str1g="+*"
Else
stri$="+.exe"
End If
ListFiles str1$
End If

SBL REFERENCE

See Also

Case 3 'text or combo box changed
str1$=DigText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 'idle
End Select

End Function

BeginDialog...End Dialog, DIgControlID Function, DIgEnable Function,
DIgFocus Function, DIgFocus Statement, DigListBoxArray Function, DIgEnable,
DlgSetPicture, DIgText Function, DIgText Statement, DIgValue Function,
DlgValue Statement, DlgVisible Function, DlgVisible Statement

DlgSetPicture Statement

Action

Syntax

Comments

Example

Changes the picture in a picture dialog control for the current dialog box.

DlgSetPictureld, filename$, typavhereld is the numeric ID for the picture
dialog control, filename$is the name of the bitmap file (.BMP) to use, apgdeis
an integer representing the location of the filefii@rame$ 3=Clipboard)

Use theDIgControllD function to find the numeric ID for a dialog control, based
on its string identifier. The string IDs come from the last argument in the dialog
definition statement that created the dialog control, such aetiBox or
ComboBox statements.

UseDlgListBoxArray only while a dialog box is running. See egin Dialog
statement for more information.

See thePicture statement for more information about displaying pictures in dialog
boxes.

This example displays a picture in a dialog box and changes the picture if the user
clicks the checkbox labeled “Change Picture”.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgSetPicture Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
CheckBox 30, 8, 62, 15, "Change Picture", .CheckBox1
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

DLGTEXT FUNCTION

See Also

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
Case 2 ‘user changed control or clicked a button
If DigControlID(identifier$)=3 then
If suppvalue=1 then
DlIgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
Else
DlgSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
End If
End If
End SelectEnd Function

BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function, DIgEnable
Statement, DIgFocus Function, DIgFocus Statement, DigListBoxArray Function,
DlgListBoxArray Statement, DIgText Function, DIgText Statement, DigValue
Function, DlgValue Statement, DIgVisible Function, DlgVisible Statement

DlgText Function

Action
Syntax

Comments

Example

Returns the text associated with a dialog control for the current dialog box.
DIgText[$] (Id) whereld is the numeric ID for a dialog control.

If the control is a text box or a combo b@}gText function returns the text that
appears in the text box. If it is a list box, the function returns its current selection.
If it is a text box DIgText returns the text. If the control is a command button,
option button, option group, or a checkbox , the function returns its label.

UseDlIgText only while a dialog box is running. See Begin Dialogstatement
for more information.

This example displays a dialog box similar to File Open. It uses DIgText to
determine what group of files to display.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Dim filetypes as String
Dim exestr$()
Dim button as Integer
Dim x as Integer
Dim directory as String
filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"
Begin Dialog newdlg 230, 145, "Open", .FileDIgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1

SBL REFERENCE

Text 8,108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98,7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, ", .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ™, .DropListBox2
OkButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dig As newdlg

button = Dialog(dlg)

End Sub

Sub ListFiles(str1$)
DigText 1,str1$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DlgListBoxArray 2,exestr$()
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
str1$="*.exe" 'dialog box initialized
ListFiles str1$
Case 2 ‘button or control value changed
If DigControlld(identifier$) = 4 Then
If DIgText(4)="All Files (*.*)" then
Str1g="++"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 'text or combo box changed
str1$=DigText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 'idle
End Select

End Function

See Also BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function, DIgEnable
Statement, DIgFocus Function, DIgFocus Statement, DIgListBoxArray Function,
DlgListBoxArray Statement, DlgSetPicture, DigText Statement, DIgValue Function,
DlgValue Statement, DIgVisible Function, DIgVisible Statement

DLGTEXT STATEMENT

DIlgText Statement

Action

Syntax

Comments

Example

Changes the text associated with a dialog control for the current dialog box.

DigText Id, text$ whereld is the numeric ID for a dialog control atekt$is the
text to use for the dialog control.

If the dialog control is a text box or a combo bbigText sets the text that
appears in the text box. If it is a list box, a string equéttbor beginning with
text$is selected. If the dialog control is a text contBgText sets it taext$ If
the dialog control is a command button, option button, option group, or a
checkbox , the statement sets its label.

TheDlIgText statement does not change the identifier associated with the control.

UseDlgText only while a dialog box is running. See tBegin Dialogstatement
for more information.

This example displays a dialog box similar to File Open. It uses the DigText
statement to display the list of files in the Filename list box.

Declare Sub ListFiles(str1$)
Declare Function FileDlgFunction(identifier$, action, suppvalue)

Sub main

Dim identifier$

Dim action as Integer

Dim suppvalue as Integer

Dim filetypes as String

Dim exestr$()

Dim button as Integer

Dim x as Integer

Dim directory as String

filetypes="Program files (*.exe)"+Chr$(9)+"All Files (*.*)"

Begin Dialog newdlg 230, 145, "Open", .FileDlgFunction
'$CStrings Save
Text 8, 6, 60, 11, "&Filename:"
TextBox 8, 17, 76, 13, .TextBox1
ListBox 9, 36, 75, 61, exestr$(), .ListBox1
Text 8, 108, 61, 9, "List Files of &Type:"
DropListBox 7, 120, 78, 30, filetypes, .DropListBox1
Text 98, 7, 43, 10, "&Directories:"
Text 98, 20, 46, 8, "c:\\windows"
ListBox 99, 34, 66, 66, "', .ListBox2
Text 98, 108, 44, 8, "Dri&ves:"
DropListBox 98, 120, 68, 12, ", .DropListBox2
OkButton 177, 6, 50, 14
CancelButton 177, 24, 50, 14
PushButton 177, 42, 50, 14, "&Help"
'$CStrings Restore

End Dialog

Dim dlg As newdlg

button = Dialog(dlg)

End Sub

“ SBL REFERENCE

Sub ListFiles(str1$)
DIgText 1,strl$
x=0
Redim exestr$(x)
directory=Dir$("c:\windows\" & str1$,16)
If directory<>"" then
Do
exestr$(x)=LCase$(directory)
X=x+1
Redim Preserve exestr$(x)
directory=Dir
Loop Until directory=""
End If
DlgListBoxArray 2,exestr$()
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action

Case 1
str1$="*exe" 'dialog box initialized
ListFiles str1$

Case 2 ‘button or control value changed

If DigControlld(identifier$) = 4 Then
If DigText(4)="All Files (*.*)" then
Strig="++"
Else
stri$="*.exe"
End If
ListFiles str1$
End If
Case 3 'text or combo box changed
str1$=DigText$(1)
ListFiles str1$

Case 4 ‘control focus changed
Case 5 'idle
End Select

End Function

See Also BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function, DIgEnable
Statement, DlgFocus Function, DIlgFocus Statement, DigListBoxArray Function,
DlgListBoxArray Statement, DIgSetPicture, DIlgText Function, DIgValue Function,
DlgValue Statement, DIgVisible Function, DIgVisible Statement

DlgValue Function

Action Returns a numeric value for the state of a dialog control for the current dialog box.

Syntax DlgValue (1d) whereld is thenumeric ID for a dialog control.

DLGVALUE FUNCTION

Comments

Example

See Also

The values returned depend on the type of dialog control:

Control Value Returned

Checkbox 1 = Selected, 0=Cleared, -1=Grayed

Option Group 0 = 1st button selected, 1 = 2nd button selected, etc.
Listbox 0 = 1stitem, 1= 2nd item, etc.

Combobox 0 =1stitem, 1 = 2nd item, etc.

Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement
for more information.

This example changes the picture in the dialog box if the checkbox is selected
and changes the picture to its original bitmap if the checkbox is turned off.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgSetPicture Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
Picture 43, 28, 49, 31, "C:\WINDOWS\THATCH.BMP", 0
CheckBox 30, 8, 62, 15, "Change Picture”, .CheckBox1
End Dialog
Dim dlg As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1l
Case 2 ‘user changed control or clicked a button
If DigControlID(identifier$)=3 then
If DigValue(3)=1 then
DlgSetPicture 2, "C:\WINDOWS\WINLOGO.BMP",0
Else
DigSetPicture 2, "C:\WINDOWS\THATCH.BMP",0
End If
End If
End Select
End Function

BeginDialog...End Dialog, DIgControlID Function, DIgEnable Function,
DlgEnable Statement, DIigFocus Function, DIgFocus Statement, DlgListBoxArray
Function, DlgListBoxArray Statement, DIgSetPicture, DIgText Function, DIgText
Statement, DIgValue Statement, DIgVisible Function, DIgVisible Statement

SBL REFERENCE

DlgValue Statement

Action

Syntax

Comments

Example

Changes the value associated with the dialog control for the current dialog box.

DlgValue Id, value% whereld is thenumeric ID for a dialog control and
value%is the new value for the dialog control.

The values you use to set the control depend on the type of the control:

Control Value Returned

Checkbox 1 = Select, 0=Clear, -1=Gray.

Option Group 0 = Select 1st button, 1 = Select 2nd button.
Listbox 0 = Select 1st item, 1= Select 2nd item, etc.
Combobox 0 = Select 1st item, 1 = Select 2nd item, etc.
Text, Textbox, Button Error occurs

Use DlgValue only while a dialog box is running. See the Begin Dialog statement
for more information.

This example displays a dialog box with a checkbox, labeled Change Option, and
a group box with two option buttons, labeled Option 1 and Option 2. When the
user clicks the Change Option button, Option 2 is selected.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DIgValue Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Change Option", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Casel
Case 2 ‘user changed control or clicked a button
If DigControlID(identifier$)=2 then
If DIgValue(2)=1 then
DigValue 4,1

DLGVISIBLE FUNCTION

Else
DigValue 4,0
End If
End If
End Select
End Function
See Also BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function,
DigEnable Statement, DIgFocus Function, DIgFocus Statement, DigListBoxArray
Function, DIgListBoxArray Statement, DIgSetPicture, DIlgText Function, DIgText

Statement, DIgValue Function, DIgVisible Function, DlgVisible Statement

DlgVisible Function

Action Returns -1 is a dialog control is visible, O if it is hidden.
Syntax DlgVisible (1d) whereld is thenumeric ID for a dialog control.

Comments UseDlgVisible only while a dialog box is running. See Begin Dialogstatement
for more information.

Example This example displays Option 2 in the Group box if the user clicks the checkbox
labeled “Show Option 2”. If the user clicks the box again, Option 2 is hidden.

Declare Function FileDlgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0

Case 2 ‘user changed control or clicked a button
If DigControlD(identifier$)=2 then
If DIgVisible(6)<>1 then
DlgVisible 6
End If
End If
End Select
End Function

SBL REFERENCE

See Also

BeginDialog...End Dialog, DIgControlID Function, DIgEnable Function,
DIlgEnable Statement, DIgFocus Function, DIgFocus Statement, DigListBoxArray
Function, DlgListBoxArray Statement, DIgSetPicture, DIgText Function, DigText
Statement, DIgValue Function, DIgValue Statement, DIgVisible Statement

DlgVisible Statement

Action

Syntax

Comments

Example

Hides or displays a dialog control for the current dialog box.

DlgVisible Id [, mode] where Id is the numeric ID for a dialog controtlanode
is the value to use to set the dialog control state:

1= Display a previously hidden control.
0= Hide the control.

If you omit themode the dialog box state is toggled between visible and hidden.

UseDlgVisible only while a dialog box is running. See Begin Dialogstatement
for more information.

This example displays Option 2 in the Group box if the user clicks the checkbox .
labeled “Show Option 2”. If the user clicks the box again, Option 2 is hidden.

Declare Function FileDIgFunction(identifier$, action, suppvalue)
Sub Main
Dim button as integer
Dim identifier$
Dim action as Integer
Dim suppvalue as Integer
Begin Dialog newdlg 186, 92, "DlgVisible Example", .FileDIgFunction
OkButton 130, 6, 50, 14
CancelButton 130, 23, 50, 14
CheckBox 30, 8, 62, 15, "Show Option 2", .CheckBox1
GroupBox 28, 34, 79, 47, "Group"
OptionGroup .OptionGroupl
OptionButton 41, 47, 52, 10, "Option 1", .OptionButton1
OptionButton 41, 62, 58, 11, "Option 2", .OptionButton2
End Dialog
Dim dig As newdlg
button = Dialog(dlg)
End Sub

Function FileDIgFunction(identifier$, action, suppvalue)
Select Case action
Case 1
DlgVisible 6,0
Case 2 ‘user changed control or clicked a button
If DigControlID(identifier$)=2 then
If DlgVisible(6)<>1 then
DlgVisible 6
End If
End If
End Select
End Function

DO...LOOP STATEMENT

See Also

BeginDialog...End Dialog, DIgControllD Function, DIgEnable Function,
DlgEnable Statement, DIgFocus Function, DIgFocus Statement,
DlgListBoxArray Function, DlgListBoxArray Statement, DlgSetPicture, DIgText
Function, DIgText Statement, DlgValue Function, DlgVisible Function

Do...Loop Statement

Action

Syntax A

Syntax B

Comments

Example

See Also

Repeats a series of program lines as long as (or until) an expression is TRUE.

Do [{ While |Until } conditior]
[statementblock
[Exit Do
[statementblock
Loop
Do
[statementblock
[Exit Do]
[statementblock
Loop [{ While |Until } conditior]

whereConditionis any expression that evaluates to TRUE (nonzero) or FALSE (0)
andstatementblock(s)s the program lines to repeat while (or urddpditionis
TRUE.

When arExit Do statement is executed, control goes to the statement after the
Loop statement. When used within a nested loojg)dnDo statement moves
control out of the immediately enclosing loop.

This example lists the contents of the diskette in drive A.

Sub main
Dim msgret
Dim directory, count
Dim x, msgtext
Dim A()
msgret=MsgBox("Insert a disk in drive A.")
count=1
ReDim A(100)
directory=Dir ("A:*.*")
Do While directory<>""
A(count)=directory
count=count+1
directory=Dir
Loop
msgtext="Directory of drive A:\ is:" & Chr(10)
For x=1 to count
msgtext=msgtext & A(x) & Chr(10)
Next x
MsgBox msgtext
End Sub

Exit, For...Next, Stop, While...Wend

“ SBL REFERENCE

DoEvents Statement

Action Yields execution to Windows for processing operating system events.
Syntax DoEvents
Comments DoEvents does not return until Windows has finished processing all events in the

queue and all keys sent by SendKeys statement.

DoEventsshould not be used if other tasks can interact with the running program in
unforeseen ways. Since SBL yields control to the operating system at regular
intervals,DoEventsshould only be used to force SBL to allow other applications to
run at a known point in the program.

Example This example activates the Windows Terminal application, dials the number and
then allows the operating system to process events.

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Terminal.exe",1)
SendKeys "%PD" & phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
DoEvents
End Sub

See Also AppActivate, SendKeys, Shell

DropComboBox Statement

Action Creates a combination of a drop-down list box and a text box.

Syntax A DropComboBoxX, y, dx, dy, text$, .field

Syntax B DropComboBoxx, y, dx, dy, stringarray$(), .field

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the combo box in which the user enters or
selects text.

text$ a string containing the selections for the combo box.

stringarray$ an array of dynamic strings for the selections in the combo box.

field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

DROPCOMBOBOX STATEMENT

Comments

Example

See Also

Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-width unitsBégge
Dialog for more information.)

Thetext$argument must be defined, usinPian Statement, before thgegin
Dialog statement is executed. The arguments ineki$string are entered as
shown in the following example:

dimname= "listchoicé+Chr$(9)+istchoice+Chr$(9)+'listchoicé...

The string in the text box will be recorded in the field designated byidta:
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

You use a drop combo box when you want the user to be able to edit the contents of
the list box (such as filenames or their paths). You use a drop list box when the
items in the list should remain unchanged.

Use theDropComboBox statement only betweerBegin Dialogand arEnd
Dialog statement.

This example defines a dialog box with a drop combo box and the OK and
Cancel buttons.

Sub main

Dim cchoices as String

On Error Resume Next

cchoices="All"+Chr$(9)+"Nothing"

Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OkButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13

End Dialog

Dim mydialogbox As UserDialog

Dialog mydialoghox

If Err=102 then
MsgBox "You pressed Cancel.”

Else
MsgBox "You pressed OK."
End If
End Sub

Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, ComboBox, DropListBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

SBL REFERENCE

DropListBox Statement

Action Creates a drop-down list of choices.
Syntax A DropListBox X, y, dx, dy, text$, .field

Syntax B DropListBox x, y, dx, dy, stringarray$(), .field

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the combo box in which the user enters or
selects text.

text$ a string containing the selections for the combo box.

stringarray$ an array of dynamic strings for the selections in the combo box.

field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

Comments Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-width unitsBésge
Dialog for more information.)

Thetext$argument must be defined, usin@ian Statement, before thgegin
Dialog statement is executed. The arguments ineki$string are entered as
shown in the following example:

dimname= "listchoicé+Chr$(9)+'istchoicé+Chr$(9)+'listchoicé...

The string in the text box will be recorded in the field designated byidia:
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

A drop list box is different from a list box. The drop list box only displays its list
when the user selects it; the list box also displays its entire list in the dialog box.

Use theDropListBox statement only betweerBagin Dialogand arEnd Dialog

statement.
Example This example defines a dialog box with a drop list box and the OK and Cancel
buttons.
Sub main

Dim DropListBox1() as String

ReDim DropListBox1(3)

Forx=0to 2

DropListBox1(x)=Chr(65+x) & ":"
Next x

Begin Dialog UserDialog 186, 62, "SBL Dialog Box"

ENVIRON FUNCTION m

See Also

Text 8, 4,42, 8, "Drive:", .Text3
DropListBox 8, 16, 95, 44, DropListBox1(), .DropListBox1
OkButton 124, 6, 54, 14
CancelButton 124, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

Begin Dialog...End Dialog Statement, Button, ButtonGroup, CancelButton,
Caption, CheckBox, ComboBox, DropComboBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Environ Function

Action

Syntax A
Syntax B

Comments

Example

Returns the string setting for a keyword in the operating system’s environment table.

Environ[$](environment-string)
Environ [$](numeric expressidh)

whereEnvironment-string$is the name of a keyword in the operating system
environment antNumeric expressiond% a number for the position of the string in
the environment table. (1st, 2nd, 3rd, etc.)

If you use theenvironment stringparameter, enter it in uppercasefowriron
returns a null string (""). The return value for Syntax A is the string associated
with the keyword requested.

If you use thenumeric expressiongsarameter, the numeric expression is
automatically rounded to a whole number, if necessary. The return value for Syntax
B is a string in the form “keyword=value”.

Environ returns a null string if the specified argument cannot be found.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will returaVariant of vartype 8 (string).

This example lists all the strings from the operating system environment table.

Sub main
Dim str1(100)
Dim msgtext
Dim count, x
Dim newline
newline=Chr(10)
x=1
str1(x)= Environ(x)

“ SBL REFERENCE

Do While Environ(x)<>""
strl(x)= Environ(x)
X=x+1
str1(x)=Environ(x)
Loop
msgtext="The Environment Strings are:" & newline & newline
count=x
For x=1 to count
msgtext=msgtext & strl(x) & newline
Next x
MsgBox msgtext
End Sub

Eof Function

Action

Syntax
Comments

Example

See Also

Returns the value -1 if the end of the specified open file has been reached, 0 otherwise.

Eof(filenumber%) wherefilenumber%s an integer expression identifying the
open file to use.

See thédpen statement for more information about assigning numbers to files
when they are opened.

This example uses the Eof function to read records from a Random file, using a
Get statement. The Eof function keeps the Get statement from attempting to read
beyond the end of the file. The subprogram, CREATEFILE, creates the file
C:A\TEMPOO1 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim acctno
Dim msgtext as String
newline=Chr(10)
Call createfile
Open "C:\temp001" For Input As #1
msgtext="The account numbers are:" & newline
Do While Not Eof(1)
Input #1,acctno
msgtext=msgtext & newline & acctno & newline
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMPQO01" for Output as #1
Forx=1t0 10
Write #1, x
Next x
Close #1
End Sub

Get, Input Function, Input Statement, Line Input, Loc, Lof, Open

ERASE STATEMENT

Erase Statement

Action

Syntax

Comments

Example

See Also

Reinitializes the contents of a fixed array or frees the storage associated with a
dynamic array.

EraseArray [, Array] whereArray is the of the array variable to re-initialize.

The effect of usindgeraseon the elements of a fixed array varies with the type of

the element:

Element Type Erase Effect

numeric Each element set to zero.

variable length string Each element set to zero length string.

fixed length string Each element’s string is filled with zeros.

Variant Each element set to Empty.

user-defined type Members of each element are cleared as if the members
were array elements, i.e. numeric members have their
value set to zero, etc.

object Each element is set to the special value Nothing.

This example prompts for a list of item numbers to put into an aray and clears array
if the user wants to start over.

Sub main
Dim msgtext
Dim inum(100) as Integer
Dim X, count
Dim newline
newline=Chr(10)
x=1
count=x
inum(x)=0
Do
inum(x)=InputBox("Enter item #" & x & " (99=start over;0=end):")
If inum(x)=99 then
Erase inum()
x=0
Elself inum(x)=0 then
Exit Do
End If
X=X+1
Loop
count=x-1
msgtext="You entered the following numbers:" & newline
For x=1 to count
msgtext=msgtext & inum(x) & newline
Next x
MsgBox msgtext
End Sub

Dim, ReDim, Lbound, UBound

SBL REFERENCE

Erl Function

Action
Syntax

Comments

Example

See Also

Returns the line number where an error was trapped.
Erl

If you use a Resume or On Error statement after Erl, the return value for Erl is
reset to 0. To maintain the value of the line number returned by Erl, assignitto a
variable.

The value of thé&rl function can be set indirectly through tBeor statement.

This example prints the error number using the Err function and the line number
using the Erl statement if an error occurs during an attempt to open a file. Line
numbers are automatically assigned, starting with 1, whicle Suthmain

statement.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input."
'L..efc....
Close #1
done:
Exit Sub
Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done
End Sub

Err Function, Err Statement, Error Function, Error Statement, On Error, Resume,
Trappable Errors

Err Function

Action
Syntax

Comments

Returns the run-time error code for the last error trapped.

Err

If you use a Resume or On Error statement after Erl, the return value for Err is reset to
0. To maintain the value of the line number returned by Erl, assign it to a variable.

The value of thé&rr function can be set directly through the statement, and
indirectly through théerror statement.

TheTrappable Errors are listed in an appendix.

ERR STATEMENT

Example

See Also

This example prints the error number using the Err function and the line number
using the Erl statement if an error occurs during an attempt to open a file. Line
numbers are automatically assigned, starting with 1, whicle Suthmain

statement.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input."

R
Close #1

done:
Exit Sub

Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done

End Sub

Erl, Err Statement, Error Function, Error Statement, On Error, Resume,
Trappable Errors

Err Statement

Action

Syntax

Comments

Example

Sets a run-time error code.

Err = n%wheren%is an integer expression for the error code (between 1 and
32,767) or 0 for no run-time error.

TheErr statement is used to send error information between procedures.

This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it. It uses the Err
statement to clear any previous error codes before running the loop the first time

and it also clears the error to allow the user to try again.
Sub main
Dim custname as String
On Error Resume Next
Do
Err=0
custname=InputBox$("Enter customer name:")
If custname=""then
Error 10000
Else
Exit Do
End If
Select Case Err
Case 10000
MsgBox "You must enter a customer name."
Case Else
MsgBox "Undetermined error. Try again."

SBL REFERENCE

See Also

End Select
Loop Until custname<>""
MsgBox "The name is: " & custname
End Sub

Erl, Err Function, Error Function, Error Statement, On Error, Resume,

Trappable Errors

Error Function

Action

Syntax

Comments

Example

See Also

Returns the error message that corresponds to the specified error code.

Error [$] [(errornumber%)] whereerrornumber%is an integer between 1 and
32,767 for the error code.

If this argument is omitted, SBL returns the error message for the run-time error
which has occurred most recently.

If no error message is found to match the errorcode, "™ (a null string) is returned.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will returaVariant of vartype 8 (string).

The Trappable Errors are listed in an appendix.

This example prints the error number, using the Err function, and the text of the
error, using the Error$ function, if an error occurs during an attempt to open a file.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input."

' ...efc...
Close #1

done:
Exit Sub

Debugger:
msgtext="Error " & Err & ": " & Error$
MsgBox msgtext
Resume done

End Sub

Erl, Err Function, Err Statement, Error Statement, On Error, Resume,
Trappable Errors

ERROR STATEMENT

Error Statement

Action

Syntax

Comments

Example

See Also

Simulates the occurrence of a SBL or user-defined error.

Error errornumber%whereerrornumber%is an integer between 1 and 32,767
for the error code.

If an errornumber%is one which SBL already uses, tBeor statement will
simulate an occurrence of that error.

User-defined error codes should employ values greater than those used for standard
SBL error codes. To help ensure that non-SBL error codes are chosen, user-defined
codes should work down from 32,767.

If an Error statement is executed, and there is no error-handling routine enabled,
SBL produces an error message and halts program executiorcrifoainstatement
specifies an error code not used by SBL, the message “User-defined error” is
displayed.

This example generates an error code of 10000 and displays an error message if a
user does not enter a customer name when prompted for it.

Sub main
Dim custname as String
On Error Resume Next
Do
Err=0
custname=InputBox$("Enter customer name:")
If custname=""then
Error 10000
Else
Exit Do
End If

Select Case Err
Case 10000
MsgBox "You must enter a customer name."
Case Else
MsgBox "Undetermined error. Try again."
End Select

Loop Until custname<>""
MsgBox "The name is: " & custname
End Sub

Erl, Err Function, Err Statement, Error Function, On Error, Resume,
Trappable Errors

m SBL REFERENCE

Exit Statement

Action
Syntax

Comments

Example

See Also

Terminates Loop statements or transfers control to a calling procedure.
Exit {Do | For| Function | Sub}

Use Exit Do inside a Do...Loop statement. Use Exit For inside a For...Next
statement. When the Exit statement is executed, control transfers to the statement
after the Loop or Next statement. When used within a nested loop, an Exit
statement moves control out of the immediately enclosing loop.

UseExit Function inside aFunction...End Function procedure. UsExit Sub
inside aSub...End Subprocedure.

This example uses the On Error statement to trap run-time errors. If there is an
error, the program execution continues at the label “Debugger”. The example uses
the EXxit statement to skip over the debugging code when there is no error.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input."
'...efc...
Close #1
done:
Exit Sub
Debugger:
msgtext="Error " & Err & ": " & Error$
MsgBox msgtext
Resume done
End Sub

Do...Loop, For...Next, Function...End Function, Stop, Sub...End Sub

Exp Function

Action

Syntax

Comments

Returns the value (the base of natural logarithms) raised to a power.

Exp(number) wherenumberis the exponent value fer

If the variable to contain the return value has a dataltypger, Currency, or
Single, the return value is a single-precision value. If the variable has a date type
of Long, Variant, or Double, the value returned is a double-precision number.

The constant is approximately 2.718282.

FILEATTR FUNCTION

Example This example estimates the value of a factorial of a number entered by the user. A
factorial (notated with an exclamation mark, !) is the product of a number and
each integer between it and the number 1. For example, 5 factorial, or 5!, is the
product of 5*4*3*2*1, or the value 120.

Sub main
Dim x as Single
Dim msgtext, Pl
Dim factorial as Double
PI=3.14159
: x=InputBox("Enter an integer between 1 and 88: ")
If x<=0 then
Exit Sub
Elself x>88 then
MsgBox "The number you entered is too large. Try again."
Gotoi
End If
factorial=Sqgr(2*PI*x)*(x"x/Exp(x))
msgtext="The estimated factorial is: " & Format(factorial, "Scientific")
MsgBox msgtext
End Sub

See Also Abs, Fix, Int, Log, Rnd, Sgn, Sqr

FileAttr Function

Action Returns the file mode or the operating system handle for the open file.

Syntax FileAttr(filenumber%, returntypewherefilenumber%s an integer expression
identifying the open file to use ameturntypeis 1=Return file mode, 2=Return
operating system handle

Comments The argumentilenumber%is the number used in ti@pen statement to open the
file.

The following table lists the return values and corresponding file modes if
returntypeis 1:

Value Mode
1 Input
2 Output
8 Append
Example This example closes an open file if it is open for Input or Output. If open for

Append, it writes a range of numbers to the file. The second subprogram,
CREATEFILE, creates the file and leaves it open.

Declare Sub createfile()
Sub main
Dim filemode as Integer
Dim attrib as Integer

“ SBL REFERENCE

See Also GetAttr,

Call createfile
attrib=1
filemode=FileAttr(1,attrib)
If filemode=1 or 2 then
MsgBox "File was left open. Closing now."
Close #1
Else
For x=11to 15
Write #1, x
Next x
Close #1
End If
Kill "C:\TEMP0O1"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMPQ01" for Output as #1
Forx=1t0 10
Write #1, x
Next x
End Sub

Open, SetAttr

FileCopy Statement

Action

Syntax

Copies a file.

FileCopy source$, destinationfytheresourcedis a string expression for the name
(and path) of the file to copy amfgstinationdis a string expression for the name

(and path) for the copied file.

Comments

Example

See Also FileAttr,

Wildcards (* or ?) are not allowed for either $wurce$or destination$ Thesource$
file cannot be copied if it is opened by SBL for anything other Bxad access.

This example copies one file to another. Both filenames are specified by the user.

Sub main
Dim oldfile, newfile
On Error Resume Next
oldfile= InputBox("Copy which file?")
newfile= InputBox("Copy t0?")
FileCopy oldfile,newfile
If Err<>0 then
msgtext="Error during copy. Rerun program."
Else
msgtext="Copy successful."
End If
MsgBox msgtext
End Sub

FileDateTime, GetAttr, Kill, Name

FILEDATETIME FUNCTION m

FileDateTime Function

Action

Syntax

Comments

Example

See Also

Returns the last modification date and time for the specified file.

FileDateTime(pathname$ wherepathname$s a string expression for the name
of the file to query.

Pathname%an contain path and disk information, but cannot include wildcards (*

This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dimx, |
tempfile="C:\TEMP001"
Open tempfile For Output As #1
filetime=FileDateTime(tempfile)
x=1
I=1
acctno(x)=0
Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=1to x-1
Write #1, acctno()
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=1to x
Write #1, acctno(l)
Next |
End If

X=x+1
Loop
Close #1
x=1
msgtext="Contents of C:ATEMP001 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

FileLen, GetAttr

(VN SBL REFERENCE

FileLen Function

Action Returns the length of the specified file.
Syntax FileLen(pathname$ wherepathname$s a string expression that contains the
name of the file to query.
Comments Pathname%an contain path and disk information, but cannot include wildcards (*
and ?).
If the specified file is operkileLen returns the length of the file before it was
opened.
Example This example returns the length of a file.
Sub main
Dim length as Long
Dim userfile as String
Dim msgtext
On Error Resume Next
msgtext="Enter a filename:"
userfile=InputBox(msgtext)
length=FileLen(userfile)
If Err<>0 then
msgtext="Error occurred. Rerun program.”
Else
msgtext="The length of " & userfile & " is: " & length
End If
MsgBox msgtext
End Sub
See Also FileDateTime, FileLen, GetAttr, Lof
Fix Function
Action Returns the integer part of a number.
Syntax Fix (number) wherenumberis any valid numeric expression.
Comments The return value’s data type matches the type of the numeric expression. This

includes Variant expressions, unless the numeric expression is a string (vartype
8) that evaluates to a number, in which case the data type for its return value is
vartype 5 (double). If the numeric expression is vartype 0 (empty), the data type
for the return value is vartype 3 (long).

For both positive and negatimeimbersFix removes the fractional part of the
expression and returns the integer part only. For exampl€6.2) returns 6Eix (-
6.2) returns -6.

FOR...NEXT STATEMENT [iox!

Example This example returns the integer portion of a number provided by the user.

Sub main
Dim usernum
Dim intvalue
usernum=InputBox("Enter a number with decimal places:")
intvalue=Fix(usernum)
MsgBox "The integer portion of " & usernum & " is; " & intvalue
End Sub

See Also Abs, Cint, Exp, Int, Log, Rnd, Sgn, Sqr

For...Next Statement

Action Repeats a series of program lines a fixed number of times.
Syntax For counter=start TO end[STEP increment

[statementblock

[Exit For]

[statementblock
Next [counter]

where is

counter a numeric variable for the loop counter.

start the beginning value of the counter.

end the ending value of the counter.

increment the amount by which the counter is changed each time the loop is

run. (The default is one.)
statementblock basic functions, statements, or methods to be executed.

Comments Thestart andendvalues must be consistent vibcrement If endis greater than
start incrementmust be positive. [éndis less tharstart, incrementmust be
negative. SBL compares the sign sifaft end with the sign ofncrementlf the
signs are the same, aedddoes not equaltart, theFor...Next loop is started. If
not, the loop is omitted in its entirety.

With aFor...Next loop, the program lines following th&r statement are executed
until theNext statement is encountered. At this point, itep amount is added to
thecounterand compared with the final valuend If the beginning and ending
values are the same, the loop executes once, regardlesStéplvalue.

Otherwise, thé&tepvalue controls the loop as follows:

(VA SBL REFERENCE

Example

Step Value Loop Execution

Positive Ifcounteris less than or equal &nd theStepvalue is added to
counter Control returns to the statement after floe statement and the
process repeats. ¢bunteris greater thaend the loop is exited;
execution resumes with the statement followingNlegt statement.

Negative The loop repeats untibunteris less thaend

Zero The loop repeats indefinitely.

Within the loop, the value of thmountershould not be changed, as changing the
counterwill make programs more difficult to maintain and debug.

For...Next loops can be nested within one another. Each nested loop should be
given a unique variable name asdtainter TheNext statement for the inside loop
must appear before tiNext statement for the outside loop. Teit For statement
may be used as an alternative exit friean...Next loops.

If the variable is left out of Blext statement, thBlext statement will match the
most recenFor statement. If &ext statement occurs prior to its corresponding
For statement, SBL will return an error message.

Multiple consecutivéNext statements can be merged together. If this is done, the
counters must appear with the innermost counter first and the outermost counter
last. For example:

Fori=1To 10
[statementblock
Forj=1To5
[statementblock
Next j, i

This example calculates the factorial of a number. A factorial (notated with an
exclamation mark, !) is the product of a number and each integer between it and
the number 1. For example, 5 factorial, or 5!, is the product of 5*4*3*2*1, or the
value 120.

Sub main
Dim number as Integer
Dim factorial as Double
Dim msgtext
number=InputBox("Enter an integer between 1 and 170:")
If number<=0 then
Exit Sub
End If
factorial=1
For x=number to 2 step -1
factorial=factorial*x
Next x
Rem If number<= 35, then its factorial is small enough
Rem to be stored as a single-precision number

FORMAT FUNCTION [l

If number<35 then
factorial=CSng(factorial)
End If
msgtext="The factorial of " & number & " is: " & factorial
MsgBox msgtext
End Sub

See Also Do...Loop, Exit, While...Wend

Format Function

Action Returns a formatted string of an expression based on a given format.

Syntax Format[$](expressiorj , format]) whereexpressions the value to be formatted.
It may be a number, Variant, or string afafmatis a string expression
representing the format to use. Select one of the topics below for a detailed
description of format strings.

Comments Format formats theexpressioras a number, date, time, or string depending upon
theformatargument. The dollar sign, “$”, in the function name is optional. If
specified the return type is string. If omitted the function will reafariant of
vartype 8 (string). As with any string, you must enclosddhmatargument in
guotation marks ().

Numeric values are formatted as either numbers or date/times. If a numeric
expression is supplied and fiematargument is omitted or null, the number will
be converted to a string without any special formatting.

Both numeric values and Variants may be formatted as dates. When formatting
numeric values as dates, the value is interpreted according the standard Basic date
encoding scheme. The base date, December 30, 1899, is represented as zero, and
other dates are represented as the number of days from the base date.

Strings are formatted by transferring one character at a time from the input
expressioro the output string.

Formatting Numbers
Formatting Dates and Times
Formatting Strings

Formatting The predefined numeric formats with their meanings are as follows:
Numbers

Format Description

General Number Display the number without thousand separator.

Fixed Display the number with at least one digit to the left and at least two
digits to the right of the decimal separator.

(38 SBL REFERENCE

Format Description

Standard Display the number with thousand separator and two digits to the
right of decimal separator.

Scientific Display the number using standard scientific notation.

Currency Display the number using a currency symbol as defined in the

International section of the Control Panel. Use thousand separator
and display two digits to the right of decimal separator. Enclose
negative value in parentheses.

Percent Multiply the number by 100 and display with a percent sign
appended to the right; display two digits to the right of decimal
separator.

True/False Display False for 0, True for any other number.

Yes/No Display No for 0, Yes for any other number.

On/Off Display Off for 0, On for any other number.

For a simple numeric format, use one or more digit characters and (optionally) a
decimal separator. The two format digit characters provided are zero, “0”, and
number sign, “#". A zero forces a corresponding digit to appear in the output; while
a number sign causes a digit to appear in the output if it is significant (in the middle
of the number or non-zero).

Number Fmt Result
1234.56 # 1235
1234.56 #.4# 1234.56
1234.56 #H# 1234.6
1234.56 B 1234.56
1234.56 00000.000 01234.560
0.12345 #.H## A2
0.12345 0.## 0.12

A comma placed between digit characters in a format causes a comma to be placed
between every three digits to the left of the decimal separator.

Number Fmt Result

1234567.8901 # 4 HH 1,234,567.89
1234567.8901 # # 1,234,567.8901

FORMAT FUNCTION les

Although a comma and period are used in the format to denote separators for
thousands and decimals, the output string will contain the appropriate character,
based upon the current international settings for your machine.

Numbers may be scaled either by inserting one or more commas before the decimal
separator or by including a percent sign inftirenatspecification. Each comma
preceding the decimal separator (or after all digits if no decimal separator is
supplied) will scale (divide) the number by 1000. The commas will not appear in

the output string. The percent sign will cause the number to be multiplied by 100.
The percent sign will appear in the output string in the same position as it appears
in format

Number Fmt Result
1234567.8901 #,.H## 1234.57
1234567.8901 #,, 1.2346
1234567.8901 ##, M 1,234.57
0.1234 #0.00% 12.34%

Characters may be inserted into the output string by being includedfar et
specification. The following characters will be automatically inserted in the output
string in a location matching their position in feematspecification:

-+ $ () space : /
Any set of characters may be inserted by enclosing them in double quotes. Any
single character may be inserted by preceding it with a backslash, “\".

Number Fmt Result

1234567.89 $#,0.00 $1,234,567.89
1234567.89 "TOTAL:" $#,#.00 TOTAL: $1,234,567.89
1234 \=\>#, #\<\= =>1,234<=

You may wish to use the SBECSTRINGS metacommand or thehr function if
you need to embed quotation marks in a format specification. The character code
for a quotation mark is 34.

Numbers may be formatted in scientific notation by including one of the following
exponent strings in thiermatspecification:

E- E+ e- et

(I SBL REFERENCE

Formatting

Dates and

Times

The exponent string should be preceded by one or more digit characters. The
number of digit characters following the exponent string determines the number of
exponent digits in the outpuormatspecifications containing an uppercase E will
result in an uppercase E in the output. Those containing a lowercase e will result in
a lowercase e in the output. A minus sign following the E will cause negative
exponents in the output to be preceded by a minus sign. A plus sigrfonntiae

will cause a sign to always precede the exponent in the output.

Number Fmt Result
1234567.89 #itt ##E-00 123.46E04
1234567.89 HiHt HHte+# 123.46e+4
0.12345 0.00E-00 1.23E-01

A numericformatcan have up to four sections, separated by semicolons. If you use
only one section, it applies to all values. If you use two sections, the first section
applies to positive values and zeros, the second to negative values. If you use three
sections, the first applies to positive values, the second to negative values, and the
third to zeros. If you include semicolons with nothing between them, the undefined
section is printed using the format of the first section. The fourth section applies to
Null values. If it is omitted and the input expression results in a NULL value,

Format will return an empty string.

Number Fmt Result
1234567.89 #,0.00;(#,0.00);"Zero";"NA" 1,234,567.89
-1234567.89 #,0.00;(#,0.00);"Zero";"NA" (1,234,567.89)
0.0 #,0.00;(#,0.00);"Zero";"NA#" Zero

0.0 #,0.00;(#,0.00);;"NA" 0.00

Null #,0.00;(#,0.00);"Zero";"NA" NA

Null "The value is: " 0.00

As with numeric formats, there are several predefined formats for formatting
dates and times:

Format Description

General Date If the number has both integer and real parts, display both date and
time. (e.g., 11/8/93 1:23:45 PM); if the number has only integer part,
display it as a date; if the number has only fractional part, display it
as time.

Long Date Display a Long Date. Long Date is defined in the International
section of the Control Panel.

FORMAT FUNCTION [miorg

Format Description

Medium Date Display the date using the month abbreviation and without the day
of the week. (e.g, 08-Nov-93).

Short Date Display a Short Date. Short Date is defined in the International
section of the Control Panel.

Long Time Display Long Time. Long Time is defined in the International
section of the Control Panel and includes hours, minutes, and
seconds.

Medium Time Do not display seconds; display hours in 12-hour format and use the
AM/PM designator.

Short Time Do not display seconds; use 24-hour format and no AM/PM
designator.

When using a user-defined format for a date fohmat specification contains a
series of tokens. Each token is replaced in the output string by its appropriate value.

A complete date may be output using the following tokens:

Token Output

c The date time as if tfermatwas “ddddd ttttt”. See the definitions
below.

ddddd The date including the day, month, and year according to the

machine’s current Short Date setting. The default Short Date setting
for the United States is m/dlyy.

dddddd The date including the day, month, and year according to the
machine’s current Long Date setting. The default Long Date setting
for the United States is mmmm dd, yyyy.

ttttt The time including the hour, minute, and second using the
machine’s current time settings The default time format is h:mm:ss
AM/PM.

Finer control over the output is available by includiognattokens that deal with
the individual components of the date time. These tokens are:

Token Output

d The day of the month as a one or two digit number (1-31).
dd The day of the month as a two digit number (01-31).

ddd The day of the week as a three letter abbreviation (Sun-Sat).

ddad The day of the week without abbreviation (Sunday-Saturday).

(A SBL REFERENCE

Token Output

w The day of the week as a humber (Sunday as 1, Saturday as 7).

ww The week of the year as a number (1-53).

m The month of the year or the minute of the hour as a one or two digit

number. The minute will be output if the preceding token was an hour;
otherwise, the month will be output.

mm The month or the year or the minute of the hour as a two digit number. The
minute will be output if the preceding token was an hour; otherwise, the
month will be output.

mmm The month of the year as a three letter abbreviation (Jan-Dec).
mmmm The month of the year without abbreviation(January-December).
o} The quarter of the year as a number (1-4).

y The day of the year as a number (1-366).

yy The year as a two-digit number (00-99).

yyyy The year as a four-digit number (100-9999).

h The hour as a one or two digit number (0-23).

hh The hour as a two digit number (00-23).

Token Output

n The minute as a one or two digit number (0-59).

nn The minute as a two digit number (00-59).

S The second as a one or two digit number (0-59).

Ss The second as a two digit number (00-59).

By default, times will be displayed using a military (24-hour) clock. Several tokens
are provided in date timfermatspecifications to change this default. They all
cause a 12 hour clock to be used. These are:

Token Output

AM/PM An uppercase AM with any hour before noon; an uppercase PM with any
hour between noon and 11:59 PM.

am/pm A lowercase am with any hour before noon; a lowercase pm with any hour
between noon and 11:59 PM.

AP An uppercase A with any hour before noon; an uppercase P with any hour
between noon and 11:59 PM.

FORMAT FUNCTION [miet]

Formatting
Strings

Example

See Also

Token Output

alp A lowercase a with any hour before noon; a lowercase p with any hour
between noon and 11:59 PM.

AMPM The contents of the 1159 string (s1159) in the WIN.INI file with any hour
before noon; the contents of the 2359 string (s2359) with any hour between
noon and 11:59 PM. Note, ampm is equivalent to AMPM.

Any set of characters may be inserted into the output by enclosing them in double

quotes. Any single character may be inserted by preceding it with a backslash, “\".
See number formatting above for more details.

By default, string formatting transfers characters from left to right. The
exclamation point, “I", when added to tfr@matspecification causes characters
to be transferred from right to left.

By default, characters being transferred will not be modified. The less than, “<”,
and the greater than, “>", characters may be used to force case conversion on the
transferred characters. Less than forces output characters to be in lowercase.
Greater than forces output characters to be in uppercase.

Character transfer is controlled by the at sign, “@”, and ampersand, “&”, characters
in theformatspecification. These operate as follows:

Character Interpretation

@ Output a character or a space. If there is a character in the string being
formatted in the position where the @ appears in the format string, display
it; otherwise, display a space in that position.

& Output a character or nothing. If there is a character in the string being
formatted in the position where the & appears, display it; otherwise,
display nothing.

A formatspecification for strings can have one or two sections separated by a
semicolon. If you use one section, the format applies to all string data. If you use
two sections, the first section applies to string data, the second to Null values and
zero-length strings.

This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value
Dim msgtext
value=CDbI(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext
End Sub

Asc, Ccur, Cdbl, Chr, Cint, Clng, Csng, Cstr, Cvar, CVDate, Str

N[SBL REFERENCE

FreeFile Function

Action Returns the lowest unused file number.
Syntax FreeFile
Comments The FreeFile function is used when you need to supply a file number and want to

make sure that you are not choosing a file number which is already in use.

The value returned can be used in a subse@een statement.

Example This example opens a file and assigns to it the next file number available.

Sub main
Dim filenumber
Dim filename as String
filenumber=FreeFile
filename=InputBox("Enter a file to open: ")
On Error Resume Next
Open filename For Input As filenumber
If Err<>0 then
MsgBox "Error loading file. Re-run program.”
Exit Sub
End If
MsgBox "File " & filename & " opened as number: " & filenumber
Close #filenumber
MsgBox "File now closed.”
End Sub

See Also Open

Function ... End Function Statement

Action Defines a function procedure.

Syntax [Static] [Private] Function name[([Optional Jparameterf Astype] ...)] |
As functype]
name= expression
End Function

where is

name a function name.

parameter the argument(s) to pass to the function when it is called.
type the data type for the function arguments.

functype the data type for the return value.

name=expression the expression that sets the return value for the function.

FUNCTION ... END FUNCTION STATEMENT [¥i!

Comments

Example

The purpose of a function is to produce and return a single value of a specified
type. Recursion is supported.

The data type afiamedetermines the type of the return value. Use a type character
as part of thmame or use thé\s functypeclause to specify the data type. If

omitted, the default data typeVariant. When calling the function, you need not
specify the type character.

Theparametersare specified as a comma-separated list of variable names. The data
type of a parameter may be specified by using a type character or by ushsg the
clause. Record parameters are declared usidg atause and typewhich has
previously been defined using thgpe statement. Array parameters are indicated

by using empty parentheses afterpeameter The array dimensions are not

specified in thd=unction statement. All references to an array parameter within the
body of the function must have a consistent number of dimensions.

You specify the return value for the function name usingndme=expression
assignment, where name is the name of the function and expression evaluates to a
return value. If omitted, the value returned is 0 for numeric functions and an empty
string (") for string functions and vartype 0 (Empty) is returned for a return type of
Variant. The function returns to the caller whenHEmel Function statement is

reached or when dgxit Function statement is executed.

If you declare a parameter @ptional, a procedure may omit its value when

calling the function. Only parameters witariant data types may be declared as
optional, and all optional arguments must appear after all required arguments in the
Function statement.

The Static keyword specifies that all the variables declared within the function will
retain their values as long as the program is running, regardless of the way the
variables are declared.

ThePrivate keyword specifies that the function will not be accessible to functions
and subprograms from other modules. Only procedures defined in the same module
will have access to Rrivate function.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it will modify the variable passed by the
caller. This feature should be used with great care.

UseSubto define a procedure with no return value.

This example declares a function that is later called by the main subprogram. The
function does nothing but set its return value to 1.

Declare Function SBL_exfunction()
Sub main

Dimy as Integer

Call SBL_exfunction

NVl SBL REFERENCE

y=SBL_exfunction
MsgBox "The value returned by the functionis: " & y
End Sub

Function SBL_exfunction()
SBL_exfunction=1
End Function

See Also Call, Dim, Global, Option Explicit, Static, Sub...End Sub

FV Function

Action Returns the future value for a constant periodic stream of cash flows as in an
annuity or a loan.

Syntax FV (rate, nper, pmt, pv, due)

where is

rate interest rate per period.

nper total number of payment periods.

pmt constant periodic payment per period.

pv present value or the initial lump sum amount paid (as in the case of
an annuity) or received (as in the case of a loan).

due an integer value for when the payments are due (O=end of each

period, 1= beginning of the period).

Comments The given interest rate is assumed constant over the life of the annuity.

If payments are on a monthly schedule and the annual percentage rate on the
annuity or loan is 9%, theateis 0.0075 (.0075=.09/12).

Example This example finds the future value of an annuity, based on terms specified by the
user.

Sub main
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv=InputBox("Enter present value of the annuity: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
periods=InputBox("Enter the total number of pay periods: ")
payment=InputBox("Enter the initial amount paid to you: ")
Rem Assume payments are made at end of month
due=0
futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
msgtext= "The future value is: " & Format(futurevalue, "Currency")
MsgBox msgtext
End Sub

See Also Ipmt, IRR, NPV, Pmt, Ppmt, PV, Rate

GET STATEMENT [NE}

Get Statement

Action Reads data from a file opened?andom or Binary mode and puts it in a
variable.

Syntax Get [#] filenumber% [recnumber&], varname
where is

filenumber% an integer expression identifying the open file to use.

recnumber& along expression containing the number of the record (for
Random mode) or the offset of the byte (Bmary mode) at
which to start reading.

varname the name of the variable into whiGet reads file datavarname
can be any variable excepbject or Array variables (single array
elements may be used).

Comments For more information about how files are numbered when they're opened, see the
Open statement.
Recnumberé&is in the range 1 to 2,147,483,647. If omitted, the next record or byte
is read.
+ The commas before and after the recnumber& are required, even if you do not

supply a recnumberé&.

For Random mode, the following rules apply:

= Blocks of data are read from the file in chunks whose size is equal to the size
specified in the Len clause of tipen statement. If the size sArnames
smaller than the record length, the additional data is discarded. If the size of
varnameis larger than the record length, an error occurs.

= For variable lengtistring variables, Get reads two bytes of data that indicate
the length of the string, then reads the datavatoame

= ForVariant variables, Get reads two bytes of data that indicate the type of the
Variant, then it reads the body of the Variant wéoname Note that Variants
containing strings contain two bytes of data type information followed by two
bytes of length followed by the body of the string.

m User defined types are read as if each member were read separately, except no
padding occurs between elements.

INV'BN SBL REFERENCE

Example

See Also

Files opened iBinary mode behave similarly to those opene@®andom mode,
except:

m Getreads variables from the disk without record padding.

= Variable lengthStrings that are not part of user defined types are not preceded
by the two-byte string length. Instead, the number of bytes read is equal to the
length ofvarname

This example opens a file for Random access, gets its contents, and closes the file
again. The second subprogram, CREATEFILE, creates the C:\TEMPOQOL1 file used
by the main subprogram. Declare Sub createfile()

Sub main
Dim acctno as String*3
Dim recno as Long
Dim msgtext as String
Call createfile
recno=1
newline=Chr(10)
Open "C:\TEMP001" For Random As #1 Len=3
msgtext="The account numbers are:" & newline
Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno
recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMPO001" for Output as #1
For x=1to 10
Write #1, x
Next x
Close #1
End Sub

Open, Put, Type

GetAttr Function

Action

Syntax

Returns the attributes of a file, directory or volume label.

GetAttr (pathname$ wherepathname$s a String expression for the name of
the file, directory, or label to query.

GETATTR FUNCTION &)

Comments Pathname$nay not contain wildcards (* and ?).

The file attributes returned IiyetAttr are as follows:

Value Meaning
0 Normal file
1 Read-only file
2 Hidden file
4 System file
8 Volume label
16 Directory
32 Archive - file has changed since last backup
Example This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.
Sub main

Dim filename as String
Dim attribs, saveattribs as Integer
Dim answer as Integer
Dim archno as Integer
Dim msgtext as String
archno=32
On Error Resume Next
msgtext="Enter name of a file:"
filename=InputBox(msgtext)
attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msghox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed."
Case Else
MsgBox "File was not hidden."
End Select
End Sub

See Also FileAttr, SetAttr

NI SBL REFERENCE

GetCurValues Statement

Action Stores the current values for the dialog box associated with the specified record.

Syntax GetCurValuesrecordNamewhererecordNames a variable dimensioned as a
dialog box record.

Comments A dialog box record is defined using tBegin DialogstatementrecordNames a
variable dimensioned as follows:

Dim recordNameas UserDialog

where UserDialog is the dialog box name useBlagin Dialog

Example This example stores the values for the dialog box MYDIALOGBOX.

Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
ComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OkButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialogbox
If Err=102 then
MsgBox "You pressed Cancel."
End If
GetCurValues mydialogbox
End Sub

See Also Dim, Begin Dialog, Dialog Function, Dialog Statement

GetField Function [SBL Extension]**

Action Returns a substring from a source string.

Syntax GetField[$](string$, field_number%, separator_chérs

where is
string$ a list of fields, divided by separator characters.
field_number% the number of the field to return, starting with 1.

separator_chars$ the characters separating each field.

GETOBJECT FUNCTION iy

Comments Multiple separator characters may be specifietield_numbeiis greater than the
number of fields in the string, an empty string (") is returned.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example finds the third value in a string, delimited by plus signs (+).

Sub main
Dim teststring,retvalue
Dim msgtext
teststring="9+8+7+6+5"
retvalue=GetField(teststring,3,"+")
MsgBox "The third field in: " & teststring & " is: " & retvalue
End Sub

See Also Left, Ltrim, Mid Function, Mid Statement, Right, Rtrim, SetField, StrComp, Trim

GetObject Function

Action Returns an OLE2 object associated with the file name or the application name.

Syntax A GetObject(pathnami
Syntax B GetObject(pathname, clasp

Syntax C GetObject(, class)

wherepathnamds the path and file name for the object to retrievecassis a
string containing the class of the object.

Comments Use GetObject with the Setset statement to assign a variable to the object for use
in a Basic procedure. The variable used must first be dimensioned as an
Objectobjectclass.

Syntax A ofGetObject accesses an OLE?2 object stored in a file. For example, the
following two lines dimension the variable, FILEOBJECT as an Object and assign
the object file “PAYABLES” to it. PAYABLES is located in the subdirectory
SPREDSHT:

Dim FileObjectAs Object
SetFileObject= GetObject(\spredsht\payable}”

If the application supports accessing component OLE2 objects within the file, you
may append an exclamation point and a component object name to the file name, as
follows:

Dim ComponentObjedks Object
SetComponentObject
GetObject(\spredsht\payables!R1C1:R13Q9

INCEN SBL REFERENCE

Example

See Also

Syntax B ofGetObject accesses an OLE2 object of a particular class that is stored
in a file. Classuses the syntaxappname.objtype”whereappnames the name of

the application that provides the object, abjtypeis the type or class of the

object. For example:

Dim ClassObjectis Object
SetClassObject GetObject(\spredsht\payables”,
“turbosht.spreadsheét”

The third form ofGetObject accesses the active OLE2 object of a particular class.
For example:

Dim ActiveSheefis Object
SetActiveSheet GetObject(, “turbosht.spreadsheét”

This example displays a list of open files in the software application, VISIO. It
uses the GetObject function to access VISIO. To see how this example works, you
need to start VISIO and open one or more documents.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String
Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application") 'find Visio
If (visio Is Nothing) then
Msghbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents.”
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) ' access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

CreateObject, Is, Me, New, Nothing, Object Class, Typeof

GLOBAL STATEMENT W]

Global Statement

Action

Syntax

Comments

Arrays

Declare Global variables for use in a Basic program.

Global variableNamdAs typq [,variableNamdAs typd] ... where
variableNamds a variable name angpeis the data type for a variable.

Global data is shared across all loaded modules. If an attempt is made to load a
module which has a global variable declared which has a different data type than
an existing global variable of the same name, the module load will fail.

Basic is a strongly typed language: all variables must be given a data type or they
will be automatically assigned a type\&driant .

If the As clause is not used, the type of the global variable may be specified by
using a type character as a suffiwtriableNameThe two different type-
specification methods can be intermixed in a si@ebal statement (although not
on the same variable).

Regardless of which mechanism you use to declare a global variable, you may
choose to use or omit the type character when referring to the variable in the rest of
your program. The type suffix is not considered part of the variable name.

The following data types are available:

Arrays
Numbers
Records
Strings
Variants

The available data types for arrays are: numbers, strings, Variants and records.
Arrays of arrays, dialog box records, and objects are not supported.

Array variables are declared by including a subscript list as part of the
variableNameThe syntax to use faariableNamas:

Global variablg [subscriptRange..]) [As typeNamg
wheresubscriptRangés of the format:

[startSubscripfTo] endSubscript

If startSubscripts not specified, 0 is used as the default. Opton Base
statement can be used to change the default.

Both thestartSubscripind theendSubscripare valid subscripts for the array. The
maximum number of subscripts which may be specified in an array definition is 60.

V(B SBL REFERENCE

Numbers

Records

Strings

Variants

Example

If no subscriptRangés specified for an array, the array is declared as a dynamic
array. In this case, tfieeDim statement must be used to specify the dimensions of
the array before the array can be used.

Numeric variables can be declared usingAkelause and one of the following
numeric typesCurrency, Integer, Long, Single, Double. Numeric variables can
also be declared by including a type character as a suffix to the name.

Record variables are declared by usind\artlause and typewhich has
previously been defined using thgpe statement. The syntax to use is:

Global variableNameAs typeName

Records are made up of a collection of data elements called fields. These fields may
be of any numeric, string, Variant or previously defined record typeTfeefor
details on accessing fields within a record.

You cannot use th@lobal statement to declare a dialog record.

SBL supports two types of strings, fixed-length and dynamic. Fixed-length strings
are declared with a specific length (between 1 and 32767) and cannot be changed
later. Use the following syntax to declare a fixed-length string:

Global variableNameAs String* length

Dynamic strings have no declared length, and can vary in length from 0 to 32767.
The initial length for a dynamic string is 0. Use the following syntax to declare a
dynamic string:

Global variableName$
or Global variableName\s String

Declare variables as Variants when the type of the variable is not known at the
start of, or may change during, the procedure. For example, a Variant is useful for
holding input from a user when valid input can be either text or numbers. Use the
following syntax to declare a Variant:

Global variableName
or GlobalvariableNaméeAs Variant

Variant variables are initialized to vartype Empty.

This example contains two subroutines that share the variables TOTAL and
ACCTNO, and the record GRECORD.
Type acctrecord

acctno As Integer
End Type

GOTO STATEMENT [val

Global acctno as Integer
Global total as Integer
Global grecord as acctrecord
Declare Sub createfile

Sub main
Dim msgtext
Dim newline as String
newline=Chr$(10)
Call createfile
Open "C:\TEMP001" For Input as #1
msgtext="The new account numbers are " & newline
For x=1 to total
Input #1, grecord.acctno
msgtext=msgtext & newline & grecord.acctno
Next x
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

Sub createfile
Dim x
x=1
grecord.acctno=1
Open "C:\TEMP001" For Output as #1
Do While grecord.acctno<>0
grecord.acctno=InputBox("Enter 0 or new account #" & x & ":")
If grecord.acctno<>0 then
Print #1, grecord.acctno
X=x+1
End If
Loop
total=x-1
Close #1
End Sub

See Also Const, Dim, Option Base, ReDim, Static, Type

GoTo Statement

Action Transfers program control to the label specified.

Syntax GoTo({ label| line} wherelabelis aA name beginning in the first column of a line
of code and ending with a colon (:) divtk is the line number of a program line.

Comments A label has the same format as any other Basic nhame. Reserved words are not
valid labels. Program lines are numbered automatically, beginning with 1.

GoTo cannot be used to transfer control out of the current Function or Subprogram.

VYAl SBL REFERENCE

Example This example displays the date for one week from the date entered by the user. If the
date is invalid, the Goto statement sends program execution back to the beginning.

Sub main
Dim strl as String
Dim nextweek
Dim msgtext
i strl=InputBox$("Enter a date:")
answer=IsDate(strl)
If answer=-1 then
str1=CVDate(strl)
nextweek=DateValue(str1)+7
msgtext="One week from the date entered is:"
msgtext=msgtext & Format(nextweek,"dddddd")
MsgBox msgtext
Else
MsgBox "Invalid date or format. Try again."
Gotoi
End If
End Sub

See Also Do...Loop, For...Next, If...Then...Else, Select Case, While...Wend

GroupBox Statement

Action Defines a box to enclose sets of dialog box items, such as option boxes and
checkboxes.

Syntax GroupBox x, y, dx, dy, te], .id]

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the combo box in which the user enters or
selects text.

text$ a string containing the title for the top border of the group box.

.id the optional string ID for the groupbox, used by the dialog

statements that act on this control.

Comments Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-width unitsBEgge Dialog
for more information.)

If text$is wider thardx, the additional characters are truncatetexf$is an empty
string (™), the top border of the group box will be a solid line.

Use theGroupBox statement only betweerBagin Dialogand arEnd Dialog
statement.

HEX FUNCTION V&

Example

See Also

This example creates a dialog box with a group box, and two buttons.

Sub main

Begin Dialog UserDialog 194, 76, "SBL Dialog Box"
GroupBox 9, 8, 97, 57, "File Range"
OptionGroup .OptionGroup?2

OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4

Text 25, 43, 20, 10, "From:", .Text6
Text 63,43, 14,9, "To:", .Text7
TextBox 79, 43, 13, 12, .TextBox4
TextBox 47,43, 12, 11, .TextBox5
OkButton 135, 6, 54, 14
CancelButton 135, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, ListBox, OKButton,
OptionButton, OptionGroup, Picture, StaticComboBox, Text, TextBox

Hex Function

Action

Syntax

Comments

Example

See Also

Returns the hexadecimal representation of a number, as a string.

HexX[$](number) wherenumberis any numeric expression that evaluates to a
number.

If numberis an integer, the return string contains up to four hexadecimal digits;
otherwise, the value will be converted thang Integer, and the string may
contain up to 8 hexadecimal digits.

To represent a hexadecimal number directly, precede the hexidecimal value with
&H . For example, &H10 equals decimal 16 in hexadecimal notation.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will returaVariant of vartype 8 (string).

This example returns the hex value for a number entered by the user.
Sub main
Dim usernum as Integer
Dim hexvalue
usernum=InputBox("Enter a number to convert to hexidecimal:")
hexvalue=Hex(usernum)
Msgbox "The HEX value is: " & hexvalue
End Sub

Oct

IVZ23l SBL REFERENCE

Hour Function

Action

Syntax

Comments

Example

See Also

Returns the hour of day component (0-23) of a date-time value.

Hour(time) wheretimeis any numeric or string expression that can evaluate to a
date and time.

Hour accepts any type ¢imeincluding strings and will attempt to convert the
input value to a date value.

The return value is "ariant of vartype 2 (integer). If the valué tmeis Null, a
Variant of vartype 1 (null) is returned.

Timeis a double-precision value. The numbers to the left of the decimal point
denote the date and the decimal value denotes the time (from 0 to .99999). Use the
TimeValue function to obtain the correct value for a specific time.

This example extracts just the time (hour, minute, and second) from a file's last
modification date and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String
: msgtext="Enter a filename:"
filename=InputBox(msgtext)
Exit Sub
End If
On Error Resume Next
fime=FileDateTime(filename)
If Err<>0 then
MsgBox "Error in file name. Try again."
Goto i
End If

hr=Hour(ftime)

min=Minute(ftime)

sec=Second(ftime)

Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

Day, Minute, Month, Now, Second, Time Function, Time Statement, Weekday, Year

IF ... THEN ... ELSE V&S]

If ... Then ... Else

Action
Syntax A
Syntax B

Comments

Example

Executes alternative blocks of program code based on one or more expressions.

If conditionThenthen_statemerjtElseelse_statemenjt

If conditionThen
statement_block
[Elself expressiorThen
statement_blogk.

[Else
statement_block
End If
where is
condition any expression that evaluates to TRUE (non-zero) or FALSE
(zero).

then_statement any valid single expression.

else_statement any valid single expression.

expression any expression that evaluates to TRUE (non-zero) or FALSE
(zero).

statement_blockO or more valid expressions, separated by colons (;), or on
different lines.

When multiple statements are required in eithefTthen or Else clauses, use the
block version (Syntax B) of thé statement.

This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

Sub main
Dim filename
Dim attribs, msgtext
Dim answer, archno
Dim saveattribs
On Error Resume Next
archno=32
filename=InputBox("Enter name of a file:")
attribs=GetAttr(filename)

If attribs=0 then
MsgBox "Error in file name. Rerun program.”
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext="File:" &filename & "is hidden. Change it? (Y/N)"
answer=InputBox$(msgtext)
If answer="Y" then

IVl SBL REFERENCE

SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
End If
Case Else
MsgBox "File was not hidden."
End Select
End Sub

See Also Do...Loop, For...Next, Goto, On...Goto, Select Case, While...Wend

'$Include Metacommand [SBL Extension]**"

Action Includes statements from the specified file.
Syntax ‘$Include: “filename” wherefilenameis the name and location of the file to
include.
Comments It is recommended (although not required) that you use a file extension of .SBH
for filename

All metacommands must begin with an apostrophe (') and are recognized by the
compiler only if the command starts at the beginning of a line. For compatibility
with other versions of Basic, you may enclosefilenamein single quotation

marks ().

If no directory or drive is specified, the compiler will searchfilenameon the
source file search path.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example includes a file containing the list of global variables, called
GLOBALS.SBH. For this example to work correctly, you must create the
GLOBALS.SBH file with at least the following statement: Dim gtext as String.
The Option Explicit statement is included in this example to prevent SBL from
automatically dimensioning the variable as a Variant.

Option Explicit

Sub main
Dim msgtext as String
‘$include: "c:\globals.sbh"
gtext=InputBox("Enter a string for the global variable:")
msgtext="The variable for the string "
msgtext=msgtext & gtext & " was DIM'ed in GLOBALS.SBH."
MsgBox msgtext

End Sub

See Also $Cstrings, $NoCStrings, Rem

INPUT FUNCTION

127

Input Function

Action Returns a string containing the characters read.

Syntax Input [$](number%][#]filenumber% wherenumber%is the number of characters
(bytes) to read from the file arfitenumber%is an integer expression identifying

the open file to use.

Comments The file pointer is advanced the number of characters read. Unlikeptlie
statementlnput returns all characters it reads, including carriage returns, line

feeds, and leading spaces.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will returaVariant of vartype 8 (string).

Example This example opens a file and prints its contents to the screen.

See Also Get, Input Statement, Line Input, Open, Write

Sub main
Dim fname
Dim fchar()
Dim x as Integer
Dim msgtext
Dim newline
newline=Chr(10)
On Error Resume Next
fname=InputBox("Enter a filename to print:")
If fname="" then
Exit Sub
End If
Open fname for Input as #1
If Err<>0 then

MsgBox "Error loading file. Re-run program.”

Exit Sub
End If

msgtext="The contents of " & fname & " is: " & newline &newline

Redim fchar(Lof(1))

For x=1 to Lof(1)
fchar(x)=Input(1,4#1)
msgtext=msgtext & fchar(x)

Next x

MsgBox msgtext

Close #1

End Sub

IV SBL REFERENCE

Input Statement

Action
Syntax A
Syntax B

Comments

Example

Reads data from a sequential file and assigns the data to variables.
Input [#] filenumber%, variable [, variable]...

Input [prompt$,] variable [, variable]...

where is

filenumber% an integer expression identifying the open file to read from
variable the variable(s) to contain the value(s) read from the file.
prompt$ an optional string that prompts for keyboard input.

Thefilenumber%is the number used in ti@pen statement to open the file. The
list of variablesis separated by commas.

If filenumber%is not specified, the user is prompted for keyboard input, either with
prompt$or with a “?”, if prompt$is omitted.

This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. It uses the Input
statement to increase the value of x and at the same time get the letter associated
with each value. The second subprogram, CREATEFILE, creates the file
C:A\TEMPOO1 used by the main subprogram.

Declare Sub createfile()
Global x as Integer
Global y(100) as String
Sub main
Dim acctno as Integer
Dim msgtext
Call createfile
i acctno=InputBox("Enter an account number from 1-10:")
If acctno<1 Or acctno>10 then
MsgBox "Invalid account number. Try again."
Goto i
End if
x=1
Open "C:\TEMPOQO1" for Input as #1
Do Until x=acctno
Input #1, x,y(x)
Loop
msgtext="The letter for account number " & x & " is: " & y(X)
Close #1
MsgBox msgtext
Kill "C:\TEMP001"
End Sub

Sub createfile()

' Put the numbers 1-10 and letters A-J into a file
Dim startletter
Open "C:\TEMPQ01" for Output as #1
startletter=65
Forx=11t0 10

INPUTBOX FUNCTION [¥al]

y(x)=Chr(startletter)
startletter=startletter+1

Next x

For x=1to 10
Write #1, X,y(X)

Next x

Close #1

End Sub

See Also Get, Input Function, Line Input, Open, Write

InputBox Function

Action Displays a dialog box containing a prompt and returns a string entered by the user.
Syntax InputBox [$](prompt , [title$] , [defaul] ,[xpo$o, ypoLhs])

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will returaVariant of vartype 8 (string).

where is

prompt$ a string expression containing the text to show in the dialog box.

title$ the caption to display in the dialog box’s title bar.

default$ the string expression to display in the edit box as the default
response.

Xpos%ypos% numeric expressions, specified in dialog box units, that determine
the position of the dialog box.

Comments The length ofprompt$is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be includegpnompt$if a multiple-line prompt is used.

If either prompt$or default$is omitted, nothing is displayed.

Xpos%determines the horizontal distance between the left edge of the screen and
the left border of the dialog boXpos%determines the horizontal distance from the

top of the screen to the dialog box’s upper edge. If these arguments are not entered,
the dialog box is centered roughly one third of the way down the screen. A
horizontal dialog box unit is 1/4 of the average character width in the system font; a
vertical dialog box unit is 1/8 of the height of a character in the system font.

+ To specify the dialog box’s position, you must enter both of these arguments. If
you enter one without the other, the default positioning is set.

If the user presses Enter, or selects the OK buttpatBox returns the text
contained in the input box. If the user selects CancelnthéBox function returns
a null string (™).

(KB SBL REFERENCE

Example This example uses InputBox to prompt for a filename and then prints the filename
using MsgBox.

Sub main
Dim filename
Dim msgtext
msgtext="Enter a filename:"
filename=InputBox$(msgtext)
MsgBox "The file name you entered is: " & filename

End Sub
See Also Input Function, Input Statement, MsgBox Function, MsgBox Statement,
PasswordBox
InStr Function
Action Returns the position of the first occurrence of one string within another string.
Syntax A InStr([start%)] string1$ string2$)

Syntax B InStr (start, string1$, string2$[, compare])

where is

start% the position irstring1$to begin the search. (1=first character in
string.)

string1$ the string to search.

string2$ the string to find.

compare an integer expression for the method to use to compare the strings.

(O=case-sensitive, 1=case-insensitive.)

Comments If not specified, the search starts at the beginning of the string (equivalent to a
start%of 1). These arguments may be of any type. They will be converted to
strings.

InStr returns a zero under the following conditions:

1 start% is greater than the length stfing2%
2 string13is a null string.
3 string2$is not found.

If eitherstringl$or string2$is a null Variant |nstr returns a null Variant.
If string2$ is a null string (") Instr returns the value aftart%

If compareis 0, a case-sensitive comparison based on the ANSI character set
sequence is performed.dbmpareis 1, a case-insensitive comparison is done based
upon the relative order of characters as determined by the country code setting for
your system. IEompareis omitted, the module level default, as specified with
Option Compare, is used.

INT FUNCTION [l

Example This example generates a random string of characters then uses InStr to find the
position of a single character within that string.

Sub main
Dim x as Integer
Dimy
Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim position as Integer
Dim msgtext, newline
upper=Asc('z")
lower=Asc("a")
newline=Chr(10)
For x=1to 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter
‘Need to waste time here for fast processors
For y=1to 1000
Nexty
Next x
str2=InputBox("Enter a letter to find")
position=InStr(strl,str2)
If position then
msgtext="The position of " & str2 & " is: " & position & newline
msgtext=msgtext & "in string: " & strl
Else
msgtext="The letter: " & str2 & " was not found in: " & newline
msgtext=msgtext & strl
End If
MsgBox msgtext
End Sub

See Also GetField, Left, Mid Function, Mid Statement, Option, Right, Str, StrComp

Int Function

Action Returns the integer part ohamber
Syntax Int(number) wherenumberis any numeric expression.
Comments For positivenumbersint removes the fractional part of the expression and returns

the integer part only. For negatimambersint returns the largest integer less than
or equal to the expression. For exampig,(6.2) returns 6int (-6.2) returns -7.

The return type matches the type of the numeric expression. This indlaidast
expressions which will return a result of the same vartype as input except vartype 8
(string) will be returned as vartype 5 (double) and vartype 0 (empty) will be
returned as vartype 3 (long).

IKYAl SBL REFERENCE

Example

See Also

This example uses Int to generate random numbers in the range between the
ASCII values for lowercase a and z (97 and 122). The values are converted to
letters and displayed as a string.

Sub main

Dim x as Integer

Dimy

Dim strl as String

Dim letter as String

Dim randomvalue

Dim upper, lower

Dim msgtext, newline

upper=Asc('z")

lower=Asc("a")

newline=Chr(10)

For x=1to 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter

'Need to waste time here for fast processors

For y=1to 1500
Next y

Next x

msgtext="The string is:" & newline
msgtext=msgtext & strl
MsgBox msgtext

End Sub

Exp, FixInt, Log, Rnd, Sgn, Sqr

IPmt Function

Action

Syntax

Comments

Returns the interest portion of a payment for a given period of an annuity.

IPmt(rate, per, nper, pv, fv, @)

where is

rate interest rate per period.

per particular payment period in the range 1 throoghr.

nper total number of payment periods.

pv present value of the initial lump sum amount paid (as in the case of
an annuity) or received (as in the case of a loan).

fv future value of the final lump sum amount required (as in the case
of a savings plan) or paid (0 as in the case of a loan).

due 0 if payments are due at the end of each payment period, and 1 if

they are due at the beginning of the period.

The given interest rate is assumed constant over the life of the annuity. If
payments are on a monthly schedule, ttag@will be 0.0075 if the annual
percentage rate on the annuity or loan is 9%.

IRR FUNCTION KK

Example

See Also

This example finds the interest portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

Sub main
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, intpaid
Dim msgtext
aprate=.095
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
intpaid=IPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="For a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext+ "the interest paid in month 12 is: "
msgtext=msgtext + Format(intpaid, "Currency")
MsgBox msgtext
End Sub

FV, IRR, NPV, Pmt, Ppmt, PV, Rate

IRR Function

Action

Syntax

Comments

Example

Returns the internal rate of return for a stream of periodic cash flows.

IRR(valuearray(), guesgwherevaluearray()is anarray containing cash flow
values andjuesss a ballpark estimate of the value returnedrRiy .

valuearray()must have at least one positive value (representing a receipt) and one
negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returri&Rbwill vary with the

change in the sequence of cash flows.

In general, @uessvalue of between 0.1 (10 percent) and 0.15 (15 percent) would
be a reasonable estimate.

IRR is an iterative function. It improves a given guess over several iterations until
the result is within 0.00001 percent. If it does not converge to a result within 20
iterations, it signals failure.

This example calculates an internal rate of return (expressed as an interest rate
percentage) for a series of business transactions (income and costs). The first
value entered must be a negative amount, or IRR generates an “lllegal Function
Call” error.

Sub main
Dim cashflows() as Double

K73 SBL REFERENCE

Dim guess, count as Integer
Dimi as Integer
Dim intnl as Single
Dim msgtext as String
guess=.15
count=InputBox("How many cash flow amounts do you have?")
ReDim cashflows(count+1)
For i=0 to count-1
cashflows(i)=InputBox("Enter income value for month " & i+1 & "")
Next i
intnl=IRR(cashflows(),guess)
msgtext="The IRR for your cash flow amounts is: "
msgtext=msgtext & Format(intnl, "Percent")
MsgBox msgtext
End Sub

See Also FV, Ipmt, NPV, Pmt, Ppmt, PV, Rate

Is Operator

Action Compares two object expressions and returns -1 if they refer to the same object, 0
otherwise.
Syntax objectExpressiois objectExpressiomhere objectexpression is any valid object
expression.
Comments Is may also be used to test if an object variable has $eto Nothing.
Example This example displays a list of open files in the software application, VISIO. It

uses the Is operator to determine whether VISIO is available. To see how this

example works, you need to start VISIO and open one or more documents.
Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String
Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application") 'find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) ' access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

See Also Create Object, Get Object, Me, Nothing, Object, Typeof

ISDATE FUNCTION [

IsDate Function

Action
Syntax

Comments

Example

See Also

Returns -1 (TRUE) if an expression is a legal date, 0 (FALSE) if it is not.
IsDate(expressior) whereexpressiornis any valid expression.

IsDate returns -1 (True) if the expression is of vartype 7 (date) or a string that may
be interpreted as a date.

This example adds a number to today’s date value and checks to see if it is still a
valid date (within the range January 1, 100AD through December 31, 9999AD).

Sub main
Dim curdatevalue
Dim yrs
Dim msgtext
curdatevalue=DateValue(Date$)
yrs=InputBox("Enter a number of years to add to today's date")
yrs=yrs*365
curdatevalue=curdatevalue+yrs
If IsDate(curdatevalue)=-1 then
MsgBox "The new date is: " & Format(CVDate(curdatevalue), "dddddd")

Else
MsgBox "The date is not valid."
End If
End Sub

CVDate, IsEmpty, IsNull, IsNumeric, VarType

ISEmpty Function

Action

Syntax

Comments

Example

Returns -1 (TRUE) if a Variant has been initialized. 0 (FALSE) otherwise.

ISEmpty(expressior) whereexpressions any expression with a data type of
Variant.

ISsEmpty returns -1 (True) if the Variant is of vartype 0 (empty). Any newly
defined Variant defaults to being of Empty type, to signify that it contains no
initialized data. An Empty Variant converts to zero when used in a numeric
expression, or an empty string (") in a string expression.

This example prompts for a series of test scores and uses ISEmpty to determine
whether the maximum allowable limit has been hit. (ISEmpty determines when to
exit the Do...Loop.)

Sub main
Dim arrayvar(10)
Dim x as Integer
Dim tscore as Single
Dim total as Integer
x=1

(KN SBL REFERENCE

See Also

Do
tscore=InputBox("Enter test score #" & x & ":")
arrayvar(x)=tscore
X=x+1

Loop Until IsEmpty(arrayvar(10))<>-1

total=x-1

msgtext="You entered: " & Chr(10)

For x=1 to total
msgtext=msgtext & Chr(10) & arrayvar(x)
Next x
MsgBox msgtext
End Sub

IsDate, IsNull, IsNumeric, VarType

IsNull Function

Action

Syntax

Comments

Example

Returns -1 (TRUE) if a Variant expression contains the Null value, 0 (FALSE)
otherwise.

ISNull(expressiopwhereexpressionis any expression with a data type of
Variant.

Null Variants have no associated data and serve only to represent invalid or
ambiguous results. Null is not the same as Empty, which indicates that a Variant
has not yet been initialized.

This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

Sub main
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next x
Do While x<>0
X=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1
End If

ISNUMERIC FUNCTION [y

See Also

Loop
msgtext="The average (excluding negative values) is: " & Chr(10)
msgtext=msgtext & Format (total/count, "##.##")
MsgBox msgtext
End Sub

IsDate, ISEmpty, IsNumeric, VarType

IsNumeric Function

Action

Syntax

Comments

Example

See Also

Returns -1 (TRUE) if an expression has a data typéuaieric, 0 (FALSE)
otherwise.

IsNumeric(expressiorn) whereexpressioris any valid expression.

IsNumeric returns -1 (True) if the expression is of vartypes 2-6 (numeric) or a
string that may be interpreted as a number.

This example uses IsNumeric to determine whether a user selected an option (1-3)
or typed “Q” to quit.

Sub main
Dim answer
answer=InputBox("Enter a choice (1-3) or type Q to quit")
If IsNumeric(answer)=-1 then
Select Case answer
Case 1
MsgBox "You chose #1."
Case 2
MsgBox "You chose #2."
Case 3
MsgBox "You chose #3."
End Select
Else
MsgBox "You typed Q."
End If
End Sub

IsDate, IsEmpty, IsNull, VarType

Kill Statement

Action

Syntax

Comments

Deletes files from a hard disk or floppy drive.

Kill pathname$vherepathname$s a String expression that specifies a valid
DOS file specification.

Thepathname$pecification can contain paths and wildcaki. deletes files
only, not directories. Use tHiemDir function to delete directories.

KN SBL REFERENCE

Example This example prompts a user for an account number, opens a file, searches for the
account number and displays the matching letter for that number. The second
subprogram, CREATEFILE, creates the file CATEMPO0O1 used by the main
subprogram. After processing is complete, the first subroutine uses Kill to delete

the file.

See Also FileAttr,

Declare Sub createfile()
Global x as Integer
Global y(100) as String

Sub main
Dim acctno as Integer
Dim msgtext
Call createfile
i acctno=InputBox("Enter an account number from 1-10:")
If acctno<1 Or acctno>10 then
MsgBox "Invalid account number. Try again."
Goto i
End if
x=1
Open "C:\TEMPQO1" for Input as #1
Do Until x=acctno
Input #1, X,y(x)
Loop
msgtext="The letter for account number " & x & " is: " & y(X)
Close #1
MsgBox msgtext
Kill "C:\TEMP0O1"
End Sub

Sub createfile()
' Put the numbers 1-10 and letters A-J into a file
Dim startletter
Open "C:\TEMP001" for Output as #1
startletter=65
For x=1to0 10
y(x)=Chr(startletter)
startletter=startletter+1
Next x
For x=1to0 10
Write #1, X,y(X)
Next x
Close #1
End Sub

FileDateTime, GetAttr, RmDir

LBound Function

Action Returns the lower bound of the subscript range for the specified array.

Syntax LBound(arrayname], dimension]) wherearraynameis the name of the array to

use andlimensions the dimension to use.

LCASE FUNCTION [

Comments The dimensions of an array are numbered starting with 1. dithensions not
specified, 1 is used as a default.

LBound can be used witbBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the array.
It uses LBound and UBound to determine the existing size of the array and ReDim
to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)
start:
Do until x=count+1
arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
If answer="Y" or answer="y" then
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start
End If
End If
x=LBound(arrayvar,1)
count=UBound(arrayvar,1)
For y=x to count
total=total+arrayvar(y)
Nexty
MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub

See Also Dim, Global, Option Base, ReDim, Static, UBound

LCase Function

Action Returns a copy of a string, with all uppercase letters converted to lowercase.

Syntax LCasd $](string$) wherestring$is a string, or an expression containing the
string to use.

Comments The translation is based on the country specified in the Windows Control Panel.
LCaseaccepts expressions of type StrihGase accepts any type of argument
and will convert the input value to a string.

VN SBL REFERENCE

Example

See Also

The dollar sign, “$”, in the function name is optional. If specified the return type is
String. If omitted the function will typically returmVariant of vartype 8 (string).
If the value ofstring$is NULL, a Variant of vartype 1 (Null) is returned.

This example converts a string entered by the user to lowercase.

Sub main

Dim userstr as String
userstr=InputBox$("Enter a string in upper and lowercase letters")
userstr=LCase$(userstr)
Msghox "The string now is: " & userstr

End Sub

UCase

Left Function

Action

Syntax

Comments

Example

See Also

Returns a string of a specified length copied from the beginning of another string.

Left[$](string$ length%) wherestring$is a string or an expression containing
the string to copy anigéngth%is the number of characters to copy.

If the length ofstring$is less thatength% Left returns the whole string.

Left accepts expressions of type Stribgft accepts any type afring$ including
numeric values, and will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically returaVariant of vartype 8 (string).
If the value ofstring$is NULL, a Variant of vartype 1 (Null) is returned.

This example extracts a user's first name from the entire name entered.

Sub main
Dim username as String
Dim count as Integer
Dim firstname as String
Dim charspace
charspace=Chr(32)
username=InputBox("Enter your first and last name")
count=InStr(username,charspace)
firstname=Left(username,count)
Msghbox "Your first name is: " &firstname
End Sub

GetField, Ltrim, Mid Function, Mid Statement, Right, Rtrim, Str, StrComp, Trim

LEN FUNCTION [y

Len Function

Action
Syntax A

Syntax B

Comments

Example

See Also

Returns the length of a string or variable.
Len(string$)
Len(varname)

wherestring$is a string or an expression that evaluates to a stristhgaanameés a
variable that contains a string.

If the argument is a string, the number of characters in the string is returned. If the
argument is a Variant variableen returns the number of bytes required to
represent its value as a string; otherwise, the length of the built-in data type or
user-defined type is returned.

If syntax B is used, angarnameis aVariant containing a NULLLen will return
a Null Variant.

This example returns the length of a name entered by the user (including spaces).

Sub main
Dim username as String
username=InputBox("Enter your name")
count=Len(username)
Msgbox "The length of your name is: " &count
End Sub

Instr

Let (Assignment Statement)

Action

Syntax

Comments

Assigns an expression to a Basic variable.

[Let] variable= expressiorwherevariableis the name of a variable to assign to
theexpressiorandexpressionis the expression to assign to the variable.

The keyword_et is optional.

ThelLet statement can be used to assign a value or expression to a variable with a
data type oNumeric, String, Variant or Record variable. You can also use the
Let statement to assign to a record field or to an element of an array.

When assigning a value to a numeric or string variable, standard conversion rules
apply.

VYAl SBL REFERENCE

Example

See Also

This example uses the Let statement for the variable sum. The subroutine finds an
average of 10 golf scores.

Sub main
Dim score As Integer
Dim X, sum
Dim msgtext
Let sum=0
For x=1to 10
score=InputBox("Enter your last ten golf scores #' & x & ":")
sum=sum-+score
Next x
msgtext="Your average is: " & CInt(sum/(x-1))
MsgBox msgtext
End Sub

Const, Lset, Set

Like Operator

Action

Syntax

Comments

Returns the value -1 (TRUE) if a string matches a pattern, O (FALSE) otherwise.

string$LIKE pattern$wherestring$is any string expression. apdttern$is any
string expresssion to matchdwing$

pattern$may include the following special characters:

Character Matches:

? A single character

* A set of zero or more characters

A single digit character (0-9)

[charg A single character iohars

['charg A single character not ichars

[scharechal A single character in raegcharto echar
[!scharechai A single character not in raagcharto echar

Both ranges and lists may appear within a single set of square brackets. Ranges are
matched according to their ANSI values. In a rasgharmust be less thaechar

If eitherstring$or pattern$is NULL then the result value is NULL.

ThelLike operator respects the current settin@pfion Compare.

LINE INPUT STATEMENT [EX]

Example This example tests whether a letter is lowercase.

Sub main
Dim userstr as String
Dim revalue as Integer
Dim msgtext as String
Dim pattern
pattern="[a-z]"
userstr=InputBox$("Enter a letter:")
retvalue=userstr LIKE pattern
If retvalue=-1 then
msgtext="The letter " & userstr & " is lowercase."
Else
msgtext="Not a lowercase letter."
End If
Msgbox msgtext
End Sub

See Also Instr, Option Compare, StrComp

Line Input Statement

Action Reads a line from a sequential file into a string variable.
Syntax A Line Input [#] filenumber%, varname$

Syntax B Line Input [prompf,] varnamé&

where is
filenumbefo an integer expression identifying the open file to use.
prompt$ an optional string that can be used to prompt for keyboard input.

varname$ a string variable to contain the line read.

Comments If specified, thdilenumber%s the number used in ti@pen statement to open
the file. Iffilenumber%s not provided, the line is read from the keyboard.

If prompt$is not provided, a prompt of “?” is used.

Example This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file C:\TEMPO0O1 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "c:\temp001" for Input as #1
x=1
newline=Chr(10)

(V7’3 SBL REFERENCE

msgtext= "The contents of c:\temp001 is: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=x+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)
Else
Seek 1y
End If
msgtext=msgtext & testscore & newline
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMPQO01" for Output as #1
For x=1to 10
Write #1, x
Next x
Close #1
End Sub

See Also Get, Input Function, Input Statement, Open

ListBox Statement

Action Defines a list box of choices for a dialog box.
Syntax A ListBox x, y,dx, dy, text$, .field

Syntax B ListBox x, y, dx, dy, stringarng(), field

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the list box.

text$ a string containing the selections for the list box.

stringarray$ an array of dynamic strings for the selections in the list box.

field the name of the dialog-record field that will hold a number for the

choice made in the list box.

Comments Thex argument is measured in 1/4 system-font character-width unity. The
argument is measured in 1/8 system-font character-width unitsBégse
Dialog for more information.)

LOC FUNCTION e

Thetext$argument must be defined, using a Dim Statement, before the Begin
Dialog statement is executed. The arguments itetkt§string are entered as
shown in the following example:

dimname= "listchoicé+Chr$(9)+istchoice'+Chr$(9)+'listchoice'...

A number representing the selection’s position intéxébstring is recorded in the

field designated by thdield argument when the OK button (or any pushbutton

other than Cancel) is pushed. The numbers begin at 0. If no item is selected, it is -1.
Thefield argument is also used by the dialog statements that act on this control.

Use thelistBox statement only betweerBegin Dialogand arEnd Dialog
statement.

Example This example defines a dialog box with list box and two buttons.

Sub main

Dim ListBox1() as String

ReDim ListBox1(0)

ListBox1(0)="C:\"

Begin Dialog UserDialog 133, 66, 171, 65, "SBL Dialog Box"
Text 3,3, 34,9, "Directory:", .Text2
ListBox 3, 14, 83, 39, ListBox1(), .ListBox2
OkButton 105, 6, 54, 14
CancelButton 105, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled.”

End If

End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, OkButton, OptionButtton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

Loc Function

Action Returns the current offset within an open file.

Syntax Loc(filenumber%) wherefilenumber%s an integer expression identifying the
open file to query.

(VN SBL REFERENCE

Comments Thefilenumber%is the number used in ti@pen statement of the file.

For files opened ilRandom mode,Loc returns the number of the last record read
or written. For files opened iAppend, Input, or Output mode,Loc returns the
current byte offset divided by 128. For files openeBimary mode,Loc returns

the offset of the last byte read or written.

Example This example creates a file of account numbers as entered by the user. When the
user finishes, the example displays the offset in the file of the last entry made.

Sub main
Dim filepos as Integer
Dim acctno() as Integer
Dim x as Integer
x=0
Open "c:\TEMP001" for Random as #1
Do
X=x+1
Redim Preserve acctno(x)
acctno(x)=InputBox("Enter account #' & x & " or 0 to end:")
If acctno(x)=0 then
Exit Do
End If
Put #1,, acctno(x)
Loop
filepos=Loc(1)
Close #1
MsgBox "The offset is: " & filepos
Kill "C:\TEMP001"
End Sub

See Also Eof, Lof, Open

Lock, Unlock Statements

Action Controls access to an open file.
Syntax Lock [#]filenumber%, [start&] [To end&]]

Unlock [#]filenumber%d, { record& | [start&] To end&}]

where is

filenumber% an integer expression identifying the open file.
record& number of the starting record to unlock.

start& number of the first record or byte offset to lock/unlock.

end& number of the last record or byte offset to lock/unlock.

LOCK, UNLOCK STATEMENTS ¥y

Comments

Example

Thefilenumber%is the number used in tl@pen statement of the file.

ForBinary modestart&, andend& are byte offsets. FdRandom mode start&,

andend& are record numbers. sfart& is specified withouend&, then only the
record or byte adtart& is locked. IfTo end&is specified withoustart&, then all
records or bytes from record number or offset &értd& are locked.

Forlnput, Output andAppend modesstart&, andend& are ignored and the
whole file is locked.

Lock andUnlock always occur in pairs with identical parameters. All locks on
open files must be removed before closing the file, or unpredictable results will
occur.

This example locks a file that is shared by others on a network, if the file is
already in use. The second subprogram, CREATEFILE, creates the file used by
the main subprogram.

Declare Sub createfile
Sub main
Dim btngrp, icongrp
Dim defgrp
Dim answer
Dim noaccess as Integer
Dim msgabort
Dim msgstop as Integer
Dim acctname as String
noaccess=70
msgstop=16
Call createfile
On Error Resume Next
btngrp=1
icongrp=64
defgrp=0
answer=MsgBox("Open the account file?" & Chr(10), btngrp+icongrp+defgrp)
If answer=1 then
Open "C:\TEMPO0O01" for Input as #1
If Err=noaccess then
msgabort=MsgBox("File Locked",msgstop,"Aborted")
Else
Lock #1
Line Input #1, acctname
MsgBox "The first account name is: " & acctname
Unlock #1
End If
Close #1
End If
Kill "C:\TEMP001"
End Sub

Sub createfile()
Rem Put the letters A-J into the file
Dim x as Integer
Open "C:\TEMP001" for Output as #1

(AN SBL REFERENCE

For x=1to 10
Write #1, Chr(x+64)
Next x
Close #1
End Sub
See Also Open
Lof Function
Action Returns the length in bytes of an open file.
Syntax Lof(filenumber%) wherefilenumber%is an integer expression identifying the
open file.

Comments Thefilenumber%s the number used in ti@pen statement of the file.

Example This example opens a file and prints its contents to the screen.

Sub main

Dim fname

Dim fchar()

Dim x as Integer

Dim msgtext

Dim newline

newline=Chr(10)

fname=InputBox("Enter a filename to print:")

On Error Resume Next

Open fname for Input as #1

If Err<>0 then
MsgBox "Error loading file. Re-run program.”
Exit Sub

End If

msgtext="The contents of " & fname & " is: " & newline &newline

Redim fchar(Lof(1))

For x=1to Lof(1)
fchar(x)=Input(1,#1)
msgtext=msgtext & fchar(x)

Next x

MsgBox msgtext

Close #1
End Sub

See Also Eof, FileLen, Loc, Open

LOG FUNCTION [e]

Log Function

Action Returns the natural logarithm of a number.
Syntax Log(number) wherenumberis any valid numeric expression.
Comments The return value is single-precision for an integer, currency or single-precision

numeric expression, double precision for a long, Variant or double-precision
numeric expression.

Example This example uses the Log function to determine which number is larger:
99971000 (999 to the 1000 power) or 10007999 (1000 to the 999 power). Note
that you can't use the exponent (*) operator for numbers this large.

Sub main
Dim x
Dimy
x=999
y=1000
a=y*(Log(x))
b=x*(Log(y))
If a>b then
MsgBox "999*1000 is greater than 1000"999"
Else
MsgBox "1000999 is greater than 999"1000"
End If
End Sub

See Also Exp, FixInt, Int, Rnd, Sgn, Sqr

Lset Statement

Action Copies one string to another, or assigns a user-defined type variable to another.

Syntax A Lset string$ = string-expression

Syntax B Lset variable1l=variable2
where is
string$ a string or string expression to contain the copied characters.
string-expression an expression containing the string to copy.
variablel a variable with a user-defined type to contain the copied

variable.
variable2 a variable with a user-defined type to copy.
Comments If string$is shorter thastring-expressioyLset copies the leftmost character of

string-expressiomto string$. The number of characters copied is equal to the
length ofstring$.

VB SBL REFERENCE

Example

See Also

If stringis longer tharstring-expressiorall characters oftring-expressioare
copied intostring$ filling it from left to right. All leftover charactersf string$are
replaced with spaces.

In Syntax B, the number of characters copied is equal to the length of the shorter of
variablelandvariable2.

Lset cannot be used to assign variables of different user-defined types if either
contains a/ariant or a variable-length string.

This example puts a user's last name into the variable LASTNAME. If the name is
longer than the size of LASTNAME, then the user’'s name is truncated. If you

have a long last name and you get lots of junk mail, you've probably seen how this
works already.

Sub main
Dim lastname as String
Dim strlast as String*8
lastname=InputBox("Enter your last name")
Lset strlast=lastname
msgtext="Your last name is: " &strlast
MsgBox msgtext

End Sub

Rset

LTrim Function

Action

Syntax

Comments

Example

Returns a copy of a string with all leading space characters removed.

LTrim [$](string$) wherestring$is a string or expression containing a string to
copy.

LTrim accepts any type string$ including numeric values, and will convert the
input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function typically returnd/ariant of vartype 8 (string). If
the value oftring$is NULL, a Variant of vartype 1 (Null) is returned.

This example trims the leading spaces from a string padded with spaces on the left.

Sub main
Dim userinput as String
Dim numsize
Dim strl as String*50
Dim strsize
strsize=50
userinput=InputBox("Enter a string of characters:")
numsize=Len(userinput)
strl=Space(strsize-numsize) & userinput

' Strl has a variable number of leading spaces.
MsgBox "The string is: " &strl

ME [sIs

strl=LTrim$(strl)
' Strl now has no leading spaces.
MsgBox "The string now has no leading spaces: " & strl

End Sub
See Also GetField, Left, Mid Function, Mid Statement, Right, Rtrim, Trim
Me
Action Refers to the currently used OLE2 automation object.
Syntax Me
Comments Some Basic modules are attached to application objects and Basic subroutines are
invoked when that application object encounters events. A good example is a user
visible button that triggers a Basic routine when the user clicks the mouse on the
button.
Subroutines in such contexts may use the varidil¢o refer to the object which
triggered the event (i.e., which button was clicked). The programmer majeuse
in all the same ways as any other object variable excep¥ithenay not beSet
Example This example
Sub main
—TBD--
End Sub
See Also Create Object, Get Object, New, Nothing, Object, Typeof

Mid Function

Action

Syntax

Comments

Returns a portion of a string, starting at a specified location within the string.

Mid [$](string$, start%o[, lengtis])

where is

string$ a string or expression that contains the string to change.
start% the starting position istring$to begin replacing characters.
length% the number of characters to replace.

Mid accepts any type atring$ including numeric values, and will convert the
input value to a string. If thength%argument is omitted, or #tring$is smaller
thanlength% thenMid returns all characters siring$ If start%is larger than
string$ thenMid returns a null string ().

The index of the first character in a string is 1.

(YAl SBL REFERENCE

Example

See Also

The dollar sign, “$”, in the function name is optional. If specified the return type is
omitted, the function typically returns/ariant of vartype 8 (string). If
the value ostring$is Null, a Variant of vartype 1 (Null) is returned.

string. If

To modify a portion of a string value, skkd Statement.

This example uses the Mid statement to replace the last name in a user-entered

string to

asterisks(*).

Sub main
Dim username as String
Dim position as Integer
Dim count as Integer
Dim uname as String
Dim replacement as String
username=InputBox("Enter your full name:")
uname=username
replacement="+"
Do
position=InStr(username," ")
If position=0 then
Exit Do
End If
username=Mid(username,position+1)
count=count+position
Loop
For x=1 to Len(username)
count=count+1
Mid(uname,count)=replacement
Next x
MsgBox "Your name now is: " & uname
End Sub

GetField, Left, Len, Ltrim, Mid Function, Right, Rtrim, Trim

Mid Statement

Action

Syntax

Comments

Replaces part (or all) of one string with another, starting at a specified location.

Mid (stringvai$, start%o[, lengttdo]) = strings

where

is

stringvar$ the string to change.

start%
length%
string$

If the length%argument is omitted, or #tring$is smaller thatength% thenMid
replaces all the characters from ttart%to the end of thetring$ If start%is
larger than the number of characters in the indicsifenigvar$ thenMid appends

an expression for the position to begin replacing characters.
an expression for the number of characters to replace.

the string to place into another string.

string%to stringvar$.

The index of the first character in a string is 1.

MINUTE FUNCTION [k

Example

See Also

This example uses the Mid function to find the last name in a string. entered by the
user.

Sub main
Dim username as String
Dim position as Integer
username=InputBox("Enter your full name:")
Do
position=InStr(username," ")
If position=0 then
Exit Do
End If
position=position+1
username=Mid(username,position)
Loop
MsgBox "Your last name is: " & username
End Sub

GetField, Lcase, Left, Len, Ltrim, Mid Statement, Right, Rtrim, Trim

Minute Function

Action

Syntax

Comments

Example

Returns an integer for the minute component (0-59) of a date-time value.
Minute(time) wheretimeis any expression that can evolute to a date-time value.

Minute accepts any type tiime, including strings, and will attempt to convert the
input value to a date value.

The return value is ¥ariant of vartype 2 (Integer). If the valué timeis null, a
Variant of vartype 1 (null) is returned.

This example extracts just the time (hour, minute, and second) from a file's last
modification date and time.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String
: msgtext="Enter a filename:"
filename=InputBox(msgtext)

Exit Sub
End If
On Error Resume Next
ftime=FileDateTime(filename)
If Err<>0 then
MsgBox "Error in file name. Try again."
Goto i:
End If

(L7 SBL REFERENCE

See Also

hr=Hour(ftime)

min=Minute(ftime)

sec=Second(ftime)

Msgbox "The file's time is: " & hr &":" &min &":" &sec
End Sub

Day, Hour, Month, Now, Second, Time Function, Time Statement, Weekday,
Year

MKkDir Statement

Action

Syntax

Comments

Example

See Also

Creates a new directory.

MkDir path$ wherepath$is a string expression identifying the new default
directory to create.

The syntax fopath$is:

[drive:]] [\] directory[\directory]

Thedrive argument is optional. Hrive is omitted MkDir makes a new directory
on the current drive. Thdirectoryargument is any directory name.

This example makes a new temporary directory in C:\ and then deletes it.

Sub main
Dim path as String
On Error Resume Next
path=CurDir(C)
If path<>"C:\" then
ChDir "C:\"
End If
MKDir "C:\TEMPO1"
If Err=75 then
MsgBox "Directory already exists"
Else
MsgBox "Directory C:\TEMPO1 created”
MsgBox "Now removing directory”
RmDir "C:\TEMPO1"
End If
End Sub

ChDir, ChDrive, CurDir, Dir, RmDir

MONTH FUNCTION s

Month Function

Action
Syntax

Comments

Example

See Also

Returns an integer for the month component (1-12) of a date-time value.
Month(date) wheredateis any expression that evaluates to a date-time value.

It accepts any type afate including strings, and will attempt to convert the input
value to a date value.

The return value is "ariant of vartype 2 (integer). If the valué dateis null, a
Variant of vartype 1 (null) is returned.

This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Letx=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " & Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext
End Sub

Date Function, Date Statement, Day, Hour, Minute, Now, Second, Weekday, Year

Msgbox Function

Action

Syntax

Comments

Displays a message dialog box and returns a value (1-7) indicating which button
the user selected.

Msgbox(prompt ,[buttongs][, title$])

where is

prompt$ the text to display in a dialog box.

buttons% an integer value for the buttons, the icon, and the default button
choice to display in a dialog box.

title$ a string expression containing the title for the message box.

prompt$must be no more than 1,024 characters long. A message string greater
than 255 characters without intervening spaces will be truncated after the 255th
character.

buttons%is the sum of three values, one from each of the following groups:

(LM SBL REFERENCE

Group Value Description

1: Buttons 0 OK only

OK, Cancel

Abort, Retry, Ignore
Yes, No, Cancel
Yes, No

Retry, Cancel

a b~ WO NP

2: lcons 16 Critical Message (STOP)
32 Warning Query (?)
48 Warning Message (!)
64 Information Message (i)
3: Defaults 0 First button
256 Second button
512 Third button

If buttons%is omitted, Msgbox displays a single OK button.

After the user clicks a buttoMsgbox returns a value indicating the user’s choice.
The return values for the Msgbox function are:

Value Button Pressed

OK
Cancel
Abort
Retry
Ignore
Yes
No

~N o ok WN PR

Example This example displays one of each type of message box.

Sub main
Dim btngrp as Integer
Dim icongrp as Integer
Dim defgrp as Integer
Dim msgtext as String
icongrp=16
defgrp=0
btngrp=0
Do Until btngrp=6
Select Case btngrp
Case 1, 4,5
defgrp=0
Case 2
defgrp=256
Case 3

MSGBOX STATEMENT [ty

See Also

defgrp=512
End Select
msgtext=""Icon group =" & icongrp & Chr(10)
msgtext=msgtext +" Button group =" & btngrp & Chr(10)
msgtext=msgtext + " Default group =" & defgrp & Chr(10)
msgtext=msgtext + Chr(10) + " Continue?"
answer=MsgBox(msgtext, btngrp+icongrp+defgrp)
Select Case answer
Case 2,3,7
Exit Do
End Select
If icongrp<>64 then
icongrp=icongrp+16
End If
btngrp=btngrp+1
Loop
End Sub

InputBox, MsgBox Statement, PasswordBox

Msgbox Statement

Action

Syntax

Comments

Displays a prompt in a message dialog box.

MsgBox prompt$,[buttons%] , title$] whereprompt$is the text to display in a
dialog box, buttons%is an integer value for the buttons, the icon, and the default
button choice to display in a dialog box, ditlé$ is a string expression containing
the title for the message box.

Prompt$must be no more than 1,024 characters long. A message string greater
than 255 characters without intervening spaces will be truncated after the 255th

character.
buttons%is the sum of three values, one from each of the following groups:

Group Value Description

1: Buttons 0 OK only

OK, Cancel

Abort, Retry, Ignore
Yes, No, Cancel
Yes, No

Retry, Cancel

g b W NP

2: Icons 16 Critical Message (STOP)
32 Warning Query (?)
48 Warning Message (!)
64 Information Message (i)
3: Defaults 0 First button
256 Second button
512 Third button

If buttons%is omitted, Msgbox displays a single OK button.

(LA SBL REFERENCE

Example This example finds the future value of an annuity, whose terms are defined by the
user. It uses the MsgBox statement to display the result.

Sub main
Dim aprate, periods
Dim payment, annuitypv
Dim due, futurevalue
Dim msgtext
annuitypv=InputBox("Enter present value of the annuity: ")
aprate=InputBox("Enter the annual percentage rate: ")
If aprate >1 then
aprate=aprate/100
End If
periods=InputBox("Enter the total number of pay periods: ")
payment=InputBox("Enter the initial amount paid to you: ")

Rem Assume payments are made at end of month
due=0
futurevalue=FV(aprate/12,periods,-payment,-annuitypv,due)
msgtext="The future value is: " & Format(futurevalue, "Currency")
MsgBox msgtext

End Sub

See Also InputBox, MsgBox Function, PasswordBox

Name Statement

Action Renames a file or moves a file from one directory to another.

Syntax Name oldfilename$As newfilename$vhereoldfilenamedis a string expression
containing the file to rename amewfilenames$is a string expression containing
the name for the file.

Comments A path may be part of either filename argument. If the paths are different, the file
is moved to the new directory.

A file must be closed in order to be renamed. If theditdilenamedis open or if
the file newfilename®lready exists, Basic generates an error message.

Example This example creates a temporary file, CATEMPO001, renames the file to
C:\TEMPO0O02, then deletes them both. It calls the subprogram, CREATEFILE,
to create the C\TEMPOOL1 file.

Declare Sub createfile()
Sub main
Call createfile
On Error Resume Next
Name "C:\TEMP001" As "C:\TEMP002"
MsgBox "The file has been renamed"
MsgBox "Now deleting both files"
Kill "TEMPO001"
Kill "TEMP002"
End Sub

NEW OPERATOR K}

See Also

Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Dim y()
Dim startletter
Open "C:\TEMPOQO01" for Output as #1
Forx=11t0 10
Write #1, x
Next x
Close #1
End Sub

FileAttr, FileCopy, GetAttr, Kill

New Operator

Action

Syntax

Comments

Example

See Also

Allocates and initializes a new OLE2 object of the named class.

SetobjectVar= NewclassName
Dim objectVarAs NewclassName

whereobjectVaris the OLE2 object to allocate and initialize atassNamas the
class to assign to the object.

In theDim statementiNew marksobjectVarso that a new object will be allocated
and initialized whembjectVaris first used. lfobjectVaris not referenced, then no
new object will be allocated.

An object variable that was declared witbw will allocate a second object if
objectVaris Setto Nothing and referenced again.

This example
Sub main

---TBD---
End Sub

Dim, Global, Set, Static

$NoCStrings Metacommand [SBL Extension]**

Action

Syntax

Comments

Tells the compiler to treat a backslash(\) inside a string as a normal character.

'$NoCStrings [Save]whereSavemeans saves the curré®€Strings setting
before restoring the treatment of the backslash (\) to a normal character.

Use the$CStings Restorecommand to restore a previously saved setting. Save
and Restore operate as a stack and allow the user to chat®feShings setting
for a range of the program without impacting the rest of the program.

(VA SBL REFERENCE

Use the$CStrings metacommand to tell the compiler to treat a backslash (\) inside
of a string as an Escape character.

**SBL offers a number of extensions that are not included in Visual Basic.

Example This example displays two lines, the first time using the C language characters “\n”

for a carriage return and line feed.

Sub main
'$CStrings
MsgBox "This is line 1\n This is line 2 (using C Strings)"
'$NoCStrings
MsgBox "This is line 1" +Chr$(13)+Chr$(10)+"This is line 2 (using Chr)"

End Sub

See Also $Cstrings, $Include, Rem

Nothing Function

Action Returns an object value that doesn’t refer to an object.

Syntax SetvariableName= Nothing wherevariableNames the name of the object
variable to set to nothing.

Comments Nothing is the value object variables have when they do not refer to an object,
either because the have not been initialized yet or because they were e gdicit|
to Nothing. For example:

If Not objectVarls Nothing then
objectVar.Close
SetobjectVar= Nothing

End If

Example This example displays a list of open files in the software application VISIO. It
uses the Nothing function to determine whether VISIO is available. To see how
this example works, you need to start VISIO and open one or more documents.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String
Dim i as Integer, doccount as Integer

'Initialize Visio
Set visio = GetObject(,"visio.application") *find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio

NOW FUNCTION i

If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) ' access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name

Next i
End If
MsgBox msgtext
End Sub
See Also Is, New
Now Function
Action Returns the current date and time.

Syntax Now()

Comments The Now function returns &ariant of vartype 7 (date) that represents the current
date and time according to the setting of the computer’'s system date and time.

Example This example finds the month (1-12) and day (1-31) values for this Thursday.

Sub main
Dim x, today
Dim msgtext
Today=DateValue(Now)
Let x=0
Do While Weekday(Today+x)<> 5
X=x+1
Loop
msgtext="This Thursday is: " &Month(Today+x)&"/"&Day(Today+x)
MsgBox msgtext
End Sub

See Also Date Function, Date Statement, Day, Hour, Minute, Month, Second, Time
Function, Time Statement, Weekday, Year

NPV Function

Action Returns the net present value of a investment based on a stream of periodic cash
flows and a constant interest rate.

Syntax NPV (rate, valuearray() Whererate is the discount rate per period and
valuearray()is an array containing cash flow values.

YAl SBL REFERENCE

Comments Valuearray()must have at least one positive value (representing a receipt) and
one negative value (representing a payment). All payments and receipts must be
represented in the exact sequence. The value returéB\yvill vary with the
change in the sequence of cash flows.

If the discount rate is 12% per periadte is the decimal equivalent, i.e. 0.12.

NPV uses future cash flows as the basis for the net present value calculation. If the
first cash flow occurs at the beginning of the first period, its value should be added
to the result returned ByPV and must not be included waluearray()

Example This example finds the net present value of an investment, given a range of cash
flows by the user.

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods")
ReDim varray(cflowper)
For x= 1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #' & x & ":")
Next x
aprate=InputBox("Enter discount rate: ")
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV(aprate,varray())
MsgBox "The net present value is: " & Format(netpv, "Currency")
End Sub

See Also FV, Ipmt, IRR, Pmt, Ppmt, PV, Rate

Null Function

Action Returns &/ariant value set to NULL.
Syntax Null
Comments Null is used to set a Variant to the Null value explicitly, as follows:

variableName= Null

Note that Variants are initialized by Basic to the empty value, which is different
from the null value.

Example This example asks for ten test score values and calculates the average. If any score
is negative, the value is set to Null. Then IsNull is used to reduce the total count of
scores (originally 10) to just those with positive values before calculating the
average.

OBJECT CLASS K]

Sub main
Dim arrayvar(10)
Dim count as Integer
Dim total as Integer
Dim x as Integer
Dim tscore as Single
count=10
total=0
For x=1 to count
tscore=InputBox("Enter test score #" & x & ":")
If tscore<0 then
arrayvar(x)=Null
Else
arrayvar(x)=tscore
total=total+arrayvar(x)
End If
Next X
Do While x<>0
X=x-1
If IsNull(arrayvar(x))=-1 then
count=count-1
End If
Loop
msgtext="The average (excluding negative values) is: " & Chr(10)
msgtext=msgtext & Format (total/count, "##.##")
MsgBox msgtext
End Sub

See Also ISEmpty, IsNull, VarType

Object Class

Action A class that provides access to OLE2 automation objects.

Syntax Dim variableNameAs Object wherevariableNamas the name of the object
variable to declare.

Comments To create a new object, first dimension a variable, usinBittestatement, then
Setthe variable to the return value ©feateObject or GetObject, as follows:

Dim OLE2As Object
SeDLE2 = CreateObject("spoly.cpoly™)

To refer to a method or property of the newly created object, use the syntax:
objectvar.propertyor objectvar.methodas follows:OLE2.reset

Example This example displays a list of open files in the software application VISIO. It
uses the Object class to declare the variables used for accessing VISIO and its
document files and methods.

Sub main
Dim visio as Object
Dim doc as Object
Dim msgtext as String
Dim i as Integer, doccount as Integer

(I3 SBL REFERENCE

'Initialize Visio
Set visio = GetObject(,"visio.application") 'find Visio
If (visio Is Nothing) then
Msgbox "Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) ' access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

See Also Create Object, Get Object, New, Nothing, Typeof

Oct Function

Action Returns the octal representation of a number, as a string.
Syntax Oct[$](number) wherenumberis a numeric expression for the number to convert
to octal.
Comments If the numeric expression has a data typkteger, the string will contain up to

six octal digits; otherwise, the expression will be converted to a data tipagf
and the string may contain up to 11 octal digits.

To represent an octal number directly, precede the octal valu&@ith-or
example, &010 equals decimal 8 in octal notation.

The dollar sign, “$”, in the function name is optional. If specified the return data
type isString. If omitted the function will retura Variant of vartype 8 (string).

Example This example prints the octal values for the numbers from 1 to 15.

Sub main
Dim x,y
Dim msgtext
Dim nofspaces
msgtext="Octal numbers from 1 to 15:" & Chr(10)
Forx=1to 15
nofspaces=10
y=0ct(x)
If Len(x)=2 then
nofspaces=nofspaces-2
End If
msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y

OKBUTTON STATEMENT IS

Next x
MsgBox msgtext
End Sub

See Also Hex

OkButton Statement

Action Determines the position and size of an OK button in a dialog box.

Syntax OKButton x, y,dx, dy], .id]

where is

X,y the position of the Cancel button relative to the upper left corner of
the dialog box.

dx,dy the width and height of the button.

.id an optional identifier for the button.

Comments A dyvalue of 14 typically accommodates text in the system font.
.id is an optional identifier used by the dialog statements that act on this control.

Use theOkButton statement only betweerBagin Dialogand arEnd Dialog
statement.

Example This example defines a dialog box with a dropcombo box and the OK and Cancel
buttons.

Sub main
Dim cchoices as String
On Error Resume Next
cchoices="All"+Chr$(9)+"Nothing"
Begin Dialog UserDialog 180, 95, "SBL Dialog Box"
ButtonGroup .ButtonGroupl
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 17, 111, 41, cchoices, .ComboBox1
OkButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
End Dialog
Dim mydialogbox As UserDialog
Dialog mydialoghox
If Err=102 then
MsgBox "You pressed Cancel."
Else
MsgBox "You pressed OK."
End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OptionButton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

M SBL REFERENCE

On...Goto Statement

Action

Syntax

Comments

Example

See Also

Branch to a label in the current procedure based on the value of a numeric
expression.

ON numeric-expressio®oTo labell[,label2, ...] wherenumeric-expressiois any
numeric expression that evolutes to a positive numbeladedil, label2are label in
the current procedure to branch tmifmeric-expressioavalutes to 1, 2, etc.

If numeric expressioavaluates to 0 or to a number greater than the number of
labels followingGoTo, the program continues at the next statemenurieric-
expressiorevaluates to a number less than 0O or greater than 258legyal
function call”error is issued.

This example sets the current system time to the user's entry. If the entry cannot
be converted to a valid time value, this subroutine sets the variable to Null. It then
checks the variable and if it is Null, uses the On...Goto statement to ask again.

Sub main
Dim answer as Integer
answer=InputBox("Enter a choice (1-3) or 0 to quit")
On answer Goto c1, c2, c3
MsgBox("You typed 0.")
Exit Sub

cl: MsgBox("You picked choice 1.")
Exit Sub

c2: MsgBox("You picked choice 2.")
Exit Sub

c3: MsgBox("You picked choice 3.")
Exit Sub

End Sub

Goto, Select Case

On Error Statement

Action

Syntax

Comments

Specifies the location of an error-handling routine within the current procedure.

ON [Local] Error {GoTo label[Resume Nexi GoTo G wherelabelis a
string used as a label in the current procedure to identify the lines of code that
process errors.

On Error can also be used to disable an error-handling routine. Unl€3s an
Error statement is used, any run-time error will be fatal, i.e., SBL will terminate
the execution of the program.

ON ERROR STATEMENT iy

Example

An On Error statement is composed of the following parts:

Part Definition

Local Keyword allowed in error-handling routines at the procedure level.
Used to ensure compatibility with other Variants of Basic.

GoTo label Enables the error-handling routine that starts at label. If the
designated label is not in the same procedure as the On Error
statement, SBL generates an error message.

Resume Next Designates that error handling code is handled by the statement
which immediately follows the statement that caused an error. At
this point, use the Error function to retrieve the error-code of the
run-time error.

GoTo 0 Disables any error handler that has been enabled.

When it is referenced by @n Error GoTo label statement, an error-handler is
enabled. Once this enabling occurs, a run-time error will result in program control
switching to the error-handling routine and “activating” the error handler. The error
handler remains active from the time the run-time error has been trapped until a
Resumestatement is executed in the error handler.

If another error occurs while the error handler is active, SBL will search for an error
handler in the procedure which called the current procedure (if this fails, SBL will
look for a handler belonging to the caller’s caller, ...). If a handler is found, the
current procedure will terminate, and the error handler in the calling procedure will
be activated.

Itis an error (No Resume) to executekamd Sub or End Function statement
while an error handler is active. TE&it Sub or Exit Function statement can be
used to end the error condition and exit the current procedure.

This example prompts the user for a drive and directory name and uses On Error
to trap invalid entries.

Sub main
Dim userdrive, userdir, msgtext
inl: userdrive=InputBox("Enter drive:",,"C:")
On Error Resume Next
ChDrive userdrive
If Err=68 then
MsgBox "Invalid Drive. Try again."
Goto inl
End If
in2: On Error Goto Errhdirl
userdir=InputBox("Enter directory path:")
ChDir userdrive & userdir
Msghox “New default directory is: " & userdrive & userdir
Exit Sub
Errhdlrl:
Select Case Err
Case 75

A SBL REFERENCE

See Also

msgtext="Path is invalid."

Case 76

msgtext="Path not found."

Case 70

msgtext="Permission denied."

Case Else

msgtext="Error " & Err & ": " & Error$ & "occurred."

End Select
MsgBox msgtext & " Try again.”
Resume in2

End Sub

Erl, Err Function, Err Statement, Error Function, Error Statement, Resume

Open Statement

Action
Syntax

Opens a file or device for input or output.

Openfilenamé [For modé [Accessaccesk[locK As [# filenumbefo [Len =recler

where
filename$

mode

access

lock

filenumber%

reclen

is
a string or string expression for the name of the file to open.

one of the following keywords:

Input Put data into the file sequentially.
Output Read data from the file sequentially.
Append Add data to the file sequentially.
Random Get data from the file by random access.
Binary Get binary data from the file.

one of the following keywords:
Read Read data from the file only.
Write Write data the file only.
Read Write Read or write data to the file.

one of the following keywords to designate access by other

processes:
Shared Read or write available on the file.
Lock Read Read data only.
Lock Write Write data only.

Lock Read Write No read or write available.

an integer or expression containing the integer to assign to the open
file (between 1 and 255).

the length of the records (for Random or Binary files only).

OPEN STATEMENT s}

Comments A file must be opened before any input/output operation can be performed on it.

If flename$does not exist, it is created when openefippend, Binary, Output
or Random modes.

If modeis not specified, it defaults ®andom.

If accesss not specified foRandom or Binary modesaccesss attempted in the
following order:Read Write, Write , Read

If lockis not specifiedfilename$can be opened by other processes that do not
specify aock, although that process cannot perform any file operations on the file
while the original process still has the file open.

Use theFreeFile function to find the next available value fdenumber%
Reclenis ignored forinput, Output, andAppendmodes

Example This example opens a file for Random access, gets the contents of the file, and
closes the file again. The second subprogram, CREATEFILE, creates the file
CA\TEMPOO01 used by the main subprogram.

Declare Sub createfile()
Sub main
Dim acctno as String*3
Dim recno as Long
Dim msgtext as String
Call createfile
recno=1
newline=Chr(10)
Open "C:\TEMP001" For Random As #1 Len=3
msgtext="The account numbers are:" & newline
Do Until recno=11
Get #1,recno,acctno
msgtext=msgtext & acctno
recno=recno+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP0O1"
End Sub
Sub createfile()
Rem Put the numbers 1-10 into a file
Dim x as Integer
Open "C:\TEMP001" for Output as #1
For x=11t0 10
Write #1, x
Next X
Close #1
End Sub

See Also Close, FreeFile

V(B SBL REFERENCE

OptionButton Statement

Action
Syntax

Comments

Example

See Also

Defines the position and text associated with an option button in a dialog box.

OptionButton X, y, dx, dy, text .id]

where
X,y

dx,dy
text$

.id

is

the position of the button relative to the upper left corner of the
dialog box.

the width and height of the button.

a string to display next to the option button. If the width of this
string is greater thaghx, trailing characters are truncated.

an optional identifier used by the dialog statements that act on this

control.

You must have at least tv@ptionButton statements in a dialog box. You use
these statements in conjunction with @gtionGroup statement.

A dyvalue of 12 typically accommodates text in the system font.

To enable the user to select an option button by typing a character from the
keyboard, precede the characteteixt$with an ampersand (&).

Use theOptionButton statement only betweerBegin Dialogand arEnd Dialog
statement.

This example creates a dialog box with a group box with two option buttons: “All

pages” and “Range of pages”.

Sub main

Begin Dialog UserDialog 183, 70, "SBL Dialog Box"
GroupBox 5, 4, 97, 57, "File Range"
OptionGroup .OptionGroup2
OptionButton 16, 12, 46, 12, "All pages", .OptionButton3
OptionButton 16, 28, 67, 8, "Range of pages", .OptionButton4
Text 22, 39, 20, 10, "From:", .Text6
Text 60, 39, 14,9, "To:", .Text7
TextBox 76, 39, 13, 12, .TextBox4
TextBox 44, 39, 12, 11, .TextBox5
OkButton 125, 6, 54, 14
CancelButton 125, 26, 54, 14
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If

End Sub

Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionGroup, Picture, StaticComboBox, Text, TextBox

OPTIONGROUP STATEMENT [l

OptionGroup Statement

Action

Syntax

Comments

Example

See Also

Groups a series of option buttons under one heading in a dialog box.

OptionGroup .field where.fieldis a value for the option button selected by the
user: 0 for the first option button, 1 for the second button, and so on.

TheOptionGroup statement is used in conjunction w@ptionButton

statements to set up a series of related optiorsOptionGroup Statement

begins the definition of the option buttons and establishes the dialog-record field
that will contain the option selection.

Use theOptionGroup statement only betweerBegin Dialogand arEnd Dialog
statement.

This example creates a dialog box with a group box with two option buttons: “All
pages” and “Range of Pages”.

Sub main

Begin Dialog UserDialog 192, 71, "SBL Dialog Box"
GroupBox 7, 6, 97, 57, "File Range"
OptionGroup .OptionGroup2

OptionButton 18, 14, 46, 12, "All pages", .OptionButton3
OptionButton 18, 30, 67, 8, "Range of pages", .OptionButton4

Text 24,41, 20, 10, "From:", .Text6
Text 62,41, 14,9, "To:", .Text7
TextBox 78, 41, 13, 12, .TextBox4
TextBox 46, 41, 12, 11, .TextBox5
OkButton 126, 6, 54, 14
CancelButton 126, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,
ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionButton, Picture, StaticComboBox, Text, TextBox

Option Base Statement

Action

Syntax

Comments

Specifies the default lower bound to use for array subscripts.

Option BaselowerBound%wherelowerBoundis a number or expression
containing a number for the default lower bound: either 0 or 1.

If no Option Basestatement is specified, the default lower bound for array
subscripts will be 0.

YV SBL REFERENCE

Example

See Also

The Option Basestatement isiot allowed inside a procedure, and must precede
any use of arrays in the module. Only @tion Basestatement is allowed per
module.

This example resizes an array if the user enters more data than can fit in the
array. It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)
start:
Do until x=count+1
arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start
End If
End If
X=LBound(arrayvar,1)
count=UBound(arrayvar,1)

For y=x to count
total=total+arrayvar(y)
Nexty
MsgBox "The average of " & count & " scores is: " & Int(total/count)
End Sub

Dim, Global, Lbound, ReDim, Static

Option Compare Statement

Action

Syntax

Specifies the default method for string comparisons: either case-sensitive or case-
insensitive.

Option Compare { Binary | Text } whereBinary means comparisons are case-
sensitive (i.e., lowercase and uppercase letters are differerifpantheans
comparisons are not case-sensitive.

OPTION EXPLICIT STATEMENT YE]

Comments

Example

See Also

Binary comparisons compare strings based upon the ANSI characteexet
comparisons are based upon the relative order of characters as determined by the
country code setting for your system.

This example compares two strings: “JANE SMITH” and “jane smith”. When
Option Compare is Text, the strings are considered the same. If Option Compare
is Binary, they will not be the same. Binary is the default. To see the difference,
run the example once, then run it again, commenting out the Option Compare
statement.

Option Compare Text
Sub main
Dim strg1 as String
Dim strg2 as String
Dim retvalue as Integer
strg1="JANE SMITH"
strg2="jane smith"

retvalue=StrComp(strgl,strg2)

If retvalue=0 then
MsgBox "The strings are identical"

Else
MsgBox "The strings are not identical”
Exit Sub

End If

End Sub

Instr, StrComp

Option Explicit Statement

Action
Syntax

Comments

Example

See Also

Specifies that all variables in a modubeistbe explicitly declared.
Option Explicit

By default, Basic automatically declares any variables that do not appear in a
Dim, Global, Redim, or Static statement. Option Explicit causes such variables to
produce a “Variable Not Declared” error.

This example specifies that all variables must be explicitly declared, thus
preventing any mistyped variable names.

Option Explicit
Sub main
Dim counter As Integer
Dim fixedstring As String*25
Dim varstring As String
"...(code here)...
End Sub

Const, Detiype Dim, Function...End Function, Global, ReDim, Static, Sub...End Sub

V"3l SBL REFERENCE

PasswordBox Function

Action Returns a string entered by the user without echoing it to the screen.

Syntax PasswordBoX$](prompt ,[title$] ,[defaul] [, xpoo, ypohs])

where is

prompt$ a string expression containing the text to show in the dialog box

title$ the caption for the dialog box’s title bar

default$ the string expression shown in the edit box as the default
response.

Xpos%, ypos% the position of the dialog box, relative to the upper left corner of
the screen.

Comments ThePasswordBoxfunction displays a dialog box containing a prompt. Once the
user has entered text, or made the button choice being prompted for, the contents of
the box are returned.

The length ofprompt$is restricted to 255 characters. This figure is approximate
and depends on the width of the characters used. Note that a carriage return and a
line-feed character must be includegmompt$if a multiple-line prompt is used.

If either prompt$or default$is omitted, nothing is displayed.

Xpos%determines the horizontal distance between the left edge of the screen and
the left border of the dialog box, measured in dialog box uvjites%determines

the horizontal distance from the top of the screen to the dialog box’s upper edge,
also in dialog box units. If these arguments are not entered, the dialog box is
centered roughly one third of the way down the screen. A horizontal dialog box unit
is 1/4 of the average character width in the system font; a vertical dialog box unit is
1/8 of the height of a character in the system font.

+ To specify the dialog box’s position, you must enter both of these arguments. If
you enter one without the other, the default positioning is used.

Once the user presses Enter, or selects the OK bBRtigewordBoxreturns the
text contained in the password box. If the user selects CancBhasse/ordBox
function returns a null string (™).

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function will return\dariant of vartype 8 (string).

Example This example asks the user for a password.

Sub main
Dim retvalue
Dima
retvalue=PasswordBox("Enter your login password",Password)
If retvalue<>"" then

PICTURE STATEMENT N

See Also

MsgBox "Verifying password"
(continue code here)
Else
MsgBox "Login cancelled"
End If
End Sub

InputBox, MsgBox Function, MsgBox Statement

Picture Statement

Action

Syntax

Comments

Note

Example

Defines a picture control in a dialog box.

Picture x, y, dx, dy, filename$, typeid]

where is

X,y the position of the picture relative to the upper left corner of the
dialog box.

dx,dy the width and height of the picture.

filename$ the name of the bitmap file (a file with .BMP extension) where the
picture is located.

type an integer for the location of the bitmap fillsname$ 3=Windows
Clipboard).

id an optional identifier used by the dialog statements that act on this
control.

ThePicture statement can only be used betwa&egin Dialogand arEnd
Dialog statement.

The picture will be scaled equally in both directions and centered if the
dimensions of the picture are not proportionadt@nddy.

If type%is 3,filename$is ignored.

If the picture is not available (the fifdename$doesn’t exist, doesn’t contain a
bitmap, or there is no bitmap on the Clipboard), the picture control will display the
picture frame and the text “(missing picture)”. This behavior may be changed by
adding 16 to the value tfpe%.If type%is 16 or 19 and the picture is not

available, a runtime error occurs.

This example defines a dialog box with a picture, and the OK and Cancel
buttons.

Sub main
Begin Dialog UserDialog 148, 73, "SBL Dialog Box"
Picture 8,7, 46, 46, "C:\WINDOWS\ARCADE.BMP", 0
OkButton 80, 10, 54, 14
CancelButton 80, 30, 54, 14
End Dialog

V(BN SBL REFERENCE

Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled.”
End If
End Sub

See Also Begin...End Dialog, Button, ButtonGroup, CancelButton, Caption, CheckBox,

ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OkButtton,
OptionButton, OptionGroup, StaticComboBox, Text, TextBox

Pmt Function

Action Returns a constant periodic payment amount for an annuity or a loan.
Syntax Pmt (rate, nper, pv, fv, dup
where is
rate interest rate per period.
nper total number of payment periods.
pv present value of the initial lump sum amount paid (as in the case of
an annuity) or received (as in the case of a loan).
fv future value of the final lump sum amount required (as in the case
of a savings plan) or paid (0 as in the case of a loan).
due an integer value for when the payments are due (O=end of each

period, 1= beginning of the period).

Comments Rateis assumed to be constant over the life of the loan or annuity. If payments
are on a monthly schedule, thexte will be 0.0075 if the annual percentage rate
on the annuity or loan is 9%.

Example This example finds the monthly payment on a given loan.

Sub main
Dim aprate, totalpay
Dim loanpv, loanfv
Dim due, monthlypay
Dim yearlypay, msgtext
loanpv=InputBox("Enter the loan amount: ")
aprate=InputBox("Enter the loan rate percent: ")
If aprate >1 then
aprate=aprate/100
End If
totalpay=InputBox("Enter the total number of monthly payments: ")
loanfv=0
'Assume payments are made at end of month
due=0
monthlypay=Pmt(aprate/12,totalpay,-loanpv,loanfv,due)
msgtext="The monthly payment is: " & Format(monthlypay, "Currency")
MsgBox msgtext
End Sub

See Also FV, Ipmt, IRR, NPV, PV, Ppmt, Rate

PPMT FUNCTION g

PPmt Function

Action

Syntax

Comments

Example

See Also

Returns the principal portion of the payment for a given period of an annuity.

PPmt (rate, per, nper, pv, fv, @)

where is

rate interest rate per period.

per particular payment period in the range 1 throoghr.

nper total number of payment periods.

pv present value of the initial lump sum amount paid (as in the case of
an annuity) or received (as in the case of a loan).

fv future value of the final lump sum amount required (as in the case
of a savings plan) or paid (0 as in the case of a loan).

due an integer value for when the payments are due (O=end of each

period, 1= beginning of the period).

Rateis assumed to be constant over the life of the loan or annuity. If payments are
on a monthly schedule, theate will be 0.0075 if the annual percentage rate on
the annuity or loan is 9%.

This example finds the principal portion of a loan payment amount for payments
made in last month of the first year. The loan is for $25,000 to be paid back over 5
years at 9.5% interest.

Sub main
Dim aprate, periods
Dim payperiod
Dim loanpv, due
Dim loanfv, principal
Dim msgtext
aprate=9.5/100
payperiod=12
periods=120
loanpv=25000
loanfv=0
Rem Assume payments are made at end of month
due=0
principal=PPmt(aprate/12,payperiod,periods,-loanpv,loanfv,due)
msgtext="Given a loan of $25,000 @ 9.5% for 10 years," & Chr(10)
msgtext=msgtext & " the principal paid in month 12 is: "
MsgBox msgtext & Format(principal, "Currency”)
End Sub

FV, Ipmt, IRR, NPV, Pmt, PV, Rate

VKA SBL REFERENCE

Print Statement

Action

Syntax

Comments

Example

See Also

Prints data to an open file or to the screen.

Print [filenumber%] expressionlisf{; |, }] wherefilenumber%s an integer
expression identifying the open file to use amgressionlistis a numeric, string,
and Variant expression containing the list of values to print.

ThePrint statement outputs data to the specifiethumber%filenumber%is

the number assigned to the file when it was opened. S€&ptrestatement for
more information. If this argument is omitted, Pent statement outputs data to
the screen.

If the expressionlists omitted, a blank line is written to the file.

The values irexpressionlisare separated by either a semi-colon (*;”) or a comma

(*,”) . A semi-colon indicates that the next value should appear immediately after

the preceding one without intervening white space. A comma indicates that the next
value should be positioned at the next print zone. Print zones begin every 14 spaces.

The optional [{;],}] argument at the end of tReint statement determines where
output for the nexPrint statement to the same output file should begin. A semi-
colon will place output immediately after the output from fhimt statement on

the current line; a comma will start output at the next print zone on the current line.
If neither separator is specified, a CR-LF pair will be generated and thEnixt
statement will print to the next line.

Special functionSpcandTab can be used insiderint statement to insert a given
number of spaces and to move the print position to a desired column.

ThePrint statement supports only elementary Basic data typesn@# for more
information on parsing this statement.

This example prints the octal values for the numbers from 1 to 25.

Sub main
Dim x as Integer
Dimy
For x=11t0 25
y=0ct$(x)
Print x Tab(10) y
Next x
End Sub

Open, Spc, Tab, Write

PUSHBUTTON STATEMENT [

PushButton Statement

Action
Syntax A

Syntax B

Comments

Example

Defines a custom pushbutton.
PushButtonx, y, dx, dy, text§ .id]

Button x, y, dx, dy, te$t[, .id]

where is

X,y the position of the button relative to the upper left corner of the
dialog box.

dx,dy the width and height of the button.

text$ the name for the pushbutton. If the width of this string is greater
thandx, trailing characters are truncated.

id an optional identifier used by the dialog statements that act on this
control.

A dyvalue of 14 typically accommodates text in the system font.

Use this statement to create buttons other than OK and Cancel. Use this statement
in conjunction with théButtonGroup statement. The two forms of the statement
(Button andPushButton) are equivalent.

Use theButton statement only betweerBeegin Dialogand arEnd Dialog
statement.

This example defines a dialog box with a combination list box and three buttons.

Sub main

Dim fchoices as String

fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"

Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
ButtonGroup .ButtonGroupl
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
PushButton 113, 57, 54, 13, "Help", .Push1

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

VB SBL REFERENCE

See Also Begin Dialog...End Dialog Statement, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, DropComboBox, DropListBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, Text,
TextBox

Put Statement

Action Writes a variable to a file openedRandom or Binary mode.
Syntax Put [#] filenumbe®b, [recnumbet], varname
where is

filenumber% an integer expression identifying the open file to use.

recnumber& along expression containing the record number or the byte offset
at which to start writing.

varname the name of the variable containing the data to write.

Comments Filenumber%is the number assigned to the file when it was opened. See the
Open statement for more information.

Recnumberéis in the range 1 to 2,147,483,647tdEnumber&is omitted, the next
record or byte is written.

+ The commas before and after recnumber®&raquired, even if no recnumber&
is specified.

Varnamecan be any variable excepbject, Application Data Type or Array
variables (single array elements may be used).

For Random mode, the following apply:

m Blocks of data are written to the file in chunks whose size is equal to the size
specified in thd_en clause of th®pen statement. If the size ehrnameis
smaller than the record length, the record is padded to the correct record size. If
the size of variable is larger than the record length, an error occurs.

= For variable length String variabld2ut writes two bytes of data that indicate
the length of the string, then writes the string data.

m For Variant variablesRut writes two bytes of data that indicate the type of the
Variant, then it writes the body of the Variant into the variable. Note that
Variants containing strings contain two bytes of type information, followed by
two bytes of length, followed by the body of the string.

m User defined types are written as if each member were written separately,
except no padding occurs between elements.

PV FUNCTION pElE

Example

See Also

Files opened iBinary mode behave similarly to those opene®Random mode
except:

= Put writes variables to the disk without record padding.

= Variable lengthStrings that are not part of user defined types are not preceded
by the two byte string length.

This example opens a file for Random access, puts the values 1-10 in it, prints the
contents, and closes the file again.

Sub main
' Put the numbers 1-10 into a file
Dimx,y
Open "C:\TEMP001" as #1
For x=1to0 10
Put #1,x, x
Next x
msgtext="The contents of the file is:" & Chr(10)
For x=1to0 10
Get#1,x,y
msgtext=msgtext & y & Chr(10)
Next x
Close #1
MsgBox msgtext
Kill "C:\TEMP0O1"
End Sub

Close, Get, Open, Write

PV Function

Action

Syntax

Comments

Returns the present value of a constant periodic stream of cash flows as in an
annuity or a loan.

PV (rate, nper, pmt, fv, due

where is

rate interest rate per period.

nper total number of payment periods.

pmt constant periodic payment per period.

fv future value of the final lump sum amount required (in the case of a
savings plan) or paid (0 in the case of a loan).

due an integer value for when the payments are due (O=end of each

period, 1= beginning of the period).

Rateis assumed constant over the life of the annuity. If payments are on a
monthly schedule, therate will be 0.0075 if the annual percentage rate on the
annuity or loan is 9%.

YAl SBL REFERENCE

Example

See Also

This example finds the present value of a 10-year $25,000 annuity that will pay
$1,000 a year at 9.5%.

Sub main
Dim aprate, periods
Dim payment, annuityfv
Dim due, presentvalue
Dim msgtext
aprate=9.5
periods=120
payment=1000
annuityfv=25000
Rem Assume payments are made at end of month
due=0
presentvalue=PV(aprate/12,periods,-payment, annuityfv,due)
msgtext= "The present value for a 10-year $25,000 annuity @ 9.5%"
msgtext=msgtext & " with a periodic payment of $1,000 is: "
msgtext=msgtext & Format(presentvalue, "Currency")
MsgBox msgtext
End Sub

FV, Ipmt, IRR, NPV, Pmt, Ppmt, Rate

Randomize Statement

Action
Syntax

Comments

Example

Seeds the random-number generator.

Randomize [number%] wherenumber%is an integer value between -32768 and

If no number%argument is given, Basic useg ffimer function to initialize the
random number generator.

This example generates a random string of characters using the Randomize
statement and Rnd function. The second For...Next loop is to slow down
processing in the first For...Next loop so that Randomize can be seeded with a new
value each time from the Timer function.

Sub main

Dim x as Integer

Dimy

Dim strl as String

Dim str2 as String

Dim letter as String

Dim randomvalue

Dim upper, lower

Dim msgtext

upper=Asc("z")

lower=Asc("a")

newline=Chr(10)

For x=1to0 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter

RATE FUNCTION [EeX;

Fory =1 to 1500
Nexty
Next x
msgtext=strl
MsgBox msgtext
End Sub

See Also Rnd, Timer

Rate Function

Action Returns the interest rate per period for an annuity or a loan.

Syntax Rate (nper, pmt, pv, fv, due, gue&s

where is

nper total number of payment periods.

pmt constant periodic payment per period.

pv present value of the initial lump sum amount paid (as in the case of
an annuity) or received (as in the case of a loan).

fv future value of the final lump sum amount required (in the case of a
savings plan) or paid (0 in the case of a loan).

due an integer value for when the payments are due (O=end of each
period, 1= beginning of the period)

guess a ballpark estimate for the rate returned.

Comments In general, a guess of between 0.1 (10 percent) and 0.15 (15 percent) would be a

reasonable value fguess

Rateis an iterative function: it improves the given valugoéssover several
iterations until the result is within 0.00001 percent. If it does not converge to a

result within 20 iterations, it signals failure.

Example This example finds the interest rate on a 10 year $25,000 annuity, that pays $100

per month.

Sub main
Dim aprate
Dim periods

Dim payment, annuitypv
Dim annuityfv, due
Dim guess
Dim msgtext as String
periods=120
payment=100
annuitypv=0
annuityfv=25000
guess=.1
Rem Assume payments are made at end of month
due=0
aprate=Rate(periods,-payment,annuitypv,annuityfv, due, guess)

73 SBL REFERENCE

aprate=(aprate*12)
msgtext= "The percentage rate for a 10-year $25,000 annuity "
msgtext=msgtext & "that pays $100/month has "
msgtext=msgtext & "a rate of: " & Format(aprate, "Percent")
MsgBox msgtext

End Sub

See Also FV, Ipmt, IRR, NPV, Pmt, Ppmt, PV

ReDim Statement

Action Changes the upper and lower bounds of a dynamic array’s dimensions.

Syntax ReDim [Preserve] variableName subscriptRange, .).[As[New] typqd , ...

where is

variableName the variable array name to redimension.

subscriptRange the new upper and lower bounds for the array.

type the type for the data elements in the array.
Comments ReDim re-allocates memory for the dynamic array to support the specified

dimensions, and may optionally re-initialize the array elem&#Bim cannot
be used at the module level; it must be used inside of a procedure.

ThePreserveoption is used to change the last dimension in the array while
maintaining its contents. Rreserveis not specified, the contents of the array are
re-initialized. Numbers will be set to zero (0). Strings and Variants will be set to

empty (").
The subscriptRangés of the format:
[startSubscripfTo] endSubscript

If startSubscripis not specified, 0 is used as the default. Op&on Base
statement can be used to change the default.

A dynamic array is normally created by usBign to declare an array without a
specifiedsubscriptRangeThe maximum number of dimensions for a dynamic

array created in this fashion is 8. If you need more than 8 dimensions, you may use
theReDim statement inside of a procedure to declare an array which has not
previously been declared usiBgm or Global. In this case, the maximum number

of dimensions allowed is 60.

The available data types for arrays are: numbers, strings, Variants, records and
objects. Arrays of arrays, dialog box records, and objects are not supported.

REM STATEMENT [ER]

Example

See Also

If the As clause is not used, the type of the variable may be specified by using a
type character as a suffix to the name. The two different type-specification methods
can be intermixed in a singlReDim statement (although not on the same variable).

The ReDim statement cannot be used to change the number of dimensions of a
dynamic array once the array has been given dimensions. It can only change the
upper and lower bounds of the dimensions of the arrayLBband andUBound
functions can be used to query the current bounds of an array variable’'s
dimensions.

Care should be taken to avdt@Dim'ing an array in a procedure that has received
a reference to an element in the array in an argument; the result is unpredictable.

This example finds the net present value for a series of cash flows. The array
variable that holds the cash flow amounts is initially a dynamic array that is
redimensioned after the user enters the number of cash flow periods they have.

Sub main
Dim aprate as Single
Dim varray() as Double
Dim cflowper as Integer
Dim x as Integer
Dim netpv as Double
cflowper=InputBox("Enter number of cash flow periods:")
ReDim varray(cflowper)
For x= 1 to cflowper
varray(x)=InputBox("Enter cash flow amount for period #" &x &":")
Next x
aprate=InputBox ("Enter discount rate:")
If aprate>1 then
aprate=aprate/100
End If
netpv=NPV(aprate,varray())
MsgBox "The Net Present Value is: " & Format(netpv,"Currency")
End Sub

Dim, Global, Option Base, Static

Rem Statement

Action
Syntax

Comments

Example

Identifies a line of code as a comment in a Basic program.
Rem commentvherecomments the text of the comment.

Everything fromRemto the end of the line is ignored.

The single quote (') can also be used to initiate a comment. Metacommands (e.g.,
$CSTRINGS) must be preceded by the single quote comment form.

This example defines a dialog box with a combination list box and two buttons.
The Rem statements describe each block of definition code.

N SBL REFERENCE

Sub main
Dim fchoices as String
fchoices="File1" & Chr(9) & "File2" & Chr(9) & "File3"
Begin Dialog UserDialog 185, 94, "SBL Dialog Box"
Rem The next two lines create the combo box
Text 9, 5, 69, 10, "Filename:", .Textl
DropComboBox 9, 17, 88, 71, fchoices, .ComboBox1
Rem The next two lines create the command buttons
OkButton 113, 14, 54, 13
CancelButton 113, 33, 54, 13
End Dialog
Dim mydialog as UserDialog
On Error Resume Next
Dialog mydialog
If Err=102 then
MsgBox "Dialog box canceled."
End If
End Sub

Reset Statement

Action
Syntax
Example

See Also

Closes all open disk files and writes any data in the operating system buffers to disk.
Reset

This example creates a file, puts the numbers 1-10 in it, then attempts to Get past
the end of the file. The On Error statement traps the error and execution goes to
the Debugger code which uses Reset to close the file before exiting.

Sub main
' Put the numbers 1-10 into a file
Dim x as Integer
Dimy as Integer
On Error Goto Debugger
Open "C:\TEMPQ01" as #1 Len=2
For x=1to 10
Put #1,x, x
Next x
Close #1
msgtext="The contents of the file is:" & Chr(10)
Open "C:\TEMP001" as #1 Len=2
For x=1to 10
Get#1,x,y
msgtext=msgtext & Chr(10) & y
Next x
MsgBox msgtext
done:
Close #1
Kill "C:\TEMP001"
Exit Sub

Debugger:
MsgBox "Error " & Err & " occurred. Closing open file."
Reset
Resume done

End Sub

Close

RESUME STATEMENT Jky

Resume Statement

Action
Syntax A
Syntax B

Syntax C

Comments

Example

See Also

Halts an error-handling routine.
ResumeNext

Resumelabel

Resume[0]

wherelabelis the label that identifies the statement to go to after handling an error.

When theResume Nexistatement is used, control is passed to the statement
which immediately follows the statement in which the error occurred.

When theResume [O Jstatement is used, control is passed to the statement in
which the error occurred.

The location of the error handler which has caught the error determines where
execution will resume. If an error is trapped in the same procedure as the error
handler, program execution will resume with the statement that caused the error. If
an error is located in a different procedure from the error handler, program control
reverts to the statement that last called out the procedure containing the error
handler.

This example prints an error message if an error occurs during an attempt to open
a file. The Resume statement jumps back into the program code at the label,
done. From here, the program exits.

Sub main
Dim msgtext, userfile
On Error GoTo Debugger
msgtext="Enter the filename to use:"
userfile=InputBox$(msgtext)
Open userfile For Input As #1
MsgBox "File opened for input."
R (o
Close #1
done:
Exit Sub

Debugger:
msgtext="Error number " & Err & " occurred at line: " & Erl
MsgBox msgtext
Resume done

End Sub

Erl, Err Function, Err Statement, Error, Error Function, On Error, Trappable Errors

I SBL REFERENCE

Right Function

Action

Syntax

Comments

Example

See Also

Returns a string copied from the rightmost characters in a specified string.

Right[$](string, length%) wherestringis any type of expression that contains
the string to copy anigngth%is an integer for the number of characters to copy
from expression

If the length ofexpressioris less thahength% Right returns the whole string.

Right accepts any type ekpressionincluding numeric values, and will convert
the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically retumVariant of vartype 8 (string).
If the value ofexpressions NULL, a Variant of vartype 1 (Null) is returned.

This example checks for the extension .BMP in a filename entered by a user and
activates the Paintbrush application if the file is found. Note this uses the Option
Compare statement to accept either uppercase or lowercase letters for the
filename extension.

Option Compare Text
Sub main
Dim filename as String
Dim x
filename=InputBox("Enter a .BMP file and path: ")
extension=Right(filename,3)
If extension="BMP" then
x=Shell("PBRUSH.EXE",1)
Sendkeys "%FO" & filename & "{Enter}", 1
Else
MsgBox "File not found or extension not .BMP."
End If
End Sub

GetField, Instr, Left, Len, Ltrim, Mid Function, Mid Statement, Rtrim, Trim

RmDir Statement

Action

Syntax

Comments

Removes a directory.

RmDir path$wherepath$is a string expression identifying the directory to
remove.

The syntax fopath$is:
[drive:]] [\] directory[\directory]

Thedrive argument is optional. Thgirectoryargument is a directory name.

RND FUNCTION [k

Example

See Also

The directory to be removed must be empty, except for the working (.) and parent
(..) directories.

This example makes a new temporary directory in C:\ and then deletes it.

Sub main
Dim path as String
On Error Resume Next
path=CurDir(C)
If path<>"C:\" then
ChDir "C:\"
End If
MKDir "C:\TEMPO1"
If Err=75 then
MsgBox "Directory already exists"
Else
MsgBox "Directory C:\TEMPO1 created"
MsgBox "Now removing directory”
RmDir "C:\TEMPO01"
End If
End Sub

ChDir, ChDrive, CurDir, Dir, MkDir

Rnd Function

Action

Syntax

Comments

Example

Returns a single precision random number between 0 and 1.

Rnd [(number!)] wherenumberlis a numeric expression to specify how to
generate the random numbers. (<O=use the number specified, >0=use the next
number in the sequence, O=use the number most recently generated.)

If numberlis omitted,Rnd uses the next number in the sequence to generate a
random number. The same sequence of random numbers is generated whenever
Rnd is run, unless the random number generator is re-initialized by the
Randomizestatement.

This example generates a random string of characters within a range. The Rnd
function is used to set the range between lowercase “a” and “z”. The second
For...Next loop is to slow down processing in the first For...Next loop so that
Randomize can be seeded with a new value each time from the Timer function.

Sub main
Dim x as Integer
Dimy
Dim strl as String
Dim str2 as String
Dim letter as String
Dim randomvalue
Dim upper, lower
Dim msgtext
upper=Asc("z")
lower=Asc("a")
newline=Chr(10)

(I SBL REFERENCE

See Also

For x=1to 26
Randomize
randomvalue=Int(((upper - (lower+1)) * Rnd) +lower)
letter=Chr(randomvalue)
strl=strl & letter
Fory =1to 1500
Next y

Next x

msgtext=strl

MsgBox msgtext

End Sub

Exp, FixInt, Int, Log, Randomize, Sgn, Sqr

Rset Statement

Action

Syntax

Comments

Example

See Also

Right-aligns one string inside another string.

Rsetstring$= string-expressionvhere string$is the string to contain the right-
aligned characters amtring-expressiofis the string containing the characters to
put intostring$

If string$is longer tharstring-expressiorthe leftmost characters sfring$are
replaced with spaces.

If string$is shorter thastring-expressiomnly the leftmost characters sifring-
expressiorare copied.

Rsetcannot be used to assign variables of different user-defined types.

This example uses Rset to right align an amount entered by the user in a field that
is 15 characters long. It then pads the extra spaces with asterisks (*) and adds a
dollar sign ($) and decimal places (if necessary).

Sub main
Dim amount as String*15
Dim x
Dim msgtext
Dim replacement
replacement="+"
amount=InputBox("Enter an amount:")
position=InStr(amount,".")
If Right(amount,3)<>".00" then
amount=Rtrim(amount) & ".00"
End If
Rset amount="$" & Rtrim(amount)
length=15-Len(Ltrim(amount))
For x=1to length
Mid(amount,x)=replacement
Next x
Msgbox "Formatted amount: " & amount
End Sub

Lset

RTRIM FUNCTION [Eex!

RTrim Function

Action
Syntax

Comments

Example

See Also

Copies a string and removes any trailing spaces.
RTrim [$](string$) wherestring$is an expression that evaluates to a string.

RTrim accepts any type string including numeric values and will convert the
input value to a string.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted the function will typically returmVariant of vartype 8 (string).
If the value ofstringis NULL, a Variant of vartype 1 (Null) is returned.

This example asks for an amount and then right aligns it in a field that is 15
characters long. It uses Rtrim to trim any trailing spaces in the amount string, if
the number entered by the user is less than 15 digits.

Sub main
Dim amount as String*15
Dim x
Dim msgtext
Dim replacement
replacement="X"
amount=InputBox("Enter an amount:")
position=InStr(amount,".")
If position=0 then
amount=Rtrim(amount) & ".00"
End If
Rset amount="$" & Rtrim(amount)
length=15-Len(Ltrim(amount))
For x=1 to length
Mid(amount,x)=replacement
Next x
Msgbox "Formatted amount: " & amount
End Sub

GetField, Left, Len, Ltrim, Mid Function, Mid Statement, Right, Trim

Second Function

Action
Syntax

Comments

Returns the second component (0-59) of a date-time value.
Second(time) wheretimeis an expression containing a date time value.

Secondaccepts any type éimeincluding strings and will attempt to convert the
input value to a date value.

The return value is "ariant of vartype 2 (integer). If the valué tmeis NULL, a
Variant of vartype 1 (Null) is returned.

(YA SBL REFERENCE

Example

See Also

This example displays the last saved date and time for a file whose name is
entered by the user.

Sub main
Dim filename as String
Dim ftime
Dim hr, min
Dim sec
Dim msgtext as String
. msgtext="Enter a filename:"
filename=InputBox(msgtext)
If filename="" then
Exit Sub
End If
On Error Resume Next
fime=FileDate Time(filename)
If Err<>0 then
MsgBox "Error in file name. Try again."
Goto i
End If
hr=Hour(ftime)
min=Minute(ftime)
sec=Second(ftime)
Msghbox “The file's time is: " & hr &"" &min &"" &sec
End Sub

Day, Hour, Minute, Month, Now, Time Function, Time Statement, Weekday,
Year

Seek Function

Action

Syntax

Comments

Example

Returns the current file position for an open file.

Seek(filenumber%) wherefilenumber%s an integer expression identifying an
open file to query.

Filenumber%is the number assigned to the file when it was opened. See the
Open statement for more information.

For files opened ilRandom mode,Seekreturns the number of the next record to

be read or written. For all other mod&gekreturns the file offset for the next
operation. The first byte in the file is at offset 1, the second byte is at offset 2, etc.
The return value is bong.

This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file “C\TEMPO001” used by the main subprogram.

Declare Sub createfile
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline

SEEK STATEMENT [KeK]

See Also

Call createfile
Open "C:\TEMP001" for Input as #1
x=1
newline=Chr(10)
msgtext= "The test scores are: " & newline
Do Until x=Lof(1)

Line Input #1, testscore

X=x+1

y=Seek(1)

If y>Lof(1) then

x=Lof(1)
Else
Seek 1y

End If

msgtext=msgtext & newline & testscore
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"

End Sub

Sub createfile()
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "C:\TEMP001" for Output as #1
For x=10 to 100 step 10

Write #1, x
Next x
Close #1

End Sub

Get, Open, Put, Seek Statement

Seek Statement

Action

Syntax

Comments

Sets the position within an open file for the next read or write operation.

Seek[#] filenumber%, position&vherefilenumber%s an integer expression
identifying an open file to quenyosition& is a numeric expression for the starting
position of the next read or write operation (record number or byte offset).

The Seekstatement. If you write to a file after seeking beyond the end of the file,
the file's length is extended. Basic will return an error messagg8et&operation
is attempted which specifies a negative or zero position.

Filenumber%is an integer expression identifying the open filS¢éekin. See the
Open statement for more details.

For files opened ilRandom mode position&is a record number; for all other
modesposition&is a byte offsetPosition& is in the range 1 to 2,147,483,647. The
first byte or record in the file is at position 1, the second is at position 2, etc.

73 SBL REFERENCE

Example This example reads the contents of a sequential file line by line (to a carriage
return) and displays the results. The second subprogram, CREATEFILE, creates
the file “C\TEMPO001” used by the main subprogram.

Declare Sub createfile
Sub main
Dim testscore as String
Dim x
Dimy
Dim newline
Call createfile
Open "C:\TEMPQO1" for Input as #1
x=1
newline=Chr(10)
msgtext= "The test scores are: " & newline
Do Until x=Lof(1)
Line Input #1, testscore
X=x+1
y=Seek(1)
If y>Lof(1) then
x=Lof(1)
Else
Seek 1y
End If
msgtext=msgtext & newline & testscore
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub
Sub createfile()
Rem Put the numbers 10-100 into a file
Dim x as Integer
Open "C:\TEMPQO01" for Output as #1
For x=10 to 100 step 10
Write #1, x
Next x
Close #1
End Sub

See Also Get, Open, Put, Seek Function

Select Case Statement

Action Executes a series of statements, depending on the value of an expression.

Syntax SelectCasetestexpression
[Caseexpressionlist
[statement_block]]
[Caseexpressionlist
[statement_block]]

SELECT CASE STATEMENT [EH]

Comments

Example

[Case Else

[statement_block]]
End Select
where is

testexpression any expression containing a variable to test.

expressionlist one or more expressions that contain a possible value for
testexpression

statement_blockthe statements to executeabtexpressiorqualsexpressionlist

When there is a match between testexpression and one of the values in
expressionlist, the statement_block following @eeseclause is executed. When

the nextCaseclause is reached, execution control goes to the statement following
theEnd Selectstatement.

Theexpressionlist(sinay be a comma-separated list of expressions of the following
forms:

expression
expressiomo expression
Is comparison_operator expression

The type of eackxpressiormust be compatible with the typetektexpressian

Note that when th&o keyword is used to specify a range of values, the smaller
value must appear first. Tlmemparison_operatonsed with thés keyword is one
of: <, >, =, <=, >=, <>,

Eachstatement_blockan contain any number of statements on any number of
lines.

This example tests the attributes for a file and if it is hidden, changes it to a non-
hidden file.

Sub main

Dim filename as String

Dim attribs, saveattribs as Integer

Dim answer as Integer

Dim archno as Integer

Dim msgtext as String

archno=32

On Error Resume Next

msgtext="Enter name of a file:"

filename=InputBox(msgtext)

attribs=GetAttr(filename)

If Err<>0 then
MsgBox "Error in filename. Re-run Program."
Exit Sub

End If

saveattribs=attribs

If attribs>= archno then
attribs=attribs-archno

End If

(N SBL REFERENCE

See Also

Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) &" Change it?"
answer=Msgbox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed.”
Case Else
MsgBox "File was not hidden."
End Select
End Sub

If...Then...Else, On...Goto, Option Compare

SendKeys Statement

Action

Syntax

Comments

Send keystrokes to an active Windows application.

SendKeysstring$[, wait%] wherestring$is an expression containing the
characters to send an@it%o is a numeric expression to determine whether to
wait until all keys are processed before continuing program execution (-
1=wait, 0=don’t wait).

The keystrokes are represented by charactesing.
The default value fowait is O (FALSE).

To specify an ordinary character, enter this character isttimg. For example, to
send character 'a' use “a"steing. Several characters may be combined in one
string: string “abc” means send 'a’, 'b’, and 'c'.

To specify that Shift, Alt, or Control keys should be pressed simultaneously with a
character, prefix the character with

+ to specify Shift
% to specify Alt
n to specify Control.

Parentheses may be used to specify that the Shift, Alt, or Control key should be
pressed with a group of characters. For example, “%(abc)” is equivalent to
“%%a%hb%c”.

Since '+, '%', "~ '(" and ")’ characters have special mean®gndKeys they must
be enclosed in braces if they need to be sentSétidKeys For examplestring
“{%}" specifies a percent character '%'.

SENDKEYS STATEMENT il

The other characters that need to be enclosed in braces are '~' which stands for a
newline or “Enter” if used by itself and braces themselves: use {{} to send '{' and

{}} to send '}'. Brackets '[' and ']' do not have special meanin§endKeysbut

may have special meaning in other applications, therefore, they need to be enclosed
inside braces as well.

To specify that a key needs to be sent several times, enclose the character in braces
and specify the number of keys sent after a space: for example, use {X 20} to send
20 'X' characters.

To send one of the nonprintable keys use a special keyword inside braces:

Key Keyword

Backspace {BACKSPACE} or
{BKSP} or {BS}

Break {BREAK}

Caps Lock {CAPSLOCK}

Clear {CLEAR}

Delete {DELETE} or {DEL}

Down Arrow {DOWN}

End {END}

Enter {ENTER}

Esc {ESCAPE} or {ESC}

Help {HELP}

Home {HOME}

Insert {INSERT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page Up {PGUP}

Right Arrow {RIGHT}

Scroll Lock {SCROLLLOCK}

Tab {TAB}

Up Arrow {UP}

To send one of function keys F1-F15, simply enclose the name of the key inside
braces. For example, to send F5 use “{F5}".

Note that special keywords can be used in combination with +, %, and ~. For
example: %{TAB} means Alt-Tab. Also, you can send several special keys in the
same way as you would send several normal keys: {UP 25} sends 25 Up arrows.

AN SBL REFERENCE

SendKeyscan send keystrokes only to the currently active application. Therefore,
you have to use th&ppActivate statement to activate an application before
sending keys (unless it is already active).

SendKeyscannot be used to send keys to an application which was not designed to
run under Windows.

Example This example starts the Windows Terminal application and dials a phone number
entered by the user.

Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Terminal.exe",1)
SendKeys "%PD" & phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext
End Sub

See Also AppActivate, DoEvents, Shell

Set Statement

Action Assigns a variable to an OLE2 object.

Syntax SetvariableName= expressiorwherevariableNames an object variable or a
Variant variable anéxpresssioiis a function, an object member,Mothing.

Comments The following example shows the syntax for 8ed statement:

Dim OLE2As Object
SetOLE2= CreateObject('spoly.cpoly’)
OLE2.reset

+ If you omit the keywor8etwhen assigning an object variable, Basic will try to
copy the default member of one object to the default member of another. This
usually results in a runtime error:

" Incorrect code - tries to copy default member!
OLE2= GetObject(,'spoly.cpoly"

Example This example displays a list of open files in the software application, VISIO. It
uses the Set statement to assign VISIO and its document files to object
variables. To see how this example works, you need to start VISIO and open
one or more documents.

Sub main
Dim visio as Object
Dim doc as Object

Dim msgtext as String
Dim i as Integer, doccount as Integer

SETATTR STATEMENT [JEEE]

'Initialize Visio
Set visio = GetObject(,"visio.application") "find Visio
If (visio Is Nothing) then
Msgbox “Couldn't find Visio!"
Exit Sub
End If
'Get # of open Visio files
doccount = visio.documents.count 'OLE2 call to Visio
If doccount=0 then
msgtext="No open Visio documents."
Else
msgtext="The open files are: " & Chr$(13)
For i =1 to doccount
Set doc = visio.documents(i) ' access Visio's document method
msgtext=msgtext & Chr$(13)& doc.name
Next i
End If
MsgBox msgtext
End Sub

See Also CreateObiject, Is, Me, New, Nothing, Object Class, Typeof

SetAttr Statement

Action Sets the attributes for a file.

Syntax SetAttr pathname$, attributesdherepathname$s a string expression
containing the filename to modify aattributes% is an integer containing the
new attributes for the file.

Comments Wildcards are not allowed pathname$If the file is open, you can modify its
attributes, but only if it is opened f®eadaccess. Here is a description of
attributes that can be modified:

Value Meaning

0 Normal file

1 Read-only file

2 Hidden file

4 System file

32 Archive - file has changed

since last backup

Example This example tests the attributes for a file and if it is hidden, changes it to a
normal (not hidden) file.

Sub main
Dim filename as String
Dim attribs, saveattribs as Integer
Dim answer as Integer

p{VB SBL REFERENCE

See Also

Dim archno as Integer
Dim msgtext as String
archno=32
On Error Resume Next
msgtext="Enter name of a file:"
filename=InputBox(msgtext)
attribs=GetAttr(filename)
If Err<>0 then
MsgBox "Error in filename. Re-run Program.”
Exit Sub
End If
saveattribs=attribs
If attribs>= archno then
attribs=attribs-archno
End If
Select Case attribs
Case 2,3,6,7
msgtext=" File: " &filename & " is hidden." & Chr(10)
msgtext=msgtext & Chr(10) & " Change it?"
answer=Msghox(msgtext,308)
If answer=6 then
SetAttr filename, saveattribs-2
Msgbox "File is no longer hidden."
Exit Sub
End If
MsgBox "Hidden file not changed.”
Case Else
MsgBox "File was not hidden."
End Select
End Sub

FileAttr, GetAttr

SetField Function [SBL Extension]**

Action

Syntax

Comments

Replaces a field within a string and returns the modified string.
SetField $](string$, field_numbe#s, field$, separator chars$)

where is

string$ A string consisting of a series of fields, separated by
separator_char$

field_number% An integer for the field to replace withgtring$

field$ An expression containing the new value for the field.
separator_cha A string containing the character(s) used to separate the fields in
string®

separator_char$nay contain multiple separator characters, although the first
one will be used as the separator character.

SGN FUNCTION [luis

Thefield_number¥starts with 1. Ifield_number%s greater than the number of
fields in the string, the returned string will be extended with separator characters to
produce a string with the proper number of fields.

It is legal for the neviield$ value to be a different size than the old value.
**SBL offers a number of extensions that are not included in Visual Basic.

Example This example extracts the last name from a full name entered by the user.

Sub main
Dim username as String
Dim position as Integer
username=InputBox("Enter your full name:")
Do
position=InStr(username," ")
If position=0 then
Exit Do
End If
username=SetField(username,1,"",")
username=Ltrim(username)

Loop
MsgBox "Your last name is: " & username
End Sub
See Also GetField
Sgn Function
Action Returns a value indicating the sign of a number.
Syntax Sgn(number) wherenumberis an expression for the number to use.

Comments The value that th&gnfunction returns depends on the sigmofmber.
Fornumbers> 0,Sgn (numbej returns 1.
Fornumbers= 0,Sgn (humbe) returns 0.

Fornumbers< 0,Sgn (numbe) returns -1.

Example This example tests the value of the variable profit and displays 0 for profit if it is
a negative number. The subroutine uses Sgn to determine whether profit is
positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then

iVl SBL REFERENCE

See Also

MsgBox "Yeah! We turned a profit!"
Elself Sgn(profit)=0 then
MsgBox "Okay. We broke even."
Else
MsgBox "Uh, oh. We lost money."
End If
End Sub

Exp, FixiInt, Int, Log, Rnd, Sqr

Shell Function

Action
Syntax

Comments

Example

See Also

Starts a Windows application and returns its task ID.

Shell(pathname$jwindowstyle%) wherepathname$s the name of the program
to execute andindowstyle%s an integer value for the style of the program's
window (1-7).

Shellruns an executable prograRathname$nay be the name of any valid
.COM, .EXE., .BAT, or .PIF file. Arguments or command line switches may be
included. Ifpathname$s not a valid executable file name, oSliell cannot start
the program, an error message Occurs.

Windowstyle%s one of the following values:

Value Window Style

1 Normal window with focus

2 Minimized with focus

3 Maximized with focus

4 Normal window without focus
7 Minimized without focus

If windowstyle%s not specified, the default efindowstyle%-= 1 is assumed
(normal window with focus).

Shellreturns the task ID for the program, a unique number that identifies the
running program.

This example activates the Terminal application and dials a number entered by

the user.
Sub main
Dim phonenumber, msgtext
Dim x
phonenumber=InputBox("Type telephone number to call:")
x=Shell("Terminal.exe",1)

SendKeys "%PD" & phonenumber & "{Enter}",1
msgtext="Dialing..."
MsgBox msgtext

End Sub

AppActivate, Command, SendKeys

SIN FUNCTION [AE]

Sin Function

Action
Syntax

Comments

Example

See Also

Returns the sine of an angle specified in radians.
Sin(number) wherenumberis an expression containing the angle in radians.

The return value will be between -1 and 1. The return value is single-precision if

the angle is an integer, currency or single-precision value, double precision for a
long, Variant or double-precision value.The angle is specified in radians, and can
be either positive or negative.

To convert degrees to radians, multiply by (P1/180). The value of Pl is 3.14159.

This example finds the height of the building, given the length of a roof and the
roof pitch.

Sub main
Dim height, rooflength
Dim pitch
Dim msgtext
Const PI=3.14159
Const conversion= P1/180
pitch=InputBox("Enter the roof pitch in degrees:")
pitch=pitch*conversion
rooflength=InputBox("Enter the length of the roof in feet:")
height=Sin(pitch)*rooflength
msgtext="The height of the building is "
msgtext=msgtext & Format(height, "##.##") & " feet."
MsgBox msgtext

End Sub

Atn, Cos, Tan, Derived Trigonometric Functions

Space Function

Action

Syntax

Comments

Returns a string of spaces.

Spacé¢$](number) wherenumberis a numeric expression for the number of
spaces to return.

numbercan be any numeric data type, but will be rounded to an integmber
must be between 0 and 32,767.

The dollar sign, “$”, in the function name is optional. If specified the return type is
String. If omitted, the function will returaVariant of vartype 8 (String).

(/38 SBL REFERENCE

Example

See Also

Spc Function

This example prints the octal numbers from 1 to 15 as a two-column list and uses
Space to separate the columns.

Sub main

Dim x,y
Dim msgtext
Dim nofspaces
msgtext="Octal numbers from 1 to 15:" & Chr(10)
Forx=1to 15

nofspaces=10

y=0Oct(x)

If Len(x)=2 then

nofspaces=nofspaces-2

End If

msgtext=msgtext & Chr(10) & x & Space(nofspaces) & y
Next x
MsgBox msgtext

End Sub

Spc, String

Action
Syntax

Comments

Example

Prints a number of spaces.

Spc (n) wherenis an integer for the number of spaces to output.

The Spcfunction can be used only insiBeint statement.

When thePrint statement is used, tisgcfunction will use the following rules for
determining the number of spaces to output:

1
2
3

If nis less than the total line widt8pcoutputsn spaces.
If nis greater than the total line width, Spc outputs n Modwidth spaces.

If the difference between the current print position and the output line width
(call this difference x) is less than n or n Modwidth, then Spc skips to the next
line and outputs - x spaces.

To set the width of a print line, use tadth statement.

This example puts five spaces and the string “ABCD” to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main

Dim strl as String

Dim x as String*10

str1="ABCD"

Open "C:\TEMP001" For Output As #1
Width #1, 10

Print #1, Spc(15); strl

Close #1

Open "C:\TEMPO001" as #1 Len=12
Get#1, 1x

SQR FUNCTION |Ati]

See Also

Msghbox "The contents of the file is: " & x
Close #1
Kill "C:\TEMP0Q01"

End Sub

Print, Space, Tab, Width

Sqgr Function

Action
Syntax

Comments

Example

See Also

Returns the square root of a number.
Sqr(number) wherenumberis an expression containing the number to use.

The return value is single-precision for an integer, currency or single-precision
numeric expression, double precision for a long, Variant or double-precision
numeric expression.

This example calculates the square root of 2 as a double-precision floating point
value and displays it in scientific notation.

Sub main
Dim value as Double
Dim msgtext
value=CDbI(Sqr(2))
msgtext= "The square root of 2 is: " & Format(Value,"Scientific")
MsgBox msgtext
End Sub

Exp, FixiInt, Int, Log, Rnd, Sgn

Static Statement

Action

Syntax

Comments

Example

Declares variables and allocate storage space.

Static variableNamdAs typq [,variableNamdAs typd] ... wherevariableName
is the name of the variable to declare tyekis the data type of the variable.

Variables declared with thHgtatic statement retain their value as long as the

program is running. The syntax $fatic is exactly the same as the syntax of the
Dim statement.

All variables of a procedure can be made statiasing theStatic keyword in a
definition of that procedure Sé&einction or Sub for more information.

This example puts account numbers to a file using the record variable GRECORD
and then prints them again.

Type acctrecord
acctno as Integer
End Type

p\CI SBL REFERENCE

See Also

Sub main
Static grecord as acctrecord
Dim x
Dim total
x=1
grecord.acctno=1
On Error Resume Next
Open "C:\TEMP001" For Output as #1
Do While grecord.acctno<>0
grecord.acctno=InputBox("Enter 0 or new account #' & x & ":")
If Err<>0 then
MsgBox "Error occurred. Try again.”
Err=0
Gotoi
End If
If grecord.acctno<>0 then
Print #1, grecord.acctno
X=x+1
End If
Loop
Close #1
total=x-1
msgtext="The account numbers are: " & Chr(10)
Open "C:\TEMPO001" For Input as #1
For x=1 to total
Input #1, grecord.acctno
msgtext=msgtext & Chr(10) & grecord.acctno
Next x
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

Dim, Function...End Function, Global, Option Base, ReDim, Sub...End Sub

StaticComboBox Statement

Action
Syntax A

Syntax B

Creates a combination of a list of choices and a text box.
StaticComboBoxx, y, dx, dy, text$, .field

StaticComboBoxx, y, dx, dy, stringarray$(), .field

where is

X,y the upper left corner coordinates of the list box, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the combo box in which the user enters or
selects text.

text$ a string containing the selections for the combo box.

stringarray$ an array of dynamic strings for the selections in the combo box.

field the name of the dialog-record field that will hold the text string

entered in the text box or chosen from the list box.

STATICCOMBOBOX STATEMENT il

Comments The StaticComboBoxstatement is equivalent to t@@mboBoxor
DropComboBox statement, but the list box 8faticComboBoxalways stays
visible. All dialog functions and statements that apply tadbmboBoxapply to
the StaticComboBoxas well.

Thex argument is measured in 1/4 system-font character-width unitg. The
argument is measured in 1/8 system-font character-width unitsBégge Dialog
for more information.)

Thetext$argument must be defined, usinBian Statement, before ttigegin
Dialog statement is executed. The arguments ineki$string are entered as
shown in the following example:

dimname= "listchoiceé+Chr$(9)+'istchoice'+Chr$(9)+'listchoice'...

The string in the text box will be recorded in the field designated byidic:
argument when the OK button (or any pushbutton other than Cancel) is pushed. The
field argument is also used by the dialog statements that act on this control.

Use theStaticComboBoxstatement only betweerBegin Dialogand arEnd
Dialog statement.

Example This example defines a dialog box with a static combo box labeled “Installed
Drivers” and the OK and Cancel buttons.

Sub main

Dim cchoices as String

cchoices="MIDI Mapper"+Chr$(9)+"Timer"

Begin Dialog UserDialog 182, 116, "SBL Dialog Box"
StaticComboBox 7, 20, 87, 49, cchoices, .StaticComboBox1
Text 6, 3, 83, 10, "Installed Drivers", .Textl
OkButton 118, 12, 54, 14
CancelButton 118, 34, 54, 14

End Dialog

Dim mydialogbox As UserDialog

Dialog mydialogbox

If Err=102 then
MsgBox "You pressed Cancel."

Else
MsgBox "You pressed OK."
End If
End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text, TextBox

pCB SBL REFERENCE

Stop Statement

Action
Syntax

Comments

Example

Halts program execution.
Stop

Stop statements can be placed anywhere in a program to suspend its execution.
Although the Stop statement halts program execution, it does not close files or
clear variables.

This example stops program execution at the user’s request.

Sub main
Dim strl
str1=InputBox("Stop program execution? (Y/N):")
If str1="Y" or str1="y" then
Stop
End If
MsgBox "Program complete.”
End Sub

Str Function

Action
Syntax

Comments

Example

See Also

Returns a string representation of a number.
Str[$](number) wherenumberis the number to represent as a string.

The precision in the returned string is single-precision for an integer or single-
precision numeric expression, double precision for a long or double-precision
numeric expression, and currency precision for currency. Variants return the
precision of their underlying vartype.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function will returaVariant of vartype 8 (String).

This example prompts for two numbers, adds them, then shows them as a
concatenated string.

Sub main
Dim x as Integer
DimYy as Integer
Dim strl as String
Dim valuel as Integer
x=InputBox("Enter a value for x: ")
y=InputBox("Enter a value for y: ")
MsgBox "The sum of these numbers is: " & x+y
str1=Str(x) & Str(y)
MsgBox "The concatenated string for these numbers is: " & strl
End Sub

Format, Val

STRCOMP FUNCTION A

StrComp Function

Action Compares two strings and returns an integer specifying the result of the comparison.

Syntax StrComp(string1$, string2$ [, comparés])

where is

stringl$ any expression containing the first string to compare.

string2$ the second string to compare.

compare% an integer for the method of comparison (O=case-sensitive, 1=case-
insensitive).

Comments StrComp returns one of the following values:

Value Meaning

-1 string1$ < string2$

0 stringl$ = string2$

>1 string1$ > string2$

Null string1l$ =Null or string2$ = Null

If compare%s 0, a case sensitive comparison based on the ANSI character set
sequence is performed.dbmpare%is 1, a case insensitive comparison is done
based upon the relative order of characters as determined by the country code
setting for your system. If omitted, the module level default, as specified with
Option Compare is used.

Thestringlandstring2 arguments are both passed as Variants. Therefore, any type
of expression is supported. Numbers will be automatically converted to strings.

Example This example compares a user-entered string to the string “Smith”.

Option Compare Text
Sub main
Dim lastname as String
Dim smith as String
Dim x as Integer
smith="Smith"
lastname=InputBox("Type your last name")
x=StrComp(lastname,smith,1)
If x=0 then
MsgBox "You typed 'Smith’ or ‘smith"."
Else
MsgBox "You typed: " & lastname & " not 'Smith"."
End If
End Sub

See Also Instr, Option Compare

pA(VI SBL REFERENCE

String FunctionString

Action Returns a string consisting of a repeated character.
Syntax A String[$](number Charactefo)

Syntax B String[$] (number string-expressiof)

where is
number the length of the string to be returned.
Character% a numeric expression that contains an integer for the decimal

ANSI code of the character to use.
string-expression$ a string argument, the first character of which becomes the
repeated character.

Comments numbermust be between 0 and 32,767.
Character%must evaluate to an integer between 0 and 255.

The dollar sign, “$”, in the function name is optional. If specified the return type is
string. If omitted, the function returnsvariant of vartype 8 (String).

Example This example places asterisks (*) in front of a string that is printed as a
payment amount.

Sub main
Dim strl as String
Dim size as Integer
i: strl=InputBox("Enter an amount up to 999,999.99: ")
If Instr(str1,".")=0 then
strl=str1+".00"
End If
If Len(str1)>10 then
MsgBox "Amount too large. Try again."
Goto i
End If
size=10-Len(strl)
'Print amount in a space on a check allotted for 10 characters
str1=String(size,Asc("*")) & strl
Msgbox "The amount is: $" & strl
End Sub

See Also Space, Str

SUB ... END SUB STATEMENT AN}

Sub ... End Sub Statement

Action

Syntax

Comments

Defines a subprogram procedure.

[Static] [Private] Subname] ([Optional] parameterf Astypq, ...)]
End Sub

where is

name the name of the subprogram.

parameter a comma-separated list of parameter names.
type a data type foparameter

A call to a subprogram stands alone as a separate statement. (Sak the
statement). Recursion is supported.

The data type of a parameter may be specified by using a type character or by using
theAs clause. Record parameters are declared by usiAg elause and type

which has previously been defined using Tlgee statement. Array parameters are
indicated by using empty parentheses aftepdrameter The array dimensions are

not specified in th&ub statement. All references to an array within the body of the
subprogram must have a consistent number of dimensions.

If a parameteris declared a®ptional, its value may be omitted when the function
is called. Only Variant parameters may be declared as optional, and all optional
parameters must appear after all required parameters Suthetatement.

The procedure returns to the caller whenBhd Sub statement is reached or when
anExit Sub statement is executed.

The Static keyword specifies that all the variables declared within the subprogram
will retain their values as long as the program is running, regardless of the way the
variables are declared.

ThePrivate keyword specifies that the procedures will not be accessible to
functions and subprograms from other modules. Only procedures defined in the
same module will have access tBravate subprogram.

Basic procedures use the call by reference convention. This means that if a
procedure assigns a value to a parameter, it will modify the variable passed by the
caller.

The MAIN subprogram has a special meaning. In many implementations of Basic,
MAIN will be called when the module is “run”. The MAIN subprogram is not
allowed to take arguments.

UseFunction to define a procedure which has a return value.

PAVAN SBL REFERENCE

Example This example is a subroutine that uses the Sub...End Sub function.

Sub main
MsgBox "Hello, World."
End Sub

See Also Call, Dim, Function...End Function, Global, Option Explicit, Static

Tab Function

Action Moves the current print position to the column specified.
Syntax Tab (n) wherenis the new print position to use.
Comments TheTab function can be used only insi@eint statement. The leftmost print

position is position number 1.

When thePrint statement is used, tii@b function will use the following rules for
determining the next print position:

1 If nis less than the total line width, the new print positiam is
2 If nis greater than the total line width, the new print positionN®dwidth .

3 If the current print position is greater thaor n Mod width, Tab skips to the
next line and sets the print positionntor n Mod width.

To set the width of a print line, use thédth statement.

Example This example prints the octal values for the numbers from 1 to 25. It uses Tab to
put five character spaces between the values.

Sub main
Dim x as Integer
Dimy
For x=11t0 25
y=0ct$(x)
Print x Tab(10) y
Next x
End Sub

See Also Print, Space, Spc, Width

Tan Function

Action Returns the tangent of an angle in radians.

Syntax Tan(number) wherenumberis an expression containing the angle in radians.

TEXT STATEMENT [AK]

Comments numberis specified in radians, and can be either positive or negative.

The return value is single-precision if the angle is an integer, currency or single-
precision value, double precision for a long, Variant or double-precision value.

To convert degrees to radians, multiply by P1/180. The value of Pl is 3.14159.

Example This example finds the height of the exterior wall of a building, given its roof
pitch and the length of the building.

Sub main
Dim bldglen, wallht
Dim pitch
Dim msgtext
Const PI=3.14159
Const conversion= P1/180
On Error Resume Next
pitch=InputBox("Enter the roof pitch in degrees:")
pitch=pitch*conversion
bldglen=InputBox("Enter the length of the building in feet:")
wallht=Tan(pitch)*(bldglen/2)
msgtext="The height of the building is: " & Format(wallht, "##.00")
MsgBox msgtext
End Sub

See Also Atn, Cos, Sin, Derived Trigonometric Functions

Text Statement

Action Places line(s) of text in a dialog box.

Syntax Textx, y, dx, dy, tes[, .id]

where is

X,y the upper left corner coordinates of the text area, relative to the upper
left corner of the dialog box.

dx,dy the width and height of the text area.

text$ a string containing the text to appear in the text area defingg.by
id an optional identifier used by the dialog statements that act on this
control.
Comments If the width oftext$is greater thadx, the spillover characters wrap to the next

line. This will continue as long as the height of the text area establighiyds
not exceeded. Excess characters are truncated.

By preceding an underlined charactetert$with an ampersand (&), you enable a

user to press the underlined character on the keyboard and position the cursor in the
combo or text box defined in the statement immediately followind éxé

statement.

Use theText statement only betweerBzgin Dialogand arEnd Dialog statement.

AV SBL REFERENCE

Example

See Also

This example defines a dialog box with a combination list and text box and three
buttons.

Sub main

Dim ComboBox1() as String

ReDim ComboBox1(0)

ComboBox1(0)=Dir("C:*.*")

Begin Dialog UserDialog 166, 142, "SBL Dialog Box"
Text 9, 3, 69, 13, "Filename:", .Textl
DropComboBox 9, 14, 81, 119, ComboBox1(), .ComboBox1
OkButton 101, 6, 54, 14
CancelButton 101, 26, 54, 14
PushButton 101, 52, 54, 14, "Help", .Pushl

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox,
OKButton, OptionButtton, OptionGroup, Picture, StaticComboBox, TextBox

TextBox Statement

Action

Syntax

Comments

Creates a text box in a dialog box.

TextBox [NoEcho]x, y, dx, dy, .field

where
X,y

dx,dy
field

is
the upper left corner coordinates of the text box, relative to the
upper left corner of the dialog box.

the width and height of the text box area.

the name of the dialog record field to hold the text string.

A dyvalue of 12 will usually accommodate text in the system font.

When the user selects the OK button, or any pushbutton other than cancel, the text

string entered in the text box will be recordedfigld.

TheNoEchokeyword is often used for passwords; it displays all characters entered

as asterisks (*).

Use theTextBox statement only betweerBzgin Dialogand arEnd Dialog
statement.

TIME FUNCTION AR

Example This example creates a dialog box with a group box, and two buttons.

Sub main

Begin Dialog UserDialog 194, 76, "SBL Dialog Box"
GroupBox 9, 8, 97, 57, "File Range"
OptionGroup .OptionGroup2

OptionButton 19, 16, 46, 12, "All pages", .OptionButton3
OptionButton 19, 32, 67, 8, "Range of pages", .OptionButton4

Text 25, 43, 20, 10, "From:", .Text6
Text 63,43, 14,9, "To:", .Text7
TextBox 79, 43, 13, 12, .TextBox4
TextBox 47, 43, 12, 11, .TextBox5
OkButton 135, 6, 54, 14
CancelButton 135, 26, 54, 14

End Dialog

Dim mydialog as UserDialog

On Error Resume Next

Dialog mydialog

If Err=102 then
MsgBox "Dialog box canceled."

End If

End Sub

See Also Begin Dialog...End Dialog, Button, ButtonGroup, CancelButton, Caption,
CheckBox, ComboBox, Dialog, DropComboBox, GroupBox, ListBox, OKButton,
OptionButtton, OptionGroup, Picture, StaticComboBox, Text

Time Function

Action Returns a string representing the current time.
Syntax Time[$]

Comments The Time function returns an eight character string. The format of the string is
“hh:mm:s8 wherehh s the hourmmis the minutes anskis the seconds. The
hour is specified in military style, and ranges from 0 to 23.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function will returaVariant of vartype 8 (String).

Example This example writes data to a file if it hasn't been saved within the last 2 minutes.

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dimx, |
tempfile="C:\TEMP001"
Open tempfile For Output As #1
filetime=FileDateTime(tempfile)
x=1
=1
acctno(x)=0

VAN SBL REFERENCE

Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
Forl=1to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=Ito x
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="Contents of C:A\TEMP0O01 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1

Loop

MsgBox msgtext

Close #1

Kill "C:\TEMP001"
End Sub

See Also Date Function, Date Statement, Time Statement, Timer, TimeSerial, TimeValue

Time Statement

Action Sets the system time.
Syntax Time[$] = expressiorwhereexpressiors an expression that evaluates to a valid
time.

Comments WhenTime (with the dollar sign “$”) is used, thexpressionmust evaluate to a
string of one of the following forms:

hh Set the time tdhh hours 0 minutes and 0 seconds
hh:mm Set the time tthh hoursmmminutes and O seconds.
hh:mm:ss Set the time tdhh hoursmmminutes angsseconds

Time uses a 24-hour clock. Thus, 6:00 P.M. must be entered as 18:00:00.

If the dollar sign '$' is omitteaxpressiortan be a string containing a valid date, a
Variant of vartype 7 (date) or 8 (string).

TIMER FUNCTION vl

If expressions not already a Variant of vartype 7 (dafEne attempts to convert

it to a valid time. It recognizes time separator characters defined in the International
section of the Windows Control Pan&lme (without the$) accepts both 12 and 24
hour clocks.

Example This example changes the time on the system clock.

Sub main
Dim newtime as String
Dim answer as String
On Error Resume Next
: newtime=InputBox("What time is it?")
answer=InputBox("ls this AM or PM?")
If answer="PM" or answer="pm" then
newtime=newtime &"PM"
End If
Time=newtime
If Err<>0 then
MsgBox "Invalid time. Try again.”
Err=0
Gotoi
End If
End Sub

See Also Date Function, Date Statement, Time Function, TimeSerial, TimeValue

Timer Function

Action Returns the number of seconds that have elapsed since midnight.

Syntax Timer

Comments The Timer function can be used in conjunction with the Randomize statement to
seed the random number generator.

Example This example uses Timer Function to find a Megabucks number.

Sub main
Dim msgtext
Dim value(9)
Dim nextvalue
Dim x
Dimy
msgtext="Your Megabucks numbers are: "
Forx=1t0 8
Do
value(x)=Timer
value(x)=value(x)*100
value(x)=Str(value(x))
value(x)=Val(Right(value(x),2))
Loop Until value(x)>1 and value(x)<36
For y=1to 1500
Nexty
Next X

AR SBL REFERENCE

Fory=1to8
Forx=1to8
If y<>x then
If value(y)=value(x) then
value(x)=value(x)+1
End If
End If
Next X
Nexty
Forx=1to8
msgtext=msgtext & value(x) & " "
Next x
MsgBox msgtext
End Sub

See Also Randomize

TimeSerial Function

Action Returns a time as a Variant of type 7 (date/time) for a specific hour, minute, and
second.
Syntax TimeSerial(hour% minute% second%y wherehour%is a numeric expression

for an hour (0-23)minute% is anumeric expression for a minute (0-59) and
second%is a numeric expression for a second (0-59).

Comments You also can specify relative times for each argument by using a numeric
expression representing the number of hours, minutes, or seconds before or after a
certain time.

Example This example displays the current time using Time Serial.

Sub main
Dimy
Dim msgtext
Dim nowhr
Dim nowmin
Dim nowsec
nowhr=Hour(Now)
nowmin=Minute(Now)
nowsec=Second(Now)
y=TimeSerial(nowhr,nowmin,nowsec)
msgtext="The time is: " & y
MsgBox msgtext

End Sub

See Also DateSerial, Date Value, Hour, Minute, Now, Second, TimeValue

TIMEVALUE FUNCTION AR

TimeValue Function

Action
Syntax

Comments

Example

Returns a time value for a specified string.
TimeValue(time$) wheretime$is a string representing a valid date time value.

The TimeValue function returns &ariant of vartype 7 (date/time) that
represents a time between 0:00:00 and 23:59:59, or 12:00:00 A.M. and 11:59:59
P.M., inclusive.

This example writes a variable to a disk file based on a comparison of its last
saved time and the current time. Note that all the variables used for the TimeValue
function are dimensioned as Double, so that calculations based on their values will
work properly.

Sub main
Dim tempfile
Dim ftime
Dim filetime as Double
Dim curtime as Double
Dim minutes as Double
Dim acctno(100) as Integer
Dim x, |
tempfile="C:\TEMP001"
Open tempfile For Output As 1
ftime=FileDateTime(tempfile)
filetime=TimeValue(ftime)
minutes= TimeValue("00:02:00")
x=1
I=1
acctno(x)=0
Do
curtime= TimeValue(Time)
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
For I=to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself filetime+minutes<=curtime then
For I=Ito x
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="You entered:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext

yr(\ll SBL REFERENCE

See Also

Close #1
Kill "C:\TEMP0O01"
End Sub

DateSerial, Date Value, Hour, Minute, Now, Second, TimeSerial

Trim Function

Action
Syntax

Comments

Example

See Also

Returns a copy of a string after removing all leading and trailing spaces.
Trim [$](string) wherestring is an expression containing the string to trim.

Trim accepts expressions of type Strilgm accepts any type atring
including numeric values and will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
String. If omitted, the function typically returas/ariant of vartype 8 (String). If
the value oktringis NULL, a Variant of vartype 1 (Null) is returned.

This example removes leading and trailing spaces from a string entered by the
user.

Sub main
Dim userstr as String
userstr=InputBox("Enter a string with leading/trailing spaces")
MsgBox "The string is: " & Trim(userstr) & " with nothing after it."
End Sub

GetField, Left, Len, Ltrim, Mid Function, Mid Statement, Right, RTrim

Type Statement

Action

Syntax

Declares a user-defined type.

Type userType
field1l As typel
field2 As type2
End Type
where is

userType a string expression for the name of the user-defined type.

field1, field2 the name of a field in the user-defined type.

typel, type2 a data type: Integer, Long, Single, Double, Currency, String,
String*length Variant, or another user-defined type.

TYPEOF FUNCTION [w¥al

Comments The user-defined type declared Dype can then be used in tBeém statement to
declare a record variable. A user-defined type is sometimes referred tecasca
typeor astructure type

field may not be an array. However, arrays of records are allowed.

The Type statement is not valid inside of a procedure definition. To access the
fields of a record, use notation of the form:
recordName.fieldName
To access the fields of an array of records, use notation of the form:
arrayName(index).fieldName

Example This example shows a Type and Dim statement for a record. You must define a
record type before you can declare a record variable. The subroutine then
references a field within the record.

Type Testrecord
Custno As Integer
Custname As String
End Type
Sub main
Dim myrecord As Testrecord
i myrecord.custname=InputBox("Enter a customer name:")
Exit Sub
End If
answer=InputBox("ls the name: " & myrecord.custname &" correct? (Y/N)")

MsgBox "Thank you."
Else
MsgBox "Try again."
Gotoi
End If
End Sub

See Also Deftypg Dim

Typeof Function

Action Returns a value indicating whether an object is of a given class (-1=TRUE,
0=FALSE).
Syntax If Typeof objectVariablels classNamehen. . .whereobjectVariables the object

to test anatlassNamas the class to compare the object to.

Comments Typeof may only be used in dh statement and may not be combined with other
boolean operators. That Bypeof may only be used exactly as shown in the
syntax above.

/78l SBL REFERENCE

To test if an object doe®t belong to a class, use the following code structure:

If Typeof objectVariablels classNamé&hen
Else

Rem Perform some action.
End If

Example This example .
Sub main

-TBD--
End Sub

See Also CreateObject, GetObject, Is, Me, New, Nothing, Object Class

UBound Function

Action Returns the upper bound of the subscript range for the specified array.

Syntax UBound(arrayname], dimensiori]) wherearraynameis the name of the array to
use andlimensionis the dimension to use.

Comments The dimensions of an array are numbered starting with 1. Hithensions not
specified, 1 is used as a default.

LBound can be used witBound to determine the length of an array.

Example This example resizes an array if the user enters more data than can fit in the
array. It uses LBound and UBound to determine the existing size of the array and
ReDim to resize it. Option Base sets the default lower bound of the array to 1.

Option Base 1
Sub main
Dim arrayvar() as Integer
Dim count as Integer
Dim answer as String
Dim x, y as Integer
Dim total
total=0
x=1
count=InputBox("How many test scores do you have?")
ReDim arrayvar(count)
start:
Do until x=count+1
arrayvar(x)=InputBox("Enter test score #" &x & ":")
X=x+1
Loop
answer=InputBox$("Do you have more scores? (Y/N)")
If answer="Y" or answer="y" then
count=InputBox("How many more do you have?")
If count<>0 then
count=count+(x-1)
ReDim Preserve arrayvar(count)
Goto start

UCASE FUNCTION [was

End If

End If

x=LBound(arrayvar,1)

count=UBound(arrayvar,1)

For y=x to count

total=total+arrayvar(y)

Nexty

MsgBox "The average of the " & count & " scores is: " & Int(total/count)
End Sub

See Also Dim, Global, Lbound, Option Base, ReDim, Static

UCase Function

Action Returns a copy of a string after converting all lowercase letters to uppercase.

Syntax UCasd$](string) wherestring is an expression that evalutes to a string.
Comments The translation is based on the country specified in the Windows Control Panel.

UCaseaccepts expressions of type stribgzaseaccepts any type of argument and
will convert the input value to a string.

The dollar sign, “$”, in the function name is optional. If specified, the return type is
string. If omitted, the function typically returnd/ariant of vartype 8 (String). If
the value oftring is Null, a Variant of vartype 1 (Null) is returned.

Example This example converts a filename entered by a user to all uppercase letters.

Option Base 1
Sub main
Dim filename as String
filename=InputBox("Enter a filename: ")
filename=UCase(filename)
MsgBox "The filename in uppercase is: " & filename
End Sub

See Also Asc, LCase

Val Function
Action Returns the numeric value of the first number found in the specified string.
Syntax Val(string$) wherestring$is a string expression containing a number.

Comments Spaces in the source string are ignored. If no number is fdahdeturns 0.

yZ 38 SBL REFERENCE

Example This example tests the value of the variable profit and displays O for profit if it is
a negative number. The subroutine uses Sgn to determine whether profit is
positive, negative or zero.

Sub main
Dim profit as Single
Dim expenses
Dim sales
expenses=InputBox("Enter total expenses: ")
sales=InputBox("Enter total sales: ")
profit=Val(sales)-Val(expenses)
If Sgn(profit)=1 then
MsgBox "Yeah! We turned a profit!"
Elself Sgn(profit)=0 then
MsgBox "Okay. We broke even."
Else
MsgBox "Uh, oh. We lost money."
End If
End Sub

See Also Ccur, Cdbl, Cint, CIng, Csng, Cstr, Cvar, CVDate, Format, Str

VarType Function

Action Returns the Variant type of the specified Variant variable (0-9).
Syntax VarType(varname) wherevarnameis theVariant variable to use.

Comments The value returned byarType is one of the following:

Ordinal Representation
(Empty)
Null
Integer
Long
Single
Double
Currency
Date
String
Object

o

© 00 NO Ol A WDN P

VARTYPE FUNCTION oA

Example This example returns the type of a variant.

Sub main
Dim x
Dim myarray(8)
Dim retval
Dim retstr
myarray(1
myarray(2
myarray(3
myarray(4

myarray(

(
(

=Null
=0
=39000
=CSng(10°20)
=10"300
myarray(6)=CCur(10.25)
myarray(7)=
myarray(8)=
Forx=0to 8
retval=Vartype(myarray(x))
Select Case retval
Case 0
retstr=" (Empty)"
Case 1
retstr=" (Null)"
Case 2
retstr=" (Integer)"
Case 3
retstr=" (Long)"
Case 4
retstr=" (Single)"
Case 5
retstr=" (Double)"
Case 6
retstr=" (Currency)"
Case 7
retstr=" (Date)"
Case 8
retstr=" (String)"
End Select

Now
"Five"

)
)
)
)
5)
6)
7)
8)

If retval=1 then
myarray(x)="[null]"
Elself retval=0 then
myarray(x)="[empty]"
End If
MsgBox "The variant type for " &myarray(x) & " is: " &retval &retstr
Next x
End Sub

See Also IsDate, ISEmpty, IsNull, IsNumeric

7l SBL REFERENCE

Weekday Function

Action
Syntax

Comments

Example

See Also

Returns the day of the week for the specified date-time value.
Weekday(date) wheredateis an expression containing a date time value.

TheWeekday function returns an integer between 1 and 7, inclusive (1=Sunday,
7=Saturday).

Weekday accepts any expression, including strings, and attempts to convert the
input value to a date value.

The return value is "ariant of vartype 2 (Integer). If the valué dateis NULL, a
Variant of vartype 1 (Null) is returned.

This example finds the day of the week on which New Year's Day will fall in the
year 2000.

Sub main
Dim newyearsday
Dim daynumber
Dim msgtext
Dim newday as Variant
Const newyear=2000
Const newmonth=1
Let newday=1
newyearsday=DateSerial(newyear,newmonth,newday)
daynumber=Weekday(newyearsday)
msgtext="New Year's day 2000 falls on a " & Format(daynumber, "dddd")
MsgBox msgtext
End Sub

Date Function, Date Statement, Day, Hour, Minute, Month, Now, Second, Year

While ... Wend

Action

Syntax

Comments

Controls a repetitive action.

While condition
statementblock
Wend
wherecondition is an expression that evaluates to True (non-zero) or False (zero)
andstatementblocls a series of statements to exectitmnditionis True.

The statementblocktatements are untibnditionbecomes 0 (False).

TheWhile statement is included in SBL for compatibility with older versions of
Basic. TheDo statement is a more general and powerful flow control statement.

WHILE ... WEND [voa4

Example Theuses While...Wend to loop through the CATEMPO0O? files. These files are
created by the subroutine CREATEFILES.

Declare Sub createfiles
Sub main
Dim custfile as String
Dim aline as String
Dim pattern as String
Dim count as Integer
Call createfiles
Chdir "C:\"
custfile=Dir$("TEMP00?")
pattern="*"+ "Overdue" + "*"
While custfile <> ™
Open custfile for input as #1
On Error goto atEOF
Do
Line Input #1, aline
If aline Like pattern Then
count=count+1
End If
Loop
nxtfile:
On Error GoTo 0
Close #1
custfile = Dir$
Wend
If count<>0 then
Msghbox "Number of overdue accounts: " & count
Else
Msghbox “No accounts overdue”
End If
Kill "C:\TEMP001"
Kill "C:\TEMP002"
Exit Sub
atEOF:
Resume nxtfile
End Sub

Sub createfiles()
Dim odue as String
Dim ontime as String
Dim x
Open "C:\TEMP001" for OUTPUT as #1
odue="*" + "Overdue" + "*"
ontime="*" + "On-Time" + "*"
Forx=1to0 3
Write #1, odue
Next x
For x=41t0 6
Write #1, ontime
Next x
Close #1
Open "C:\TEMP002" for Output as #1
Write #1, odue
Close #1
End Sub

See Also Do...Loop

il SBL REFERENCE

Width Statement

Action

Syntax

Comments

Example

See Also

Sets the output line width for an open file.

Width [#]filenumber%, width%vherefilenumber%s an integer expression for
the open file to use andidth%is an integer expression for the width of the line
(O to 255).

Filenumber%is the number assigned to the file when it is opened. 8€2pitn
statement for more information.

A value of zero (0) fowidth%indicates there is no line length limit. The default
width%for a file is zero (0).

This example puts five spaces and the string “ABCD” to a file. The five spaces are
derived by taking 15 MOD 10, or the remainder of dividing 15 by 10.

Sub main
Dim strl as String
Dim x as String*10
str1="ABCD"
Open "C:\TEMPQ01" For Output As #1
Width #1, 10
Print #1, Spc(15); strl
Close #1
Open "C:\TEMP001" as #1 Len=12
Get#1, 1,x
Msgbox "The contents of the file is: " & x
Close #1
Kill "C:\TEMP0Q01"
End Sub

Open, Print

With Statement [SBL Extension]**

Action

Syntax

Comments

Executes a series of statements on a specified variable.

With variable
statement_block
End With

wherevariableis the variable to be changed by the statemarsimiement_block
andstatement_blocthe statements to execute.

Variable may be an object or a user defined type. Wikl statements can be nested.

**SBL offers a number of extensions that are not included in Visual Basic.

WRITE STATEMENT [vaat]

Example This example creates a user-defined record type, custrecord and uses the With
statement to fill in values for the record fields, for the record called “John”.

Type custrecord
name as String
ss as String
salary as Single
dob as Variant
street as String
apt as Variant
city as String
state as String
End Type
Sub main
Dim John as custrecord
Dim msgtext
John.name="John"
With John
.55="037-67-2947"
.salary=60000
.dob=#10-09-65#
.Street="15 Chester St."
.apt=28
.city="Cambridge"
.State="MA"
End With
msgtext=Chr(10) & "Name:" & Space(5) & John.name & Chr(10)
msgtext=msgtext & "SS#: " & Space(6) & john.ss & chr(10)
msgtext=msgtext & "D.0.B:" & Space(4) & john.dob
Msgbox "Done with: " & Chr(10) & msgtext
End Sub

See Also Type...End Type

Write Statement

Action Writes data to an open sequential file.
Syntax Write [#] filenumbe®o [expressionligt

wherefilenumber%is an integer expression for the open file to use and
expressionlistis one or more values to write to the file.

Comments The file must be opened ®utput or Append mode.Filenumber%is the
number assigned to the file when it is opened. Se®plea statement for more
information.

If expressionlists omitted, thaNrite statement writes a blank line to the file. (See
Input for more information.)

Example This example writes a variable to a disk file based on a comparison of its last
saved time and the current time.

yRVI SBL REFERENCE

Sub main
Dim tempfile
Dim filetime, curtime
Dim msgtext
Dim acctno(100) as Single
Dimx, |
tempfile="C:\TEMP001"
Open tempfile For Output As #1
filetime=FileDateTime(tempfile)
x=1
I=1
acctno(x)=0
Do
curtime=Time
acctno(x)=InputBox("Enter an account number (99 to end):")
If acctno(x)=99 then
If x=1 then Exit Sub
Forl=1to x-1
Write #1, acctno(l)
Next |
Exit Do
Elself (Minute(filetime)+2)<=Minute(curtime) then
For I=I to x-1
Write #1, acctno(l)
Next |
End If
X=x+1
Loop
Close #1
x=1
msgtext="Contents of C:A\TEMP0O01 is:" & Chr(10)
Open tempfile for Input as #1
Do While Eof(1)<>-1
Input #1, acctno(x)
msgtext=msgtext & Chr(10) & acctno(x)
X=x+1
Loop
MsgBox msgtext
Close #1
Kill "C:\TEMP001"
End Sub

See Also Close, Open, Print, Put

Year Function

Action Returns the year component (1-12) of a date-time value.
Syntax Year(date)

wheredateis an expression that can evaluate to a date time value.

YEAR FUNCTION [was!

Comments

Example

See Also

TheYear function returns an integer between 100 and 9999, inclusive.

Year accepts any type dfate including strings, and will attempt to convert the
input value to a date value.

The return value is "ariant of vartype 2 (Integer). If the valué dateis NULL, a
Variant of vartype 1 (Null) is returned.

This example returns the year for today.

Sub main

Dim nowyear

nowyear=Year(Now)

MsgBox "The current year is; " &nowyear
End Sub

Date Function, Date Statement, Day, Hour, Minute, Month, Now, Time Function,
Second, Weekday

Glossary

233

Call by reference In a Basic script, arguments
passed by reference to a procedure may be
modified by the procedure. Procedures written
in Basic are defined to receive their arguments
by reference. If you call such a procedure and
pass it a variable, and if the procedure modifies
its corresponding formal parameter, it will
modify the variable. Passing an expression by
reference is acceptable in Basic; if the called
procedure modifies its corresponding
parameter, a temporary value will be modified,
with no apparent effect on the caller.

Call by value In a Basic script, when an
argument is passed by value to a procedure, the
called procedure receives a copy of the
argument. If the called procedure modifies its
corresponding formal parameter, it will not
affect the caller. Procedures written in other
languages such as C may receive their
arguments by value.

Comment In a Basic script, a comment is text
that documents a program. Comments have no
effect on the program (except for
metacommands). In Basic, a comment begins
with a single quotation mark (*), and continues
to the end of the line. If the first character in a
comment is a dollar sign ($), the comment will
be interpreted as a metacommand. Lines
beginning with the keyword Rem are also
interpreted as comments.

Dialog control An item in a dialog box, such as
a list box, combo box, or command button.

Function In a Basic script, a procedure which
returns a value. In Basic, the return value is
specified by assigning a value to the name of
the function, as if the function were a variable.

Label In a Basic script, a label identifies a
position in the program at which to continue
execution, usually as a result of executing a
GoTo statement. To be recognized as a label, a
name must begin in the first column, and must
be immediately followed by a colon (:).
Reserved words are not valid labels.

Metacommand In a Basic script, a command
that gives the compiler instructions on how to
build the program. In Basic, metacommands
are specified in comments that begin with a
dollar sign ($).

Name In a Basic script, a name must start with

a letter (A through Z). The remainder of a

name can also contain humeric digits (0
through 9) or an underscore (). A name cannot
exceed 40 characters in length. ‘Type
characters’ are not considered part of a name.

GLOSSARY

Precedence order In a Basic script, the system Vartype In a Basic script, the internal tag used to
SBL uses to determine which operators in an identify the type of value currently assigned to a
expression to evaluate first, second, and so on. variant. One of the following:

Operators with a higher precedence are

evaluated before those with lower precedence. EMPLY oo 0
Operators with equal precedence are evaluated NUIL e 1
from left to right. The default precedence 1T =T o =T PSS 2
order, from high to low, is numeric, string, [0 o o SR 3
comparison, logical. SINGIE..eeiviiiie ettt 4

DoUble ... 5

Procedure In a Basic script, a series of SBL

statements and functions executed as a unit. CUIMENCY ..o 6

. Date ..o 7
Both subprograms (Sub) and functions String 8
(Function) are called procedures. (0] 1= TR 9

SBL The acronym for the Softbridge Basic
Language (SBL).

Subprogram In a Basic script, a procedure that
does not return a value.

Type character In a Basic script, a special
character used as a suffix to the name of a
function, variable, or constant. The character
defines the data type of the variable or
function. The characters are:

Dynamic String.........ccceevvveernireeniiee e, $
INtEQET .. i %
LONG INTEYET weeeveiiiiiieeeiie e &

Single: single precision floating point...... !
Double: double precision floating point...#
Currency exact fixed point..............cc..... @

	Using Basic
	SBL Functional Index
	SBL Basic Conventions
	Dialog Boxes
	Error Handling
	Expressions
	Object Handling
	Derived Trigonometric Functions
	SBL Versus Other Basics
	SBL Compared to Visual Basic

	SBL Reference
	Abs Function
	AppActivate Statement
	Asc Function
	Assert Statement [SBL Extension]**
	Atn Function
	Beep Statement
	Begin Dialog ... End Dialog Statement
	Button Statement
	ButtonGroup Statement
	Call Statement
	CancelButton Statement
	Caption Statement
	CCur Function
	CDbl Function
	ChDir Statement
	ChDrive Statement
	CheckBox Statement
	Chr Function
	CInt Function
	CLng Function
	Close Statement
	ComboBox Statement
	Command Function
	Const Statement
	Cos Function
	CreateObject Function
	CSng Function
	CStr Function
	'$CStrings Metacommand [SBL Extension]** '$
	CurDir Function
	CVar Function
	CVDate Function
	Date Function
	Date Statement
	DateSerial Function
	DateValue Function
	Day Function
	Declare Statement
	Deftype Statement
	Dialog FunctionD
	Dialog Statement
	Dim Statement
	Dir Function
	DlgControlID Function
	DlgEnable Function
	DlgEnable Statement
	DlgFocus Function
	DlgFocus Statement
	DlgListBoxArray Function
	DlgListBoxArray Statement
	DlgSetPicture Statement
	DlgText Function
	DlgText Statement
	DlgValue Function
	DlgValue Statement
	DlgVisible Function
	DlgVisible Statement
	Do...Loop Statement
	DoEvents Statement
	DropComboBox Statement
	DropListBox Statement
	Environ Function
	Eof Function
	Erase Statement
	Erl Function
	Err Function
	Err Statement
	Error Function
	Error Statement
	Exit Statement
	Exp Function
	FileAttr Function
	FileCopy Statement
	FileDateTime Function
	FileLen Function
	Fix Function
	For...Next Statement
	Format Function
	FreeFile Function
	Function ... End Function Statement
	FV Function
	Get Statement
	GetAttr Function
	GetCurValues Statement
	GetField Function [SBL Extension]**
	GetObject Function
	Global Statement
	GoTo Statement
	GroupBox Statement
	Hex Function
	Hour Function
	If ... Then ... Else
	'$Include Metacommand [SBL Extension]** '
	Input Function
	Input Statement
	InputBox Function
	InStr Function
	Int Function
	IPmt Function
	IRR Function
	Is Operator
	IsDate Function
	IsEmpty Function
	IsNull Function
	IsNumeric Function
	Kill Statement
	LBound Function
	LCase Function
	Left Function
	Len Function
	Let (Assignment Statement)
	Like Operator
	Line Input Statement
	ListBox Statement
	Loc Function
	Lock, Unlock Statements
	Lof Function
	Log Function
	Lset Statement
	LTrim Function
	Me
	Mid Function
	Mid Statement
	Minute Function
	MkDir Statement
	Month Function
	Msgbox Function
	Msgbox Statement
	Name Statement
	New Operator
	$NoCStrings Metacommand [SBL Extension]**
	Nothing Function
	Now Function
	NPV Function
	Null Function
	Object Class
	Oct Function
	OkButton Statement
	On...Goto Statement
	On Error Statement
	Open Statement
	OptionButton Statement
	OptionGroup Statement
	Option Base Statement
	Option Compare Statement
	Option Explicit Statement
	PasswordBox Function
	Picture Statement
	Pmt Function
	PPmt Function
	Print Statement
	PushButton Statement
	Put Statement
	PV Function
	Randomize Statement
	Rate Function
	ReDim Statement
	Rem Statement
	Reset Statement
	Resume Statement
	Right Function
	RmDir Statement
	Rnd Function
	Rset Statement
	RTrim Function
	Second Function
	Seek Function
	Seek Statement
	Select Case Statement
	SendKeys Statement
	Set Statement
	SetAttr Statement
	SetField Function [SBL Extension]**
	Sgn Function
	Shell Function
	Sin Function
	Space Function
	Spc Function
	Sqr Function
	Static Statement
	StaticComboBox Statement
	Stop Statement
	Str Function
	StrComp Function
	String FunctionString
	Sub ... End Sub Statement
	Tab Function
	Tan Function
	Text Statement
	TextBox Statement
	Time Function
	Time Statement
	Timer Function
	TimeSerial Function
	TimeValue Function
	Trim Function
	Type Statement
	Typeof Function
	UBound Function
	UCase Function
	Val Function
	VarType Function
	Weekday Function
	While ... Wend
	Width Statement
	With Statement [SBL Extension]**
	Write Statement
	Year Function

	Glossary

