CHAPTER

Intermediate SQL

Exercises

4.1 Write the following queries in SQL:

a.

Display a list of all instructors, showing their ID, name, and the
number of sections that they have taught. Make sure to show the
number of sections as 0 for instructors who have not taught any
section. Your query should use an outerjoin, and should not use
scalar subqueries.

Write the same query as above, but using a scalar subquery, with-
out outerjoin.

Display the list of all course sections offered in Spring 2010, along
with the names of the instructors teaching the section. If a section
has more than one instructor, it should appear as many times in
the result as it has instructors. If it does not have any instructor, it
should still appear in the result with the instructor name set to “

Display the list of all departments, with the total number of in-
structors in each department, without using scalar subqueries.
Make sure to correctly handle departments with no instructors.

Answer:

Display a list of all instructors, showing their ID, name, and the
number of sections that they have taught. Make sure to show the
number of sections as 0 for instructors who have not taught any
section. Your query should use an outerjoin, and should not use
scalar subqueries.

11

12 Chapter 4 Intermediate SOL

select ID, name,

count(course_id, section_id, year,semester) as 'Number of sections’
from instructor natural left outer join feaches
group by ID, name

The above query should not be written using count(*) since count
* counts null values also. It could be written using count(section
_id), or any other attribute from teaches which does not occur in
instructor, which would be correct although it may be confusing
to the reader. (Attributes that occur in instructor would not be null
even if the instructor has not taught any section.)

b. Write the same query as above, but using a scalar subquery, with-
out outerjoin.

select ID, name,
(select count(*) as 'Number of sections’
from teaches T where T.id = L.id)

from instructor [

c. Display the list of all course sections offered in Spring 2010, along
with the names of the instructors teaching the section. If a section
has more than one instructor, it should appear as many times in
the result as it has instructors. If it does not have any instructor,

it should still appear in the result with the instructor name set to

“

select course_id, section_id, ID,
decode(name, NULL, "—’, name)
from (section natural left outer join teaches)
natural left outer join instructor
where semester="Spring” and year= 2010

The query may also be written using the coalesce operator, by
replacing decode(..) by coalesce(name, '—"). A more complex ver-
sion of the query can be written using union of join result with
another query that uses a subquery to find courses that do not
match; refer to exercise 4.2.

d. Display the list of all departments, with the total number of in-
structors in each department, without using scalar subqueries.
Make sure to correctly handle departments with no instructors.

select dept_name, count(ID)
from department natural left outer join instructor
group by dept_name

4.2 Outer join expressions can be computed in SQL without using the SQL
outer join operation. To illustrate this fact, show how to rewrite each of
the following SQL queries without using the outer join expression.

a. select * from student natural left outer join takes

Exercises 13

b. select * from student natural full outer join takes
Answer:

a. select * from student natural left outer join takes
can be rewritten as:

select * from student natural join takes
union
select ID, name, dept_name, tot_cred, NULL, NULL, NULL, NULL, NULL
from student S1 where not exists
(select ID from takes T1 where T1.id = S1.id)

b. select * from student natural full outer join fakes
can be rewritten as:

(select * from student natural join takes)
union
(select ID, name, dept_name, tot_cred, NULL, NULL, NULL, NULL, NULL
from student S1
where not exists
(select ID from takes T1 where T1.id = S1.id))
union
(select ID, NULL, NULL, NULL, course_id, section_id, semester, year, grade
from takes T1
where not exists
(select ID from student S1 whereT1.id = S1.id))

4.3 Suppose we have three relations (A, B), s(B, C), and (B, D), with all
attributes declared as not null. Consider the expressions

e r natural left outer join (s natural left outer join t), and

* (r natural left outer join s) natural left outer join ¢

a. Give instances of relations 7, s and t such that in the result of the
second expression, attribute C has a null value but attribute D has
a non-null value.

b. Is the above pattern, with C null and D not null possible in the
result of the first expression? Explain why or why not.

Answer:

a. Consider r = (a,b), s = (bl,cl), t = (b,d). The second expression
would give (a,b,NULL,d).

b. Itisnot possible for D to be not null while C is null in the result of
the first expression, since in the subexpression s natural left outer
join t, it is not possible for C to be null while D is not null. In the
overall expression C can be null if and only if some r tuple does

14 Chapter 4 Intermediate SOL

not have a matching B value in s. However in this case D will also
be null.

4.4 Testing SQL queries: To test if a query specified in English has been
correctly written in SQL, the SQL query is typically executed on multiple
test databases, and a human checks if the SQL query result on each test
database matches the intention of the specification in English.

a.

In Section ?? we saw an example of an erroneous SQL query which
was intended to find which courses had been taught by each in-
structor; the query computed the natural join of instructor, teaches,
and course, and as a result unintentionally equated the dept_name
attribute of instructor and course. Give an example of a dataset that
would help catch this particular error.

When creating test databases, it is important to create tuples in
referenced relations that do not have any matching tuple in the
referencing relation, for each foreign key. Explain why, using an
example query on the university database.

When creating test databases, it is important to create tuples with
null values for foreign key attributes, provided the attribute is
nullable (SQL allows foreign key attributes to take on null values,
as long as they are not part of the primary key, and have not been
declared as not null). Explain why, using an example query on
the university database.

Hint: use the queries from Exercise ??.
Answer:

a.

Consider the case where a professor in Physics department teaches
an Elec. Eng. course. Even though there is a valid corresponding
entry in teaches, it is lost in the natural join of instructor, teaches
and course, since the instructors department name does not match
the department name of the course. A dataset corresponding to
the same is:

instructor = {(12345,'Guass’, "Physics’, 10000)}

teaches = {(12345, "EE321’, 1, ‘'Spring’, 2009) }

course = {('EE321’, 'Magnetism’, ‘Elec. Eng.’, 6)}

The query in question 0.a is a good example for this. Instructors
who have not taught a single course, should have number of
sections as 0 in the query result. (Many other similar examples
are possible.)

Consider the query
select * from teaches natural join instructor;

In the above query, we would lose some sections if teaches.ID
is allowed to be NULL and such tuples exist. If, just because

Exercises 15

teaches.ID is a foreign key to instructor, we did not create such a
tuple, the error in the above query would not be detected.

4.5 Show how to define the view student_grades (ID, GPA) giving the grade-
point average of each student, based on the query in Exercise ??; recall
that we used a relation grade_points(grade, points) to get the numeric points
associated with a letter grade. Make sure your view definition correctly
handles the case of null values for the grade attribute of the takes relation.
Answer: We should not add credits for courses with a null grade; further
to to correctly handle the case where a student has not completed any
course, we should make sure we don’t divide by zero, and should instead
return a null value.

We break the query into a subquery that finds sum of credits and sum
of credit-grade-points, taking null grades into account The outer query
divides the above to get the average, taking care of divide by 0.

create view student_grades(ID, GPA) as

select ID, credit_points / decode(credit_sum, 0, NULL, credit_sum)

from ((select ID, sum(decode(grade, NULL, O, credits)) as credit_sum,
sum(decode(grade, NULL, O, credits*points)) as credit_points
from(takes natural join course) natural left outer join grade_points
group by ID)

union

select ID, NULL

from student

where ID not in (select ID from fakes))

The view defined above takes care of NULL grades by considering
the creditpoints to be 0, and not adding the corresponding credits in
credit_sum.

The query above ensures that if the student has not taken any course
with non-NULL credits, and has credit_sum = 0 gets a gpa of NULL. This
avoid the division by 0, which would otherwise have resulted.

An alternative way of writing the above query would be to use student
natural left outer join gpa, in order to consider students who have not
taken any course.

4.6 Complete the SQL DDL definition of the university database of Figure ??
to include the relations student, takes, advisor, and prereq.
Answer:

16 Chapter 4 Intermediate SOL

create table student

(ID varchar (5),

name varchar (20) not null,

dept name varchar (20),

tot_cred numeric (3,0) check (tot_cred >=0),
primary key (ID),

foreign key (dept_name) references department
on delete set null);

create table takes

(ID varchar (5),
course_id varchar (8),
section_id varchar (8),
semester varchar (6),
year numeric (4,0),
grade varchar (2),

primary key (ID, course_id, section_id, semester, year),
foreign key (course_id, section_id, semester, year) references section

on delete cascade,

foreign key (ID) references student

on delete cascade);

create table advisor

(iid varchar (5),
s.id varchar (5),
primary key (s_ID),

foreign key (i_ID) references instructor (ID)
on delete set null,

foreign key (s_ID) references student (ID)
on delete cascade);

create table prereg
(course_id varchar(8),
prereq_id varchar(8),
primary key (course_id, prereq_id),
foreign key (course_id) references course
on delete cascade,
foreign key (prereq_id) references course);

4.7 Consider the relational database of Figure ??. Give an SQL DDL definition

of this database. Identify referential-integrity constraints that should
hold, and include them in the DDL definition.

Answer:

