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1. Equations of the motor:    
 
The modeling of the unit motor + load is made possible by using the basic equations of the DC 
machine and the fundamental principle of dynamics. 
We propose to model a permanent magnet machine (with constant flux, no magnetic 
saturation). 
 
You can see on the right the equivalent circuit of the armature of 
the machine. 
 
We can deduce the following electrical equations in any particular 
state: 

E(t)  
dt

di(t)L  Ri(t)  (t)Um ++=         (1.1) 

(k, emf constant, considered as equal to the torque constant). 
 

Here is a reminder of the electromagnetic equations linked to the 
motor : 

(t)k  E(t) Ω=  et ki(t)  (t)Cm =  
The equality 1.1 can therefore be written: 
 

(t)k  
dt

di(t)L  Ri(t)  (t)Um Ω++=       (1.2) 

 

 

Mechanical equations: 
 
Cm: the electromagnetic torque produced by the motor. 
J: is the moment of inertia. 
Cch: torque load. It consists in the load torque Cr and the friction Cf. 

With Cf = fΩ (we will ignore dry friction). 
f: coefficient of viscous friction. 
The fundamental principle of dynamics allows us to write: 
 

(t)C -(t)C  
dt

(t)dJ chm=
Ω            (1.3) 

By stating that Cch = Cr + Cf, the equation (1.3) can be written this way: 
 

(t)C  f  
dt

(t)dJ  (t)C rm +Ω+
Ω

=      (1.4) 
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2. Block diagram : 
 
We will now look at variations in the armature current and the speed (the quantities studied are 
considered to be nil at the initial instant). 
In LAPLACE variables the equations (1.2) and (1.4) become: 
 

 (s)k  Ls)I(s)  (R  (s)Um Ω++=  et (s)C  (s)Js)  (f  (s)C rm +Ω+=  
 

We therefore deduce:                
R  Ls

(s)k - (s)U  I(s) m

+
Ω

=       and       
f  Js
(s)C - kI(s)  (s) r

+
=Ω  

 
We obtain the block diagram: 
 

RLs
1
+ k fJs

1
+

k

Um(s) I(s) Cm(s)
Ω(s)

E(s)

Cr(s)

+ +
-

-

 

3. Transfer functions: 
 

3.1. Control of the speed by the armature: 
After calculating we find: 

 

2r2
m

k  R)  f)(Ls  (Js
R)  (Ls(s)C - 

k  R)  f)(Ls  (Js
(s)Uk  (s)

+++
+

+++
=Ω  

 
In the case of speed control, we consider the load torque as a disturbance and the 
transfer function in voltage is written: 

 

2
m k  R)  f)(Ls  (Js

k  
(s)U
(s)  (s)T

+++
=

Ω
=Ω   (2.1) 

 
We find a second order transfer function. We posit usually: 

R
L  e =τ  and 

f
J  m =τ  and we define the electromechanical time constant: mττ

Rfk
Rf  2em
+

=

and the coefficient Km so that 
Rfk

k  K 2m
+

=  

We can approach the relation(2.1) in the domain of common frequencies by : 
 

s)  s)(1  1(
1.

K
1  (s)T

emem ττ ++
=Ω      (2.2) 
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When τe is very small in relation to τem, or several frequencies being envisaged are very 
weak, we can reduce (2.2) to : 

 

s)  (1
1.

K
1  (s)T

emm τ+
=Ω    (3.1) 

In this case the machine is seen as a simple first order (however it must not be subject to 
stress to quickly…). 
 
Note: a variation in the load causes a modification in the model of the system. 
Moreover, if the load is large the simplification hypotheses used to obtain (2.2) can turn 
out to be unsound… 
 

3.2. Current control by the armature: 
The block diagram on the previous page can be represented in the following manner: 

 
 

RLs
1
+

k+-

fJs
1
+k

Um(s) I(s)

Cm(s)Ω(s)E(s)
Cr(s)

+
-

 
 

This block diagram will be used to study current control (or torque control). It will also 
be useful to set the parameters of the current circuit in the case of speed control with a 
secondary loop. 
 
If we consider that the torque load is a disturbance, the transfer function in current is 
written: 
 

2
m

I
k  R)  f)(Ls  (Js

f Js  
(s)U

I(s)  (s)T
+++

+
==   (3.2) 

 
We can show that this relation can be approached by: 
 

s)  s)(1  (1
s)  (1A.  (s)T

eme

m
I

ττ
τ
++

+
=  avec 2kRf

f  A
+

=  (3.3) 

 
The remarks are the same as in the previous chapter. Generally, τm>τem>τe and we can 
show that in a closed loop the transfer function is equivalent to that of a first order. 
 

 


