
 Help on the General DLL Block

Help on the General DLL Block in PSIM
Powersim Inc.
October 2004

Unlike the simple DLL blocks with fixed number of inputs and outputs (such as the DLL Block with 3 inputs
and 3 outputs), the general DLL block provides more flexibility and capability in interfacing PSIM with
custom DLL files. This file describes the convention and basis of the general DLL block.

The general DLL block allows users to write code in C or C++, compile it as a Windows DLL, and link to
PSIM. There are four exported functions. PSIM simulation engine uses three of them, and one is used by the
user interface.

The three simulation functions are: RUNSIMUSER, OPENSIMUSER and CLOSESIMUSER. The user
interface function is: REQUESTUSERDATA. They are described as below.

RUNSIMUSER:

void RUNSIMUSER(
double t,
double delt,
double *in,
double *out,
void ** ptrUserData,
int *pnError,
char * szErrorMsg)

This function is the only function in the DLL routine that is mandatory. All other functions are optional. This
function is called by PSIM at each time step.

The DLL routine receives values from PSIM as inputs, performs the calculation, and sends results back to
PSIM. The node assignments are: the input nodes are on the left, and the output nodes are on the right. The
sequence is from the top to the bottom.

Each parameter is explained as follow.

double t :
(Read only) Time in seconds

double delt :
(Read only) Time step in seconds

double * in :
(Read only) Array of input values. If the DLL block has three inputs, they are accessed by
in[0], in[1], and in[2]

double *out :
(Write only) Array of output values. After calculations are performed, outputs should be
written to this array. If the DLL block has four outputs, they would be accessed by out[0],
out[1], out[2], and out[3]

void ** ptrUserData:
(Read, Write) Pointer of the user-defined data. For more information, refer to the function
OPENSIMUSER.

 Page 1 www.powersimtech.com

 Help on the General DLL Block

int *pnError:
(Write only) On successful return, set pnError to 0. On error, set it to 1.
Example: *pnError = 0; //success

char * szErrorMsg:
(Write only) If there is an error, copy the error message to this string.

 Example: strcpy(szErrorMsg, "input 2 can not exceed 50V");

OPENSIMUSER:
void OPENSIMUSER(

const char *szId,
const char * szNetlist,
void ** ptrUserData,
int *pnError,
LPSTR szErrorMsg,
void * pPsimParams)

This function is optional. It is called only once at the beginning of the simulation. It receives information
from the DLL routine, and allows the DLL routine to allocate memory for its own use. The parameters are
explained as below.

const char *szId:
(Read only) string ID of the DLL block

const char * szNetlist:
(Read only) Netlist string of the DLL block. The netlist can be viewed from PSIM by
choosing Simulate -> Generate Netlist file -> View Netlist File. The netlist string is a
series of parameters separated by space. The netlist format for the general DLL block is as
follows:

DLL_EXT
Element name
Number of input nodes
Number of output nodes
Node names of the input nodes
Node names of the output nodes
Full path and file name of the DLL file for this DLL block
Parameters defined and set in the user interface (if exist)
Full path and file name of Input data file (if exist)

The following is an example of the DLL block netlist string with the name as ”DLL1” and
two input nodes and two output nodes.

 DLL_EXT DLL1 2 2 1 2 3 4 C:\psim\pfc_vi_dll.dll

The following is another example of the DLL block netlist string with the name as “DLL2”
and two input nodes, three output nodes, three extra parameters, and an input data file.

 DLL_EXT DLL2 2 3 5 6 7 8 9 C:\PSIM\TestBlock.dll 1000 10 90 "C:\Text1.txt"

void ** ptrUserData :
(Read, Write) This is a pointer to the user-defined data. The memory must be allocated in the
function OPENSIMUSER and freed in CLOSESIMUSER. It is passed to RUNSIMUSER
on every call. It allows the DLL to manage its own data during the simulation.

 Page 2 www.powersimtech.com

 Help on the General DLL Block

Note: This pointer is not the same as the user- defined pointer in the function
REQUESTUSERDATA. It is not possible to pass a pointer from REQUESTUSERDATA to
any of the simulation functions. They communicate via Netlist line only.

int *pnError:
(Write only) On successful return, set pnError to 0. On error, set it to 1.

 Example: *pnError = 0; //success

char * szErrorMsg:
(Write only) If there is an error, copy the error message to this string.

 Example: strcpy(szErrorMsg, “Input 2 can not exceed 50V");

void * pPsimParams:
(Read only) A pointer to the following structure:

struct EXT_FUNC_PSIM_INFO
{

 char m_szPsimDir[260];
 char m_szSchDir[260];

 char m_szSchFileName[260];
};

where each structure member is defined as follows:
char m_szPsimDir[260] : PSIM folder
char m_szSchDir[260] : Folder containing the schematic file (*.sch)
char m_szSchFileName[260] : Full path and file name of the schematic file

CLOSESIMUSER:
void CLOSESIMUSER(

const char *szId,
void ** ptrUserData)

This function is optional. It is called only once at the end of the simulation. Its main purpose is to allow DLL
to free any memory or resources that it has allocated.

const char *szId :
(Read only) String ID of the DLL block

void ** ptrUserData:
(Read, Write) Pointer to the user-defined data. For more information, refer to the function
OPENSIMUSER.

REQUESTUSERDATA
void REQUESTUSERDATA(

int nRequestReason,
 int nRequestCode,
 int nRequestParam,
 void ** ptrUserData,
 int * pnParam1,
 int * pnParam2,
 char * szParam1,
 char * szParam2)

This function is optional. It handles the user interface with PSIM. It is called by PSIM when the general DLL
block element is created, or its properties are modified in the property box. The parameters are described as
follows.

 Page 3 www.powersimtech.com

 Help on the General DLL Block

int nRequestReason :
It describes the user action when this function is called. The possible values are:

ACTION_DLL_SELECTED A new DLL block is placed on the schematic

and this DLL is selected.
ACTION_ELEMENT_LOAD A schematic file with DLL blocks is being

loaded, or being pasted as part of the
copy/paste operation.

ACTION_ELEMENT_SAVE A schematic file with DLL blocks is being
saved or a buffer (Copy/paste operation)

ACTION_INPUTFILE_CHANGED A new input file is selected.
ACTION_PARAMETERS_CHANGED Parameters are changed in the property dialog

box.
ACTION_ELEMENT_DELETE An element is being deleted or a file is being

closed.
Example: When a user places a DLL block from the library on to a schematic, after the DLL
file name is defined for this block, the function REQUESTUSERDATA will be called and
the parameter nRequestReason will be set to ACTION_DLL_SELECTED.

int nRequestCode :
 It describes the information that is being requested from DLL. The possible values are:

REQUEST_BEGIN:
A new request is initiated. The values of pnParam1, pnParam2, szParam1, and
szParam2 depend on the value of nRequestReason.

REQUEST_END:
Request is finished.
pnParam1: Ignored
pnParam2: Ignored
szParam1: Ignored
szParam2: Ignored

REQUEST_PARAM_COUNT:
Request the number of parameters that will be displayed on the right side of the
property box, between 0 and 10.
pnParam1(Read, Write): Number of parameters.
pnParam2(Read, Write): If an input data file is required, set it to 1, otherwise set it

to 0.
szParam1(Read, Write): File open dialog filter for the input data file. It must

conform to the file open dialog filter format. The following is a properly
formatted filter string:"All Files|*.*|Image files|*.jpg;*.bmp;*.gif|Text
Files|*.txt||". The default value for the filter is: "All Files|*.*||"

szParam2(Read only): String ID associated with the element.

Example: The following code is a possible response to this request. It asks for three
parameters and the input file with extension “aaa”.

*pnParam1 = 3; // 3 parameters
*pnParam2 = 1; // Input Data File is required
strcpy(szParam1, "MyProgram Files|*.aaa|All Files|*.*||"); //File Filter

REQUEST_DATAFILE_INFO:
Request information of the input data file.

 Page 4 www.powersimtech.com

 Help on the General DLL Block

pnParam1(Read, Write): If set to 1, a check box will be displayed in the property
box. When the check box is checked, the file path will be displayed in the
schematic.

pnParam2: Ignored
szParam1(Read, Write): Label that is displayed in the property box. The length is

20 characters maximum. The default value is "Input Data File".
szParam2(Read Only): Full path and file name of the selected file.

Example: The following code changes the label from the default value of "Input
Data File" to "MyProgram data File", and requests a check box for the data file.

strcpy(szParam1, "MyProgram data File");
*pnParam1 = 1; // Show Display check box

REQUEST_PARAM_INFO:
Request information on each parameter.
nRequestParam(Read only): Zero based parameter index
pnParam1: If set to 1, a check box will be displayed in the property box. When the

check box is checked, the parameter value will be displayed in the
schematic.

pnParam2 : ignored
szParam1(Read, Write): Label that is displayed in the property box. The length is 20

characters maximum.
szParam2(Read, Write): The parameter value. The length is 50 characters maximum.

Example: The following code sets the labels of 3 parameters and ensures that
Parameter 1 is an integer between 3 and 10.

switch(nRequestParam)
{ //Three Parameters expected

case 0:
strcpy(szParam1, "Moving Avg. Samples");
*pnParam1 = 1; // Show Display check box
//verify the value
nVal = atoi(szParam2);
if(nVal < 3)
{

nVal = 3;
}
if(nVal > 10)
{

nVal = 10;
}
itoa(nVal, szParam2, 10);
break;

case 1:
strcpy(szParam1, "Multiplier");
*pnParam1 = 1; // Show Display check box
if(strlen(szParam2) == 0)
{

strcpy(szParam2, "3.14");
}
break;

 Page 5 www.powersimtech.com

 Help on the General DLL Block

case 2:
strcpy(szParam1, "Title");
*pnParam1 = 0; // Do not Show Display check box
break;

default://Only expecting three parameters
break;

}

REQUEST_IN_OUT_NODES:
Get and set the number of input and output nodes
pnParam1(Read, Write): Number of input nodes.
pnParam2(Read, Write): Number of output nodes.
szParam1: Ignored
szParam2: Ignored

These values can be modified at any time and the changes will be reflected
immediately in the schematic window.

Example: The following code sets the number of input nodes to 1 and the number of
output nodes to 2:
 *pnParam1 = 1; // one input node

*pnParam2 = 2; // two output nodes

REQUEST_INPUT_NODE_INFO:
Request information on each input node.
nRequestParam: Zero based node index
pnParam1: Ignored.
pnParam2: Ignored.
szParam1(Read, Write): Node label. The length is 20 characters maximum.
szParam2: Ignored

Example: The following code sets the label of the first input node.
switch(nRequestParam)
{
//One input node

case 0:
strcpy(szParam1, "in1");
break;

default:
break;

}

REQUEST_OUTPUT_NODE_INFO
Request information on each output node.
nRequestParam: Zero based node index
pnParam1: Ignored.
pnParam2: Ignored.
szParam1(Read, Write): Node label. The length is 20 characters maximum.
szParam2: Ignored

For each output node you may change its label at any time.

 Page 6 www.powersimtech.com

 Help on the General DLL Block

Example: The following code sets the label for two output nodes.
switch(nRequestParam)
{ //two output nodes

case 0:
strcpy(szParam1, "o1");
break;

case 1:
strcpy(szParam1, "o2");
break;

default:
break;

}

int nRequestParam :
This value depends on the parameter nRequestCode.

void ** ptrUserData:
This is a pointer to the user-defined data. It is included in every function call and allows
users to manage one’s own data. Memory is allocated and freed by the user. Memory can be
allocated, reallocated or freed at any time. However, the logical choice for allocating the
memory is at

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_BEGIN,…)

and

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_BEGIN, …)

If data is loaded from an input file, one may also choose to allocate the memory at

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_BEGIN,…)

The memory is generally freed at

REQUESTUSERDATA(ACTION_ELEMENT_DELETE, REQUEST_BEGIN,…)

Example: The following code demonstrates how to use this value.

Struct MyStruct
{
 int myInteger;

 …
}

//Allocate memory
*ptrUserData = new MyStruct();

 …
// Use your internal data
MyStruct * pData = (MyStruct)(*ptrUserData);
PData-> myInteger = 10;
…
// Free memory
if(*ptrUserData != NULL)
{

 Page 7 www.powersimtech.com

 Help on the General DLL Block

 delete (MyStruct)(*ptrUserData);
*ptrUserData = NULL;

}

int * pnParam1, int * pnParam2 , char * szParam1, char * szParam2:
These arguments depend on the values of nRequestReason, nRequestCode and
nRequestParam.

Call Sequences
To write a DLL that works with PSIM, It is essential to understand the way PSIM interacts with the DLL.
The parameter nRequestReason of the function REQUESTUSERDATA describes the user action. The
following is a description of the REQUESTUSERDATA function calls, organized based on the value of
nRequestReason.

ACTION_DLL_SELECTED
The user places a general DLL block on the PSIM schematic, double clicks on the image to
bring up the property box, and defines the “DLL File”.
At this point, PSIM loads the DLL and looks for the function RUNSIMUSER. If this
function does not exist, DLL will be rejected. The RUNSIMUSER function is mandatory
for the general DLL block.
Next, PSIM will look for the function REQUESTUSERDATA in the DLL. If DLL exports
this function, PSIM calls it several times to gather information on the DLL. Here is the
description of each of these calls:

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_BEGIN, 0, ptrUserData,
pnParam1, pnParam2, szParam1, szParam2):
pnParam1: Ignored.
pnParam2: Ignored.
szParam1(Read only): Full path and file name of the DLL.
szParam2(Write only): Full path and file name of the default input data file.

This is a good place to allocate memory for ptrUserData. For example,

 *ptrUserData = new Internal_DLL_RuntimeData();

If a default file for the input data file is required, copy its full path and file name to
szParam2. The file must exist, otherwise it will be ignored. Also, at the next call
REQUEST_PARAM_COUNT, the input data file must be requested. If a file path is
set at this point, after this sequence ends, a new sequence with
ACTION_INPUTFILE_CHANGED will be executed.

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_PARAM_COUNT, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
For more information, refer to the section on nRequestCode.

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_DATAFILE_INFO, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
For more information, refer to the section on nRequestCode.

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_PARAM_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
This function is called several times with the value of “nRequestParam” set from 0
to “number of parameters – 1” (the number of parameters was set in previous calls).
For each parameter you may change its label or value at any time.
For more information, refer to the section on nRequestCode.

 Page 8 www.powersimtech.com

 Help on the General DLL Block

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_IN_OUT_NODES, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
This function is called to get and set the number of input and output nodes. You may
change the number of nodes at any time. In some cases, number of nodes depends on
the input data file. In that case you can ignore this call here and handle it at
ACTION_INPUTFILE_CHANGED.
For more information, refer to the section on nRequestCode.

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_INPUT_NODE_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
For more information, refer to the section on nRequestCode and
REQUEST_INPUT_NODE_INFO.

This function is called several times with the value of nRequestParam set from 0 to
“number of input nodes – 1”.

REQUESTUSERDATA(ACTION_DLL_SELECTED, EQUEST_OUTPUT_NODE_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
This function is called several times with the value of nRequestParam set from 0 to
“number of output nodes – 1”.

For more information, refer to the section on nRequestCode.

REQUESTUSERDATA(ACTION_DLL_SELECTED, REQUEST_END, 0, ptrUserData,
pnParam1, pnParam2, szParam1, szParam2):
For more information, refer to the section on nRequestCode.

ACTION_ELEMENT_LOAD
There are two situations where this sequence of calls would be executed. One is when a
schematic file is being loaded and a general DLL block is present in the file. Another is
during a copy/paste operation when a general DLL block is being pasted.

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_BEGIN, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
pnParam1(Read only): Number of valid bytes in szParam1
pnParam2: Ignored.
szParam1(Read only): Binary data that is provided by DLL at save time. Refer to

ACTION_ELEMENT_SAVE for more information.
szParam2(Read, Write): Selected input file path. One may modify the file path here.

This is a good place to allocate memory for ptrUserData. For example,
 *ptrUserData = new Internal_DLL_RuntimeData();

This is the first call to the DLL from PSIM for each DLL block. If the DLL block is
new (selected from the Elements menu and placed in the schematic window), the
sequence of calls with ACTION_ELEMENT_LOAD would not be executed.
Instead, the sequence of calls with ACTION_DLL_SELECTED is executed.

You may decide to ignore the rest of this sequence, in which case the values that
were selected in the previous session and saved in a file, or values that are copied (in
case of copy/paste operation) would be used.

The following calls are the rest of this sequence. For more information, refer to the
nRequestCode section.

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_PARAM_COUNT, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

 Page 9 www.powersimtech.com

 Help on the General DLL Block

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_DATAFILE_INFO, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_PARAM_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_IN_OUT_NODES, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_INPUT_NODE_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_ELEMENT_LOAD,
REQUEST_OUTPUT_NODE_INFO, nRequestParam, ptrUserData, pnParam1,
pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_ELEMENT_LOAD, REQUEST_END, 0, ptrUserData,
pnParam1, pnParam2, szParam1, szParam2);

ACTION_ELEMENT_SAVE
This sequence is called when saving an element to a file or copying an element as part of a
copy/paste operation.

A buffer with the maximum size of 100 bytes is provided for saving the DLL specific
information. This could be the DLL version or any additional parameter that is not one of the
displayed parameters. This buffer will be passed back to the DLL during the sequence
ACTION_ELEMENT_LOAD.

REQUESTUSERDATA(ACTION_ELEMENT_SAVE, REQUEST_BEGIN, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
pnParam1(Write only): Number of valid bytes in szParam1
pnParam2: Ignored.
szParam1(Write only): Copy binary data to be saved in the .sch file (DLL version,

File Version, ...) (maximum 100 bytes)
szParam2(Read only): Selected input file path

For example, the following code copies 25 bytes of user defined binary data:
//copy 25 bytes of binary data.
memcpy(szParam1, mydata, 25);
*pnParam1 = 25;

REQUESTUSERDATA(ACTION_ELEMENT_SAVE, REQUEST_END, 0, ptrUserData,
pnParam1, pnParam2, szParam1, szParam2);

ACTION_INPUTFILE_CHANGED
This sequence is executed every time a new input data file is selected in the DLL block’s
property box.

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED, REQUEST_BEGIN, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
pnParam1(Write only): By setting pnParam1 to 0, you can reject this file. If the file

is rejected, REQUEST_END is called immediately and the value of input
file path is reverted back to the previous value.

pnParam2: Ignored.
szParam1(Read, Write): Full path and file name of the selected input file. This

parameter is both readable and writeable. You may modify the path and file
name.

szParam2: Ignored.

 Page 10 www.powersimtech.com

 Help on the General DLL Block

The following calls are the rest of this sequence if the file is not rejected.

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_PARAM_COUNT, 0, ptrUserData, pnParam1, pnParam2, szParam1,
szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_DATAFILE_INFO, 0, ptrUserData, pnParam1, pnParam2, szParam1,
szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED, REQUEST_PARAM_INFO,
nRequestParam, ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_IN_OUT_NODES, 0, ptrUserData, pnParam1, pnParam2, szParam1,
szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_INPUT_NODE_INFO, nRequestParam, ptrUserData, pnParam1,
pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED,
REQUEST_OUTPUT_NODE_INFO, nRequestParam, ptrUserData, pnParam1,
pnParam2, szParam1, szParam2);

REQUESTUSERDATA(ACTION_INPUTFILE_CHANGED, REQUEST_END, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

ACTION_PARAMETERS_CHANGED
This sequence is executed every time the data in the property box is modified.

REQUESTUSERDATA(ACTION_PARAMETERS_CHANGED, REQUEST_BEGIN, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):
pnParam1: Ignored.
pnParam2: Ignored.
zzParam1: Ignored.
szParam2: Ignored.

REQUESTUSERDATA(ACTION_PARAMETERS_CHANGED,
REQUEST_PARAM_INFO, nRequestParam, ptrUserData, pnParam1, pnParam2,
szParam1, szParam2):
This function is called several times with nRequestParam set from 0 to 'number of
parameters – 1'
nRequestParam: Zero based parameter index.
pnParam1: Ignored.
pnParam2: Ignored.
szParam1(Read Only): Parameter label.
szParam2(Read, Write): Parameter value. The value can be changed, but it can not
be rejected and the message box can not be popped up in this function.

REQUESTUSERDATA(ACTION_PARAMETERS_CHANGED, REQUEST_END, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):

ACTION_ELEMENT_DELETE
This sequence is executed when an element is being deleted or the schematic file is being
closed. Any memory or resources that have been created must be freed.

REQUESTUSERDATA(ACTION_ELEMENT_DELETE, REQUEST_BEGIN, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2):

 Page 11 www.powersimtech.com

 Help on the General DLL Block

pnParam1: Ignored.
pnParam2: Ignored.
zzParam1: Ignored.
szParam2: Ignored.
This is the proper place to free any allocated memory. For example,

delete (Internal_DLL_Block_RuntimeData *)(*ptrUserData);
 *ptrUserData = NULL;

REQUESTUSERDATA(ACTION_ELEMENT_DELETE, REQUEST_END, 0,
ptrUserData, pnParam1, pnParam2, szParam1, szParam2);

Samples
Three examples are provided to illustrate the use of the general DLL block, as described below.

TestBlock (Files: general_dll_block_test1.sch, TestBlock.dll)
In this example, the number of input/output nodes and the node labels are read from an input
data file. When the DLL block is loaded from the schematic file
(ACTION_ELEMENT_LOAD) or the input file is changed
(ACTION_INPUTFILE_CHANGED), the DLL loads the file and reallocates the memory for
its internal data. The general DLL block has ten parameters. It sets the number of parameters
when a new element is created by handling ACTION_DLL_SELECTED:
REQUEST_PARAM_COUNT. It ignores all other calls to REQUEST_PARAM_COUNT ,
thus retaining the original value of the number of parameters through the life of the element
and through multiple simulation sessions.

TestBlock2 (Files: general_dll_block_test2.sch, TestBlock2.dll)
In this example, the general DLL block has one input node and two output nodes. It has an
input data file and three parameters (an integer, a floating-point value, and a string). The
string parameter is used as the output file name. During the simulation, the DLL opens and
reads the input data file. It performs calculations using the values from the input data file and
the parameters. The DLL writes results to the output data file.

TestBlock3 (Files: general_dll_block_test3.sch, TestBlock3.dll)
In this example, the DLL does not export the user interface function REQUESTUSERDATA.
The property box of the element allows the user to enter the number of input and output
nodes. There are also five parameters and an input data file. This example demonstrates how
the DLL obtains the parameter values and the input data file path from PSIM. These
parameters and the input data file, however, are not used inside the DLL and are left blank.
The example assumes that the general DLL block has at least one input node and one output
node.

 Page 12 www.powersimtech.com

	Help on the General DLL Block in PSIM
	RUNSIMUSER:
	CLOSESIMUSER:
	REQUESTUSERDATA
	int nRequestReason :
	int nRequestCode :
	int nRequestParam :
	void ** ptrUserData:

	Call Sequences
	ACTION_DLL_SELECTED
	ACTION_ELEMENT_LOAD
	ACTION_ELEMENT_SAVE
	ACTION_INPUTFILE_CHANGED
	ACTION_PARAMETERS_CHANGED
	ACTION_ELEMENT_DELETE

	Samples
	Three examples are provided to illustrate the use of the general DLL block, as described below.
	TestBlock (Files: general_dll_block_test1.sch, TestBlock.dll)
	TestBlock2 (Files: general_dll_block_test2.sch, TestBlock2.dll)
	TestBlock3 (Files: general_dll_block_test3.sch, TestBlock3.dll)

