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1. Preamble : 
 

Identification consists in obtaining a dynamic (or static) model of a system. We can proceed
in two ways:  
• By elaborating the model using knowledge of the system and differential equations. It is 

then necessary to determine through measurements the values of the coefficients. 
• By using an identification algorithm that uses experimental data obtained with an 

acquisition system. 
We propose here a measurement procedure associated with the first method. 

 
2. Fundamental relations : 

We present on the right the equivalent circuit of the armature 
of the machine. 

 
We can deduce the electrical equation in any given state: 

E(t)  
dt

di(t)L  Ri(t)  (t)Um ++=         (2.1) 

 
We are reminded of the electromechanical equations linked to 
the motor: 

 
(t)k  E(t) ΦΩ=  et i(t)k  (t)Cem Φ=  

The equality 2.1 can therefore be written: 
 

(t)k  
dt

di(t)L  Ri(t)  (t)Um ΦΩ++=       (2.2) 

 

 

K is a constant that depends on the geometry of the motor (number of conductors, pairs of 
poles and windings) 
Φ is the effective flux (in Wb) and Ω the rotation speed (in rad/s). 

 
For a constant flux machine, we can write : 

 
(t)k  E(t) eΩ=   and  i(t)k  (t)C Iem =  with ke = ki 

In general (separately excited or series machine) the flux depends on the excitation current 
in the inductor. For a given speed we have E = f(I)  
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Mechanical equations: 
 

Cem : electromagnetic torque supplied by the motor. 
J : moment of inertia of the rotating unit. 
Cch : load torque. It is made up of the load torque Cr and the friction  Cf. 

 
with Cf = fΩ  + Cs0×sgn(Ω) 

f : viscous friction coefficient. 
Cs0 : kinetic friction torque. 
The fundamental principle of dynamics allows us to write: 

 

(t)C -(t)C  
dt

(t)dJ chm=
Ω            (2.3) 

 
By specifying  Cch = Cr + Cf, the equation (2.3) can be written : 

 

(t)C  )sgn(C  f  
dt

(t)dJ  (t)C rs0m +Ω+Ω+
Ω

=      (2.4) 

 
3. Measuring  resistance and armature inductance : 
 

• For permanent magnet motors: 
We block the shaft of the DCM, we have therefore Ω(t) = E(t) = 0 
The equation (2.2) becomes : 

dt
di(t)L  Ri(t)  (t)Um +=     (3.1) 

 
In these conditions, the armature current is the equivalent of a RL series circuit. 
It is then possible to measure the resistance using a constant voltage method, but we can 
also feed the armature current with a voltage U, which is rectangular (produced by a 
chopper). 
We can thus visualize the current with an oscilloscope. 
 
The asymptote Imax is equal to U/R and the time constant τe is equal to L/R. 
Observations : We will be careful to limit the current in the armature current (risk of 
deterioration of the brushes and collectors). 
We can take several measurements for different positions of the rotor (for example three
measurements at 120 °) and calculate an average. 
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• For separately excited motors: 
 

The inductor is not supplied and the relation 3.1 is applied. 
We note the value of the resistance with the constant voltage method taking into account 
the pervious observations. We can make a correction according to the temperature:          
R60 = 1,15R20 
 
We measure the value of the armature inductance for a nominal value of the current 
(taking into account its eventual saturation). We will use the method of the first order 
harmonic. 
We feed the armature current by using a single phase (or three phase) bridge rectifier 
while calculating the RMS value of the sinusoidal voltage in such a way as to obtain an 
average value of the armature current equal to its nominal value (see redress_nc.doc). 
 
A filter system and an oscilloscope allow us to see the phase displacement between the 
fundamental of the voltage and fundamental of the current. 
 
The equality tanϕ = Lω/R allows us to obtain L for the chosen operating point. 
 
Note : It is necessary to know the value of the frequency of the fundamental. 

4. Measuring the no-load characteristic: 
 
The no-load characteristic is measured as a generator. It consists in noting the curve that 
shows the evolution of the electromagnetic force (no-load) in function of the excitation 
current, the rotation speed of the machine being maintained constant. We therefore note that 
E = f(Iexc) at nominal N. 
This measurement allows us to evaluate the product kΦ for the nominal operating point. 
 
Note : In a real situation, we would proceed by changing  Iexc by applying increasing and 
then decreasing values in order to show the hysteresis and the  residual flux of the magnetic 
material. 
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5. Measuring friction : 
 
This measurement is carried out no-load. It is used to determine experimentally the 
coefficients of f and Cs0. 
Since the motor is not loaded, load torque, Cch is equal to the friction Cf (because Cr = 0) 
If the speed is positive, the equality (2.4) is written : 
 

s0m C  f  
dt

(t)dJ  (t)C +Ω+
Ω

=   (5.1) 

In steady state (stabilized speed), the previous equation becomes : 
 

s0m C  f  (t)C +Ω=  (5.2) 
For different values of the rotation frequency (we vary Um), we note the value of the current
I. 
We deduce the value of  Cm ≈ Cem because kΦ is known for the nominal excitation: 
 
The equality (5.2) becomes : s0C  f  Ik +Ω=Φ  

 
We obtain an equation like y = ax + b that we are going to plot in order to find a (f) and b 
(Cs0) 
The term Cs0 represents the kinetic friction torque whereas the term fΩ represents the 
viscous friction. 

Cm

Cs0

pente f

Ω  
We therefore have 

∆Ω
∆

=
mC  f  and by linear extrapolation the value of Cs0. 

6. Measuring the value of the moment of inertia: 
 
The motor is running at a constant speed Ω0 (no-load). We cut off the power supply for the 
armature current and the field and we can visualize with the oscilloscope the decrease in 
speed until the motor stops. We carry out a no-load test. 
 
The motor, which is only subject to the friction slows down and stops. The slowing down is 
subject to the equation (5.1) with Cm = 0 as long as Ω(t) ≠ 0. 
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The equation (5.1) can be expressed in the form : 
 

f
C-  (t)  

dt
(t)d s0

m =Ω+
Ωτ  (6.1) with 

f
J  m =τ  

 
We recognize the differential equation of the first order where the typical solution is : 
 

)e - 1(
f

C - e  (t) m
t -s0m

t -
0 ττΩ=Ω  (6.1) 

 
The limit of the previous solution corresponds to the interval [0, ta], the instant ta when the 
shaft stops rotating. 

(t)Ω

t
ta

0Ω

 

The equation Ω(ta) = 0 allows us to express ta in 
function of Ω0, Cs0, f and J (n.b. J is the 
moment of inertia of the entire rotation group). 
From  (6.1) we get : 
 

1)  
C

ln(f

tf  J

s0

0

a

+
Ω

=   (6.2) 

The knowledge of f and of Cs0 allows us to calculate J while carrying out a no-load test 
based on the speed Ω0. 

 
 


